当前位置: 仪器信息网 > 行业主题 > >

模拟信号转换器

仪器信息网模拟信号转换器专题为您提供2024年最新模拟信号转换器价格报价、厂家品牌的相关信息, 包括模拟信号转换器参数、型号等,不管是国产,还是进口品牌的模拟信号转换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模拟信号转换器相关的耗材配件、试剂标物,还有模拟信号转换器相关的最新资讯、资料,以及模拟信号转换器相关的解决方案。

模拟信号转换器相关的资讯

  • 德国研制出世界最小光电信号转换器
    光纤网络是现代信息传递的基础,光电信号转换器是其核心,德国卡尔斯鲁尔研究中心的科研人员研制出一种世界最小的光电信号转换器。其内部结构为平行排列的两个微小黄金电极,长度约29微米,两电极之间的间隙约为0.1微米,整个结构直径不到人头发的1/3,两电极之间引入变化的电压信号,其频率与传输的数据信号相关,在电极中间充填有特殊的塑料材料,其对光线的折射率随所施加的电压发生改变。在两电极的间隙中导入连续光束后,会激发出表面电磁波(表面等离子体),这种表面电磁波受到施加与电极间隙中充填的塑料材料中的电压信号的调制,而经过调制的表面电磁波又可影响穿过间隙的光束的相位,实现信息通过施加于两电极的电压信号调制光束而转换成光信号在光介质中的传输。经过实验验证,这种光电转换器可实现的数据转换速率达到40G比特/秒,可工作在目前宽带光纤网常用的红外光波长范围内(波长1480-1600纳米),工作温度可达85摄氏度,是目前世界上最小型化的高速光电信号(相位)转换器,可用目前成熟的微电子技术手段进行规模化生产,并集成在微电子芯片中,可实现信息的高速率低能耗传输。
  • 虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换
    虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换总述:Media Converter可在车载以太网连接 (100BASE-T1或1000BASE-T1或10GBASE-T1)和任何具有带RJ-45连接器的标准以太网网络接口卡 (NIC) 的设备之间建立物理层转换。在转换过程中,设备不存储或修改任何数据包,并具有高可靠性。 一个镀锌钢板的便携外壳,加上方便配置DIP开关,使用户可以毫不费力地与转换器交互。它的设计使它便于携带,易于安装在测试架上。金属外壳使其具有坚固的IP20保护性能。是理想的智能、易于管理的解决方案,协助高效处理车载以太网的工作。它使用车规级连接器,满足在下一代车辆系统中测试与验证最先进的通信技术解决方案日益增长的需求。Media Converter产品亮点1. 100BASE-T1 &bull 全双工100BASE-T1 (1 x非屏蔽双绞线-UTP) 快速转换为100BASE-TX&bull 应用BCM 100BASE-T1 PHY&bull 2 x DIP开关,便于配置 (Master/Slave HalfOut/FullOut) &bull 2 x状态指示灯 (包括Linkup和Data数据指示灯)2. 1000BASE-T1 &bull 应用Marvell 88Q2112 A2 PHY, 兼容100BASE-T1&bull 1 x RJ-45端口,用于100BASE-TX/1000BASE-TX&bull 1 x 100/1000BASE-T1端口,不同接口:MATEnet、HMTD (若ECU端带有四孔HMTD接口或需要其他接口,可以修改线束来匹配)&bull 4 x DIP开关,便于配置 (Master/Slave 100/1000 Mbit/s 传统/IEEE模式 帧生成)&bull 状态指示灯&bull MQS连接器&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”3. 2.5/5/10GBASE-T1&bull 允许通过2.5/5/10GBASE-T1多千兆的车载以太网端口轻松地连接到ECU&bull 兼容车载以太网的PHY 88Q4364 2.5G/5G/10GBASE-T1 IEEE 802.3ch&bull 1 x H-MTD端口,用于10GBASE-T1&bull 1 x 标准 SFP+模块 (10GBASE-T,光学,直接连接电缆)&bull 4 x 状态指示灯&bull 4 x DIP开关,便于配置 (Master/Slave 10GBASE-T1/other 2.5GBASE-T1/5GBASE-T1)&bull I/O信号,易于与自动化系统接口&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”Media Converter应用领域1. 具体用途有:激光雷达、相机等传感器数据采集;自动化在环HiL测试;下线测试EOL;DV和PV试验等。2. 针对性案例:车载以太网接口的传感器,通过转换器与PC上位机连接,进行数据传输。
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器 芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业 发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及 产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 扩展即时处理功能:安捷伦添加均衡器至PCIe数字转换器
    仪器信息网讯 安捷伦科技近日宣布,PCIe数字转换器家族的成员将会拥有一项新的均衡器即时处理功能。新的均衡信号减少了随机的噪声效应,提升了信噪比、分辨率与动态范围。仅需单一触发器的一次采集,快速采样率就能达到3.2GS/s,而整个过程无需使用等效时间采样技术。由于均衡器的一次记录均衡了多达520,000个触发器,而该功能的自我触发模式有效的最小化了应用的同步模式噪音,安捷伦PCIe数字转换器的通用性得到了显著提升。      均衡器功能与新近推出的峰值检测和数字转换器即时处理功能一道,为安捷伦的用户提供完整而又颇为灵活的工具组合,使得用户的应用需求尽可能达到最佳分析效果。随数字转换器附赠的软件驱动可以让应用在多种信号处理功能间轻松转换。8位U5309A和12位U5303A的PCIe高速数字转换器现已配备均衡器功能。   &ldquo 由于我们频繁发布附加的即时处理功能,用户可以从不断增长的测量吞吐量中获益,&rdquo 安捷伦高速数字转换器运营经理DidierLavanchy说。&ldquo 通过使用U5340A FPGA开发套件,用户可以快速处理他们的开发需求。&rdquo
  • 输韩LED灯转换器检测标准落定
    韩国上月发布公告称,将修改电子产品安全标准及运用要领,其中列明LED照明器具要求。这一改动将使东莞、中山为主的中国LED企业出口受到影响。   日前,省内外10名专家和10家LED龙头企业有关负责人聚集市科技博物馆,参加了“G/TBT/N/KOR/234、235号通报评议会”。评议会由中国WTO/TBT国家通报资讯中心主办,省质监局WTO/TBT通报咨询研究中心和市质量技术监督标准与编码所承办。   10月1日,韩国发出了关于电子安全标准的G/TBT/N/KOR/234、235号通报,这两项通报拟随着国际电工委员会(IEC)对照明电气电磁兼容性要求的改变而修订其国内相关标准,同时将LED照明器具单列出来,明确其具体要求。而据专家介绍,以往的相关标准并没有将LED等单独列出来做严格的规定。   广东省是我国LED产品的主要省份,其中东莞和中山等地均具有相当规模的LED产业集群。据不完全统计,东莞企业的年出口额达到10亿元,约占全国总量的20%。勤上光电、百分百科技等龙头LED企业,均相继在韩国设立销售处。   按照WTO框架下《技术性贸易壁垒协定》(TBT协定)中透明度原则,各成员可通过通报咨询机构对拟议中的技术性措施提意见,时间限定为60天。   因此,专家和各企业代表通过评议会就韩国拟修改的技术标准提出了意见和建议。不少成员认为,标准虽然对新增LED灯用转换器设置了技术要求,但是没有相应的检测方式,这可能是一大漏洞。主办方表示,将汇总这些意见后向韩国方面提交,以最大化方便LED出口企业。   韩国拟修改具体内容   1、k00015(照明器械类似器械的电磁干扰测试方法及测试限值)   2、K61547(普通照明器械——电磁兼容抗扰度要求事项)
  • 鼎阳科技成功A股上市,成为国内通用电子测试测量仪器行业第一股
    12月1日,深圳市鼎阳科技股份有限公司(股票简称:鼎阳科技 股票代码:688112)成功登陆上海证券交易所科创板,成为国内“通用电子测试测量仪器行业第一股“。本次募集资金总额为人民币 124,266.82 万元;扣除发行费用后实际募集资金净额为人民币 115,071.72 万元。本次超募资金总额为 812,339,666.82 元,部分超募资金 243,000,000 元将用于永久补充公司流动资金,占超募资金总额的比例为 29.91%。根据《深圳市鼎阳科技股份有限公司首次公开发行股票并在科创板上市招股说明书》,首次公开发行股票募集资金投资项目及募集资金使用计划如下:首次公开发行股票募集资金投资项目及募集资金使用计划高端通用电子测试测量仪器芯片及核心算法研发项目为本次发行募集资金投资项目之一,本募投项目投资金额为 20,235.00 万元,其中研发场所建设投入 10,800.00 万元、软硬件设备投入1,635.00 万元、研发项目投入 7,800.00 万元。 实质研发内容为 4GHz 数字示波器前端放大器芯片和高速 ADC 芯片、低相噪频率综合本振模块和 40GHz 宽带定向耦合器模块、宽带矢量信号源和宽带接收机中幅度和相位的补偿算法、网络分析仪的校准算法和 5G NR 信号的解调分析算法等七项内容。据了解,鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业 发达的地区。但由于国内企业在通用电子测试测量领域起步较晚,技术积累时间较短,在产品布局及技术积累上与国外优势企业仍存在较大差距,鼎阳科技的产品主要集中于中低端,中高端产品市场主要被国外优势企业如是德科技、力科、泰克以及罗德与施瓦茨等占据。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。鼎阳科技称,公司致力于实现通用电子测试测量仪器高端产品核心技术和芯片的自主可控,同时也致力于成为全球通用电子测试测量仪器行业最具创新能力的领导者。鼎阳科技此次募资将开展相关高速ADC芯片研发。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。此前披露的招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 催化转换器的回收:用于铂族金属分析的4个快速手持式荧光光谱仪技巧
    催化转换器是一种有助于汽车产生更清洁排放物的装置。催化转换器通过使用催化剂(一种加速化学反应的基质)将排气系统中的有害气体转化为污染较少的气体。这种设备还可以通过另一种方式 — 回收利用,起到保护环境的作用。催化转换器的回收除了能减少废物外,在经济性上也有所帮助,因为催化转换器中含有稀有金属。催化转换器内的催化剂成分通常是铂(Pt)、钯(Pd)和铑(Rh)的组合,这些都是稀有且昂贵的铂族金属(PGM)。通过对催化转换器废料进行适当的分类和处理,可将这些金属回收并重新用于制造新的催化转换器或其他设备。使用手持式荧光光谱仪识别催化转换器废料中的铂族金属回收工厂需要一种快速、准确的方法,在回收过程的多个步骤中识别这些令人们趋之若鹜的金属。手持式荧光光谱仪是一种有用的工具,可以在现场对催化转换器废料进行元素分析,以进行快速分拣和定价。虽然像Vanta系列这样的手持式XRF光谱仪可以快速提供答案,但遵循最佳做法以确保分析仪充分发挥其固有性能也比较重要。在回收厂,一名技术人员正在使用手持式XRF分析仪检测催化转换器废料要优化您的Vanta手持式XRF光谱仪,以便在催化转换器回收的过程中更快地检测并测量铂、钯和铑等元素,请采用以下快速技巧:检查您的仪器窗口首先,检查您的手持式XRF光谱仪上是否安装了正确的窗口。例如,我们根据Vanta型号和X射线管类型提供了不同的仪器窗口。另一个需要考虑的重要因素是窗口的状况。窗口是否完好无损? 您要检查窗口是否有任何刺破或撕裂的迹象。如果看到有孔洞,就该更换窗口了。要使分析仪正常工作,保持窗口清洁至关重要。在检测之前,请确保用酒精或湿巾清洁窗口。正确制备用于检测的样品为了使XRF分析获得具有代表性的准确结果,我们建议您通过研磨、筛滤、匀质处理方法,对催化剂废料进行适当的制备。将分析仪与便携式Vanta工作站结合在一起使用,在完全联锁的系统中测量铂族元素。按等级对废料进行分类在匀质处理催化剂废料之前,回收商应使用Vanta分析仪对废料进行分类和分离,将相同类型的材料放在一起。催化剂废料分为三个或四个等级,例如:氧传感器三路转换器双向转换器柴油微粒过滤器(DPF)核查检测时间在检测汽车催化转换器废料中的铂族元素时,确保使用正确的检测时间至关重要。以下是一些建议使用的检测时间:快速扫查,以探测铂、钯、铑:光束1 — 最长15秒。这是进行基本分类和确定是否存在铂族元素及钽(Ta)和硒(Se)添加物的不错选择。标准检测,以探测铂、钯、铑:光束1 — 最长30秒,光束2 — 最长15秒。这种检测方式非常适合于完全制备送至精炼厂的样品。全面扫查,以探测到所有元素:光束1 — 最长45秒,光束2 — 最长15秒。可用于优化精炼厂内的回收过程。建议Vanta手持式XRF光谱仪在测量铂、钯和铑元素时使用的检测时间随着全球对铂族金属需求的快速增长(分析师预测全球铂族金属市场将以4.38%的复合年增长率增长),催化转换器回收商需要高效工作,才能满足这种需求。
  • 鼎阳科技业绩快报:营业利润增幅46%,进口替代加速
    2月25日,深圳市鼎阳科技股份有限公司(688112)发布2021年度业绩快报。初步测算,2021年公司实现营业总收入30382.32万元,而去年同期实现22080.03万元,同比增长37.60%;实现营业利润 9025.93万元,而去年同期6174.55万元,同比增长46.18%;实现利润总额 9041.98万元,而去年同期6161.66万元,同比增长46.75%。鼎阳科技表示,尽管遭遇电子行业芯片荒和国内外疫情,但公司境内外各档次产品销售额均继续增长,全球市场渗透持续发力,特别是高端产品和境内市场保持了更高的增长势头,进口替代加速。此外,公司持续保持了较高的研发投入,加强新产品开发和市场开拓,产品认可度以及品牌形象持续提升。有关项目增减变动幅度达 30%以上的变动说明:1、营业总收入同比增长37.60%,营业利润同比增长46.18%,利润总额同比增长46.75%,归属于母公司所有者的净利润同比增长50.92%,归属于母公司所有者的扣除非经常性损益的净利润同比增长51.04%,基本每股收益同比增长 47.76%,主要受益于公司在研发、营销等方面加大了投入,产品持续高端化,品牌、渠道持续优化,国产品牌替代进口加速。2、总资产同比增长585.84%,主要系公司于2021年12月份完成首次公开发行股票并上市,导致货币资金和所有者权益大幅增加。3、股本同比增长33%,归属于母公司的所有者权益同比增长768.43%,归属于母公司的所有者的每股净资产同比增长551.32%,主要系公司于2021年12月份完成首次公开发行股票并上市,导致股本和所有者权益大幅增加。4、加权平均净资产收益率下降31.76%:主要系公司于2021年12月份完成首次公开发行股票并上市,募集资金暂未产生效益。作为2021年首次公开发行股票并上市的企业,这是鼎阳科技首次公开年度业绩。据了解,鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业发达的地区。但由于国内企业在通用电子测试测量领域起步较晚,技术积累时间较短,在产品布局及技术积累上与国外优势企业仍存在较大差距,鼎阳科技的产品主要集中于中低端,中高端产品市场主要被国外优势企业如是德科技、力科、泰克以及罗德与施瓦茨等占据。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。鼎阳科技称,公司致力于实现通用电子测试测量仪器高端产品核心技术和芯片的自主可控,同时也致力于成为全球通用电子测试测量仪器行业最具创新能力的领导者。鼎阳科技通过公开募资开展相关高速ADC芯片研发。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。DC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到2023年,其余一款芯片的有效期到2025年。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 钢研纳克获“全谱线阵CCD采集系统及其方法”发明专利
    钢研纳克检测检测技术有限公司(原北京纳克分析仪器有限公司)2010年9月申请的“全谱线阵CCD采集系统及其方法”发明专利顺利通过中华人民共和国国家知识产权局审核,专利证书于2012年3月下发。 该专利是一种全谱线阵CCD采集系统及其方法,适用于金属材料光谱分析测试领域。系统包括,参数配置系统、CCD采集系统、USB传输系统以及用户界面软件系统。用户界面系统发出指令,首先配置系统参数,包括CCD采集次数和单次积分时间,模数转换器的增益和偏置。然后开始采集,把光信号转换成电信号,模拟信号转成数字信号。再由USB传输系统将数字信号传输到计算机中,通过软件计算拟合成元素含量的图像。本发明的优点在于,能够做到多个CCD同时采集,高速传输;采用同轴电缆来传输CCD模拟信号,抗干扰能力强;对金属材料进行重复多次激发采集,采集结果稳定,重现性高。
  • Lumenera发布Lumenera Lt1245R 1200万像素CMOS相机新品
    Lt1245RPregius全局快门CMOS USB 3.1 Gen 1相机产品规格书 工业和科学相机宣传册Teledyne Lumenera Lt1245R采用索尼全局快门CMOS传感器中最大的SonyPregius® IMX253传感器。Lt1245R采用FPGA技术并集成帧缓冲和Teledyne Lumenera先进的图像处理技术,可从小尺寸的相机中提供高分辨率图像。 这使得Lt1245R非常适合机器视觉,生命科学,无人机和ATI应用。Lt1245R相机产品亮点彩色或黑白SONY IMX253 CMOS 1200万像素全局电子快门传感器1.1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS® 全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt1245R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt1245RM 1200万像素黑白相机Lt1245RC 1200万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX253, 彩色, 黑白芯片尺寸:1.1″像素大小:3.45 x 3.45 μm分辨率:4112 x 3008 pixelsROI控制:Yes帧数:30 fps at 4112 x 3008位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 14μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:74 dB满阱容量:~10,500 e-相对响应率:61% @ 530 nm peak color, 68% @ 570nm peak mono读出噪声:~2.41e-暗电流噪声:1.2 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。 产品亮点: 全局快门CMOS CMOS传感器具有类似CCD的性能,并提高了帧速率 P-Iris连接器,用于支持精确的光圈镜头控制 高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍) 高动态范围,高速,低读取噪声?2e- 无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像 容USB3 Vision兼 Windows和Linux SDK Lumenera Lt1245R 1200万像素CMOS相机
  • Lumenera发布Lumenera Lt545R 500万像素CMOS相机新品
    Lt545RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt545R相机采用SONY的高性能全局快门CMOS IMX250传感器,以最佳的图像质量和非常快的帧速率输出图像。Lt545R从SONY Pregius® 传感器提供最快的全分辨率图像,加上Teledyne Lumenera久经考验和可靠的USB 3.1 Gen1技术。可以使用硬件或软件触发来同步图像捕获。FPGA支持的性能,以及用于帧缓冲的板载存储器,即使在最苛刻的机器视觉系统中也能确保可靠的图像传输。Lt545R相机产品亮点彩色或黑白SONY IMX250 CMOS 500万像素全局电子快门传感器2/3“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS® 全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt545R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用运动捕捉Motion Capture人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System自动驾驶车辆Autonomous Self-driving Vehicles超快3D扫描Ultra-fast 3D Scanning眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging粒子图像测速Particle Image Velocity Measurement工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt545RM 500万像素黑白相机Lt545RC 500万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX250, 彩色,黑白芯片尺寸:2/3”像素大小:3.45 x 3.45 μm分辨率:2464 x 2056 pixelsROI控制:Yes帧数:75 fps at 2464 x 2056位数:8 bit or 12 bit曝光时间:25μs to 71.6m (snapshot) 14μs to 9.6s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:73 dB满阱容量:~10,800 e-相对响应率:63%@ 530nm peak color, 69%@ 540nm peak mono读出噪声:~2.36e-暗电流噪声:1.5 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。 产品亮点: 全局快门CMOS CMOS传感器具有类似CCD的性能,并提高了帧速率 P-Iris连接器,用于支持精确的光圈镜头控制 高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍) 高动态范围,高速,低读取噪声?2e- 无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像 容USB3 Vision兼 Windows和Linux SDK Lumenera Lt545R 500万像素CMOS相机
  • Lumenera发布Lumenera Lt945R 890万像素CMOS相机 新品
    Lt945RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt945R相机将先进的Teledyne Lumenera技术与SonyPregiusIMX255 CMOS全局快门传感器相结合。它的小尺寸和轻便设计意味着Lt945R非常适合机器视觉,生命科学和无人机的应用。 Lt945R采用FPGA技术并集成帧缓冲,提供快速,可靠的图像传输。Lt945R相机产品亮点彩色或黑白SONY IMX255 CMOS 890万像素全局电子快门传感器1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt945R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt945RM 890万像素黑白相机Lt945RC 890万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX255, 彩色, 黑白芯片尺寸:1″像素大小:3.45 x 3.45 μm分辨率:4112 x 2176 pixelsROI控制:Yes帧数:42 fps at 4112 x 2176位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 15μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:72.7 dB满阱容量:~10,500 e-相对响应率:63% @ 530 nm peak color, 67% @ 560nm peak mono读出噪声:~2.41e-暗电流噪声:1.3 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。产品亮点:全局快门CMOSCMOS传感器具有类似CCD的性能,并提高了帧速率P-Iris连接器,用于支持精确的光圈镜头控制高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍)高动态范围,高速,低读取噪声?2e-无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像容USB3 Vision兼Windows和Linux SDKLumenera Lt945R 890万像素CMOS相机
  • 色谱工作站选型或操作不当 反而帮了倒忙
    色谱工作站是一种辅助气相色谱仪采样、收集色谱检测器当中的电压信号数据分析处理的工作站辅助软件,是将一台通用的电脑从硬件上和软件上进行扩充,使其具有处理色谱仪信号数据的功能。色谱工作站简单来说,是由硬件和软件组成的。硬件是指信号采集器,又称模/数(A/D)转换器,将色谱仪检测器输出的模拟信号(即电平信号)转变为电脑能够接收的一个个数字信号,起着电脑与色谱仪之间的桥梁作用。如果色谱仪本身就能够输出数字信号,则这样的硬件也就不需要了。但一般能够直接输出数字信号的仪器也都同时保留有Analog口输出模拟信号,以便配套自带模/数转换器的工作站软件。软件是指接收由硬件传送来的色谱信号采样数据,并实现谱图显示、峰检测和基线校正、定量计算、打印报告等功能的电脑程序。众所周知,色谱是一种非常精密的分析仪器,测量范围从常量到微量,甚至达到痕量,跨越6-7个数量级,与之相适应的工作站应当达到更高于仪器的水平,才能客观真实地反映分析结果。信号采集器同色谱仪本身一样也有重现性、线性度等指标。而诸多的实践证明:一台劣质的色谱工作站在做数据处理时,由于本身的性能与仪器分析要求不匹配反而帮了倒忙。所以,色谱工作站的选型工作不容小视。且需要注意使用时的常见问题。1、电源的要求。工作站要求提供的电源电网系统持续稳定 在工厂里要避免跟大功率动力电系统同源同线 此外在工作站电源前安装稳压电源。2、接地。气相色谱仪检测器、电脑主机都要求接地,切不可以把接地线连到自来水管或其他下水的铁管了事。3、工作站软件不稳定。建议先查杀病毒,如果问题还不能解决的话,则只能重新安装操作系统。4、使用注意事项。安装了色谱工作站的电脑尽量不要用来上网,也不要随便使用其他未经杀毒的软盘或者光盘,以防病毒的交叉感染。5、校正过程中出现提示某些峰的面积或者浓度为零。检查组份表中*组份峰的浓度是否已经全部设置完成,时间间隔设置是否*,因为时间间隔设置的太大,则可能误判其他峰为组份峰,太小的话,则不够把*浓度的组份峰*的识别出来。总之时间间隔设置要恰到好处,不能太大也不能太小。6、色谱工作站没有信号⑴确认电源是否损坏,如果电源灯不亮,则电源有可能已经损坏。⑵如果电源灯亮,则可以把工作站安装到另外一台电脑上,在不连接到色谱仪器的情况下,判断色谱工作站是否有信号,如果没有信号,这可能是工作站硬件已经损坏。此情况可以把工作站硬件返回厂家维修。⑶如果在另外电脑上色谱工作站是有信号的话,那么这可能是安装工作站的电脑的串口已经损坏,建议换到另一个串口或者更换一台新电脑来安装色谱工作站。以上是关于色谱工作站的一些相关内容,希望给大家一些参考和帮助,如果选型或者操作不当,对于实验数据反而帮了倒忙。
  • 揭秘:微型光谱仪之光子历程
    在微型光纤光谱仪中,光子会经历一个曲折而漫长的过程,从光子的产生、传输,光电转换,模拟信号到数字信号,再到通过电脑将光谱展示出来。过程是曲折的,但结局是美好的。那么光子在微型光纤光谱仪中都发生了些什么?  光子历程将从光的激发开始。光子可以来自于大自然中的太阳、星辰,日常生活中的光源、LED或者激光,也可以来自于荧光物质或者由拉曼散射产生。无论光子源于哪里,不同光子都能产生特定的光谱谱线,而光谱的形成伴随着光子的一生,从产生到消亡。   光子在到达狭缝前,会经历一个崎岖的旅程。光子在自由空间中传播时,会被传输过程中其他物质反射、透射或者吸收。不同的物质会在不同波长情况下相互作用的时候过滤、更改或者消除不同波长的光子。光纤作为最基本最简单的耦合工具,可以将光从一个单点耦合至另一器件中,并且能防止其他杂散光的进入。光子在到达狭缝前,通过光纤可以更顺利的到达光谱仪,减小损耗,降低噪音影响。  狭缝是光子进入光谱仪狭长细小的入口,它能保证光子尽可能有效地耦合到光谱仪内部。狭缝越大,通光量越大,但是光学分辨率越差,所以狭缝在选择大小尺寸时,需要权衡通光量和光学分辨率的大小。  光子通过狭缝进入光谱仪内部,仍在一个自由空间内传播,到达第一个元器件为准直透镜。由于准直镜可以保证所有光子都以平行路径到达下一个元器件,确保所需测量的光束不发散或者散射,所以可以使光束最大利用率的得到使用。  准直镜将光反射至衍射光栅上,光栅将不同波长的光进行分光。分光作为一个重要的阶段,将光束分为不同波长段,使光谱仪有效地检测不同波长的光信息。  衍射光栅发射出来的光再通过聚焦镜进行聚焦,保证每个波长的光都尽可能地投射到检测器上。一维线性排列的CCD或CMOS检测器,每个像元能够接收窄范围波长的光子。  每个像元以量子阱的形式工作,收集特定范围的光子。当积分时间开始时,量子阱开始接收满电压电荷。当一个光子撞击量子阱时,同一时间量子阱内电荷就得到释放。积分时间越长,每个像元就会接收到更多的光子。一旦电荷释放完成,单个像元阱就会饱和,那新的光子信号就不会被采集。当光子撞击检测器的同时,即转换成了电信号,这时光子能量完成释放,光信号转换为电信号的过程也随之结束。  之后进入到数字模拟阶段,积分时间完成时可以通过检测像元读出电荷水平值。读出的模拟信号通过AD(模拟-数字)转换器,可以将每个像元的电压值读出成特征的“counts”强度值。通过数字处理,由光子信号而来的电信号就转换成数字信号,即光子转换成数据。当光子在光谱仪中的旅程结束也就意味着另一个旅程的开始——电信号的转换,软件的输出。  当从光谱仪读出相关光谱后,希望读出的光谱数据是非常平滑且不失真的数据,这时候就需要利用光谱处理技术对原始光谱进行平滑和过滤:电子暗噪声扣除,由“光学暗像素”获得的平均电子暗噪声,可以校准读出噪音和温度躁动偏移 非线性校准,使用出厂校准7阶函数对光谱仪进行校准,确保每个像素点的响应成线性关系 平滑度,通过设置平滑次数,可以对每个像素和与之相邻像素的测量值进行平均 平均次数,通过增加平均次数提高信噪比。  处理后的光谱数据可通过USB从micro的转接口与电脑连接进行数据传输。在未来产品中,除了USB通讯连接,光谱仪还提供其他的通信方式,如蓝牙、太网、WiFi等。  从光子的产生、光谱仪中的传输、到达检测器像元,数据的处理及传输,光子经历了一段崎岖的旅程。微处理器,检测器和光纤光学的不断发展,使得光谱技术不仅仅局限于实验室中,微型光纤光谱仪将把光谱技术带到人们的日常工作中,改善人们的生活方式。(来源:海洋光学)
  • 湃睿半导体完成数千万元A轮融资 用于传感与混合信号芯片研发
    近日,南京湃睿半导体有限公司(以下简称“湃睿半导体”)完成由毅达资本领投的数千万元A轮融资。本轮融资将用于传感与混合信号芯片的新产品拓展、新技术研发等。湃睿半导体成立于2020年,专注于高端ATDC(Analog-Time-Digital Converter,又称模拟-时间-数字转换)芯片的研发、生产和销售。ATDC芯片,是用于将真实世界产生的模拟信号(如温度、压力、声音或者图像等),转换成更容易储存、处理和传输的数字形式。湃睿半导体总部设立于南京,在无锡、厦门设有控股子公司,分别专注于MEMS技术和标准化技术开发,在深圳设有销售与技术支持办公室。此外,在德国法兰克福、多特蒙德分别设有后端设计与验证团队,致力于利用全球技术优势,同时立足本土制造与运营,打造融合传感与混合信号领域的创新品牌。ATDC芯片与传统的ADC芯片作用一样,主要用于模数转换,但两者在实现原理上有较大差异。ADC全称为AVDC,即“模拟-电压-数字转换”,ATDC则是“模拟-时间-数字转换”,两者的差别在于转换的介质从电压变成了时间。ATDC芯片引入时间要素作为中间变量,可以减少混合信号中的模拟部分,提高数字部分占比,实现更高精度、更低噪声、极低功耗和极低成本。同时,客户使用时,两种芯片的方案一致,并不会产生迁移门槛。因此,ATDC芯片有望逐步替代传统的ADC芯片。湃睿半导体创始人黄孙峰表示,此前,不少芯片巨头也尝试过ATDC路线,但由于本地工艺变异的影响,导致最终成片表现不佳。而湃睿半导体则凭借在前端VTC(电压-时间)、后端TDC(时间-数字)上的技术创新,使得ATDC芯片能够在更成熟的90-180nm芯片制程下实现,突破了困扰行业多年的技术壁垒。湃睿半导体拥有全球化的创始团队,四位联合创始人拥有慕尼黑工业大学(MUT)、卡尔斯鲁厄理工学院(KIT)、东南大学、浙江大学等高校硕士及以上学历,在传感器半导体领域都有着20年以上的经验,拥有研发和市场的复合背景。公司产品进展迅速,在2023年上半年正式流片了两款细分产品,截至目前,公司已出货接近五百万颗。此外,公司已经和新能源汽车、工业传感器、轨道交通系统等多个行业的头部客户完成了产品验证和导入,预计将在2024年进入快速增长阶段。毅达资本投资总监姚博认为,当前国内模拟芯片厂商面临需求不振、海外巨头低价倾销等多方面挑战。湃睿半导体在艰难的市场环境中仍能保持订单快速增长,并获得行业头部客户高度认可,充分展示出其颠覆式创新的巨大价值。毅达资本长期看好ATDC技术在消费、工业、汽车领域的应用,并相信其在医疗、通信等高端传感场景的延展价值。期待湃睿半导体未来能够依托自身的技术优势,持续增强研发力度,进一步为ATDC赛道的标准化发挥引领作用。
  • 免费试用!国仪量子微弱信号测量系列产品等你体验
    随着科技不断进步,科研以及工业领域精细测量微弱信号的需求不断增长。为满足用户需求,同时推动国产科研仪器发展,国仪量子于近日正式推出“微弱信号测量系列设备免费试用”活动(包括国仪量子的锁相放大器、任意波形发生器、时间数字转换器、同步控制系统等产品,如有更多产品试用需求请在下方问卷中登记)。活动免费试用产品扫描下方二维码或点击底部“阅读原文”填写相关需求,参与试用活动。填问卷试用仪器数字锁相放大器LIA001M国仪量子 LIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效简化科研工作流程和设备依赖,提高科研效率和质量。任意波形发生器AWG4100国仪量子 AWG4100是一款多通道的高性能任意波形发生器。该产品拥有四个相互独立的波形输出通道,每个通道可以提供高达1.2 GSa/s采样率、16位垂直分辨率的单端波形输出。每通道拥有最大512 MSa的存储深度,配合灵活的用户自定义波形编辑以及序列播放功能,能够轻松应对各种不同场景的复杂波形需求。时间数字转换器TDC1610国仪量子 TDC1610是一款结构紧凑的高精度时间测量仪器,拥有16个采集通道,8 ps时间分辨率;支持时间标签模式,可以实时记录采集信号的时间信息。产品采用易于操作的图形化界面,提供C++、Python和LabVIEW的SDK供用户进行二次开发,可广泛应用于统计激光器后脉冲分布、量子光学、光检测和激光雷达测距等科研领域。同步控制系统SCS1800国仪量子 SCS1800同步控制系统是基于高精度网络时钟与时间同步技术,实现多节点时钟信号的分发和亚纳秒级同步控制,可广泛应用于量子计算、工业自动化控制、分布式基站、电力电网同步、自适应阵列天线和多基地雷达等多种应用场景。注:1.本次试用产品包括国仪量子的锁相放大器、任意波形发生器、时间数字转换器、同步控制系统,如有其他产品试用需求,请登记详询;2.本次活动时间截止到2022年12月31日,后续如有变动,将另行通知;3.本次活动最终解释权归国仪量子(合肥)技术有限公司所有。
  • 微型光谱仪的结构解析
    光谱仪究其实质是一个“分光”仪器,现在有几种方式来实现分光功能。主流的方式是用光栅作为色散部件,将不同波长的光在空间上分开,用阵列探测器接收并输出光谱。另一种方式是用干涉仪调制入射光,用单元探测器接收被调制了的光,并输出光强随时间变化的曲线,再用傅里叶变换还原光谱,这就是傅里叶光谱仪。  由于在UV-VIS-NIR波段,硅CCD, CMOS阵列的工艺成熟,性价比好,再加上无移动部件,可靠性好,因此,几乎无一例外地使用光栅色散,阵列探测器检测的方式。只是在波长大于900nm的近红外波段,硅材料实在无法胜任,才采用InGaAs线列探测器,但是,至少在现阶段InGaAs线列探测器还是太贵,于是才有人尝试采用傅里叶光谱技术,转动光栅技术,美国德州仪器公司的DLP(Digital Light Procession)技术,其核心是用MEMS技术制造一个微镜陈列,可以用集成电路芯片组驱动每一个微镜的方向,这样就可以用单元InGaAs探测器,使近红外波段的微型光谱仪成本下降。另一种思路是怎么把光谱仪做得更小,更便宜,干脆不用光栅分光,虽然性能不一定那么好,但是对于有些应用也许就足够了,这基本上就是用滤光片加线列探测器的方法。  就采用光栅分光技术的微型光谱仪而言,其性能主要决定于三个方面,光学设计,光栅的选择,探测器的选用。  光学设计又与采用的光栅种类有关,现用的光栅有反射光栅和透射全息光栅两大类,采用不同光栅的光谱仪光学设计方案有所不同。现在的主流是反射光栅,这是由于制造工艺相对成熟,因此价格也相对低一些的原因,采用反射光栅,又要做得体积小,采用折叠光路的设计就很自然了,因此,交叉光路Czerny-Turner 结构(Crossed Czerny-Turner)成为市场最流行的设计 另一类是透射全息光栅,它的主要优点是光栅效率高,导致光学系统的光通量大,对于一些测量比较微弱的光的应用,或者快速动态过程分析,不允许长的积分时间,就倾向于选择透射光栅,当然,价格相对会贵一些。  以下我们就分析典型的交叉光路的Czerny-Turner 结构光谱仪(如图所示)。图 典型的交叉光路Czerny-Turner光谱仪结构。1为SMA 905接头,2为入射狭缝,3为长通滤光片(可选),4为准直反射镜,5为反射光栅,6为汇聚反射镜,7为柱形汇聚透镜(可选),8阵列探测器,9为线性可变滤光片阻挡高阶衍射光进入探测器,10为探测器的石英玻璃窗口,取代普通BK7玻璃窗口,用于工作在小于340nm的紫外波段光谱仪(可选)  -用光纤将待测光束通过标准的SMA905接头接入光谱仪。  -待测光束通过狭缝进入光谱仪,狭缝就是成像系统中的“物”,通常为矩形,根据应用的要求,狭缝的宽度可选,较宽的狭缝允许更多的光子进入光学系统,即系统的光通量较大,但这是以损失分辨率为代价。典型的狭缝宽度在5um-200um之间,高度为1mm。  -从狭缝出射的光是发散的,我们希望入射光束的传播方向是可控的,不要散射到不该去的地方,导致杂散光太大,通过准直光学部件,通常是反射镜,将其变为平行光束。  -光栅作为色散元件:这是对光谱仪性能有决定性影响的元件,不同波长的光被衍射到空间不同的方向。光栅的参数包括刻线密度,闪耀角度等,都会影响到光谱仪的性能指标,包括分辨率,波长范围,光栅效率曲线等。  -反射镜作为光束汇聚器件,将光栅分光后不同波长狭缝的“像”汇聚到阵列探测器不同的像元上。每个像元会接收到波长范围很窄的光子(15 nm to 0.02 nm,取决于光谱仪的结构)  众所周知,狭缝的宽度会影响到光谱仪的分辨率和响应率,  -探测器阵列:探测器是实现光电转换的重要器件。线阵探测器上的每一个象元的读出数据对应于一个特定的波长范围,在紫外,可见光,短波近红外波段,硅CCD是目前使用最多的探测器,其性价比最好,探测器本身的噪声对光谱仪信噪比的影响。只有在900nm-2500nm的近红外波段才使用InGaAs线列探测器。  -模-数转换电路ADC (Analog-to-Digital Converter):探测器读出电路给出的是电压模拟信号,通过ADC把模拟信号转换为数字信号,将每个像元输出的电压转换为一个特定的数字,这个读数被称为“counts”  ADC器件性能的重要指标是它输出的数字是用多少位二进制数字来表示。一个12位的模数转换电路可以将满量程光强度用0-4096(212)个counts来表示。相应的,同样的满量程光强度,如果用16位的模数转换电路其输出则是用0-65535(216)个counts来表示。由此可见ADC器件的位数反映了光谱仪在垂直方向的“分辨率“。(如图xxx所示)ADC的位数越高其输出的读数就可以越”准确“地描述光谱的强度。  因此,对于一个采用2048个像元的线列探测器和12位模数转换器件的光谱仪,每条光谱曲线会输出2048个波长和对应光强的数据对,每个光强的数据用一个12位数字表示。这些数据是光谱的原始数据。图 ADC的位数和垂直方向“分辨率“的关系示意图  -光谱仪内还包括以微处理器为中心的一些电路,主要包含两部分功能。一方面,产生光谱仪CCD或CMOS探测器所需的控制时序,使探测器按用户设定的工作模式工作 另一方面,实现与PC机的通信,如从探测器中读出数据并传送到PC端。这些电路的性能,譬如,模拟电路的噪声水平、处理器的主频、缓存的大小和通信接口的速度,都会对光谱仪的整体性能有重要影响。
  • 安捷伦和阿尔卡特朗讯贝尔实验室联合打破光信号记录
    安捷伦公司(NYSE:A)1月29日宣布,已经成功验证了世界上最快的复合调节的光接口速率。来自阿尔卡特朗讯贝尔实验室和安捷伦的一个联合小组共同组织了该实验,实验采用了Infiniium 90000 Q系列示玻器来发送长距离远途信号,接口速率创世界记录。   依靠阿尔卡特-朗讯贝尔实验室先进的检测系统和数据分析以及安捷伦极佳测量性能的Infiniium 90000 Q系列示波器,成功实现了PDM-16QAM调制1.28兆的双载波光信号。   合作团队同时操作两台63GHz的9000Q系列示玻器在160GSa/s的4X模拟 - 数字转换器条件下运行,带宽结合测量范围内的精确度确保了实验的成功。除了63GHz外,RealEdge技术的启用、9000Q系列示波器的特色—在33GHz时超过5.5的最高有效位数(ENOB)和小于0.5ps的国际范围最低的标准偏差也是实验获得成功不可缺少的因素。   “最前沿的研究需要最先进的测量,”安捷伦副总裁兼示波器产品部总经理Jay Alexander说“9000Q系列示波器可以提供业内最精确的测量,并且安捷伦也非常自豪能够在阿尔卡特-朗讯实验室开创性的实验成果中扮演一个关键性的角色。”   安捷伦联合阿尔卡特-朗讯在去年秋天的IEEE 光子协会年会上共同发表了一篇论文,说明了接口技术的突破。论文讲述了安捷伦和阿尔卡特-朗讯的联合团队是如何建立并配置世界上最快的接口速率以及以高频谱效率通过长距离传输信号的。在安捷伦和阿尔卡特-朗讯之间的合作实验开始于2012年并花费了整整一年的时间,最后将精华部分写入了该论文:“在5.2 B / S /Hz时,1Tb / s的双载波80 GBaud的PDM-16QAM WDM可传输3200公里。”   具有63GHz的实时带宽的安捷伦Infiniium 90000 Q系列示波器已经在2012年4月推出。业内噪音最低,检测宽带最高,并配有一套应用广泛的测量应用软件是其主要特色。
  • 2021年度中国市场示波器新品盘点
    示波器是电子信息工业的基础设备,是应用最广泛的通用电子测试测量仪器,被誉为电子工程师的眼睛,其主要通过采集电路中的电信号并存储和显示,并对信号进行测量、分析和处理,主要用于研发领域。随着电子工业的持续高速发展,信息技术产品的智能化、网络化以及集成化程度逐步提高以及半导体、5G、人工智能、新能源、航天航空及国防等行业驱动,示波器具有良好的发展前景。有资料显示,数字示波器在2019的市场规模达到17.34亿美元,在2024年将达到21.67亿美元,2019年至2024的市场需求将按照4.56%的年均复合增长率增长。为了满足逐渐丰富的应用场景和市场需求,电子测试测量仪器企业也在不断推陈出新,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年示波器新品进行盘点,数据主要统计自公开信息,如有遗漏、错误欢迎在留言区补充或邮件(kangpc @instrument.com.cn )。2021年示波器发布新品速览(按发布时间顺序)品牌产品型号及名称国家优利德MSO3000CS系列混合信号示波器中国优利德MSO8000Z系列混合数字荧光示波器中国普源精电DS8034-R紧凑型示波器中国电科思仪4382系列手持式数字荧光示波器中国OWONHDS200系列 手持三合一示波器 中国力科HDO6000B系列高精度示波器美国OWONNDS4000系列多功能触控示波器中国泰克5系列混合信号示波器(MSO)美国罗德与施瓦茨R&S RTO6示波器德国鼎阳科技全新一代SHS800X系列手持示波表中国福禄克全新一代190系列便携式示波表美国致远电子ZDS5000行业分析型示波器中国鼎阳科技SHS1000X系列高性能手持隔离示波表中国优利德| MSO3000CS和 MSO8000Z系列混合数字荧光示波器两款示波器产品都是基于UNI-T独创的Ultra Phosphor技术的多功能、高性能的示波器,实现了易用性、优异的技术指标及众多功能特性的完美结合,可帮助用户更快地完成测试工作。是针对广泛的数字示波器市场包括通信,半导体,计算机,航空航天国防,仪器仪表,工业电子,消费电子,汽车电子,现场维修,研发/教育等众多领域的通用设计/调试/测试的需求而设计的示波器。普源精电| DS8034-R紧凑型示波器普源精电(RIGOL)在原DS8104-R和DS8204-R的基础上,推出最新型号的DS8034-R紧凑型示波器,为客户提供该系列产品的2GHz/1GHz/350MHz三种带宽选择。DS8034-R是为满足更广泛的工业自动化测试的需求而开发,350MHz带宽,采样率5GSa/s,为工程师提供适用于更多场景应用的选择。电科思仪| 4382系列手持式数字荧光示波器该系列示波器具有6个产品型号,分为双通道和四通道两种机型,带宽200 MHz ~ 500 MHz,最高采样率5GSa/s,最大存储深度60kpts,最快波形捕获率5万个波形/秒,独创的Any Acquire Phosphor技术,为用户提供全新的示波器使用体验。4382系列数字荧光示波器集示波器、数字表、记录仪、总线分析仪四种仪器于一体,具有波形自动设置、波形参数自动测量、光标测量、数学运算、FFT分析、串行总线触发与分析、模板和功率测量、波形记录与回放等功能,支持以太网程控,方便集成开发使用。OWON|HDS200系列手持三合一示波器和NDS4000系列多功能触控示波器HDS200系列手持示波器,集成70M示波器,4位半万用表,25M信号源等多种功能; 3.5英寸高分辨率、高对比度的彩色液晶显示,适合户外环境使用; 使用18650锂电池,可连续工作约6小时; USB Type-C接口,支持适配器或充电宝供电,支持上位机连接; 支持自校准功能。NDS4000是一款集合了数字示波器、信号发生器、数字万用表、FFT频谱分析仪、频率计、协议分析、频率响应分析七种测量功能于一体的多功能仪器,包含 350MHz,500MHz,双通道/四通道四个基础型号,具有5GSa/s实时采样率,400Mpts存储深度,高达600,000 wfms/s的波形捕获率,标配10.4英寸多点触控电容屏,让操作使用更加便携。力科| HDO6000B系列高精度示波器新升级的HDO6000B系列高精度示波器,具有15.6英寸大显示屏,12bit垂直分辨率,高达250Mpts的存储深度,带宽范围覆盖350MHz到1GHz,是信号调试分析的理想示波器。HDO6000B采用力科HD4096高分辨率技术,采用系统方式实现高分辨率,在任何时候,都保持12bit的性能,不会有任何的折中降低。泰克|5系列混合信号示波器(MSO)5系列MSO提供了4、6或8条FlexChannels,这是业内首台可以重新配置输入通道类型的示波器。在默认情况下,输入是TekVPI+连接器,支持所有TekVPI模拟探头,但在连接最新TLP058逻辑探头时,输入模拟通道转换成8条数字通道。用户可以根据需要增加多个逻辑探头,实现8 ~ 64条数字通道同时采集。数字信号的采样、触发和存储方式与模拟信号相同,大大简化了精确比较的过程。另外在精度上,5系列MSO采用新一代前端放大器,与上一代示波器相比,噪声降低了大约4.5 dB。它还采用12位模数转换器(ADC)和新型高解析度High Res模式,提供了业界领先的垂直分辨率(高达16位)。低噪声和高分辨率ADC相结合,提供了优异的有效位数(ENOB)性能。此外,这还是业内第一台既可以作为专用示波器,又能在开放的Windows配置下运行的示波器。罗德与施瓦茨|R&S RTO6示波器全新RTO6数字示波器支持从600 MHz到6 GHz的6种带宽,采样率高达20Gsample/s。RTO6作为一种完全集成了时域和频域测试以及协议和逻辑分析的解决方案,可以为所有行业的设计工程师提供支持。该仪器拥有高波形捕获率、出色的信号保真度、独特而强大的数字触发系统和响应迅速的长存储深度。鼎阳科技| SHS800X系列手持示波表和SHS1000X系列高性能手持隔离示波表新一代手持示波表SHS800X系列,集成示波器、万用表、记录仪、协议分析、FFT频谱分析等多种功能于一体,专为便携和灵活测试而设计,可广泛应用于现场测试、研发,生产,维修等场景。SHS1000X系列高性能手持隔离示波表,各端口间均实现了隔离,可满足CAT III 600Vrms、CAT II 1000Vrms的测量需求,标配解码、记录仪和万用表功能,具备IP51级防尘防水。福禄克|全新一代190系列便携式示波表Fluke 190 Series III系列便携式示波表方便随身携带,随时处理故障诊断和排除工作。CAT III 1000 V/CAT IV 600V让测试工具兼具便携式工具的坚固耐用性和台式示波器的高性能,帮助您轻松应对安装、调试和维护工业机械、自动化和过程控制、电力电子等领域的挑战,涵盖从直流到500 MHz交流。致远电子|ZDS5000行业分析型示波器ZDS5054D智能硬件分析型示波器支持40多种协议解码,IIC、SPI、IIS等多种通信协议时序分析,帮助工程师迅速完智能硬件内部通信调试。ZDS5054Pro专业分析型示波器拥有强大波形捕获数据挖掘能力,结合电源分析、环路分析、时序分析等全面的智能分析功能,帮助工程师加快产品调试进度。相关阅读:高端缺位,低端出口,哪家品牌可以拯救国产示波器?
  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • 在小规模的SFC纯化中使用ELSD触发馏份收集的可行性
    Jacquelyn Cole and Rui Chen TharSFC, a Waters Company, Pittsburgh, Pennsylvania, USA. 引言 当比较HPLC和SFC的多项应用时,有人发现SFC因超临界液体的低粘滞度和高扩散率而能提供更好的选择性和更短的分析时间。 SFC用于制备模式时可显著降低成本,这是因为馏份通常收集在较小体积的挥发性醇中而由此减少了相当多的纯化后续工作。乙腈(ACN)的持续短缺也促使多个行业对SFC在分析和纯化方面能否替代乙腈依赖性反相液相色谱(RPLC)进行评价。现在,科学家在探寻、企业也在开发更多适用于SFC的包括UV、FID、MS和ELSD在内的检测器。 蒸发光散射检测器(ELSD)最初为高效液相色谱(HPLC)进行基于质量的非挥发性化合物检测而设计1。因为这种检测机制不依赖于化合物的光学属性,所以ELSD被认为是一种通用检测器,特别适用于检测不存在紫外光发色团的分析物。很多制药实验室和化学实验室将ELSD与紫外检测和质谱(MS)同时使用,以确保用于对组成各异或比较复杂的混合化合物进行色谱分析的通用检测的&ldquo 真实性&rdquo 。ELSD也被发现可广泛用于包括膳食补充剂、运动营养品、维生素、有机食品、饮料、化妆品和美容产品在内的天然产品的分析和纯化。 我们曾报告过使用SFC ELSD分析运动饮料中甜味剂的个案研究2以及对SFC ELSD试验参数所进行的详细评价3,这两项研究均采用分析规模。我们在此呈现关于ELSD用于小规模制备型SFC的可行性研究。我们希望此处所述的结果能促进专业人员将ELSD并入涉及分析和制备规模SFC的日常工作流程中。 试验 材料 酮洛芬和对乙酰氨基酚购自西格玛奥德里奇公司(美国密苏里州圣路易斯市)。将酮洛芬和对乙酰氨基酚溶解于HPLC级甲醇中,制得用于分析试验的0.5 mg/mL储备液和用于纯化的5 mg/mL储备液。硅胶柱(分析型:4.6 x 250 mm,填充5 &mu m颗粒;制备型:10 x 250 mm,填充6 &mu m颗粒)购自普林斯顿色谱仪器公司(美国新泽西州普林斯顿)。 色谱分析 各项试验均使用配备沃特世2998型光电二极管阵列(PDA)检测器和沃特世ELSD(美国马萨诸塞州米尔福德)的一台SFC Investigator II仪器(沃特世子公司T harSFC,美国宾夕法尼亚州匹兹堡)进行。 ELSD信号(模拟信号输出)通过模数转换器传输到SuperChrom软件。一个10 &mu L的定量环用于各次分析型进样,而一个200 &mu L的定量环则用于各次制备型进样。ELSD使用一根内径0.010英寸的不锈钢三通和25 &mu x50 cm的PeekSil管在PDA和反压调节器之间分流出来。分析型方法在流速为4 mL/分钟(85:15 CO2/甲醇)、反压为150巴和温度为40˚ C的条件下运行。分析型方法的ELSD条件设置如下:增益=1000、喷雾器温度= 45˚ C、管道温度= 45˚ C、压力= 30 psi。制备型方法在流速为10 mL/分钟(80:20 CO2/甲醇)、反压为150巴和温度为40˚ C的条件下运行。ELSD条件设置如下:增益=1000、喷雾器温度= 28 ˚ C、管道温度= 50 ˚ C、压力= 60 psi。收集装置上的补偿泵被设置为每分钟用泵抽吸2 mL甲醇。对于纯化应用,以200&mu L的进样量连续进样五次,或者说每种化合物进样1 mg(两种化合物共2 mg),那么每种化合物的进样总量为5mg(两种化合物共10 mg)。 结果和讨论 图1显示了使用ELSD和UV得出的酮洛芬/对乙酰氨基酚混合物的分析型SFC色谱图。ELSD和UV信号之间略微存 在时间滞后(约2秒)。由于ELSD信号用于馏份触发,因此滞后时间对制备型色谱特别重要。应充分注意确保信 号处理时间与流出液达到收集阀的时间保持一致,或者需要进行适当的计时补偿,以尽可能减少收集过程中的 损失。例如,在我们的试验中使用了一根25 &mu × 50 cm的PeekSil管,以将主流量分流到ELSD中。首选小内径管, 以尽可能减少进入ELSD的流量,实现样本损失量的最小化。然而,管长由UV和ELSD信号之间的时间滞后而决 定。较长的管子将因抗性增强而进一步减少流入ELSD的样本量;然而,这也将增加两种信号之间的时间滞后。 在本例中,2秒的时间滞后小于总峰宽的3%。 其次,我们优化了制备型进样的ELSD设置,结果如图2所示。从分析型到制备型设置出现了两个改变:流速从4 mL/分钟提高到10 mL/分钟,改性剂百分比从15%增加20%;这两种改变将导致流入ELSD的液体增多。在我们的前一项研究3中,对气体流速和蒸发温度的作用进行了描述。简言之,气体流速越高,停留时间就越短,出现散射的次数也越少,进而信号越差。气体流速越高,喷雾过程中所形成的小颗粒就越多。粒径的减小也导致散射光的强度降低。此外,也建议将蒸发温度维持在尽可能低的水平下,以保持粒径的一致性,并通过增强溶解结晶作用而获得更好的信号。这一点与图2所示的结果吻合:增加气体流速和降低蒸发温度似乎可产生带有更少&ldquo 尖峰&rdquo 的更窄色谱峰。注意制备型进样的样本浓度要高得多;灵敏度不再是主要关注点。恰恰相反,优化目标在于产生可靠且重现性好的信号。有代表性的制备型SFC色谱图见图3。图3(b)显示了叠加进样的SFC色谱图。循环时间通过进行叠加进样而更为缩短,进一步提高了产能。回收率和纯度通过再次进样所收集的馏份并将由此得到的峰面积与预先绘制的校准曲线进行比较而确定。在本研究中,酮洛芬和对乙酰氨基酚的回收率分别为88%和84%,纯度分别为98%和100%。 结论 在本研究中,我们证实了使用ELSD可触发小规模制备型SFC的馏份收集。本研究所用标准品的回收率大于84%,纯度大于98%。仪器配置和ELSD优化方面的根本原则应该同样适用于大规模制备型SFC。 参考文献 [1] M. Dreux、M. Lafosse和L. Morin-Allory,液相色谱和气相 色谱国际版,9, 148&ndash 156 (1996). [2] J.L. Lefler和R. Chen,液相色谱和气相色谱美国国内 版,应用文集增刊,26(6), 42&ndash 43 (2008). [3] T. DePhillipo、J.L. Lefler和R. Chen,液相色谱和气相色 谱欧洲版,应用文集增刊,22(3), 38-39 (2009). 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 德州仪器不做仪器 但也能卡国产仪器的脖子
    为什么说仪器行业离不开德州仪器?以示波器为例。现在的示波器基本上是数字示波器,模拟示波器没有完全绝迹,但已经没有曾经的辉煌。数字示波器与模拟示波器最大的区别就是将输入信号通过ADC芯片(模数转换),对信号进行采样和数字化处理后存入高速缓存,再通过信号处理电路将数据读取出来。采样是ADC的工作,数字处理就要用到DSP了。德州仪器恰好都有这两类芯片,特别是DSP,不是一般的强。数字示波器按照功能,通常将硬件部分分为信号前端放大(FET输入放大器)及调理模块(可变增益放大器)、高速模数转换模块(ADC驱动器、ADC)、FPGA逻辑控制模块、时钟分配、高速比较器、单片机控制模块(DSP)、数据通讯模块、液晶显示、触摸屏控制、电源和电池管理和键盘控制等。下图是一个双通道数字示波器示意图,在这个结构中,决定示波器性能的核心元器件有ADC、DSP和FPGA。话说在输入端,输入信号经前置放大及增益可调电路转换后才能成为符合ADC要求的输入电压,经ADC转换后成为数字信号,放大器PA同样非常重要。双通道数字滤波器结构示意图,公开资料整理,阿尔法经济研究DSP芯片是微处理器的一种,内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,可以用来快速的实现各种数字信号处理算法,可以实时处理数据,也因此成为通信、计算机、军事航天和仪表仪器等领域的基础器件。在仪表仪器中,测量精度和速度是一项重要指标,DSP的快速实时处理的特性刚好也就复合仪表仪器对精度和速度的要求。为什么要选择德州仪器的DSP呢?因为它的响应时间足够低,功耗足够低,性能足够高。德州仪器DSP芯片特性,公司官网,阿尔法经济研究国内开发DSP的企业不多,代表性企业就是华为海思。除此之外,中科昊芯于2021年9月推出了一款基于RISC-V架构的DSP,有了一定的突破。ADC是示波器中的核心元器件,转化过程主要包括采样和量化,其中采样的速率是衡量采样水平的标准,代表ADC可以转换多大带宽的模拟信号,带宽越大对应的模拟信号频谱的频率越大。ADC第二步量化就是转换精度,要求模拟信号转换出的数字信号与原信号差距越小越好,精度以bit衡量,要求是bit越大越好,位数、精度、采样率等指标成为衡量示波器性能的重要指标。当然采样率与精度是相对立的,采样率越高,意味着精度越差,反之亦然。所以在仪器中,怎么选择合适的ADC,还是要根据需求而定。上述提到的核心元器件,ADC厂商就是德州仪器以及更厉害的ADI,DSP有更厉害的德州仪器、稍次的ADI以及因手机业务拉胯而成为笑谈的摩托罗拉。上海汉芯一号的主角就是摩托罗拉的DSP。至于FPGA,目前已被AMD收购的赛灵思一家独大,占据一半以上的市场,英特尔(Altera)与Lattice分居二三位。鉴于Lattice主要精力放在低功耗领域,其他厂商更加弱小,FPGA市场也是AMD(赛灵思)与英特尔(Altera)的二人转。上述芯片,国内发展水平仍然较低,与国外的差距也非常明显,当然也毫无意外地被卡了脖子。仪器厂商普源精电招股书和第一轮问询反馈中均提到有一款DAC产品被列入美国商业管制清单,进口时需要取得许可。普源精电提到,公司已获得可采购3600片的采购许可,有效期至2023年。另一家仪器厂商鼎阳科技也提到,其采购的ADC、FPGA、DSP等均来自美国厂商,德州仪器的四款ADC和一款DAC属于管制清单产品,需要获得BIS的出口许可。综上所述,德州仪器本身不生产仪器,但其芯片却是仪器必不可少的核心元器件。德州仪器卡了ADC、DSP的脖子,也就间接卡了国内仪器的脖子。
  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户: 只需单击鼠标,即可模拟其他 (U)HPLC 仪器。 运行现有 (U)HPLC 方法,无需修改方法或系统。 与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 2011年下半年发布仪器新品:环境监测类
    2011年,政府部门在环保政策领域非常活跃。《重金属污染综合防治“十二五”规划》、《全国地下水污染防治规划》相继正式获批,环保部就《环境空气质量国家标准》二次征求意见,国务院发布《国务院关于加强环境保护重点工作的意见》,备受瞩目的“第七次全国环保大会”也顺利召开,紧接着《国家环境保护“十二五”规划》正式发布。这些政策连续发布之后,国家势必将加大在环保领域的投资,据悉“十二五”期间,国家环保投资将达到3万亿元。   这些环保领域的“大事件”与“大投资”给环境监测仪器市场的发展带来了源源不断的发展动力。各大仪器厂商纷纷加大研发力度,推出革新产品,努力抓住这一前所未有的发展机遇。   2011下半年,赛默飞世尔科技、HORIBA JY、Xylem Analytics、上海三信、岛津、深圳朗石、青岛佳明测控、瑞士万通、青岛崂山应用技术研究所等公司推出了多款环境监测相关仪器。其中部分新产品在多参数、多通道、免校正等方面进行了技术改进,降低了用户的采购成本,方便用户使用。仪器信息网对这些新产品加以整理,以飨读者(排名不分先后)。   水质分析仪新品   实验室水质分析仪器: 赛默飞世尔科技 Star A系列电化学仪表   赛默飞世尔科技奥立龙(Orion)团队经过6年的磨砺,推出了全新设计的电化学新一代产品——Star A系列仪表,具体包括:高端的VERSA STAR可带电插拔的多模块化系列台式仪表及Star A320系列多功能便携式仪表 专业款的精密型Star A210系列台式仪表及Star A220系列便携式仪表 基础款的单参数Star A110系列台式仪表及Star A120系列便携式仪表。   VERSA STAR是奥立龙台式电化学仪表的最高端产品,提供1-4个通道的多模块化组合检测功能,是业内同时使用模块最多的仪表,用户可以根据检测的需要灵活选用pH、pH/ISE、电导率、溶解氧(极谱式及荧光法)或者LogR功能的pH检测模块,每种模块均提供温度检测功能。Star A320是便携式电化学仪表,具有非常好的防尘防水功能,方便用户在各种环境下进行现场检测。 HORIBA JY公司 AquaLog水质分析三维荧光光谱仪   在2011年10月召开的BCEIA 2011上,HORIBA JY在国内推出了X荧光新产品——AquaLog水质分析三维荧光光谱仪。   Aqualog是HORIBA集团在Pittcon 2011期间推出的,并获得Pittcon 2011提名奖。这是该产品首次在中国展出,在这半年当中,世界各地的科学家已经运用该仪器发布了多篇论文。该产品是专门用于检测水中的有色溶解有机质(CDOM)。Aqualog 荧光光谱仪只用90秒就能完成一个样品的检测,而以前的方法需要一个半小时,其检测速度增加了100倍。   Xylem Analytics公司 inoLab 9310实验室数字水质多参数测试仪   传统的探头采用的是模拟信号,易受干扰,特别是在增加电缆长度时信号会衰减 另外探头的接口也各不相同,当把模拟探头拔下插到另一台主机上时需要重新校正。     Xylem Analytics公司iinoLab 9310实验室数字水质多参数测试仪采用数字探头,探头内置模数转换器,直接输出数字信号,数字信号相对模拟信号来说更抗干扰,不受电缆长度的影响 所有不同参数的数字探头都可共用一个输入接口,均为2芯屏蔽接口,因此一台仪器可以测试多个不同的参数 探头内部存贮了校正记录,因此当把探头接到另一台主机上时,可以不用重新校正。   上海三信仪表厂 WS200型pH/TDS/氟离子浓度计     上海三信仪表厂WS200型pH/TDS/氟离子浓度计采用国内首创的三合一氟离子复合电极,电极由氟离子测量电极,参比电极和温度电极组合而成,电位稳定,响应快速,使用方便 无需搅拌和添加试剂,直接测出常规样品的氟离子浓度,可切换mg/L,ppm和pF三种浓度单位 仪器采用微处理器芯片设计,具有自动校准、自动温度补偿、数据储存、功能设置、自诊断信息等智能化功能 仪器设计有单参数,双参数和多参数不同的结构形式,符合不同的使用需求。   济南盛泰电子科技有限公司 智能化节能EHD-107 CODcr回流消解仪     济南盛泰电子科技有限公司EHD-107 CODcr回流消解仪采用12位COD消解孔设计,1-12位自由选择,省功省力 消解孔、消解面板以及消解瓶支架均采用耐酸碱腐蚀工艺加工 消解温度以及倒计时回流时间可调可控,自动消解自动停机 控温准确 液晶屏显示回流倒计时时间 大容量消解瓶消解完全,可以直接滴定,无需移液。   在线水质监测仪器:   岛津公司 TOC-4200在线TOC测定仪   岛津公司TOC-4200可以根据测定对象配备选配件,对应广泛样品的在线TOC测定。其氧化方式采用广受用户好评的岛津680℃燃烧氧化方式,可高精度检测包含悬浊样品在内的有机物样品。另外,为了对应多样的通信控制方式,该产品配备了遥控仪器状态的控制器,具备从多台仪器收集数据等的集中控制功能,是一台适合于工厂排放水的上游监测、自来水,环境水的连续监测的仪器。   深圳市朗石生物仪器有限公司 PhotoTek 1000重金属在线分析仪     深圳市朗石PhotoTek 1000采用模块化设计,性能稳定可靠、小巧轻便、操作简单、具有多种测量模式 通过先进的双光束光学设计,消除了样品中浊度、色度、电源波动等干扰因素 专利技术的液面监测功能,实时监测液路状态 采用了微量加样技术,节约试剂。该产品可用于监测砷、铅、镉、铬、铜、锌、锰、铁、镍等重金属,可用于地表水、饮用水、工业制程水和工业废水等水质中重金属元素的在线分析。   近日,首套我国自主研发生产的浮标式水质自动监测系统投放杭州湘湖,为湘湖应急备用水源装上了一套实时监测的“安全报警器”。该浮标设备由中船重工第715研究所自主研发而成,是国内第一套用于淡水水域水质监测及预警的国产浮标监测系统,系统采用太阳能供电,内部安装有高精度的水质传感器和GPS卫星定位系统,能够全天候、自动连续监测湘湖水质情况,并通过无线网络向数据中心实时传输电导率、pH值、溶解氧浓度、叶绿素浓度、氨氮浓度等近10项常规水质检测数据,相关的技术人员便可以通过采集的海量动态数据进行实时分析和评估,及时发布水质水情的预警信息。   此外,金坛市亿通电子有限公司推出了ET-05四合一水质检测系统,该产品采用微电脑技术和高精度的传感器,可以自动定时检测,8种水质参数,也是环境监测等科研部门,准确地控制化工企业的废水排放的监督工具。   便携式水质分析仪器:   青岛佳明测控仪器有限公司 JMA-SZS-TOX-Ⅰ便携式水质毒性快速检测仪     青岛佳明JMA-SZS-TOX-Ⅰ便携式水质毒性快速检测仪采用罗盘式结构,可同时测量14个水样 采用基于DSP的光电信号采集和处理系统,结合光电倍增管对微弱光信号进行放大处理,具有超强的抗干扰能力,采集发光细菌的光信号并通过独特的软件算法,得出水质毒性结果 速度快,精度高。   此外,佳明测控还推出了JMB-WSK-HM 便携式重金属检测仪。该产品可检测多种参数,检测时间短,并允许自定义检测参数,适用于环境监测站和大型企业安环部门对现场水样的快速检测。   气体检测仪新品   瑞士万通 灰霾(PM2.5)化学成分分析系统   瑞士万通针对PM2.5的监测分析,瑞士万通隆重推出灰霾(PM2.5)化学成分分析系统,它包括全自动的气体样品液化器(Particle-Into-Liquid-Sampler)、阴阳离子双通道离子色谱仪及伏安极谱重金属分析模块,可以及时的检测气溶胶中的各阴阳离子及重金属污染物,同时该系统也可用作长时间无人监守的在线分析装置。   灰霾(PM2.5)化学成分分析系统及时且持续的通过饱和蒸汽将收集的空气样品转化成液体,并及时进行后续的阴阳离子及重金属分析。待测的空气样品以一定的速度进入旋风分离器(PM10或PM2.5)后去除颗粒,然后通过气蚀器去除空气中的阴阳离子,而气溶胶能顺利通过气蚀器。在PILS腔体内,进入的气溶胶被注入过饱和蒸汽,并形成逐渐变大的冷凝液滴,直至到达收集壁(Impactor)后汇集。这些汇集的液体将会分作三个流路,分别用作阴、阳离子及重金属的检测。 青岛崂山应用技术研究所 2071型空气智能24小时/TSP综合采样器   青岛崂山应用技术研究所推出来可用于大气颗粒物采样器,崂应2071型空气智能24小时/TSP综合采样器。该产品可实现一机多用,同时采集四个气体样品(如:SO2、NOX等)和一个颗粒物样品(如:TSP、PM10 、PM5、PM2.5等),五路独立控制 自动闭环控制采样泵恒流采样 自动测量温度、压力,自动计算标况采样体积。   青岛崂山应用技术研究所 紫外差分综合烟气分析仪   该公司还推出了3023型紫外差分综合烟气分析仪与3012H型自动烟尘烟气分析仪(新08代)。   3023型紫外差分综合烟气分析仪具有以下特点:采用先进差分吸收光谱测量技术(DOAS),无光学运动部件,可靠 性高,抗干扰能力强,测量精度高 四通道光学气体同时测量,支持双量程(两种气体)并可自动切换,量程比达到10:1 光源采用冷光源,无预热时间,寿命长 配备烟气预处理器 可测量烟气温度,动压,静压,流速,流量等工况参数。   3012H型自动烟尘烟气分析仪(新08代)加强了整机防静电设计,气体传感器修正补偿技术,防尘倒吸功能,5.7寸大屏幕宽温LCD显示屏,数据存储能力增加到50000组以上。   青岛佳明测控仪器有限公司 JMBD便携式多组分烟气检测仪   青岛佳明JMBD便携式多组分烟气检测仪可对SO2 、NO、NO2、CO、CO2等多种有害气体及O2的浓度进行测量,可计算并显示空气过剩系数 可测量烟气温度、烟气动压、静压、烟气流速等参数,大气压自动测量无需输入 采样流量恒定功能,解决了因管道压力等的变化对测量数据的影响 内置高质量锂离子电池,使仪器使用更加方便(充电一次可连续使用15小时)。   请访问仪器信息网新品栏目,了解更多新品。   了解更多水质分析仪器信息,请访问仪器信息网水质分析仪专场和气体检测仪专场。   关于申报新品   凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示 一些申报材料齐全、有特色的新品还将被推荐到《仪器快讯》杂志上进行刊登 越早申报的新品,将获得更多的展示机会。自2006年开通以来,“新品栏目”已经累计发布了超过2000台最新上市的仪器,是广大用户查找最新上市仪器,了解最新技术进展的首选平台。
  • 安捷伦隆重发布智能化系统模拟技术ISET
    安捷伦隆重发布智能化系统模拟技术   创造市场上首个通用 LC/HPLC/UHPLC 系统   2011 年 3月 15 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布隆重推出革命性的智能化系统模拟技术(Intelligent System Emulation Technology-ISET)。ISET 借助 Agilent 1290 Infinity LC 较宽的工作范围以及一流的精度与性能来模拟其它系统,实现不同品牌的液相色谱之间方法的无缝转换。   这一先进功能使得 1290 Infinity LC 成为世界上首个真正通用的 液相色谱系统,它可以运行其它高效和超高效液相色谱方法,并能提供与原仪器或原方法完全相同的色谱结果。   1290 Infinity LC 与 ISET 完美结合,可使研究者实现以下操作:    只需单击鼠标,即可模拟其它UHPLC 和 HPLC 仪器。    运行现有 UHPLC 和 HPLC 方法时无需调整方法或系统。    方法转换结果更出色,可得到相同的保留时间和色谱峰分离度。   ISET 促进并方便了实验室间 LC 方法的转换。QA/QC 实验室如今可以为未来做一项安全的投资了:因为实验室在继续运行传统方法的同时还能够充分利用1290 Infinity LC 的UHPLC 速度、分离度与灵敏度。现在,实验室能够通过 UHPLC 性能加快方法开发速度,并通过模拟目标系统对新方法进行微调,使方法更可靠地按照预期来运行。   安捷伦 1290 Infinity LC 产品经理 Christian Gotenfels 表示:“仪器间的方法转换通常是有困难的,尤其是在严格受法规制约的行业,因为要避免对仪器和原方法进行任何修改。安捷伦是全球首家提供方法无缝转换的公司,可在 1100 系列、1200 系列和新的 1220/1260 Infinity LC 之间实现方法无缝转换。”   安捷伦液相分析事业部高级市场总监 Stefan Schuette 说道:“这宣告了一个新纪元的到来。开发实验室、QA/QC 部门以及合同研究和生产机构如今可以在一台仪器上自由地开发、验证并运行所有的方法。”   配备 ISET 的 1290 Infinity LC 将于 2011 年第三季度面世。现有的 1290 Infinity LC 系统完全兼容并可升级到 ISET。   要了解更多信息,请访问: www.agilent.com/chem/1290:cn 。   关于安捷伦科技   安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500 名员工为 100 多个国家的客户提供服务。在 2010 财政年度,安捷伦的业务净收入为 54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 关于光电倍增管(PMT)模块的选型与使用
    PMT模块的选型PMT模块中不仅都集成了PMT裸管、分压电路和高压电源,还根据信号输出的不同需求集成了其他的功能组件。按照PMT模块的信号输出类型,滨松的PMT模块产品可以分为电流输出模块、电压输出模块和光子计数探测器。他们的区别是这样的:点击查看大图PS.图中灰色方框内的各种产品/附件滨松也有提供~可以移步至滨松中国官网了解目前滨松有40多个系列,工程师梳理了一张系列型号及基础参数参考表,在选型时可以有所帮助:(点击查看看大图)在同一系列的滨松PMT模块中,会以后缀来区分不同的产品型号。这些后缀往往代表着不同的含义,了解它们,也可以有助于我们的产品选型。这里,我们选出了用途最为广泛的φ8端窗PMT模块,针对其中关键的名词项,来深入一一解读。 滨松φ8 PMT模块命名规则# Settling time是什么?在PMT模块中,加在PMT上的高压会随着控制电压(一般在0.5-1.1V)的变化而变化;但这个过程是有一定延迟的,且根据PMT模块中分压电路的设计有长有短。从调节完控制电压,到施加在PMT的高压到达设定电压——其时间间隔称之为Settling time,也就是稳定时间,简而言之,就是PMT调完控制电压后等多久能用。在滨松PMT模块的彩页中,标注的Settling time数值一般是控制电压从+1.0V到+0.5V所对应的Settlingtime。如果控制电压的变化幅度较小,响应的Settling time也会相应变小。 # 纹波噪声是什么?PMT模块中,除了PMT裸管之外,还至少会集成高压电源和分压电路。其中高压电源中使用的振荡电路(oscillation circuit)会带来额外微小的电压抖动,继而使得加在PMT上的高压、PMT的增益以及最终输出的信号上都会出现相应的抖动,即纹波(ripple,见图)。纹波现象所带来的纹波噪声在滨松PMT模块的彩页中一般被标注为“Ripple noise(peak to peak)”,是在特定控制电压下,采用特定的读出参数所测得的电压曲线中波峰和波谷的差值。 纹波噪声示意为高压电源选择合适的电路设计可以大幅减小纹波噪声。虽然纹波噪声不可能完全消除,但在当前已经商业化的PMT模块中,纹波噪声已经小到基本可以不予考虑。如果特定情况下确实需要降低纹波噪声,可以考虑以下两种方法: (1)在模块信号输出之后加入低通滤波器,过滤掉一部分;(2)提高控制电压——此时光电倍增管的增益与纹波的绝对值都会增加,但是增益的增长要更快,所以能够实际上降低纹波的影响。# PMT模块的电流输出与电压输出的区别?电压输出的PMT模块的Conversion factor是什么? PMT最原始的输出信号为电流。相对于电流输出模块,电压输出的PMT模块中多了一个跨阻放大器(Current-Voltage Conversion Amp)将电流已经转换成了电压(可以翻到上文看看图)。对应的转换系数就是conversion factor(或者称作Current-to-voltage conversion factor)。 此外,由于跨阻放大器本身是有带宽的,如H10722和H10723采用了不同的跨阻放大器,所以其输出信号的带宽也就不一样。 总的说来,电压输出模块和电流输出模块在使用中的优劣如下:# 插针式与导线式有什么区别? 插针式(下图左,如H10720,H11900)与导线式(下图右,如H10721,H11901)的两种光电倍增管模块没有本质区别。前者可以直接插在电路板上;后者在安装上则更加灵活。可以根据实际使用环境和条件选择。 H10720和H10721外观 # 光谱响应参数的解析PMT模块的光谱响应范围主要由光阴极面的材料和窗材决定。 光阴极面的材料决定了PMT光谱响应的波长上限,更长波长的光子由于能量不足就较难转化成光电子从而被探测了。 管壁材料(窗材)决定了PMT光谱响应的波长下限。对于波长更短的光子,理论上只要能够轰击到光阴极面都能够产生光电子。但PMT是一个真空管结构,光子到达光阴极面之前需要先通过管壁。过短波长的光子会被管壁所阻碍,所以管壁材料(窗材)一般决定了PMT光谱响应的波长下限。 光电倍增管工作示意图在滨松样本资料中,一般会给出波长范围(如H10720-110的230-700nm)。其下限代表的是管壁透光率曲线的拐点;其上限,对于多碱材料是灵敏度峰值的0.1%,对于双碱材料是灵敏度峰值的1%。# 关于功耗更多的解析H1072X系列最吸引人的是其低功耗;H10720/H10721系列所要求的电压(input voltage)甚至只有2.8-5.5V,电流也只是mA级别。这意味着,3节普通的5号电池就足以作为PMT模块的电源。加上H10720/H10721本身的小体积,使得其非常适合用于手持式设备。 H10720/H10721,H11900/H11901系列与功耗相关的参数 PMT模块的使用根据实际应用中数据测量的需求,PMT模块的使用可以分为如下3类。 1. 在示波器上读出PMT模块输出的模拟信号 2. 在电脑上读出PMT模块输出的模拟信号 3. 在电脑上读出光子计数结果
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?
    便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?HJ355-2019水污染源在线监测系统中明确指出。每季度至少使用便携式明渠流量计比对装置对现场安装的超声波明渠流量计进行至少1次的比对测试,比对结果不符合要求的,按要求多现场的超声波明渠流量计进行校准,校准完成后再进行比对。同时要求便携式明渠流量计采用磁致伸缩传感器加标注流量计算公式的方法进行比对。、其中液位比对中要求,比对装置的液位精度≤1mm,每2min读取一次数据,连续读取6次,安装公式完成比对误差计算。液位比对误差=|第n次明渠流量比对装置测试液位值-第n次超声波明渠流量计测量液位值|其次流量比对要求明渠流量比对装置与现场流量计测量统一水位观测断面处的瞬间流量,进行比对。且在数值稳定后,10min内读取该时间段的累计流量,按公式计算误差.流量比对误差=(明渠流量比对装置累积流量-超声波明渠流量计累积流量)/明渠流量比对装置累积流量一般以月为段位,明渠流量比对装置对某一时间点进行流量测试,明渠超声波流量计的比对。如何快速准确地对明渠污水流量计进行验收?这是现今遇到的一大难题。解决这个难题就需要考虑以下几方面:1.比对时间,比对工具与现场的明渠流量计是否是实时比对,同一时刻,统一数据。否则不同时间节点的数据是没有对比性的。2.XY-6800R比对工具测试的数据是否准确。比对数据的数据可靠性及精度是衡量计量仪器的一个重要指标。不应该受到环境影响测量精度,如雾霾,沙城爆,强光,泡沫,结露等。常规的超声波流量计测试不能避免这些因素。目前采取磁致伸缩传感器能有效避免这些困扰。测试时,电路单元产生电流脉冲,该脉冲沿着磁致伸缩线向下传输,并产生一个环形的磁场。在探测杆外配有浮子,浮子沿探测杆随着液位的变化从上而下移动。由于浮子内装有一组永磁铁,所以浮子同时产生一个磁场。当磁场与浮子磁场相遇时,产生一个扭曲脉冲,或称“返回”脉冲,将“返回”脉冲与电流脉冲的时间转换成脉冲信号 ,从而计算出浮子的实际位置,测得液位 通过无线模块将液位传到计算机。利用内置堰槽参数计算出流量。为什么XY-6800R明渠流量比对系统要选择磁致伸缩传感器?主要原因:1.测量精度高2.抗干扰性强3.寿命长4.性能可靠5.可进行多点,多参数的液位测试,免校准,免维护。磁致伸缩液位传感器输出的液面和界面信号主要分为模拟量和串口两种形式,串口为RS485/232形式,模拟量为4~20mA电流模拟信号,对应量程为0~1m。输出的串口或者模拟信号通过屏蔽电缆传送至主板,主板通过内集成电路将接收到的串口信号或者模拟信号转换成为数字量在文本显示器上显示,由于在线监控过程中存在电机或泵等执行设备运行产生的干扰信号,且现场信号的采集点与控制柜之间存在距离问题,为减少信号在传输过程中受到干扰,故要使用优质的屏蔽电缆线。青岛新业环保科技有限公司是一家集环保科研,设计,生产,维护,销售为一体的综合性实地厂家。青岛凌恒环境科技有限公司属于江苏凌恒环境科技有限公司青岛分公司,主要业务范围:在线水质监测仪销售服务。服务承诺:客户的需求放在首位,“今天的质量、明天的市场、服务到永远”是我们新业环保公司为客户服务的准则,并将其贯穿到研发、生产、安装、销售及售后服务的各个环节中。公司郑重承诺:完善沟通协调机制:通过加强沟通交流,提高信息传递的及时性,准确性,深入市场,倾听用户心声了解客户仪器设备的需求。我公司承 诺:按质、按量、按时完成所供产品的生产任务,并及时将产品运到用户需求现场,确保正常运转。全过程监控:客户只需一个电 话,售后服务部采用一站式模式、全面负责制、全程监控实施并跟踪处理结果,确保客户满意。
  • 高精度电子测量仪器研发商模拟感知获数千万元融资
    5月5日消息,以高精度电子测量为特色的西安模拟感知信息科技(模拟感知)有限公司近日宣布完成数千万元人民币的首轮融资,投资方为上海超越摩尔(超越摩尔)。模拟感知信息科技位于西安,公司核心团队利用在高精度仪器研发领域积攒的经验,“降维”研发了多种现场仪表电子测量模组。将低噪声模拟链路设计、温漂/零漂抑制和精度补偿等技术成功应用在工业现场领域。模拟感知团队表示我国在电子测量领域大幅落后于西方,目前远不能满足我国经济发展的要求,有巨大的市场机遇。模拟感知基于技术相通性和产品归一化和积木化的原则,在仪表和仪器领域同时布局:• 在仪表领域,公司提供测量的核心模组(电路板卡),目标客户群体是我国广大的仪表厂商。公司在首系列产品的研发过程中,深刻感受到了来自客户的热情与支持,产品在测试阶段就收到了数量可观的订单。在下游客户的鼎力支持下,目前公司超声波气体流量计核心模组已完成了市场的闭环验证,气超整表准确度达到了0.5%级。公司会持续在仪表核心测量领域投入,助力我国仪表厂商实现产品的升级换代。• 在测量仪器领域,公司将于近期陆续推出用于实验室研发、新能源汽车测试、电池测试、电源芯片测试和航空发动机发电系统测试的相关产品。超越摩尔表示现代测量的实质是电子测量,无论是流量、温度还是形变,都是将被测量作为电信号进行采集、抽象和处理。 在被测信号进入数字处理芯片之前的模拟电路部分是整个测量系统的重中之重,也是我国同西方集团在通用电子测量领域差距最大的部分。模拟感知核心技术团队在相关领域耕耘多年,主导过多款超高精度仪器的研发和上市工作,在通用电子测量方向有非常明显的技术和经验优势,有实力成为行业的领军企业。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制