当前位置: 仪器信息网 > 行业主题 > >

锂电池保护板仪

仪器信息网锂电池保护板仪专题为您提供2024年最新锂电池保护板仪价格报价、厂家品牌的相关信息, 包括锂电池保护板仪参数、型号等,不管是国产,还是进口品牌的锂电池保护板仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂电池保护板仪相关的耗材配件、试剂标物,还有锂电池保护板仪相关的最新资讯、资料,以及锂电池保护板仪相关的解决方案。

锂电池保护板仪相关的资讯

  • 飞纳电镜点亮亚太电池展,带来锂电池材料高效检测方案
    8 月 16 日 - 18 日,2017 第二届亚太电池技术展览会在广州琶洲国际会展中心举行。飞纳电镜作为锂电材料形貌成份高效检测工具,盛装出席此次会议,现场展示了飞纳电镜高分辨率专业版 Phenom Pro 和飞纳电镜大样品室卓越版 Phenom XL,其中 Phenom XL 集成了背散射电子成像,二次电子成像与能谱分析等功能,两台台式扫描电镜吸引了众多参观者的目光。由于新能源汽车的高速增长,各锂电池企业纷纷扩产。相对以往单纯追求产能的突破外,行业内先行企业把目光投射到材料研发带来的电池产品性能提升上。锂电池主要由五部分构成,即正极材料、负极材料、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂电池最为关键的原材料,占锂电池成本的 30% 以上。材料的研发少不了一双“眼睛”,这双眼睛就是扫描电镜。扫描电镜可以对锂电池材料的正极材料,负极材料,隔膜,极片等进行微观的形貌检测及元素成份分析。飞纳台式扫描电镜使用独特的 CeB6 灯丝,提高了扫描电镜的分辨率,保证了图像质量。由于操作简单,维护方便,抽真空时间短,大大地提高检测效率,受到锂电池企业客户的青睐。设计精巧,完全防震,省去了客户为精密仪器安装环境要求高的担忧。即时在展会现场喧闹的环境中,飞纳电镜仍然能高效运行,30 秒成像,持续稳定地工作。锂电池正极材料由于中国大型锂电正极材料近十年迅速发展,产品质量大幅度提高,并具备较强的成本优势,近年来日韩锂电企业开始逐步从中国进口锂电正极材料,据悉目前中国锂电正极材料市场份额已占据全球一半左右,未来发展空间仍广阔。飞纳电镜拍摄的锂电池正极材料锂电池负极材料负极材料作为锂电池的四大关键材料之一,决定了锂电池充放电效率、循环寿命等性能。锂电池负极材料国内技术成熟,碳材料种类繁多,成本比重最低,在 5-10% 左右。现阶段负极材料研究的主要方向如下:石墨化碳材料、无定型碳材料、氮化物、硅基材料、锡基材料、新型合金和其他材料。飞纳电镜拍摄的锂电池负极材料隔膜隔膜在成本构成上仅次于正极材料,占 20-30%,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能。飞纳电镜拍摄的锂电池隔膜更多体验,尽在飞纳电镜飞纳台式扫描电镜 VR 之旅手套箱版台式电镜有些锂电池材料很容易与空气发生反应,影响形貌成份分析,飞纳电镜发布全球首款手套箱版台式电镜,实现扫描电镜放置在手套箱内,制样-观察全程惰性气体保护。原位通电样品杯允许用户将电探针连接到样品进行原位测量
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 科研赋能:珀金埃尔默在锂电池行业分析中的应用
    锂电池是一种以锂离子为电荷载体的可充电电池,广泛应用于便携式电子设备、电动汽车(EVs)、能源存储系统以及其他多种应用中。锂电池由正极材料、负极材料、电解液、隔膜、电池外壳等部件组成,其中 01正极材料: 常见的有锂钴氧化物(LiCoO2)、锂铁磷酸盐(LiFePO4)、锂镍锰钴氧化物(NMC)等。 02 负极材料: 通常使用石墨或硅基材料。 03 电解液: 含有锂盐的有机溶剂,如六氟磷酸锂(LiPF6)溶解在碳酸酯类溶剂中。 04 隔膜: 一种多孔材料,允许锂离子通过,同时防止电极间的物理接触。 05 电池外壳: 保护内部组件并提供结构支持。 如新能源汽车上使用的磷酸铁锂电池和三元锂电池,正极使用的配方与主量元素间的配比,直接决定电池的能量密度、充放电循环效率等。正/负极材料与点解液中的杂质元素含量,对电池品质也有着重要影响,珀金埃尔默分析仪器对上述质量控制节点,均有很好的解决方案。 1 ICP-OES/ICP-MS 正极材料分析中的应用 锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁(Fe )、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、铅(Pb)等金属杂质时,电池化成阶段的电压达到这些金属元素的氧化还原电位后,这些金属就会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。自放电对锂离子电池会造成致命的影响,因而从源头上防止金属异物的引入就显得格外重要。 图1. 电池正极材料 现阶段的众多锂电池企业,均采用ICP-OES作为主量元素配比以及杂质元素浓度的测定工具。使用ICP-OES测试主量与杂质元素时,可能会遇到的一些问题如: 1.主量元素浓度高,仪器动态范围是否够宽? 2.测定主含量元素的同时,能否测定微量杂质元素? 3.测定主含量元素仪器是否稳定? 4.测定杂质仪器是否有足够的灵敏度? 等等 得益于珀金埃尔默公司Avio系列ICP-OES上的独特设计,配备平板等离子体技术、双向观测模式、丰富的元素谱线库、专利性的光谱干扰校正技术(MSF,多谱拟合技术)能够有效解决上述问题。 (点击查看大图) 伴随着产业的发展以及工艺的提升,对杂质的管控越发严格,杂质浓度限值一直在往下调。ICP-OES由于其仪器原理的限制,在测定低浓度杂质元素时遇到瓶颈。Cr、Cu、Fe、Zn、Pb这些元素尤其明显。据调研,部分厂家该5个元素浓度控制在1ppm以下(部分厂家Fe含量在10 ppm以内),在常规100倍固液稀释比前处理后,样品溶液中该元素浓度在10 ppb以下,因此使用ICP-OES进行检测遇到了极大的挑战,尤其在谱线干扰严重的情况下。而ICP-MS由于其灵敏度更高,检测下限更低,是一个非常好的检测手段。 图2. NexION系列ICP-MS 使用ICP-MS测试正极材料中杂质元素的挑战包括: 1. 杂质元素会受到主量元素质谱干扰; 2. 对不同类型的质谱干扰,需要不同的干扰校正模式。 通过对多个厂家的锂电正极材料做测试,运用空白实验、平行样、加标回收等质控手段进行测试,验证了珀金埃尔默NexION系列ICP-MS,标配AMS进样系统,配合大锥孔三锥设计,四极杆离子偏转器,可以获得优异的基体耐受性、仪器稳定性,以及更低的记忆效应。 图3. NexION ICP-MS测试正极材料 杂质元素加标回收率 (点击查看大图)图4. NexION ICP-MS测试正极材料 杂质元素校准曲线 (点击查看大图)实验结果表明,通过选择合适的同位素以及仪器强大的耐基体性能保证了数据的准确性与稳定性。该方法十分适合分析高基体锂电正极材料。 2 ICP-MS在锂电池 电解液分析中的应用 电解液是锂离子电池的重要组成部分,在电池中作为离子传输的载体,使锂离子在正负极间移动。电解液通常由锂盐、溶剂和添加剂组成,其中溶剂提供离子传输介质,锂盐增强电解质的离子传输率。 电解液样品无法用传统的微波消解前处理,因为样品中含有乙醇与其他挥发性有机物,微波消解会发生爆罐。马弗炉灰化会产生大量有毒的氟化磷,而电热板消解需要大量酸同时实验人员必须在边上值守防止样品碳化,耗时且会引入污染。所以对于这类样品用有机溶剂直接溶解后快速直接进样。短时间内即可处理完样品,同时避免了容器与酸引入的污染。 珀金埃尔默公司的ICP-MS搭配全基体进样系统(AMS)为电解液中杂质元素分析提供一条全新思路。利用ICP-MS极高的灵敏度,可以采取更大稀释倍数降低Li元素带来的高盐影响,在前处理方面,仅采使用10%甲醇(电子级),50倍稀释上机,AMS使用氩氧混合气,实现加氧防止有机物积碳,同时用氩气减少基体效应。实现了电解液中杂质元素的准确、高效、环保分析。 电解液直接进样也会引入大量C相关的质谱干扰,如Mg、Al、Cr会分别受到CC、CN、ArC等干扰,另外Ar与H2O也会是K,Ca,Fe等收到干扰。NexION系列ICP-MS全系列均可使用纯氨气作为反应气体,消除相应的质谱干扰。从而获得最准确的结果。 图5. NexION ICP-MS测试电解液杂质元素1ppb(Hg 0.1ppb)加标回收率 (点击查看大图) 图6. NexION ICP-MS测试 电解液杂质部分元素校准曲线 (点击查看大图) 3 GCMS在锂电池 电解液分析中的应用 通常用于商用锂电池的电解质溶液含有锂盐、有机溶剂和一些添加剂。有机溶剂主要是环状碳酸酯,例如碳酸亚乙酯和碳酸丙烯酯,或链状碳酸酯,例如碳酸二乙酯和碳酸甲乙酯。这些碳酸盐的构成和比例对锂离子电池的能量密度、循环寿命和安全性有重要影响。因此,研究电解质溶液中碳酸盐的构成和含量对锂离子电池的开发和质量控制起着重要作用。 图7. 珀金埃尔默 GCMS 2400 珀金埃尔默 GCMS 2400配 EI 源测定了锂离子电池电解液中的9种碳酸盐。实验结果显示该方法具有良好的精确度、回收率、线性和检测限,能够满足锂离子电池行业的需求。 表1. 精确度、回收率以及方法检出限、定量限 (点击查看大图) 4 GC在锂电池中 鼓包气体成分分析中的应用 锂离子电池因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓包, 从而带来极大的安全隐患。因此,了解电池鼓包气体的组成对于优化电解液的组成是至关重要的。 珀金埃尔默独特的解决方案,采用气相色谱TCD和带甲烷转化炉FID检测器串接技术对锂离子电池中产生的鼓包气体进行检测,获得鼓包气体的主要成分和定量分析。常见鼓包气成分有H2,O2,N2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体,采用TCD和带甲烷转化炉FID检测器串接技术可以同时满足高含量的CO,CO2分析以及低含量的CO,CO2 ,CH4,C2H4,C2H6等烷烃分析,该方法CO,CO2及烷烃类检出限小于1ppm,H2检出限小于10 ppm,该方法可实现手动气密针进样以及气体阀进样,可以获得待测锂离子电池鼓包气体完整、精准的分析结果。 表2.n=7次进样的相对标准偏差(RSD%) (点击查看大图) 5 热分析设备 在电池领域的应用简介在电池组原材料领域, DSC设备可用来分析聚合物以及金属材料的各种相变过程以及相应吸放热量的大小(比如分析聚丙烯的玻璃化转变温度以及结晶熔融过程等);STA同步热分析仪可以研究各种材料的热稳定性,确定热分解温度,定量测定复合材料的相对组成比例等。典型图谱如下图8和图9所示; 图8 电池原材料熔融和结晶过程评价 (点击查看大图)
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 锂电池浆料与性能之间的桥梁——流变仪
    p   随着近些年新能源汽车、数码电子产品等锂离子电池应用领域的大力发展和推广,锂离子电池市场迅猛发展,预计2020年全球锂离子电池市场规模有望达到4500亿元。 /p p   相比于传统的镍氢电池,铅酸电池来说,锂离子电池具有能量密度高,无记忆效应,环境污染小等特点。 /p p   锂离子电池的主要材料有正负极、电池隔膜、电解液,这也是锂电池目前研究的热点领域和对象。其中在电极的制备过程中,锂电池浆料的性质,尤其是浆料的流变特性对最终电池的储电性能具有很大程度上的影响。 /p p   锂离子电池浆料含有活性材料及多种非活性物质,通过将其涂覆于金属集流体上来制备锂离子电池的电极。 /p p   锂离子电池中需要添加各种导电剂和粘结剂以形成导电网络,颗粒聚集在浆料中产生不均匀性,会导致复合电极中出现裂纹和空隙,使电子通路出现中断,从而影响电池性能。因此,制作分散均匀的、稳定的浆料成为重中之重。 /p p   锂离子电池浆料多为黑色不透明粘性流体或胶体状态,肉眼无法直接观测到分散是否均匀,不同分散状态的浆料又有着不同的粘度趋势。因此,流变特性是分析锂离子电池浆料分散状态的重要手段。 /p p   流变仪可在接近真实加工条件下,对样品在力、热作用下的行为进行研究,如样品的流动特性、加工过程中的结构变化、降解及混合质量等性质。锂离子电池浆料的流动特性与固含、搅拌工艺及加料顺序等都有很大的关系。另外,浆料的粘度和沉降稳定性也会对后续的涂布过程产生影响。 /p p   多项研究表明,锂电池的性能与浆料的粘度、添料次序、浆料固含、混合工艺、粘结剂种类、导电剂种类、溶剂种类、添加剂种类有关,且它们均是通过影响锂电池浆料的流变特性而影响最终的重放电性能。在体系相同的情况下,浆料的表观粘度基本与浆料的分散情况相关,浆料的分散程度越好,浆料的表观粘度越低。 /p p   制作分散均匀而稳定的浆料已成为提高锂离子电池性能的重要手段,流变仪则已成为锂电池开发研究过程中不可或缺的仪器。 /p
  • 锂电池老客户再次购买禾工两套AKF-BT2015C锂电池专用水分仪
    近期,江西一位老客户再次购买上海禾工AKF-BT2015C锂电池专用水分测定仪,该公司主要研发、生产、销售锂电池正负极材料、电解液、隔膜纸等;是一家大型新能源汽车电池、模块及系统开发的高科技企业。 2016年的2月禾工与江西这位锂电池客户结缘,他们当时购买了一套禾工AKF-BT2015C锂电池专用水分测定仪用于公司锂电池原料的生产线上,在使用5个月的时间,仪器运行状态良好,检测精度高,稳定可靠,故障低,操作极为简便等优势得到了用户的肯定。 因公司业务发展需要,在2016年上半年首次购买我们AKF-BT2015C锂电池专用水分测定仪之后至今年3月份总共购买仪器五台,老客户是我公司及其重要的经营资源,能够吸引到老客户的只能是高性价比的产品质量和及时到位的售后服务。 AKF-BT2015C作为一台国内第一台带有卡式加热炉的卡尔费休水分测定仪,至2016年8月低,短短两年内,AKF-BT2015C锂电池水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡销售业绩。完全可替代进口仪器设备。 AKF-BT2015C水分仪能够广泛的应用在锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 相信在今后,禾工AKF-BT2015C水分仪会应用到更多的锂电池研发、生产单位。
  • TOF-SIMS质谱仪帮助新电池开发 储能2倍于锂电池
    p   美国能源部可再生能源实验室(NREL)的科学家们开发了一种制造可充电无水镁电池的新方法。 br/ /p p   近期刊登在Nature Chemistry上的一篇论文引起了轰动,该篇论文详细阐述了科学家开发镁金属在无腐蚀性碳基电解质中发生可逆化学反应的过程,并且该过程通过了接下来的测试。比起锂离子电池,该技术具有更有潜力的优势——其中最大的优势是具有更高的能量密度、更强的稳定性和更低的成本。 /p p   Seoung-Bum Son, Steve Harvey, Andrew Norman 和 Chunmei Ban是NREL的研究人员,同时也是Nature Chemistry 白皮书《碳酸盐中人造可逆的镁化学反应》的合著者,他们利用飞行时间二次离子质谱仪来辅助自己的研究工作。该设备可以帮助他们在纳米尺度上研究材料退化和失效机制。 /p p   NREL材料科学部门的科学家、《碳酸盐中人造可逆的镁化学反应》的作者之一Chunmei Ban表示:“作为科学家,我们总是在想接下来会发生什么。”她认为在市场上占主导地位的锂离子电池技术已经触摸到了技术上的天花板,因此迫切需要探索新的化学电池技术,以更低的成本提供更多的能量。 /p p   NREL前博士后,现科学家科学家,该论文的第一作者Seoung-Bum表示:“这一发现将为镁电池的设计提供新的途径。”其他合著者则是Steve Harvey, Adam Stokes, 和 Andrew Norman。当离子从负极流向正极时,电化学反应就会使电池产生能量。对于锂电池来说,电解液是含有锂离子的盐溶液。而电池技术的关键在于化学反应必须是可逆的,只有这样电池才能实现充电过程。 /p p   理论上讲,同体积的镁(Mg)电池所能储存的能量几乎是锂离子电池的两倍。但是之前的研究遇到了一个难题:传统的碳酸盐电解质会因为化学反应在镁表面形成一道屏障,这会阻碍电池的充电过程。镁离子可以通过高腐蚀性的液体电解质流向相反的方向,但这也打消了高压镁电池的可能性。 /p p   而为了解决这个难题,研究人员开发了一种由聚丙烯腈和镁离子盐组成的人工固体电解质夹层,这可以保护镁阳极表面。而最终这种受保护阳极的性能也得到了改善。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/f5d8577d-dfe1-4599-8433-a5dce896b151.jpg" title=" 201804080849345113.jpg" / /p p style=" text-align: center " NREL科研人员攻克可充电镁电池难关示意图(图片来源:John Frenzl) /p p   上文中的插图显示了NREL的科学家是如何解决可充电镁电池问题的。 /p p   科学家们组装了标准电池,证明了人工中间相的有效性,而最终的结果也令人十分欣喜:Mg在具有保护阳极的电池的碳酸盐电解质中发生了可逆化学反应,这一现象是镁电池领域的首次发现。与没有保护阳极的原型电池相比,带有保护阳极的镁电池可以提供更多的能量,并且可以维持周期性的充放电过程。此外,该科研小组还充分展示了镁电池的充电能力,这也首次为解决阳极/电解质不相容问题以及离子离开阴极收到限制的问题提供了解决方法。 /p p   与锂相比,镁的获取范围更广,并且与锂电池这种更成熟的电池技术相比,镁电池还具有其他的潜在优势。首先,镁可以释放两个电子,这是锂的两倍,这使得它可以产生几乎两倍于锂的能量。其次,镁电池中没有枝晶的生长,这种枝晶很容易导致短路,从而导致过热甚至事故的发生,这种特质使得镁电池比锂离子电池更加安全。 /p
  • 应用分享 | 锂电池安全分析
    锂电池是人类可再生清洁新能源发展的重要一环。我国已把“碳达峰“与”碳中和“纳入了政府重点工作计划。一方面,研究人员不断探索通过新材料、新技术增加锂离子电池的能量密度,构建新的能源存储和输出生态;另一方面,其安全性也需要在严格把控的基础上不断提高。 今年,锂电池爆炸起火的事件屡见不鲜,除了热量、穿刺等外部因素外,锂电池本身的构造也可能造成安全隐患,如负极析锂、隔膜瑕疵、极片变形等。 本文中,我们使用扫描电子显微镜(SEM)分别对电池材料的阴、阳极表面、粘合剂以及隔膜进行了观测。 01正负极 负极析锂也被认为是引发锂离子电池安全性的可能原因。在大倍率充电、低温充电,或者是电池制造中的涂布偏差等均可能导致负极中析出金属锂,由于金属锂反应活性强、容易反应产热,使得电池内化学反应发生的条件阈值降低,即电池安全性降低。 锂电池正、负极表面 02隔膜及粘合剂 隔膜瑕疵是过去被常常忽略的问题。隔膜微孔的均匀性是很难通过产品质量确认的,大部分均通过电池企业的电池成品率来确认。例如:一个微孔被堵是很难被检测出来的,但是局部隔膜孔被“堵”(也可以是局部阻抗增大)可能导致局部锂金属析出,引发安全事故。 锂电池粘合剂及隔膜 目前锂电池技术尚有不足之处,相信希望随着科学和技术的进步,未来的生活中一定会更加和谐、幸福与安宁。
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 高分辨质谱技术丨赋能锂电池电解液成分表征
    概述锂电池与我们生活密切相关,比如手机、ipad、电脑、充电宝、玩具、电动汽车、电动轻型车和新型储能等都有锂电池的身影,锂电池综合优势与下游领域对电池大容量、高功率、使用寿命和环境保护日益提升的需求相契合,存在广阔的市场应用前景。锂离子电池四大关键材料包括正极材料、负极材料、隔膜、电解液。锂电池的正极材料中,行业已经认可镍钴锂、磷酸铁锂等材料,不过也有许多企业逐渐转入了新型复合材料的研发中,液相色谱串联高分辨质谱仪在该研发过程中,可以在探究新型材料氧化还原反应机理研究、及活性基团位置不同对电化学性能的影响等方面贡献力量。金属锂的高化学活性使其易于与大多数电解质发生不可逆反应,从而在阳极表面形成固体电解质层(SEI)。液相色谱串联高分辨质谱仪可以对SEI膜成分进行结构解析,帮助研究其形成机制,减少其形成。电解液被誉为电池的“血液”,是实现锂离子在正负极迁移的媒介,对锂电容量、工作温度、循环效率以及安全性都有重要影响。所以对电解液体系中的特有成分的鉴定,杂质鉴定,其在不同电极作用,不同循环次数,不同放置时间,不同添加剂等等条件变化下电解液组成的变化,反应机理的研究,这对电池性能研究都具有重要作用。X500R QTOF 系统在锂电池电解液成分分析的应用研究本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,仪器标配的ESI源和APCI源可兼顾不同性质的化合物,IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件对数据分析,为表征电解液提供解决方案。图 1 数据处理流程图流程一:SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程SCIEX OS软件可以设定的条件,快速筛选出一级偏差准确,同位素分布合理,二级质谱图匹配得分高的结果,帮助我们快速鉴定化合物。图2 TOF MS和TOF MS/MS谱图流程二:统计学分析得到差异化合物鉴定流程对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以采取组学的思路,使用SCIEX OS软件中MarkerView&trade 统计学分析模块进行PCA,T-test等统计学分析,MarkerView&trade 统计学分析模块和Explorer鉴定化合物模块互相链接,无需不同软件间转移,减少格式转化带来的数据丢失。可以将原始数据导入MarkerView&trade 统计分析后得到样本间具有统计学差异的离子后,可以直接查看一级和二级质谱图,进行鉴定分析。图3 MarkerView&trade 统计学界面展示流程三:非靶向流程软件可以设置空白样本,根据设定的峰面积比扣除空白样本中的离子,软件自动将不同加和离子形式和不同电荷数进行分组,增加鉴定准确度并减少重复鉴定的工作量。提取出来的离子会自动给出分子式,链接SCIEX本地数据库或者在线数据库进行检索,根据和二级质谱图匹配的情况,给出得分,同时也可以根据软件自动给出的二级偏差判断碎片归属,二级碎片可以和结构一一对应,有助于我们进行结构解析,分析合理性图4 非靶向流程中部分界面展示小结本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,分别使用ESI源和APCI源对样本进行采集,兼顾不同性质的化合物,可以更全面的表征化学成分。IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程简便且准确。对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以使用统计学软件找到统计学差异的离子,进行鉴定分析。也可以采用软件自动扣除空白,自动识别离子的不同加和离子形式,电荷形式,结合SCIEX本地数据库或者在线数据库的非靶向流程,是结构鉴定和解析的有力工具,为表征电解液提供了的解决方案。 参考文献 [1]冯东,郝思语,谢于辉,等.锂离子电池电解质研究进展[J].化工新型材料,2023,51(2):35-41.[2]付文婧,汪熙媛,柯伟,等.汽车电动化的重要发展方向——锂电池技术[Z].时代汽车,2023(7):123-125.[3]Ma, Ting, et al. "Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective." Polymers 14.17 (2022): 3452.
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 锂电池材料试验解决方案
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。锂离子电池隔膜拉伸测试LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。锂离子电池隔膜穿刺试验LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用双杠升降,可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过脚踏开关(或手动开关)快速操作完成夹持,夹持完毕后,只需按手控盒的开始键即可开始试验,试验完毕后可快速安置好下一试验点,迅速完成5点或多点测试。锂离子电池涂层隔膜剥离试验以锂离子电池聚乙烯(PE)等隔膜为基体,在其表面均匀的涂覆厚度为1~2μm混有纳米氧化铝粉末及胶凝剂浆体,可以制成无机复合陶瓷涂层锂离子电池隔膜。陶瓷涂层隔膜可以有效的提高锂离子电池的热安全性,同时对电解液具有良好的润湿性及保液性能,可以有效的提高锂离子电池的容量保持性能。锂离子电池强制内短路测试从每年在世界各地发生的电池安全事故的失效初步分析来看,大部分是由于电池内部发生短路引起的。 自 2004 年日本某公司笔记本电池发生起火后,经详细调查,起火是由于电池在生产过程中内部混入了微小的金属颗粒,此颗粒在电池充放电、温度变化和外部撞击的过程中穿刺了正负极隔膜,从而导致内部发生了短路,进而引起热失控,以致发生起火。 但此类偶然混入无法完全避免, 所以我们对锂电池提出了新的测试要求,即: 电池即使有微小颗粒混入, 需要依然能够安全的使用, 而测试电池混入微小颗粒后表现的测试即为锂离子电池的强制内短路测试。
  • 一图读懂HORIBA锂电池表征解决方案
    一直以来,锂电池广泛应用于电子设备及电动汽车等新兴领域,是当前二次电池的主流发展方向。锂电池性能的提升依赖各种材料性能的改进,那么在锂电池生产中,如何利用分析仪器对材料性能进行测试和改进?通过与无数客户的合作,HORIBA成功摸索出一套解决方案:如何对锂电池原材料进行元素分析、含量检测?如何对电芯关键材料进行分子结构、粒度分析?如何对锂电池劣化后的表征及异物分析?如何检测充放电过程中材料的结构变化?为帮助大家更直观地了解HORIBA锂电池表征解决方案,我们特制作一个简版解读:前 往 微 信 公 众 号 “ H O R I B A 科 学 仪 器 事 业 部 ” 查 看 历 史 文 章 ,即 可 下 载 解 决 方 案 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 锂电池材料水分检测解决方案
    导语 锂电池是一种高新技术产品,同时也是一种新型高容量长寿命环保电池,主要用于电动车,数码产品,UPS电源等。随着新能源汽车和手机等3C数码产品产业的爆发式增长,锂电池作为其关键组成部分也发展迅速。锂电池由四大材料组成,分别为正极材料(核心),负极材料,电解液,隔膜。这些材料都有相应的水分控制要求,一般在数百ppm范围以内,不同厂家不同规格产品要求略有不同,如果超出过多,可能会导致电极涂覆不均或者引发电解液分解,导致HF生成继而引发电极鼓包等不良反应。 因为电极材料非常容易吸水,不能长时间暴露于空气中,所以不宜采用常规的加热失重法测试,通过卡式加热进样的方式再结合卡尔费休库仑法水分测试是目前较好的解决办法。 解决方案卡尔费休库仑法测试石墨粉中的水分卡尔费休库仑法测试磷酸铁锂中的水分卡尔费休库仑法测试正极极片中的水分卡尔费休库仑法测试隔膜中的水分卡尔费休库仑法测试负极极片中的水分卡尔费休库仑法测试电解液中的水分卡尔费休库仑法测试锰粉中的水分卡尔费休库仑法测试钴酸锂中的水分相关仪器推荐 AKF-CH6锂电池卡尔费休水分测定仪是集水分测量模块和加热进样模块于一体的卡尔费休水分测定设备,仪器完全按照锂电行业用户的需求打造,外观设计新颖,使用维护方便,能够涵盖锂电行业从正负极材料、极片、隔膜到电解液;水分范围从1ppm到100%的使用需求。
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 去芜存菁!锂电池、充电宝或将纳入强制性产品认证管理
    p   随着电子产品的日益普及,便携式电子产品用锂离子电池和电池组、便携式数字设备用移动电源(以下分别简称为锂电池、充电宝)源的应用日益广泛,但相关产品过热、起火、甚至爆炸的事故偶有发生。在近几年市场监管总局组织的监督抽查中,产品不合格发现率也较高。 /p p   近期,陆续有相关政府部门、行业协会和消费者向市场监管总局建议将锂电池、充电宝纳入强制性产品认证管理范围。为确保工作决策科学、合理,国家认监委现向社会广泛征求意见。 /p p   强制性产品认证,又称CCC认证,是中国政府为保护广大消费者的人身健康和安全,保护环境、保护国家安全,依照法律法规实施的一种产品评价制度,它要求产品必须符合国家标准和相关技术规范。强制性产品认证,通过制定强制性产品认证的产品目录和强制性产品认证实施规则,对列入《目录》中的产品实施强制性的检测和工厂检查。凡列入强制性产品认证目录内的产品,没有获得指定认证机构颁发的认证证书,没有按规定加施认证标志,一律不得出厂、销售、进口或者在其他经营活动中使用。 /p p   调研问卷内容如下: /p p   一、受访者基本信息 /p p   1、您是 /p p   消费者 /p p   生产企业 /p p   销售者 /p p   地方市场监管部门 /p p   技术机构(如标准化/检测/认证/科研机构等) /p p   其他(请注明) /p p   二、锂电池相关问题 /p p   2、您认为锂电池的质量安全风险 /p p   高 /p p   较高 /p p   一般 /p p   较低 /p p   低 /p p   其他(请注明) /p p   3、您对于将锂电池纳入强制性产品认证管理范围 /p p   支持,原因如下 【多选题】 /p p   加强产品质量监管,确保消费者人身安全 /p p   促进产品质量提升,规范行业健康发展 /p p   其他(请注明) /p p   不支持,原因如下 【多选题】 /p p   产品风险低,行业发展较规范 /p p   增加企业成本,影响产品快速上市 /p p   其他(请注明) /p p   其他(请注明) /p p   4、如果将锂电池纳入强制性产品认证管理范围,您建议的评价方式* /p p   第三方认证 /p p   自我声明 /p p   其他(请注明) /p p   三、充电宝相关问题 /p p   5、您认为充电宝的质量安全风险 /p p   高 /p p   较高 /p p   一般 /p p   较低 /p p   低 /p p   其他(请注明) /p p   6、您对于将充电宝纳入强制性产品认证管理范围 /p p   支持,原因如下 【多选题】 /p p   加强产品质量监管,确保消费者人身安全 /p p   促进产品质量提升,规范行业健康发展 /p p   其他(请注明) /p p   不支持,原因如下 【多选题】 /p p   产品风险低,行业发展较规范 /p p   增加企业成本,影响产品快速上市 /p p   其他(请注明) /p p   其他(请注明) /p p   7、如果将充电宝纳入强制性产品认证管理范围,您建议的评价方式* /p p   第三方认证 /p p   自我声明 /p p   其他(请注明) /p p   四、其他问题 /p p   8、您是否赞同:企业为确保产品质量安全而投入到检测、认证的费用和时间,是其应当付出的质量成本 /p p   是 /p p   否 /p p   其他(请注明) /p p   9、如您有其他意见和建议,可填写 /p p br/ /p
  • 手持材料分析光谱仪|怎么区分锂电池分类的成分
    近年来,随着全球新能源电动汽车的快速发展,锂电池的消耗量也迅速增加,镍、钴和稀有金属等原材料作为制造电池的常用材料,其需求量也骤然激增。面对与日俱增的需求和全球供应链的紧张,许多国家出现了原材料短缺的问题,废旧锂电池回收是获取原材料的重要来源之一。回收锂电池行业虽然热门,但是它的“水也很深",想要赚大钱不仅要有专业的回收设备,还要懂得行内话,了解锂电回收的“行话",还能让你判断对方在圈内的“道行"。手持材料分析光谱仪|怎么区分锂电池分类的成分-1、按正极材料分:“铁锂":即磷酸铁锂电池;“钴锂":即钴酸锂电池;“锰锂":即锰酸锂电池;“三元":即三元锂电池;手持材料分析光谱仪|怎么区分锂电池分类的成分-2、按产品形态分:“铝壳":即方形锂电池“钢壳":即圆柱锂电池;“聚合物/铝塑膜":即软包锂电池。手持材料分析光谱仪|怎么区分锂电池分类的成分-3、按用途分:消费类锂电池;动力锂电池;储能锂电池。可以为锂电回收行业提供系统的解决方案,为了帮助刚入行或者想要入行的客户快速了解锂电回收行业, 不同类型的锂电池价格可是天差地别,区分锂电池的种类,来给废料定价,是达到现场结算的基础;快速收货,以免上当,是回收的目的!千万别把铁锂的当成三元的带回家!手持光谱仪正极片及粉中镍(Ni)、钴(Co)、锰(Mn)等元素的成分检测;废旧电池负极材料铜箔中铜(Cu)含量的检测、电池金属外壳及粉料中成分检测;可以对大量废旧电池进行现场检测和快速分类;数秒便可判断出废旧电池的型号和成分含量;为购销双方在交易时,作出迅速判断提供必要的信息依据林巴斯合金分析仪是一种XRF光谱分析技术,可用于确定物质里的特定元素,同时将其量化。在这个飞速发展的时代,无论是什么行业,对于效率的要求就非常高了。  SciAps手持合金分析仪之所以被各个厂家和企业青睐,SciAps手持式合金分析仪设备耗电量低,适合野外检测,避测过程中电量不足导致实验中断的现象发生,弥补了大多数合金分析仪续航时间短这一共性缺陷。SciAps手持式合金分析仪重量仅有1.54公斤,这一特性也让它在野外检测工作中奠更受欢迎。
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 八年探索,锂电池浆料评价方法终获突破
    近日,中文国家核心期刊《电源技术》2024年第1期和第2期连续发表仪思奇(北京)科技发展有限公司杨正红等两篇论文:《超声/电声谱法测定锂电池浆料的粒度、流变和微观电学参数》(见2024,48(1):95-100)及《用超声/电声谱监测锂电池正极浆料的合浆及包覆质量》(见2024,48(2):284-288)。这预示着在锂电池浆料稳定性和微观电学性质评价方面取得决定性突破。众所周知,在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接影响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料混合分散至关重要。浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。目前对电池浆料的质量监测依据的是剪切流变性能的监测,然而,对相同工艺产生不同流变性质的原因始终是困扰电池浆料质量控制的痛点。据报道,影响锂离子电池浆料流变性的一些主要参数包括:1. 分散相的类型及表面电荷的大小:对于不同种类的正负极活性物质,由于其种类不同,具有不同的水化膨胀特性以及不同的表面电荷,因而不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。2. 固相的浓度:分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般情况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。3. 固相颗位的大小、形状以及粒径的分布:在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。 4. 分散介质本身的粘度:不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。5. 温度和压力:在不同的温度和压力下浆料具有不同的流变特性。6. 浆料的pH值。对于锂电池合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。通过高粘度搅拌工艺,浆料中导电剂是否能较好地分散在主料的表面,均匀地包覆住主料,这将影响极片的导电性,直接影响电池的倍率性能。因此,我国锂电池行业只能通过测粘度对浆料稳定性进行粗放的宏观管理,而缺乏对浆料本身电学性质的研究和监测,极大地影响了锂电池的成品率,导致成本无法下降,品质无法提高。美国和日本锂电企业都是通过超声衰减/电声学技术(ISO 20998/ISO13099)表征浆料中颗粒的电化学性能,进行锂电池浆料及其稳定性精准质控的。为了打破封锁,提高我国锂电池生产品质,根据所掌握的信息,仪思奇对电池浆料品质控制的超声/电声学参数进行了初步探索。美国分散技术公司的DT-1202或DT-1210超声/电声谱分析仪具有在常压条件下测量和计算上述包括粒度及zeta电位等几乎全部涉及的宏观和微观参数的能力(颗粒形状除外),国家标准GB/T 41316-2022《分散体系稳定性表征指导原则》中也推荐了超声/电声学方法。在日本,DT-1202以每年20台的销量早已广泛应用于电池浆料的质量控制中。然而,日本公司在向我国销售电池设备的同时,却对质控仪器及其相关参数对我国严格保密。为打破垄断,提高我国锂电池生产质量,降低消耗,仪思奇科技从成立之初,即与锂电材料企业广泛合作,对电池浆料可能的质控参数进行了一系列探索实验。经过八年的艰苦探索和努力,他们发现锂电池正负极浆料的稳定性化存在着不同的机制,它们的作用可以通过不同的参数表征出来,即宏观电动学参数——Zeta电位和微观电学参数——表面电荷密度。在锂电池浆料的稳定效应中,后者起到更重要的作用。因此,在锂电池浆料的研究或质量监控中,不仅需要关注zeta电位值,更需要关注表面电荷密度值的变化,二者不可偏废。这些微观电学参数也影响着浆料的宏观流变性能。超声衰减谱还可同时测量浆料体系的高频剪切黏度(动力黏度)和体积黏度(纵向黏度),反映了浆料在微观尺度上流变学性质,并且是一种非侵入式和非破环性的方法,为物质的微观结构提供了更深入的信息,有助于判断锂电池浆料工艺不稳定性的原因。研究表明,超声法直接测定锂电池合浆过程中的原浓浆料粒度直观有效,对于工艺质控非常重要。zeta电位作为疏水胶体体系静电排斥效应的表征参数,却很难直接作为电池浆料NMP有机体系的稳定化表征参数。但是在合浆过程中,因导电添加剂团聚的存在,很难均匀包覆在LFP颗粒上,而通过胶体电流(CVI)测定的电声法直接测量锂电池浆料的Zeta电位和双电层厚度可以成为导电剂是否分散和包覆均匀的关键质量控制参数。上述对电池浆料评价方法的突破,对锂电池浆料稳定性和工艺控制的解决方案探索具有重要意义
  • 欧阳明高院士详解锂电池技术发展方向
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/60583ae0-3699-426f-8348-785105fbf7fb.jpg" title=" ouyangminggao.jpg" / /p p   近年来,随着国内外电动汽车产业的快速发展,作为核心零部件的动力电池产业备受关注,各家企业不仅要扩张产能规模确保产量供应,还面临着持续提升产品能量密度等关键指标的“攻坚战”。当前国内外动力电池技术进展如何?有哪些值得关注的前瞻性技术?未来数年的发展节奏是怎样的?近期,中国电动汽车百人会执行副理事长、中国科学院院士欧阳明高对上述行业关心的重点话题从技术角度进行回应,对业内外人士全面了解当前动力电池技术水平概况提供了重要参考。 /p p style=" text-align: center " strong   300瓦时/公斤目标取得重大突破 /strong /p p   《汽车纵横》:安全、续驶里程长、寿命长等是消费者选购新能源汽车时考虑的关键性指标,动力电池是决定这些指标的核心零部件,近年来,在消费者需求及相关部门的政策法规推动下,安全、长寿命、高比能量的动力电池已成为产业需求的主流。比如2017年3月份,国家工信部等四部委联合颁布《促进汽车动力电池发展行动方案》,指出到2020年,要求新型锂离子动力电池单体比能量超过300瓦时/公斤。目前国内动力电池技术在这些方面进展如何?达到哪些指标? /p p   欧阳明高:按照规划,2020年要实现动力电池能量密度300瓦时/公斤目标。目前承担新能源汽车专项项目的有三个团队:宁德时代新能源、天津力神和合肥国轩。这三个团队目前采用的技术路线大同小异,即正极采用高镍三元,负极是硅碳,这种电池目前技术指标已经接近应用要求,到2020年,比能量300瓦时/公斤的电池的产业化已经取得了实质性突破,现在从比能量角度看都已经达到,例如宁德时代新能源的电池研究成果的循环寿命基本在1000次左右,能量密度达到304瓦时/公斤,其他两家也差不多。当然还有部分企业安全性标准还没有完全满足。用300瓦时/公斤的单体电池大概能做出200-210瓦时/公斤的电池系统,因为基本是软包电池,而非方形电池。国内在去年年底、今年年初,动力电池的能量密度单体达到230瓦时/公斤左右,系统大约150瓦时/公斤左右。到2018、2019年还需要再提高50-70瓦时/公斤,我认为是可以做到的。至于单体350瓦时/公斤、系统260瓦时/公斤是我们力争的目标。 /p p   如何落实2025年400瓦时/公斤的目标? /p p   《汽车纵横》:刚刚您提到,实现2020年300瓦时/公斤的目标在技术上已经有重大突破。再往后展望五年,到2025年动力电池将力争实现哪些目标?将采用何种技术路线?您认为哪种前瞻技术最值得关注?目前中国在这些前瞻技术领域有无研究? /p p   欧阳明高:面向2025年产业化,我们希望冲击单体电池能量密度达到400瓦时/公斤的目标。300瓦时/公斤的实现改变的是负极,从碳变成硅碳,到400瓦时/公斤要变的是正极,目前可选的正极材料有好几种,现在新能源汽车重点专项取得突破性进展的是高容量富锂锰基正极材料,有两个单位承担了前沿基础项目,一个是物理所,改善了富锂锰基正极循环的电压衰减,达到的指标是正极循环100周之后电压衰减降到了2%以内,这是一个重大的进展。另外一个是北京大学的团队,首次研制出了比容量400毫安时/克的富锂锰基正极,实现400瓦时/公斤应该是没有问题的,甚至可能更高。这更为开发比能量大于500瓦时/公斤的新型锂离子电池提供了可能,但循环尚存在一定不确定性。 /p p   更加前沿的技术是固态电池。目前国内有多家研究机构和产业单位在做,包括中科院青岛能源所、宁波材料所,物理所等,也包括宁德时代新能源、中航锂电等。最近宁波材料所与赣锋锂业合作,投资5亿元人民币,致力于推进固态电池产业化,计划2019年量产,2020年产品进入电动汽车市场。固态电池无疑是2017年全球电池领域最热的一个技术名词。 /p p style=" text-align: center " strong   全固态锂电池技术何以在全球大热? /strong /p p   《汽车纵横》:固态电池与我们听到的全固态锂电池是否是一回事?什么才是全固态锂电池?如何理解这些概念上的区别? /p p   欧阳明高:全固态锂电池,这几个词每一个字都不能少、不能变,“全固态”与“固态”不同,“锂电池”和“锂离子电池”不是一个概念。所谓“全固态锂电池”是一种在工作温度区间内所使用的电极和电解质材料均呈固态,不含任何液态组分的锂电池,所以我们全称是“全固态电解质锂电池”。根据其是否可以反复充放,可进一步分成全固态锂一次电池和全固态锂二次电池,一次电池其实已经有用的。全固态锂二次电池又分成全固态锂离子电池和锂金属电池,这两个概念又要区别,所谓全固态金属锂电池的负极用的是锂金属,目前在用的动力电池的负极多为碳、硅碳或者钛酸锂。 /p p   全固态锂电池的概念比锂离子电池出现得更早,锂离子电池只有25年左右的历史,是日本人发明的,真正用于车上也就10多年,很年轻但是进步很快。早期所指的全固态锂电池,都是以金属锂为负极的全固态金属锂电池。这就是以前的概念。 /p p   《汽车纵横》:固态锂离子电池跟全固态锂电池的具体区别是什么? /p p   欧阳明高:固态电池,不一定是全都是固态电解质,还有一点液态,是液态与固态混合的,差别在于混合的比例是多少。真正的固态锂离子电池,其电解质是固态,但在电芯中有少量的液态电解质 所谓半固态,就是固态电解质、液态电解质各占一半,或者说电芯的一半是固态的、一半是液态的,所以还有准固态锂电池,即主要为固态,少量是液态。 /p p   《汽车纵横》:全固态锂电池有哪些特点特别是优势?为什么能引起全球动力电池产业的关注和投入研发? /p p   欧阳明高:主要因素是它能解决目前困扰动力电池发展的两大关键问题,即安全性差和能量密度低。全固态锂电池有几个潜在的技术优势,首先,它安全性高,由于采用高热稳定性的固态电解质,代替了易燃的常规有机溶剂电解液,电池燃烧问题可以得到有效解决。第二,能量密度高,由于金属锂的容量超高,基于相同正极时,固态金属锂电池与常规液态锂离子电池相比,其能量密度可以得到大幅提升。需要说明的是,由于固体电解质密度和使用量高于液态电解质,在正负极材料相同时,全固态锂电池优势不明显。第三,正极材料选择的范围宽,因为全固态锂电池可以直接采用金属锂为负极,不要求正极结构中必须含锂,一些高容量的贫锂态材料也可以作为正极 此外,无机固态电解质宽的电压窗口也为高电压正极材料的应用提供了可能。第四,系统比能量高,由于电解质无流动性,可以方便地通过内串联组成高电压单体,利于电池系统成组效率和能量密度的提高。 /p p style=" text-align: center " strong   真正的全固态金属锂电池技术尚未成熟 /strong /p p   《汽车纵横》:从您介绍的优势来看,全固态锂电池能解决当前动力电池产品的不少不足之处。但它为何还没有大规模应用于市场?主要存在哪些问题?您如何评价这类技术的整体发展水平? /p p   欧阳明高:它的第一个问题是固态电解质材料的离子电导率偏低。现在有三种固态电解质,一种是聚合物,一种是氧化物,一种是硫化物。现在有用聚合物电解质的电池,搭载于法国的一些车辆上,它的问题就是需要加热到60度,离子电导率才上来,电池才能正常工作。目前氧化物电解质一般比液态的还要低很多。只有硫化物固体电解质的一些指标接近液态电解质,比如丰田就是用硫化物的固体电解质,所以固体电解质主要的突破是在硫化物的固体电解质。 /p p   第二个问题就是固/固界面接触性和稳定性差。液体跟固体结合是很容易的,渗透进去即可。但是固体和固体接触性和稳定性就是它的很大的一个问题。硫化物电解质虽然锂离子导电率已经提高,但是仍然有界面接触性和稳定性问题。 /p p   第三个问题是金属锂的可充性问题。在固态电解质中,锂表面同样存在粉化和枝晶生长问题。其循环性甚至安全性等还需要研究。当然还有一个问题,就是制造成本偏高。 /p p   基于上述问题,特别是固态界面接触性、稳定性和金属锂的可充性问题,真正意义上的全固态金属锂电池技术,现在仍然还是不成熟的,还存在技术不确定性。目前展现出或者有突破的、有性能优势和产业化前景的主要是固态锂离子电池和固态聚合物锂电池。 /p p   《汽车纵横》:目前国内外关于固态锂电池的研究进展如何?有哪些值得关注的企业或技术突破? /p p   欧阳明高:现在固态锂电池持续升温,美国、欧洲、日本、韩国、中国都在投入。各个国家心态不太一样。例如美国,以小公司、创业型公司为主。美国有两家公司值得关注,都是初创公司,一个是S-akit3,其最新研发的电池有望使电动汽车的续驶里程达到500公里,现在还处于初级阶段。还有一个Solid—State。美国主要立足于颠覆性技术。日本则专注于无机固体电解质的大容量的固态锂电池,最着名的是丰田公司,其产品将在2022年实现其商品化。丰田做的不是全固态锂金属电池,而是固态锂离子电池,其负极是石墨类,用硫化物电解质,高电压正极,单体电池容量15安时,电压是十几伏,我认为这是靠谱的。所以在日本,并没有颠覆,还是基于锂离子电池,正负极还可以用以前的一些材料或技术。韩国专注于无机固体电解质的大容量固态锂电池的研发工作,也采用石墨类负极而不是金属锂负极,与日本相似。中、日、韩三国的情况类似,因为我们已有了很庞大的锂离子电池产业链,不希望推倒重来。 /p p style=" text-align: center " strong   如何评价动力电池各技术路线的前景? /strong /p p   《汽车纵横》:针对当前国内外动力电池领域的技术发展现状,请您综合评估一下各种技术路线或研究方向的前景。 /p p   欧阳明高:第一,锂离子动力电池有望于2020年前实现300瓦时/公斤目标,目前国内外技术研发基本处于同一水平,但安全性研究尚待加强。这种电池的核心是安全性。 /p p   第二,作为实现远期目标的两类新体系,锂硫、锂空气电池方面,目前国内外进展相对缓慢,2017年没有看到突破性的进展。从原理来看,锂硫电池的重量比能量跟体积比能量基本相当,所以它的体积比能量要提上来是有相当难度的。新能源乘用车特别是轿车对体积比能量的要求可能比重量比能量还要重要,虽然有400瓦时/公斤的电池,体积比能量也只有400瓦时/升,这对于轿车而言不太好用。一般情况下,锂离子电池的重量比能量能达到300瓦时/公斤,体积比能量就可以达到600瓦时/升。锂空气电池集合了锌空气电池、氢燃料电池、锂二次电池的所有难点。相比而言氢燃料电池更具竞争优势。 /p p   第三,固态电池的研发产业化持续升温,但受到固/固界面稳定性和金属锂负极可充性两大问题的制约,真正的全固态锂电池技术还没有成熟,但是以无机硫化物作为固态电解质的锂离子电池出现突破。总体看固态电池发展的路径,电解质可能是从液态、半固态、固液混合到固态,最后到全固态。至于负极,会从石墨负极到硅碳负极再到合金化负极,我们现在正在从石墨负极向硅碳负极转型,最后有可能采用金属锂负极,但是目前还存在技术不确定性。 /p p   第四,中国在高容量富锂正极材料方面于2017年取得了一些突破,基于高容量富锂正极和高容量硅碳负极的革新型锂离子电池比锂硫和锂空气电池更具可行性。 /p p   《汽车纵横》:根据各种技术进展的分析,您如何判断未来动力电池技术的发展趋势?预计将按照怎样的节奏推进? /p p   欧阳明高:我们专家组对动力电池技术的发展趋势做了一次优化迭代,(但这不是国家电池技术路线图的依据,仅供参考),具体如下: /p p   2020年,实现动力电池比能量300瓦时/公斤、比功率1000瓦时/公斤,循环1000次以上,成本0.8元/瓦时以内的目标是确定的,相对应的材料是高镍三元,现在国内动力电池用的镍、钴、锰的比例由3:3:3转向6:2:2,再转变为8:1:1,即镍变成8,钴的比例进一步降到1甚至是0.5。负极要从碳负极向硅碳负极转型。这是我们当前的技术变革。 /p p   到2025年,正极材料性能进一步提升,富锂锰基材料目前取得重要突破,当然还会有其他材料。2020-2025年,我们要努力实现动力电池比能量从300瓦时/公斤上升至400瓦时/公斤,每瓦时成本从0.8元以内降到0.6元以内。此时一般性价比的纯电动轿车合理的续驶里程是300—400公里。 /p p   到2030年,希望在电解质方面取得突破,也就是2025-2030年最大的突破可能在电解质,固态电池会实现规模化、产业化,电池单体比能量有望冲击500瓦时/公斤。2030年,常规的电动汽车续驶里程应该可以达到500公里以上。当然需要其它技术的配合。如果电耗极大,例如冬天百公里电耗高达三四十度,电池再好也实现不了。现在电动车越做越大,例如大型SUV,车身重、风阻系数大,是一个值得改进的问题。 /p p br/ /p
  • 如何进行锂电池性能的高低温检测
    如何进行锂电池性能的高低温检测?锂电池是一种新型的、性能优良的电池,目前已被广泛使用。但是,由于环境因素的影响,锂离子电池的性能存在较大的差异。因此,有必要开展锂离子电池在高、低温环境中的适应性研究。高低温适应性试验是测试锂电池在高低温环境下的适应能力的一种标准化实验方法。试验项目包括高温(55℃)、低温(-20℃)和温度循环三个部分。该实验涉及到的参数包括静置时间、充放电时间、充放电电流和电压等。1.在高温试验中,锂电池需要在55℃的环境下连续静置24小时,以测试其在高温环境下的耐热性能。在完成静置后,需要对锂电池进行一定的充电时间和放电时间,以测试锂电池在高温环境下的充放电性能。在充放电时需要注意电流和电压的控制,以免过度放电导致电池性能下降。2.在低温测试中,需要将锂电池放置于-20摄氏度以下24小时。如此一来,就可以对锂电池的耐寒性进行测试了。与此类似,在完全静止之后,还需对锂电池进行充放电,以检测其在低温环境中的充放电特性。在这一过程中,为了防止对锂离子电池的性能造成负面的影响,还必须对放电电流、电压进行严格的控制。3.以高、低温度实验为基础,进行了温度循环实验。为了检测锂离子电池在不同温度下的耐受能力,对其进行了高、低温热循环试验。在对电池进行试验时,为了确保试验结果的准确,必须对试验环境温度进行严格的控制。因此,对锂离子电池进行高、低温适应实验是对其进行综合评价的一种手段。通过本项目的研究,可以有效地评价锂离子电池在特殊环境中的适应性,为其开发与应用提供理论依据。随着科学技术的发展和产业化进程的加快,高、低温环境下锂离子电池的性能测试将会得到越来越多的应用。
  • 口袋里的“定时炸弹”,锂电池爆炸的隐患如何解决?
    锂电池与我们生活息息相关,扮演着不可或缺的角色。比如我们每天不离手的手机以及笔记本电脑,家用电器等。作为交通工具的飞机、混合动力车、电动车等对锂离子电池的需求也显著增加。 而这种电池具有爆炸危险,锂电池爆炸布满全球;一系列大事件使人们开始关注锂电池的安全性。如果有一天,你的智能设备推送了一条紧急消息提示你:主人注意,电池有爆炸危险!这也许能减少不少锂电池爆炸所产生的危害。在这种智能锂电池还没面世之前,我们要做的是完善。在研发生产过程中,严格对待每项检测,预防锂电池自爆的事件再次发生。 引起锂电池爆炸的原因有很多,电池内部水分过高可以和电芯中的电解液反应,水份的分解电压较低,充电时很容易分解生成气体,当这一系列生成的气体会使电芯的内部压力增大,当电芯的外壳无法承受时,电芯就会爆炸。 针对这一严重问题,上海禾工科学仪器有限公司专为锂电池行业用户制定了一套精密水分检测设备,并提供完整的售后服务以及整体解决方案。AKF-BT2015C仪器即适用于直接检测电液体中微量水分测定,也可通过加热顶空进样品方式测定不溶性固体样品;拥有专利的卡氏顶空进样器,采用特别加热技术,避免反应杯和加热炉膛污染同时减少载气消耗。是一台能够检测电解液,正负极材料,极片、电池粉末等固体、液体样品的卡尔费休库仑法水分测定仪。 目前为止,AKF-BT2015C锂电池专用水分测定仪已在国内数百个锂电池生产企业展开合作,累计销售量数千台,带有卡式加热炉的水分检测设备,已经完全可替代进口同类产品。 关键词:AKF-BT2015C,锂电池,电解液,电池粉末,正负极材料,极片。
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 17亿损失!返航代价!锂电池乘机隐患大,安全性检测不能少
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯 /strong 9月4日,由南京至厦门的MU2809航班起飞后客舱出现明火,由巡航期间客舱内旅客充电宝自燃所致,该航班随后安全返回南京机场。据了解,当时旅客并未使用充电宝。 /p p style=" text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201909/uepic/d3dbc510-f7cd-490b-a88d-9ad1fa8f7873.jpg" title=" 东方航空.png" alt=" 东方航空.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 8月27日,北京飞往东京的CA183航班在旅客登机过程中,飞机前货舱冒烟。民航相关人士表示飞机大概率无法修复,只能报废。据悉,一架A330飞机的价格大约17亿人民币。据了解,多数情况下的货舱起火冒烟,是由于锂电池受挤压发生反应,并在密闭的货舱中与其他物品继续发生连锁反应造成的。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201909/uepic/cb66cb2f-38da-4e1a-8b53-e4c571991e5b.jpg" title=" 中国国际航空.png" alt=" 中国国际航空.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 近日,据媒体报道,多家航空公司将禁止随身携带或托运MacBookPro型号的苹果电脑上飞机,原因是其电池可能会过热并存在消防安全隐患。苹果公司在今年6月发起了自愿召回,并警告称,在2015年9月至2017年2月期间销售的15英寸Pro“含有可能过热并构成安全风险的电池”(苹果召回电池 span style=" color: rgb(0, 0, 0) " 请 /span a href=" https://www.instrument.com.cn/news/20190716/489111.shtml" target=" _self" style=" color: rgb(112, 48, 160) text-decoration: underline " span style=" color: rgb(112, 48, 160) " 点击查看 /span /a )。 /p p style=" text-indent: 2em text-align: justify " 以上事件的发生,使得公众不得不提高对锂电池航空运输基础知识的重视,相关企业也要对锂电池安全性测试提出更多、更高的要求,这不仅是对锂电池质量的把关,更是对公众人身安全及财产的保障。仪器信息网特整理了锂电池航空运输基础知识及锂电池安全性相关测试标准,以飨读者。 /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 255, 255) background-color: rgb(0, 112, 192) " strong 锂电池航空运输基础知识 /strong /span /p p style=" text-indent: 2em text-align: justify " 根据中国民用航空局发布的《关于加强通用航空短途运输旅客携带锂电池乘机安全管理工作的通知》,锂电池属第9类杂项危险品,短途运输旅客乘机携带的手机、充电宝、电脑、相机、平板电脑等电子设备中均含有锂电池,在飞行过程遇到碰撞、挤压、高温等情况时极易发生因锂电池内部短路导致的冒烟、起火,如处置不当,可导致通用航空器失去配载平衡等重大安全风险,对通用航空短途运输安全运营带来严重威胁。 /p p style=" text-indent: 2em text-align: justify " 可随身或作为手提行李携带的锂电池包括:仅限旅客个人自用目的携带的;由锂电池驱动的小型含锂电池设备(手表、计算器、照相机、手机、手提电脑、便携式摄像机、电子烟等);设备所需的备用锂电池(含充电宝);其作为随身或手提行李携带时,锂电池额定能量应不超过100Wh,如果大于100Wh但不超过160Wh的需经通用航空企业运营人批准方可携带,大于160Wh的禁止携带。 /p p style=" text-indent: 2em text-align: justify " 禁止短途运输旅客携带的锂电池有:因为安全原因被制造商确认为有缺陷或已被损坏的锂电池;废弃电池,回收和处置电池;无法确定额定能量的锂电池;超过锂电池额定能量限制的含锂电池电子设备、充电宝及备用锂电池。 /p p style=" text-indent: 2em text-align: justify " span style=" background-color: rgb(0, 112, 192) color: rgb(255, 255, 255) " strong 锂电池安全性及其相关测试标准 /strong /span /p p style=" text-indent: 2em text-align: justify " 目前锂电池的各种标准主要从三个角度进行考察,即应用安全性能、环境适应性和电性能。不同标准对电池的检测各有侧重,下表是锂电池相关测试标准的整理归纳: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" tbody tr class=" firstRow" td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 对应标准 /span /strong /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 应用安全性能 /span /strong /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 环境适应性 /span /strong /p /td td width=" 117" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 电性能 /span /strong /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" GB/T 18287 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 热冲击; /span span style=" font-size: 14px " 过充电; /span span style=" font-size: 14px " 短路; /span span style=" font-size: 14px " 重物冲击; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 过充电保护; /span span style=" font-size: 14px " 过放电保护; /span span style=" font-size: 14px " 短路保护 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 恒定湿热性能; /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 碰撞; /span span style=" font-size: 14px " 自由跌落 /span /p /td td width=" 117" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 0.2C5A /span span style=" font-size:14px" 放电性能; /span span style=" font-size: 14px " 1C5A /span span style=" font-size: 14px " 放电性能; /span span style=" font-size: 14px " 高温性能; /span span style=" font-size: 14px " 低温性能; /span span style=" font-size: 14px " 荷电保持能力; /span span style=" font-size: 14px " 循环寿命; /span span style=" font-size: 14px " 贮存 /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" IEC 60086-4 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 强制放电; /span span style=" font-size: 14px " 不正常充电; /span span style=" font-size: 14px " 错误安装; /span span style=" font-size: 14px " 过放电 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 低气压; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 冲击; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 撞击; /span span style=" font-size: 14px " 挤压; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 自由跌落; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 温度冲击 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" IEC 62133 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 持续低速率充电; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 外部短路; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp & nbsp /span /span span style=" font-size: 14px " 强迫放电; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 高速率充电; /span span style=" font-size: 14px " 过充电 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 振动; /span span style=" font-size: 14px " 机械冲击; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 自由跌落; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 热冲击; /span span style=" font-size: 14px " 挤压; /span span style=" font-size: 14px " 低气压; /span span style=" font-size: 14px " 电池外壳应力 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" IEC 61960 /span /p /td td width=" 156" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td td width=" 152" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td td width=" 117" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 20 /span span style=" font-size:14px" ℃放电; /span span style=" font-size: 14px " -20 /span span style=" font-size: 14px " ℃放电; /span span style=" font-size: 14px " 高速率放电; /span span style=" font-size: 14px " 荷电保持及恢复; /span span style=" font-size: 14px " 长时间贮存; /span span style=" font-size: 14px " 循环能力; /span span style=" font-size: 14px " ESD; /span span style=" font-size: 14px " 内阻 /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" JIS C 8714 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 强制内部短路; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 过充电保护 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 热冲击; /span span style=" font-size: 14px " 挤压; /span span style=" font-size: 14px " 跌落 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" UL 1642 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 异常放电 /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " ; /span /span span style=" font-size: 14px " 强制放电 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 挤压; /span span style=" font-size: 14px " 重锤冲击; /span span style=" font-size: 14px " 热冲击; /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 机械冲击; /span span style=" font-size: 14px " 低气压 /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " ; /span /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 弹射 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" UL 2054 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 异常充电; /span span style=" font-size: 14px " 滥充电; /span span style=" font-size: 14px " 强制放电; /span span style=" font-size: 14px " 限功率测试; /span span style=" font-size: 14px " 元器件温升 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 挤压; /span span style=" font-size: 14px " 重锤冲击; /span span style=" font-size: 14px " 热冲击; /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 燃烧; /span span style=" font-size: 14px " 机械冲击; /span span style=" font-size: 14px " 跌落 /span /p p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" ;250N /span span style=" font-size:14px" 挤压; /span span style=" font-size: 14px " 外壳应力; /span span style=" font-size: 14px " 外壳防火 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr /tbody /table p style=" text-indent: 2em text-align: justify " strong 附: /strong 更多锂电池相关检测信息,点击进入 a href=" https://www.instrument.com.cn/application/SampleFilter-S25001-T000-1-1-1.html" target=" _self" style=" color: rgb(112, 48, 160) text-decoration: underline " span style=" color: rgb(112, 48, 160) " 锂电池检测方案专场 /span /a 。 /p
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 中科院锂电池实验室落户金华
    “我们已经与中科院上海微系统与信息技术研究所签订合作协议,在金华成立以动力和储能锂离子电池相关课题研发为主的联合实验室,首期合作三年,全面提升金华汽摩配产业在动力研究方面的话语权。”昨天,浙江南博电源科技开发有限公司董事长陈庆武告诉记者,该公司的锂电池产品已经通过中试鉴定。   南博公司成立于2006年,在国家有关科研院所的技术指导下,从事研发、生产锂离子动力电池科技型新能源产品。   据了解,目前我国汽车产销量已达1300万辆。到2020年中国汽车保有量肯定要突破2亿辆,油品供应问题将非常突出。除了电动汽车,没有其他更有效的解决方案,因此电动汽车产业化发展已经列入国家“十二五”规划中。陈庆武告诉记者:“金华有青年、众泰、康迪、绿源、金大等多家整车制造厂,2009年锂电池市场需求已经超过9000万元,今年还要翻番。南博公司将投入1.8亿元资金,专门用于生产锂电池,加强产业化技术和工艺的研发。”   浙江力霸皇工贸集团副总经理李家亮,对锂电池的好处如数家珍。锂电池重量只有2.5至5公斤,是普通电池重量的1/4,使用寿命却为铅酸电池的3~5倍,锂电池电动车顺应了国家的环保要求,是我市电动车产业可持续发展的必然选择。浙江金大车业有限公司总经理章小理告诉记者,我市电动车产业发展路线一直采用跟随战略,虽然具备整车优势,但在新能源领域,是否能够摆脱跟随路线,逐步向领导者行列跨进,锂电池技术将成为关键突破口。如果南博公司能将电动车锂电池从目前的1200元降到800元,将改变金华电动车行业在国内的竞争格局。
  • 日本电镜企业竞逐中国锂电池市场
    p   日本朋友来家里做客时,时常谈到中国汽车业的未来,特别是电动汽车近年来在中国的大发展。 br/ /p p   “中国人喜欢买‘特斯拉’吗?”日本朋友常常会问。于是我就带他们下楼站在北京五道口的街边数“特斯拉”,基本是过不了几分钟就会有一辆驶过。 /p p   日本朋友于是惊叹,北京的“特斯拉”拥有量一定超过东京了!当然,我还会告诉他们,中国电动汽车市场的未来增长点,不仅在于美国生产的“特斯拉”,更在于许许多多蓬勃生长的本土品牌。 /p p   中国电动汽车市场的规模和增长潜力,也被相关日本企业看在眼里。电动汽车里的一个关键部件,就是锂电池,而锂电池,正是日本企业的强项。锂电池技术在日本发展较早,日企因此在锂电池电解液和正负极等金属材料方面拥有多项专利,在观察检测锂电池纯度的电子显微镜和锂电池回收上,拥有丰富的经验。这让他们嗅到了在中国市场巨大的商机。 /p p   比如,锂电池对材料纯度要求极高,其中如果混入了金属碎屑,就有可能发生电池着火、爆炸的情况。而一旦发现异物,就需要立即停止生产,汽车电池的生产规模巨大,停产就意味着企业面临数百万元甚至数千万元的经济损失。因此,电动汽车企业需要用精度很高的电子显微镜进行严格检测,以防上述情况的发生。 /p p   以生产领先的电子显微镜知名的日立高新技术公司于是在今年3月直接斥资在上海开设了“日立高新技术科学园”,主打电子显微镜并配备多种相关分析仪器,未来瞄准中国市场的意图非常明确。 /p p   随着电动汽车的普及,还会有大量的废弃锂电池需要回收,这里面也蕴藏着巨大的商机。 /p p   日本三菱材料公司过去一直以生产铜、铅著称,目前也开始把重心转移到锂电池回收的研发上来。另外一家以生产相机知名的日本企业富士胶片,也具有电池回收的相关技术,正在积极寻找来中国合作的机会。 /p p   日本的日产汽车更在2018年2月宣布,计划在中国投资600亿元直接生产电动汽车。 /p p   日本企业都非常清楚,未来世界最大的电动汽车市场一定在中国,汽车用锂离子电池生产中心也在这里。 /p p   日立高新技术公司中国事业集团先端分析装置部部长郑艺花说:“我们已经看到,中国的论文发表量超过了日本,仅次于美国,居全球第二位,这表明中国在很多研究领域已经是全球领先水平。所以我们的侧重点也在改变——原先中国只是一个为客户提供产品和解决方案的市场,未来中国会成为前沿产品的研发中心,引领技术变革。” /p p br/ /p
  • 锂电池检测专题网络研讨会
    锂离子电池由于具备较高的性价比,自诞生之日起便以极快的速度抢占其他二次电池的市场份额,但是随着其应用范围的逐渐扩大以及单个电池的体积能量密度越来越高,容量越来越大,锂电池的安全性也越来越被人们所关注。为保障最终产品的质量,必须从锂电池的每个生产环节进行把控。珀金埃尔默特邀请广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,并联合TESCAN公司,举办“锂电池检测专题网络研讨会”日程安排:日期:2019年6月28日时间题目主讲人14:00-14:40动力电池关键材料检测现状 邵丹博士广州能源检测研究院主任工程师14:40-15:30珀金埃尔默锂电行业解决方案陈观宇珀金埃尔默资深应用工程师15:30-16:00TESCAN产品在电池领域表征中的应用张芳TESCAN资深应用工程师详情介绍:讲座题目一:动力电池关键材料检测现状内容简介:围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术等进行报告主讲人简介:邵丹,博士,广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员,主要从事化学储能材料及产品的相关技术研发、以及先进检测技术引进。讲座题目二:珀金埃尔默锂电行业解决方案内容简介:1.锂电池正极材料主量元素分析方法介绍2.锂电池负极材料掺杂元素分析方法介绍3.锂电池电解液分析方法介绍4.ICP-MS在锂电行业的应用优势主讲人简介:陈观宇,珀金埃尔默原子光谱资深应用工程师,从事原子光谱技术多年,是ICP及ICPMS的资深应用专家,在锂电关键材料的成分分析应用领域有着丰富的实践经验。讲座题目三:TESCAN产品在电池领域表征中的应用内容简介:1. 扫描电镜微分析平台在电池正极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 2. 扫描电镜微分析平台在电池负极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 3. 扫描电镜微分析平台在电池隔膜表面结构表征的应用; 4. X射线显微镜在电池三维无损分析中的应用。 主讲人简介:张芳,TESCAN(中国)资深应用工程师,专注于电镜及电镜联用分析技术解决方案。即刻扫码占座吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 防患于未“燃”,电动自行车锂电池强制性国家标准即将出台!
    2月23日凌晨,南京市一居民楼发生火灾致15人死44伤,伤亡惨重。据通报,经初步分析,火灾是由6栋建筑地面架空层停放电动自行车处起火引发。这次事故再次引起公众对电动自行车停放和充电安全的强烈关注。据国家消防救援局统计,2023年全国共接报电动自行车火灾2.1万起,锂电池是主要的燃烧源或爆炸源。由于我国缺少电动自行车锂电池强制性标准,导致锂电池质量参差不齐,电动自行车安全事故频发。为从源头防范电动自行车质量安全事故的发生,强制性国家标准体系的完善刻不容缓。据央视财经《经济信息联播》栏目报道,2022年由工业和信息化部组织起草的强制性国家标准《电动自行车用锂离子蓄电池安全技术规范》已经完成了起草和征求意见阶段,目前正处于审查阶段。中国电子技术标准化研究院安全技术研究中心副主任何鹏林是工信部锂离子电池及类似产品标准工作组组长,同时也是这项国家标准的主要起草人之一。他介绍道:按照项目计划,这项强制性国家标准将于今年发布。本标准将填补国家层面对电动自行车用锂离子电池安全质量监管的技术依据空白。标准发布以后,按照《中华人民共和国标准化法》的规定,不符合强制性标准的产品、服务,不得生产、销售、进口或者提供。据《电动自行车用锂离子蓄电池安全技术规范》征求意见稿编制说明,该标准规定了电动自行车用锂离子蓄电池单体和电池组的安全要求和试验方法,适用于符合GB17761规定的电动自行车用锂离子蓄电池单体和电池组。主要检验项目包括:电池安全项目:过充电、过放电、外部短路、热滥用、针刺;电池组机械安全项目:挤压、机械冲击、振动、自由跌落、提手强度、模制壳体应力等;电池组电气安全项目:强制放电、过充电保护、过流放电保护、短路保护、温度保护、绝缘电阻、静电放电等;电池组环境安全项目:低气压、高低温冲击、浸水、盐雾、湿热、阻燃性等;人身安全项目:热扩散。其中,首次在电动自行车用锂离子蓄电池标准中引入人身安全相关项目。热扩散项目参考GB 38031-2020《电动汽车用动力蓄电池安全要求》标准。电池单体发生热失控时热量会通过不同方式传递到相邻电池单体,单个电池热失控可能传播到周围的电池单体,引起连锁反应,热扩散时形成的烟雾、火灾和爆炸直接威胁电动自行车驾乘和使用人员安全。该项要求旨在考核电池热扩散控制能力,为预警和驾乘人员安全提供保障。标准要求电池组发出报警后5min内不能起火爆炸。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制