当前位置: 仪器信息网 > 行业主题 > >

水系统水质检测

仪器信息网水系统水质检测专题为您提供2024年最新水系统水质检测价格报价、厂家品牌的相关信息, 包括水系统水质检测参数、型号等,不管是国产,还是进口品牌的水系统水质检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水系统水质检测相关的耗材配件、试剂标物,还有水系统水质检测相关的最新资讯、资料,以及水系统水质检测相关的解决方案。

水系统水质检测相关的资讯

  • 《城镇排水系统高光谱水质在线监测技术规程》列入团体标准制订计划
    依据《中国城镇供水排水协会团体标准管理办法》和《中国城镇供水排水协会标准化工作委员会章程》,经中国城镇供水排水协会标准化工作委员会组织审查,并已在中国水协网站公示结束,决定将20项标准项目列入制订计划。其中,《城镇排水系统高光谱水质在线监测技术规程》由中科谱光将与中国市政工程华北设计研究总院有限公司共同起草,天津大学作为参编单位共同编制该标准。高光谱水质在线监测已逐渐成为排水系统诊断评估、日常监测管理、预报预警的新方向、新趋势。此次标准的编制实施,将促进我国城镇排水系统高光谱水质在线监测的应用和发展,填补我国高光谱水质在线监测技术标准的空白,为智慧化水质监测上层建设打下坚实的基础。全文内容如下:
  • 水利系统水质监测就是看水质吗?
    p   提起水质监测,大多数人的第一印象就是水质采样和实验室分析化验,看看水质如何,有没有受到污染。其实,水利系统水质监测工作可不局限于此。 /p p   太湖连续10年实现安全度夏,就充分证明了其背后水质监测工作的突出贡献,年复一年日复一日不间断巡查监测水质水量,换来了太湖水的碧波荡漾。每年4月1日,太湖水质巡查监测工作正式启动,一直持续到接近年底。水文部门半年内巡查湖面达11万平方公里,获取监测数据10万余个,为太湖治理、蓝藻打捞、湖泛防控积累起大量实时巡查监测成果,为太湖安全度夏提供科学的决策参考。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/noimg/afe25a61-da93-473b-8894-12f9afcddaa1.jpg" title=" 太湖巡查.jpg" / /p p style=" text-align: center "   太湖巡查监测水质现场 /p p   水利系统水质监测不仅能监测地表水、地下水水质,还能监测水生态,江河湖泊水位、流速、水量、泥沙,这些都是宝贵的生态监测基础信息,甚至调水都能用上水质监测。服务范围远超你的想象。 /p p   聊到这,你觉得真的了解水质监测工作吗?来,敲黑板,我们为你“划重点”。 /p p   水利系统水质监测有多久的历史? /p p   始于1955年,当时主要以天然水化学测验和泥沙颗粒分析为主,是水文测验的一个组成部分。1969年-1973年间,开展主要水系的水污染调查评价工作。从此,水利部门全面开展了支撑全国水资源保护和管理的水质监测工作。 /p p   水质监测如何确保高质量发展? /p p   全国水质监测工作能不能干好,让一组实力数字来说话: /p p   ——监测体系及站网布局日趋完善 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/noimg/c490e3a3-4505-4226-8a8a-8c0fadbe1edf.jpg" title=" 水质站.png" / /p p   目前,全国水利系统地表水水质监测站达16123处,地下水水质监测站共9677处,水生态监测站789处。 /p p   341个从部级到地市级的监测机构组成严密的水质监测体系。 /p p   全年监测评价河长达23.5万公里。 /p p   ——基础设施水平飞速提升 /p p   各级监测中心的监测手段已经实现了从化学滴定分析到仪器分析,从小型单项仪器分析到大型精密仪器分析,分析项目从无机物分析到微量有毒有机物分析的转变。 /p p   ——基础条件不断增强 /p p   各级水质监测中心检验场所面积近20万平方米,各级监测机构已装备监测设备9000多台(套)。 /p p   ——仪器设备水平不断提高 /p p   一大批高性能检测分析仪器,基本实现了饮用水水源地监测的109项指标和地下水质量标准93项指标的全指标监测,并开展新型污染物的监测与研究工作。 /p p   便携式水质监测设备和移动式自动监测设备在应急监测中发挥着越来越重要的作用。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/noimg/2f8cb515-9a71-4624-a7b3-0865a3da2cc6.jpg" title=" 仪器设备.jpg" / /p p style=" text-align: center "   大批高性能仪器设备投入使用 /p p   ——监测质量管理持续强化 /p p   全国水利系统已建立起覆盖水质监测各方面、各环节的质量管理制度体系。持续组织实施全国质量控制考核,质控管理覆盖全系统各级实验室。 /p p   ——监测人员队伍不断壮大 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/noimg/846d1842-8fd4-4700-b805-534d57d23bc1.jpg" title=" 采集水样.jpg" / /p p style=" text-align: center "   采集水样 /p p   全国2600多名专业检验人员服务于各级监测中心实验室,全国仅负责采集水样的工作人员就达5000余人,还有通过政府购买社会服务方式工作在采样一线的人员,更是不计其数。 /p p   水质监测结果能为各级政府提供决策依据? /p p   水质监测数据已成为河长制监督考核的重要依据。各地水文部门和水环境监测中心均参与了“一河一策”保护方案编制、河长制工作推进督查等工作。截至2017年年底,已有5400处水质站监测信息成为河长制监督考核依据,其中为河长制服务新设水质监测站点2527处。 /p p   水生态监测是维护重点河湖健康生命的“监测仪”。水生态监测包括河湖水质质量、浮游植物、浮游动物和底栖动物种类、密度及其生物量等生态要素。早在10年前,水利部就开始组织在易发水华的重点水域,先期开展以藻类监测为主的水生态监测工作。目前,水利系统长江、珠江流域监测中心,云南省、江苏省水环境监测中心等28家单位,在太湖、滇池、巢湖等40个生态敏感水域开展的藻类监测已常态化。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/noimg/025afd79-4a57-4912-bf63-60633e7a87ec.jpg" title=" 生物监测.jpg" / /p p style=" text-align: center "   实验室进行生物监测 /p p   【举例:在鄱阳湖流域水生态监测中,江西水文局开展了三库(样本库、标本库和藻类种质库)、一室(样本处理与水生态监测检测实验室)、一平台(样本数据库及数据分析与展示平台)的建设,完善水生态综合监测与观测设施和条件,提升水生态原型观测、完整的水生态资料收集以及后期数据标准化处理能力。】 /p p   水质监测成果为“三条红线”中的纳污红线考核提供依据。水利系统各级水环境监测中心在最严格水资源管理制度实施、流域水污染防治考核中,发挥着越来越重要的作用。 /p p   在水污染应急监测中,为处理突发事件赢得宝贵时间。在河流湖库发生的水污染事件,属于水体感官指标突变、鱼类等生物死亡的,往往由水文部门第一时间发现和上报,为有关部门提供可靠决策信息支撑。 /p
  • 制药从水质开始 水质检测仪器是“标尺”
    p   水是生命之源,是人类和众多生物赖以生存的基础,而在制药领域,水质更是影响药品质量的关键要素,制药用水达标与否,对制药企业来说至关重要。那么在制药过程中,如何判断水质是否达标?有行业人士指出,相关制药水质检测仪是制药用水质量保证的“标尺”,随着技术的不断进步,越来越多完善的制药水质检测方案将为制药用水保驾护航。 /p p   据了解,在药品生产工艺中,制药用水包含饮用水、纯化水、注射用水、灭菌注射用水。根据2000中国药典规定,饮用水是不能直接用于制剂的制备或试验用水,因此制药用水生产必须配备完整的制药用水系统,且制药用水的制备需从生产设计、材质选择、制备过程、贮存、分配、使用等均应符合生产质量管理规范的要求。为确保制药水质万无一失,为生产高质量的产品提供优质的水源,制药水质检测仪器在整个制药用水生产工艺过程中的地位举足轻重。 /p p   如今随着国家对制药质量要求的不断提高以及各种飞检的来袭、新版GMP的推行,国家在对水处理连续生产纯净水、高纯水和注射用水提出更高要求的同时,在水质检测和文件证明方面的要求也更为严格。另外,在制药领域,微生物污染也会给药企带来巨大的损失,而水系统里面的有机物和微生物污染之间的相关性难以查明,因此制药企业会不断的检测水系统以消除微生物污染。 /p p   为确保制药用水万无一失,国家对制药水质检测要求越来越精准。在检测过程中,其除了采用目视法以外,越来越重视仪器检测方法。如溶液的澄清度是控制原料药和注射剂质量的重要指标,2015年新版《中华人民共和国药典》中就规定了对于药品澄清度的检测方法为目视法和仪器法。 /p p   根据对比,相关技术人员表示,传统的目视比浊法每次消耗的样品量大成本高,标液配制复杂人工成本高,且人为操作误差大,数据无法溯源。而采用仪器分析法可减少测试所消耗的样品量,安全、快捷、方便,大大降低人工和耗材成本。更为重要的是,仪器分析法更加精确,质量能得到更好的保证。以哈希生产的具有突破性的TL23台式浊度仪为例,该设备每次仅需2.5ml样品量,大大节约样品的测量成本,而且符合药典规定,测量精确、快速、安全,数据可追溯,完全解决了澄清度的测量问题。 /p p   在制药生产过程中,制药水质检测是非常重要的步骤之一,而在这过程中相关的制药水质检测仪器的研发诞生更是为制药水质检测提供了强有力的工具保障。为保证制药水质检验分析数据的准确率,为药企提供完整的水质检测方案,企业不仅需要不断提高技术水平,研发更加先进的仪器,而且要不断加强检验数据的管理,建立完善的数据管理制度。专家指出,科学、全面的分析水质检验数据并加强检验数据管理是制药水质检测的重要方面。 /p
  • 中国城镇供水排水协会团体标准《城镇排水系统高光谱水质在线监测技术规程》编制组成立暨第一次工作会议成功举办
    2024年7月15日上午,中国城镇供水排水协会团体标准《城镇排水系统高光谱水质在线监测技术规程》(以下简称“规程”)编制组成立暨第一次工作会议于中国市政工程华北设计研究总院第十七设计研究院成功召开,会议采用线下线上相结合的方式同步进行。此次团体标准由中国城镇供水排水协会牵头组织,中国市政工程华北设计研究总院有限公司、天津中科谱光信息技术有限公司联合主编,芯视界(北京)科技有限公司、四川碧朗科技有限公司、天津市水利科学研究院、天津大学等单位共同参与。天津中科谱光信息技术有限公司董事长张立福、执行总裁孙雪剑等出席本次会议。会议邀请了上海城建设计集团智慧城市研究院副院长(兼总工程师)黄慰忠、中国水利水电科学研究院水资源研究所副总工程师赵红莉、中国科学院空天信息创新研究院研究员李俊生、杭州水务数智科技股份有限公司董事长朱建文四位专家参会。会议上,中国城镇供水排水协会副秘书长谢映霞代表中国水协致辞,中国市政工程华北设计研究总院有限公司总工程师刘智晓、天津中科谱光信息技术有限公司董事长张立福分别代表主编单位致辞。编制组代表顾毅杰就规程的编制背景与基础、编制思路与章节、编制单位与团队、编制分工与进度等内容进行了说明,与会专家对于规程的前瞻性与实用性给予了充分肯定,并就下一步的工作提出了建设性的意见和建议。《城镇排水系统高光谱水质在线监测技术规程》联合科研设计单位、咨询设计单位以及专业技术公司共计6家企业共同编写。本技术规程的编制,积极响应了国家“十四五”时期对于全面提升排水系统运行效能的建设要求,指导城镇排水系统高光谱水质监测工作的有序开展,不仅保障高光谱数据应用的科学性,提升城镇排水系统水质监测运维管理水平,更是对国家关于城市更新改造、低碳环保、安全节能和数字化转型政策的积极响应。中科谱光作为此次团体标准的主编单位,将根据会上各位专家提出的意见建议进行修改完善,并严格把控编制质量,为编制出高质量、高水平的团体标准奠定基础。
  • 包头市水务局将投资2310万建水质检测中心
    近日,记者从包头市水务局获悉,水务局将投资2310万元,建设独立于供水企业、直接行使管理水质的高标准水质检测中心,使包头市水质检测能力达到《国家生活饮用水卫生标(GB5749-2006)》规定的全部106项指标要求。   据了解,目前,包头市除卫生监督部门对水质按季度进行抽查外,水行政主管部门尚无专门机构、专业手段对水质进行监管,存在水质监测缺项、密度低、反应滞后等问题。特别是农村牧区饮用水水质的监管缺失,急需建立水行政主管部门的水质监管体系,开展水质监测和监管。   拟建的包头市水质检测中心将坚持监督管理与专业服务相结合、城镇与乡村相结合、近期实效与远景目标相结合的原则,负责对城市自来水公共供水系统水源地原水、出厂水、管网水的水质进行管理和定期检测 对城市健康水供水水质进行管理和定期检测 对全市农村牧区饮用水水质进行管理和定期检测 供水系统危急状态下的水质检测 市区范围广大农村牧区人畜饮水水质的检测 其他用水,包括城市污水、城市杂用水、景观用水等检测。   为了实时监控水质情况,水务局还将逐步建设水质在线自动监测、数据采集传输系统,以20万人为单位共布设35个水质自动在线监测点。
  • 饮用水水质检测及消毒剂检测解决方案
    夏季是个高温多雨的季节,易发强降雨造成洪涝,从而导致房屋住所、饮水水源、供水管网、排水系统等基本生活设施遭到损坏或破坏。洪涝灾后环境卫生风险增大,其中饮用水卫生安全尤为重要,饮用水安全问题主要表现在致病微生物污染、水质感官性状恶化和有毒化学物质污染三个方面。洪涝灾害发生后,应尽快开展灾区饮用水卫生状况快速评估和饮用水水质监测,根据评估情况和水质监测结果指导开展工农灾区饮用水卫生工作。 一、检测依据1、《洪涝灾害饮水卫生和环境卫生技术指南》2017版:● 监测范围:灾区生活饮用水,包括水源水、集中式供水的出厂水、末梢水和分散式供水● 检验项目:色度、臭和味、浑浊度、pH、氨氮、耗氧量、余氯(或二氧化氯)、菌落总数和总大肠菌群以及有关风险指标。● 检验方法:按GB/T 5750 《生活饮用水标准检验方法》表1 检测指标的限值及方法 2、洪涝灾区预防性消毒指引(2021年)● 出水水质符合GB 5749的要求(水质检测见表1)● 消毒用品:有效氯500mg/L含氯消毒剂、1000 mg/L季铵盐类消毒剂、200 mg/L二氧化氯、1000 mg/L过氧乙酸、有效氯5000mg/L~10000mg/L含氯消毒剂表2 有效氯含量检测 二、检测仪器
  • 科学防护疫情 水质检测仪保障水质
    众所周知,水是生命之源,人们在生产活动中和日常生活中都离不开水。如今,面对当下突如其来的新型冠状病毒感染的肺炎疫情事件,水的重要性尤为凸显,人们对关注度也逐渐变高。据国家卫生科普,水是人们此次防护病毒的重要资源之一,但是,用水的同时是否也存在传染隐患呢?如何保障水质?自从新型肺炎疫情爆发以来,勤洗手、戴口罩、多喝水、要消毒成为了预防新型肺炎疫情的必要措施。无论是奔赴在一线紧张抗击的医护人员,还是服务社会的各水电粮油等部门工作人员,或者是齐心支持抗战的老百姓们,对于水的需求都变得更大。生态环境部在疫情刚刚爆发的时候就已然意识到了水质在这场战争里的重要性,于2020年1月31日,生态环境部印发了《应对新型冠状病毒感染肺炎疫情应急监测方案》的要求。要求中指出,疫情防控期间,水质监测相关部门在饮用水水源地常规检测的基础上,增加余氯和生物毒性等疫情防控特征指标的检测,发现异常情况时加密检测,并及时采取措施、查明原因、控制风险、消除影响,确保能切实保障人民群众的饮用水。另外,不只是饮用水需要被关心,生活废水以及医疗污水等排放的水源的污染危害也需要被重视起来。据悉,医生在新型冠状肺炎的患者排泄物中检测出病毒存在。这意味着这种病毒可以存活于粪便中,也会随着城市污水系统排放至污水处理厂。甚至,病毒还会通过旧建筑物水封失效的地漏之类的设施与空气一起释放到其他地方,也可能包括排水口、海水冲洗系统、排风扇等通道都会发生病毒传播,造成人们感染。由此可见,水质检测在这场疫情战争中尤为重要。水质检测是专业仪器设备通过监视和测定水体中污染物的种类、各类污染物的浓度及变化趋势,以此帮助人们评价水质状况的过程。水质检测的范围十分广泛,包括未被污染和已受污染的天然水(江、河、湖、海和地下水)及各种各样的工业排水等。其主要检测项目可分为两大类:一类是反映水质状况的综合指标,如温度、色度、浊度、pH值、电导率、悬浮物、溶解氧、化学需氧量和生化需氧量等 另一类是检测一些有毒物质,比如酚、氰、砷、铅、铬、镉、汞等,目前,也可检测该新型病毒期间因消毒剂产生的余氯、总氯、二氧化氯、臭氧等20余项参数。随着我国科技的不断发展,当前,我国的水环境水质检测技术也飞速提高。绥净推出多个系列的水质检测仪,方便检测部门在各种环境及地点的检测,减轻工作人员的工作压力,同时还提高了检测效率和准确度。如在实验室可选择GNST-001S多参数水质检测仪和GNST-001S一体型多参数水质检测仪这两款,若是户外现场检测可选GNST-001S便携式多参数水质检测仪和GNST-001S手持式多参数水质检测仪,仪器可根据后期检测参数需求进行升级,检测参数可升级至70余项。在如今的非常时期,确保水质是令人们重视的一大问题。无论是饮用水还是污水处理,只要相关部门加强对取水源的水质检测、过程控制以及排污厂的排水和消毒运行管理,水质就能得以保障。水环境工作中,当务之急的还有做好保护排水和污水处理工人的工作,防止气味、气溶胶、污泥等引起的传播隐患,减小相关工人感染的风险。相信在科学仪器的帮助下,水源隐患人们不必担心,只需响应政府号召,做好正确的防护措施,将个人卫生和公共卫生保持住,抗疫胜利终将向我们招手。
  • 在疫情中,我们污水水质监测应该关注的重点
    自新型冠状病毒引起的肺炎爆发以来,全国范围内一致的抗病毒战争进入了关键时期。 除了抗战前线的医务人员,全力支持“火神山”,“雷神山”的建设以及后勤补给等无私服务的服务人员之外,这场病毒的爆发对于水质监测有什么关联和影响吗?面对这场疫情,水质监测行业应关注什么?我们如何结合自己的工作对医护人员、广大人民提供保护和支持? 最近,随着肺炎疫情的不断扩散和加剧,发表在《新英格兰医学杂志》(NEJM)上的一篇论文引起了广泛的关注。这篇论文全面介绍了美国首例新确诊病例的诊断,治疗过程和临床表现,对指导患者治疗具有重要意义。但是,该文章中有一处引起了水质监测行业的关注:该研究指出该患者住院后第二天出现腹泻和腹部不适。医生在腹泻的粪便样本中检测到病毒的存在。就在2月1日,深圳市卫生和医学委员会发布消息称,深圳市第三人民医院肝病研究所的一项研究发现,在2019年检测到一些新型冠状病毒诊断的肺炎患者的粪便也被检出。呈阳性,很可能表明粪便中存在活病毒。建议提醒人员戴口罩时要经常洗手,并注意个人卫生。患者粪便中的病毒会通过城市排水系统进入污水处理厂并进入自然水体吗? 它会通过诸如旧建筑物水封失效的地漏之类的设施与空气一起释放到房间吗?这样的担心并非没有根据。 2003年5月16日,世界卫生组织发布了香港淘大花园传播的SARS环境卫生报告。 淘大花园涉及一系列环境和健康问题,包括排水口,海水冲洗系统,排风扇等。建筑物中多次SARS感染的原因; 2019年8月11日,一对年轻夫妇在上海宝山区洋兴镇一间房屋的浴室死于硫化氢中毒。 经调查,老建筑的水封设置不合理,这与倒灌引起的臭气有直接关系。由此可见,在这场病毒攻坚战中,水质监测也尤为重要。 就水质检测、水污染监测而言,新冠状病毒患者粪便中是否存在新的冠状病毒对排水和排污系统提出了更高的要求?对于医院废水处理和市政废水处理,需要关注哪些问题? 对重灾地区的水质监测非常重要和关键。与一般情况相比,在异常时期应加强水质监测、加强对排水水质的实验室检测频率,并应发挥污水处理厂和站水质在线监测和预警的作用,以确保污水处理厂和污水站的水质在线监测。排水,污水和再生水设施运行稳定,水质稳定排放。在应重点关注的具体指标上,由于目前中国污水处理厂的污染物排放标准仅规定了粪便大肠菌群计数等细菌微生物指标,因此对病毒微生物没有要求,污水处理厂应更加重视对SS和颜色,COD,BOD5,氨氮和粪便大肠菌群计数等,上述指标达到标准的要求都比平时更高,检测频率必须加密。特别是,在需要采取紫外线消毒或加氯消毒措施的基础上,建议增加总残留氯检测指数。在标准明确下,水质监测、水污染监测行业应该怎么做? 是否有必要对新的冠状病毒开展监测?目前,只有通过加强对取水源的水质监测,过程控制以及排污厂的排水和消毒运行管理,加强水污染监测,才能保证污水处理的有效性。在非常规时期,水质监测、水污染行业的当务之急是做好保护排水和污水处理工人的工作,防止气味,气溶胶,污泥等引起的危害,减少相关工人感染的风险。 总上所述 在特殊时期加强排水系统中相关污水、水质指标的监测,对于将病毒对水环境乃至人类健康的二次影响减至最小,具有重要的预警和指导作用,应引起高度重视。一个城市的排水监测、水污染监测、水质监测工作是多方面的,涉及市政,水务,生态环境,卫生和卫生等政府部门,以及废水的产生,收集,处理和处置单位。 达标排放不仅是水质监测行业的责任,所有有关部门和单位应当共同承担相应的监测和监督责任。
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断
    总有机碳TOC (Total Organic Carbon),是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如GE的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。◆ ◆ ◆案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:1. 为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;2. 加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:a. 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;b. 在超滤后增加活性炭过滤器;c. 或在电除盐EDI前增加脱氧膜组;d. 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。◆ ◆ ◆为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。◆ ◆ ◆如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。Sievers M9便携式、M9在线型、500RL在线型TOC分析仪均使用选择性膜电导检测技术CheckPoint在线/便携式TOC分析仪使用直接电导检测技术
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断案例
    总有机碳TOC (Total Organic Carbon)是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如苏伊士Sievers分析仪的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:01为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;02加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:- 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;- 在超滤后增加活性炭过滤器;- 或在电除盐EDI前增加脱氧膜组;- 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。◆ ◆ ◆
  • 水质监测黑科技,跟随这家企业“玩转”数智化在线监测
    数智化,即数字化与智能化相结合,是指利用数字技术和智能算法来转变和优化业务流程、增强决策质量、提高运营效率和客户体验。在城镇供水和水质监测领域,数智化通常包括以下几个方面:智能监测系统:使用传感器、物联网技术等实时收集和分析水质数据,实现对供水系统的远程监控和自动化管理。数据分析和人工智能:利用大数据分析和人工智能算法处理和分析大量数据,以预测潜在的问题,优化资源分配,提高系统效率和响应速度。用户交互和服务:通过移动应用、在线平台等,提供实时数据、警报和报告,增强用户参与和满意度。集成和自动化:将不同的系统和流程集成到一个统一的平台中,实现自动化操作和智能决策支持。预测性维护:使用预测性分析工具来预测设备故障和维护需求,减少停机时间,延长设备寿命。资源优化:通过智能算法优化水资源管理,包括减少漏损、优化能源消耗等。数智化在城镇供水和水质监测中的应用,不仅提高了供水安全和效率,还促进了可持续发展,为城市居民提供了更好的服务。作为水质守护者的哈希,产品被全球用户广泛应用各个领域。为了更好地了解数智化在线监测如何助力水质监测分析,哈希&仪器信息网 将于7月10日下午13:30举办“焕新升级智焕未来-城镇供排水水质监测与设备管理”网络会议,同济大学信昆仑教授领衔开讲,团标《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》起草人蒋增辉正高级工程师进行标准解读。直播间抽奖:收纳袋 手持风扇 手持吸尘器 星球杯套装和运动水杯等~快速报名链接:https://www.instrument.com.cn/webinar/meetings/hach240710/会议日程:报告时间报告题目报告嘉宾报告简介13:40--14:10感知数据在智慧供水系统的应用与挑战信昆仑同济大学 教授结合案例,针对感知数据在智慧供水系统建设过程中的作用,所遇到的问题及解决方案,未来的挑战及应对等进行介绍14:10--14:40数智化在线仪器在供水原水和污染源监测中的应用郝祺哈希水质分析仪器(上海)有限公司 产品应用专家结合数智化,详细解读在线仪器特有的技术性能优势;分享数智化一体解决方案的优势,如何帮助客户针对城镇进排口水质变化进行预警预测和智慧数据分析14:50--15:20水中微生物ATP含量的检测方法和应用蒋增辉东方国际集团上海环境科技有限公司 正高级工程师《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》标准解读15:20--15:50高品质供水生物安全性水质监测应用与实践雷斌哈希水质分析仪器(上海)有限公司 高级产品应用经理围绕高品质供水微生物安全性水质在线监测,回顾直接性微生物指标的意义和不足,提出净水工艺和管网输配水过程中增加颗粒物和三磷酸腺苷(ATP)实时监测的重要性报名后,添加助教微信13260310733,备注“供排水”,领取近三年环境领域会议回放链接(电子版pdf)点此参会,邀请三人报名,领取随机实物礼品一份直播间抽奖:收纳袋 手持风扇 手持吸尘器 星球杯套装和运动水杯等~
  • 战“疫”,致敬身边的最美水质检测人晒图征集活动来咯~
    2020年,一场突如其来的新冠肺炎疫情,打破了原本应该喜气洋洋、热闹非凡的春节。每天不断跳动的疫情数字让我们触动,而每个义无反顾的举动却给了我们最深的感动。除了每天奋斗在一线的医护人员外,还有这样一群守护者,TA们义无反顾,默默无闻地穿梭在大街小巷,只为保障医护工作者、病患及广大居民正常的饮水安全。TA们就是我们的供水系统水质检测人员!在疫情期间,这绝不是一个简单的“检测工作”。而面对困难,逆行而上、恪尽职守、保障水质安全,就是所有水质检测人员的最赤诚的本心,这时的TA们,拥有最美的模样。大年初二我们在现场,不为别的,职责所在!疫情期间,晒出您或小伙伴与清时捷水质检测仪器一起的“办公照”,并用几句简短的话语告诉我们最打动你的那一瞬间。无论你在哪里,是在实验室或者是在取样点,你都是我们要寻找的“最美水质检测人”。朋友们,赶紧来晒晒你和小伙伴们的办公照吧!让我们看看,你们最美的样子!参与方式及要求1、在此次疫情的水质检测工作期间,晒出您或同伴与清时捷水质检测仪器一起的“办公照片”,并附上一句您当时的感想2、直接发送以下内容到清时捷微信公众号后台“sinsche-com”或邮箱sinsche@sinsche.com:图片+姓名+单位+100字以内照片背后的故事+手机号码3、时间:2020年2月17日-3月15日4、投稿入选作者即可获得话费充值卡一张5、特别说明:我们可能会通过自媒体发布您的照片和故事,如您介意,请提前告知长按关注清时捷公众号微信号 : sinsche-com联系热线:400-66-7869
  • 保卫城市水安全 坚守精准水质监测一线工作——访山东省城市供排水水质监测中心主任贾瑞宝
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 水是维系生命与健康的基本需求,地球虽然有71%的面积为水所覆盖,但是淡水资源却极其有限。中国作为一个严重缺水的国家,大量淡水资源集中在南方,北方淡水资源只有南方水资源的1/4。此外,随着我国工农业的迅速发展,水污染问题突出。我国多数城市地下水受到一定程度的点状和面状污染,且有逐年加重的趋势。水环境污染不仅降低了水体的使用功能,进一步加剧了水资源短缺的矛盾,还威胁到城市居民的饮水安全和人民群众身体健康。因此,包括水环境在内的生态环境问题,正在成为日益富裕的中国人热议的话题。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 暨2020年“世界水日”及“中国水周”之际,仪器信息网特别采访了山东省城市供排水水质监测中心主任贾瑞宝,就水质监测领域的技术装备开发、方法标准化研究、人才培养培训、合作研究实验室发展,以及水质监测行业未来展望等内容进行了深入的交流。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 573px " src=" https://img1.17img.cn/17img/images/202003/uepic/e4a21eec-2a84-41b3-94a7-5e9ca768601f.jpg" title=" 图片 1.png" alt=" 图片 1.png" width=" 600" height=" 573" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 山东省城市供排水水质监测中心主任 贾瑞宝 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 除了担任山东省城市供排水监测中心主任之外,贾瑞宝还是山东省给水处理示范工程技术研究中心主任、国家城市供水(排水)监测网济南监测站站长、国家“水体污染控制与治理”科技重大专项饮用水主题专家组成员。他曾获国务院政府特殊津贴专家、国家“百千万人才工程”人选、全国优秀科技工作者、“中国水业人物”管理与产业贡献奖、山东省泰山学者特聘专家等荣誉称号。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 抛开这些荣誉,贾瑞宝同时也是一名深耕水质监测及水处理技术研发应用领域近30年的“老兵”,从最初带领着只有四五个人的课题组,到现在发展为硕士、博士及高级职称科研人员为主60余人的专业团队,始终坚持着“让老百姓喝上放心水”的初心使命,牵头研究制定的多项水质监测预警和饮用水处理技术成果在全国城市水务行业广泛推广。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 好奇心奠定成为“水安全”专家的基础 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 打小起,贾瑞宝就认为水很神奇。作为一名大山里长大的孩子,他清楚地记得小时候捧起山泉水就能喝,丝毫不用担心过水是否被污染,对人体是否有害。每当这时,他也会想起父亲那变形的关节,早年,父亲闯关东时喝了当地劣质的水,因而患上了大骨节病。而这种病属于一种地方病,其发病原因可能与当地劣质地下水有关。自此,搞明白水里到底有啥的念头,就深深“扎根”在贾瑞宝的心底。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 中学以后,相较其他学科,贾瑞宝对化学表现出了非同一般的兴趣,并在此后的求学生涯中毫不犹豫地选择了化学这一研究方向。1993年研究生毕业后,贾瑞宝选择来到济南市自来水公司,成为了该公司的第一位研究生。当时全国生活饮用水卫生标准只有35项,大量的水质检测方法没有标准和依据。贾瑞宝坚持带领团队迎难而上,建立了多项水质监测规范和标准方法,支撑了城市供水多环芳烃检测住建部行业标准的发布实施,奠定了其在水质监测行业深耕科学研究的基础。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在一次科技成果鉴定会上,贾瑞宝认识了清华大学的王占生教授,并在2001年至2004年,在其课题组攻读博士学位。基于清华大学的平台,贾瑞宝抓住难得的机遇了解行业的前沿技术、研究成果,个人能力获得了大幅提升。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “保障水安全,首要的是找到问题并对症下药,因此水质监测对于问题的发现很重要,所以一直以来我只专注干了一件事情,就是从水质检测中发现问题,再以科学有效的工程技术手段解决问题。”贾瑞宝说道。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 分析仪器助力精准水质监测 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 自2005年起,贾瑞宝就带领着团队将研究课题从点到面,不断拓展壮大。2009年,国家组织实施的16个科技重大专项之一——“水体污染控制与治理”项目启动。作为项目负责人,贾瑞宝先后主持完成了“黄河下游地区饮用水安全保障技术研究与综合示范”、“南水北调山东受水区饮用水安全保障技术研究与综合示范”和“城镇供水系统关键材料设备评估验证与标准化”等多个水专项饮用水主题有关项目或课题研究任务。经过十余年来科研经历和专业积累,目前中心已经拥有了水质科学、监测预警和水处理等三个研究组,研究领域覆盖了水系统复合污染解析鉴定、新兴污染物监测控制和水装备系统检测评估等各个方面。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 随着现代分析技术快速发展,水质检测监测已不再只是过去常用的色谱和光谱等分析技术,而是与快速发展分析化学技术充分结合,如,利用高通量质谱技术定量分析水系统中的大部分无机阴离子、金属污染物及痕量有机污染物等,此外,小型化、移动式、在线监测技术手段也逐渐成为水质监测预警技术的发展方向,伴随着在线和便携式监测仪器方法灵敏度和精度的不断提升,其优势也将越来越明显。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 如今,该中心已建立起了包括气相色谱质谱(GC-MS)、液相色谱质谱(LC-MS)、电感耦合等离子体质谱(ICP-MS)、离子色谱串联质谱(IC-MS)以及 气质高分辨、液质高分辨等16套水质检测质谱平台,开发了226种新兴污染物高通量定量分析的方法标准,正在制定水环境痕量毒害有机污染物筛查鉴定技术规程。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6cfb4e9b-9fab-455b-bd8d-82f72526207e.jpg" title=" 图片 2.png" alt=" 图片 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 实验室掠影 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在进一步完善中心的各种检测、监测平台的过程中,贾瑞宝选择了和优质的仪器企业强强联合,共同进行标准制定、人才培养,并深入开展科研项目的联合研究等。“因为仪器生产企业对仪器的使用有更多的心得,和他们互动交流,才会使我们的行业人员更好的掌握检测技术,提高专业水准,并且,通过和仪器企业的先进研究机构合作能够拓展我们的‘朋友圈’,将来针对某一类的污染物研究问题可以开展联合研究、国际合作,我相信结果一定是互利共赢的。”贾瑞宝说道。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/dfbe2f91-de05-402e-8f0d-de618ac6480c.jpg" title=" 图片 3.png" alt=" 图片 3.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 山东省城市供排水水 span style=" text-indent: 2em " 质监测中心与岛津公司“水质合作研究实验室”签约揭幕仪式 /span /p p br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " 后记: /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " 回顾了近30年来的科研历程,贾瑞宝对科技创新和科技成果转化的作用深有感触。“未来肯定是共赢、融合、发展的过程,我们必须跟上新时代‘智能化’的要求,紧跟科技潮流,为水质监测行业发展提供科技支撑。”目前,中心已有科研团队在攻坚人工智能与水质监测相结合的技术与应用,“我们下一步将更深入研究水污染控制过程的关键设备,对接大数据和信息化,通过水质监测的数据来反控我们处理工艺的优化和调整。”& nbsp /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 14px " “饮用水是最重要的‘食品’,甚至比我们吃的任何东西都重要,但有时候我们反而忽略了它的重要性。我们把专业技能应用于民生改善,把论文抒写在祖国大地上,这是科研价值的真正体现。”贾瑞宝对编者讲,我这些年始终如一的坚持做这件事,一是我很喜欢,另外也为了人类健康,我希望做一些正能量的事情。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/202003/uepic/d5f23dc8-9c6b-4d5d-ad65-259ca4b66780.jpg" title=" 图片 4.png" alt=" 图片 4.png" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-size: 14px font-family: 楷体, 楷体_GB2312, SimKai " 采访现场 /span /p p br/ /p
  • 水质检测器也能3D打印?这个科研团队脑洞有点大
    p   饮用水安全如何保障,如何实时监测水质的安全可能是全球最为关注的问题。近日,加拿大英属哥伦比亚大学奥肯那根校区的科研团队就攻克了这个难题,借助3D打印技术研发了水质检测器,用以检测饮用水的品质。 /p p   据了解,该研发团队是由英属哥伦比亚大学工程学院院长MinaHoorfar教授亲自带领,研发的3D打印水质检测器可对任何水域地点的水源进行实时监测,以降低如大肠埃希氏菌的感染的水源性疾病对人类健康的威胁。 /p p   “现在的水质监测只能采取定期手动检测的方式,这样测试结果就受制于采样频率,并且有极大地疾病爆发可能性。因为传统的水质监测探测器造价极高并且稳定性不足,所以不能实时部署于整个水域来进行检测。”据MinaHoorfar教授介绍,“而采用3D打印技术研发的水质监测器不仅可以实时监测,而且极大降低了制作成本。 /p p   “因此,这项3D打印水质检测器的研发,对于未来水质检测方面解决现有的那些需要通过人力手动定期检测而不能实时监控的检测方式具有重要意义。 /p center img alt=" 水质检测器也能3D打印?这个科研团队脑洞有点大" src=" http://images.ofweek.com/Upload/News/2017-07/26/nick/1501033799337003375.jpg" width=" 500" height=" 331" / /center p   据悉,整个3D打印水质探测器的制作过程是在英属哥伦比亚大学的高新热流体实验室中制作完成,探测器被设计为无线操作模式,并且可以在任何水压及温度下来读取水质信息。除此之外,每一个探测器都可以进行独立工作,这样就可以保证水域里任何一个探测器出现问题却不影响其它探测器的正常工作。 /p p   此外,与传统的定时采样方式相比,现在这款3D打印水质探测器工作方式的连续性极大提高了水质安全监测的水平。并且这款探测器因其制造简单体积小的特点,不仅仅是在开放性水域,甚至在家庭用水系统当中都可以安装,从方方面面来提升安全生活品质。 /p
  • 合肥启用现代化水质检测实验室 一流设备守卫水安全
    p   合肥自来水来自大别山区,原水水质不错,但是为了水质安全,还会进行多次全方位的检测。近日,合肥供水集团新建的4200㎡现代化水质检测实验室启用,这里配备了国际一流大型仪器设备,不仅可以检测水中细菌,就连水中稀释N倍的农药类都可以被检测出。 br/ /p p   最快几十秒刷新一次水质数据 /p p   优质的原水需要经过严格的制水,才能流进千家万户。合肥供水集团建立了严密的从原水到管网用户各个环节的水质检测制度,每旬定期向社会公布水质信息。 /p p   像七座制水厂配备的水质在线仪表,对制水生产各工艺段的关键指标进行24小时连续在线检测,数据几十秒刷新一次,实现远程监控和制水生产自动化。各制水厂设立班组化验室,每2小时对原水、出厂水及各工艺段水质进行检测,每4小时进行一次毒物分析,重大节假日期间增加到每2小时一次。同时与在线仪表检测项目相互比对,达到水质安全“双保险”。 /p p   据介绍,合肥供水系统中光管网就有120个采样点,远到双凤工业园、肥西紫蓬山,每个月每个点2次采样。水质检测中心会每月对原水、出厂水进行4次全项分析,对管网水进行2次常规检测 每季度对原水进行113项检测,对出厂水及代表性管网末梢监测点进行水质106项全分析 对所有已接管的二次供水进行全项分析。 /p p   新设备可以检测200多个“水项目” /p p   这里可以进行185项水质分析项目,各类涉水产品分析项目47项,可检测生活饮用水、地表水、地下水、二次供水等共232个项目的检测,大大提升检测能力。 /p p   “新建了二级生物实验室,可以实现对一些致病菌检测,如沙门氏菌等,这些致病菌混在水中,可以带来群体性污染事件”,安徽徽源水质检测有限公司副总经理、国家城市供水水质监测网合肥监测站副站长兼任技术负责人钱益群介绍,就连水中稀释N倍的农药类都可以被检测出。 /p p   合肥还对自来水中隐孢子虫和贾第鞭毛虫“两虫”进行检测,这是两种严重危害水质安全的原生寄生虫,主要通过饮用水和食品等途径传播疾病,较难检测,在美国等地已经因为“两虫”发生过群体性中毒事件。不过,合肥自从开始“两虫”检测以来,水中就从来没有检出过。 /p p br/ /p
  • 浙江建成国内领先水质监测系统 请鱼当检测员
    去年六月,新安江苯酚污染,影响55万人用水的事让很多市民至今记忆犹新。而以后,这样的水污染事件会因为预警系统的完善在最大程度上避免发生。   11月28日,记者从浙江省环保厅了解到,该省饮用水源地水质自动监测系统建设工作已全面完成验收,将在年底前投入使用。从此,饮用水源地的水质情况将被24小时监控,全力保障城乡居民饮用水安全。   整套系统共有藻类、生物毒性及有机物在内的40多项指标,是全国监测因子最为齐全的水质监测系统。在对生物毒性的监测中,我省杭州九溪水厂等水源地则引进了生物“水质检验员”——斑马鱼、发光细菌和青锵鱼,让这些小精灵帮忙当水质“试毒专家”。   全国最全水质监测系统,81个点位覆盖11个设区市   饮用水源地水质自动监测系统投入使用后,届时,81个监测点位的88个自动站覆盖浙江省11个设区市,将实现监测和预警21个市级饮用水源和60个县级饮用水源的水质质量,基本实现全省县以上主要饮用水源地水质监测和预警的自动化控制,实时反映饮用水的水环境质量和变化状况。   据了解,浙江省现有县级以上主要集中式饮用水源地108个,其中在用92个,备用及在建的16个。目前建成的81个水质自动监测点位总计投入资金约2.1亿元、监测设备88套。   其中71套固定站将每4个小时自动取样,并实时监测。而浙江省首次采用的17套浮标站,则会对湖库富营养化及藻类进行针对性监测。通过浮标站内部的无线网卡,将被测水质的多项指标实时反映出来,水质状况一目了然。   而整套系统共有藻类、生物毒性及有机物在内的40多项指标,是全国监测因子最为齐全的水质监测系统。   监测生物毒性,请来斑马鱼当“水质检验员”   如今,在杭州九溪水厂等水源地,已经进驻了一批可爱的“水中精灵”。“在40多项监测指标中,生物毒性的监测需要有一些特殊的体验者,它们就是斑马鱼、发光细菌和青锵鱼。”据浙江省环境监测中心主任邵卫伟介绍,生物毒性可以通俗理解为样品对生物体的毒害作用。而斑马鱼和发光细菌等就因为其自身的独特特质成了当仁不让的“水质检验员”。   “我们的监测点位里会放置鱼法毒性分析仪,仪器上有8个检测池,每个检测池里都养有2到3条斑马鱼,而养鱼的水就来自所监测的水源地。”邵卫伟说,检测池和电脑紧密相连,通过鱼的生命体征变化,就可以监测到水的毒性变化。   其中,特别是斑马鱼的基因与人类基因相似度达到85%,这意味着在它身上得出的水质监测结果,多数情况下都适用于人类   而青锵鱼遇到水中被投放了毒药或受到污染时,产生呼吸困难时会立刻浮至水面呼吸   发光细菌本身会发出蓝绿色可见光,与外来污染物接触后,其发光强度即有所改变。   利用这些水质监测的小精灵, “一旦监测到异常情况,我们就会报警,但目前这套系统暂不会以实时发布等形式对外发布,主要以监测和预警为主。”邵卫伟说,如果公众想要了解自己所处水源地的水质情况,可以登录浙江省环保厅的门户网站。他们会将每个月对每个水源地的水质状况进行发布。   99个水源地水质达标率达86.4%   截至今年9月,浙江省正在使用的99个水源地,水质达标率达86.4%。同时,各地也进一步加强了饮用水源、备用水源地的建设和保护。截至2011年底,浙江已累计创建合格、规范饮用水源保护区达509个,法定水源创建比例达100%,受益人口达3300多万。目前,我省11个设区市大多建成了备用水源或实现了双水源供水。   而且,可以肯定的是,这套水质自动监测系统投入使用后,新安江苯酚污染、苕溪污染等水污染事件就可以在最大限度上避免再次发生。
  • 我国研发智能水质监测系统可监测86项参数
    在科技部、湖南省的支持下,我国科研人员经过多年攻关,自主研制成功基于物联网技术的智能水质自动监测系统,为实现可溯源的水质监测提供了自主技术支撑。   水是生命之源。然而,我国总体水质状况不容乐观,水功能区水质达标率仅为46%,加上水污染事故频发,亟须在全国范围内构建全方位的智能化水质自动监测系统。   目前,我国水环境监测主要以实验室监测为主,分析方法全面、检测参数全面、数据准确度高,但响应时间长、检测频次低、自动化程度低、人力消耗量大,难以对水质进行整体有效评价。   在&ldquo 863&rdquo 计划、国家科技支撑计划等支持下,力合科技(湖南)股份有限公司历经4年攻关,成功研制了基于物联网技术的智能水质自动监测系统。这一系统克服了当前水质自动监测系统存在的监测参数可扩展性差、缺少在线质控手段、对异常数据智能化识别能力不足等瓶颈问题,可实现温度、色度、浊度、pH值、悬浮物、溶解氧、化学需氧量以及酚、氰、砷、铅、铬、镉、汞等86项参数的在线自动监测。值得一提的是,科研人员利用发光细菌法,可对突发性污染事件进行预警。   据悉,这一系统在长江、闽江、东江等流域以及南水北调中线工程得到应用,在多起重大水污染事件中发挥了作用。   这一成果近日通过中国环境科学学会组织的鉴定会。由中国环境监测总站魏复盛院士、住房和城乡建设部城市供水水质监测中心宋兰合总工程师等组成的鉴定委员会认为,&ldquo 基于物联网技术的智能水质自动监测系统&rdquo 有多项创新,项目总体达到国内领先、国际同类先进水平。项目创建了完善的自动监测数据在线质量控制系统,保证了自动监测数据的质量和可溯源性。   据悉,我国力争到2015年左右,基本建成国家水资源监控管理信息系统,对70%的许可取用水量实现水量在线监测、对80%的重要江河湖泊水功能区实现水质监测,对主要江河干流及一级支流省界断面实现水质监测全覆盖。
  • Modern Water 将向卡塔尔 2022 FIFA 世界杯综合供水系统提供完整的生物毒性在线监测解决方案
    2022 fifa world cupmicrotox ctmmodern water 与 avanceonmodern water 于近期和卡塔尔当地供水机构达成协议,将为 2022 fifa 世界杯场馆所在区域的综合供水系统提供超过20台的 microtox ctm 在线生物毒性监测仪,并将集成至当地供水监管机构的中央控制中心,以保证在世界杯期间的供水安全。该项目 modern water 将会和当地合作伙伴 avanceon 一同完成,avanceon 在水质监测领域提供先进的自动化解决方案。modern water microtox® ctm 在线毒性监测仪是一种即时的、连续的利用费氏弧菌(v.fischeri)作为生物传感器检测水源或排放水急性毒性的设备,可以在监测现场用作生物预警系统(bews),用于监测站点的在线连续监测,并可显示这些化合物对水体的综合污染状况,提供快速的早期预警,使相关机构对污染能够及时做出反应和控制,以避免严重后果。,时长02:03
  • 八年水专项研发出的那些水质监测技术
    水体污染控制与治理科技重大专项(以下简称&ldquo 水专项&rdquo )作为一项重大的科技、民生工程,是落实生态文明建设和创新驱动发展战略的重要内容之一,自2008年至今已研发 1000 余项关键技术。为给国务院即将发布的《水污染防治行动计划》提供科技支撑,水专项牵头组织部门环境保护部和住房城乡建设部发布了《水污染防治先进实用技术汇编(水专项第一批)》。   仪器信息网编辑对这些技术进行了筛选,整理出21项水质监测技术,其中涉及最多的为生物检测技术共9项,还有三项为减少有毒试剂的使用而开发的新技术。   21项水质监测技术的基本情况如下: 编号 技术名称 技术内容 适用范围 完成单位 所属主题 1 供水水质检测用标准物质 开发出 2-甲基异莰醇合成制备技术、土臭素合成制备技术、氯乙烯纯化制备技术等,形成水质检测用系列标准品。 城市供水水质检测用的标准物质 中国计量科学研究院 饮用水 2 颗粒物计数仪 以低耦光机设计、高信噪比信号放大等技术为核心,研制出在线颗粒物计数仪和台式颗粒物计数仪,设备测量精度等各项技术参数和性能指标总体上达到同类进口产品水平。 城市供水水质监测 杭州绿洁水务科技有限公司 饮用水 3 基于发光菌 的生物毒性监测设备 采用 ISO 11348 的标准方法,通过检测发光菌(费希尔弧菌)和被测水样反应时的发光强度变化实现对被测水样的毒性监测;毒谱范围涵盖 5000 种以上潜在的毒性物质。 城市供水水源监测预警 杭州绿洁水务科技有限公司 饮用水 4 基于水生生物的水质在线生物安全预警设备(BEWs) 基于水生生物回避行为反应与污染物毒性存在较好剂量-反应关系,真正实现对于水源地水质生物综合毒性有效的连续、实时监测和预警 城市供水水源水质生物综合毒性监测预警 中国科学院生态环境研究中心、无锡中科水质环境技术有限公司 饮用水 5 智能化多参数水质在线监测设备 以小体积湿法化学分析检测平台、防&ldquo 钝化&rdquo 无汞电化学分析技术、水质多参数智能解析技术等为核心,研制出智能化多参数水质在线监测仪 饮用水水源地和地表水等的安全预警。 杭州聚光环保科技有限公司 饮用水 6 免化学试剂在线水质检测设备 以微型小功率紫外光源的脉冲调制技术、酪氨酸酶修饰金刚石薄膜电极传感技术等为核心,研制出硝酸盐氮在线分析仪等多种免试剂在线监测仪 水体中有机污染物、硝酸盐氮等原位测量 河北先河环保科技股份有限公司 饮用水7 流域水环境优控污染物筛选方法关键技术 针对流域地表水体基于半定量/定量风险分析的半挥发性有机污染物的筛选方法 流域水环境优控污染物的筛查 中国环境监测总站 监控预警 8 便携式水体藻类原位荧光快速监测仪研制技术 本项成果采用叶绿素 a 活体荧光光谱特征分析原理,结合先进的光机设计、信号调制检测理论、微弱荧光信号检测技术、多组分分类算法和计算机软硬件技术,研制了拥有自主知识产权的水体藻类原位荧光快速监测仪系统,实现了水体藻类浓度的原位实时分类监测 水体藻类浓度的野外快速调查,固定监测点藻类浓度的长期连续监测 中国科学院合肥物质科学研究院 监控预警 9 麦穗鱼活体急性毒性测定新技术 ①生物种:采用了本国淡水水体广泛分布的生物种&mdash &mdash 麦穗鱼,因其生活周期短、繁殖快、分批产卵、经济方 便易得、实验室饲养方便,对毒物敏感和易于在实验室培养等优点,能广泛应用于环境毒物测试;②计算方法:进行毒性测试后,运用方便快捷的软件 SPSS,能迅速计算出实验结果 我国河流水体主要水环境污染物(苯类、有机氯、重金属、有机磷农药等)的综合监测 华中农业大学 监控预警 10 双向散射式水体浊度自动测量仪研制新技术 在分析研究水体浊度与水中散射光、透射光关系的基础上,深入比较了散射法和透射法的优缺点,最终将测低浊度线性度较好的垂直散射法和测中高浊度线性度较好的后向散射法结合起来使用,设计了独特的垂直及140° 后向散射光相结合的光路发射、接收布局 湖泊、水库、河流以及水厂等水体浊度的长期连续在线监测及野外现场浊度在线监测 中国科学院合肥物质科学研究院 监控预警 11 微纳米结构薄膜电极COD便携式检测仪研制新技术 根据电化学原理,首次研制出以硼掺杂金刚石膜电极为传感元件的便携式化学需氧量快速检测仪。该检测仪传感元件稳定,检测过程中不使用有毒化学试剂,响应快速,测量时间不超过 5 分钟,检出限 8.2mg/L,检测范围为30-10000 mg/L 市政污水或工业废水的化学需氧量监测尤其适用于野外水污染应急检测 大连理工大学 监控预警 12 蓝藻水华生消过程遥感定量监测技术 构建的水华暴发前的蓝藻定量反演模型以及水华暴发后路径漂移模拟,实现了对蓝藻水华的生消全过程的遥感监测,为蓝藻遥感预警提供了技术方法和基础水环境数据集成和共享 环保部卫星应用中心 监控预警 13 流域水环境沉积物质量评价技术 建立流域水环境沉积物重金属质量基准方法、确定沉积物重金属质量标准分级及创建沉积物质量评价方法 水体沉积物识别 中国环境科学研究院 监控预警 14 流域水生生物监测技术包括监测要素、站位布设、监测频率与时间、野外采样及实验室分析方法等技术环节 水体水生生物监测 中国环境科学研究院 监控预警 15 流域风险污染物快速测定技术 根据目标物的性质开发集成水体等环境样品的快速前处理技术以及分析检测技术,建立目标污染物简便快速的分析测定方法 污染物快速测定 中国科学院生态环境研究中心 河流 16 毒害污染物生态风险评估技术 在综合欧美等发达国家毒害污染物生态风险评价方法的基础上,以生态毒性的剂量效应关系推导预测无影响浓度(PNEC)进行影响评价,以风险商(RQ)进行风险表征,提出了我国开展流域水体和沉积物中毒害污染物的风险评价体系 河流毒害污染物分析监测 中科院广州地球化学研究院 河流 17 生物毒性测试东江流域代表生物种选育技术 基于生物毒性测试引进国际通用生物钟,选育东江代表性生物种,实现实验室长期培育和繁殖,并构建相应的技术规范 支撑东江流域水质生物毒性监测和生态完整性评估 中国科学院生态环境研究中心、华中农业大学 河流 18 东江水系典型水生生物鉴定系统与监测规范 编制了东江典型水生生物物种的名录筛选、图谱制作、分类鉴定标准和快速采集等河流生物监测关键技术 河流水生生物监测 暨南大学、中国科学院水生生物研究所 河流 19 基于ASV/PSA方法的铅、镉、砷等分析检 测新技术 系统地研究了电化学分析技术、化学/生物传感器分析技术用于水体中重金属检测 河流重金属污染监测与防控 北京大学、湖南省环境监测中心站 河流 20 铅、镉、砷等新型离子的选择电极检测技术 系统地研究了电化学分析技术、化学/生物传感器分析技术用于水体中重金属检测 河流重金属污染监测与防控 北京大学、湖南省环境监测中心站 河流 21 太湖有毒有害与高氮磷污染底泥勘测鉴别评估技术 精确测量定位、原状取土技术与底泥疏浚范围、深度确定方法相组合,用以确定不同污染类型的环保疏浚工程的疏浚范围 底泥环保疏浚勘测、疏浚范围的确定 中国环境科学研究院,中交天津港航勘察设计研究院有限公司 湖泊
  • 水质检测设备---得利特台式浊度仪
    从智慧供排水系统、智慧水表、智慧水务云平台、管网漏损,到供水及水质安全、市政水处理、分析仪器等众多领域,赛莱默抓住国内智慧水务领域的市场机遇,贯彻“智睿驭水、慧领全程”的治水理念,积极推动业务的高效、绿色、节能以及数字化、智慧化转型。“十四五”期间,这样的步伐更加坚定。得利特的水质分析仪器,顺应时代发展,发挥着智能化检测的优势。B1090台式浊度仪采用单片机控制系统,智能化程度高,采购国际通用的钨灯,测量精度高,配坚固的防水型外壳,广泛适用于电力、石油、造纸等行业。仪器特点1、采用当今先进的90°散射光测试原理,光源为国际通用的钨灯2、自主研发、处于的信号处理系统,灵敏度高、稳定可靠3、测量数据精确;操作简单、使用方便。使用220V交流电源,适用于化验室、实验室4、该型号浊度仪在原基础上再一次升级换代,改进后的浊度仪量程自动切换,快速显示测量结果,操作更简单5、连接计算机、自动切换、数字存储、分析技术参数测量范围:A型:0~100NTU,5/25/100三档; B型:0~500NTU,5/25/100/500四档; C型:0~1000NTU,5/25/250/1000四档; D型:0~1000NTU,1.888/18.88/188.8/1000四档;显示方式:LED数码显示分 辨 率:0.01NTU准确误差:±2%FS重现误差:±2%FS取 样 量:50 ml工作温度:0-50℃工作湿度:﹤80%RH电源电压:220V仪器功率:20VA仪器体积:300×240×120(mm)
  • 实验室水质检测----超纯水机
    便携化、智能化、快捷化、多功能化的仪器才是市场发展的主流,虽然在某些场合对大型仪器的使用非常有必要,但在绝大多数的检测活动中,轻巧便携、操作简单、功能多样化的产品显然更受欢迎,所以我国的水质分析仪器制造水平要追平国际,就需要在这些方面下苦功夫,避免出现产品结构单一、功能单一、缺乏创新等状况。仪器生产商要积极进行市场调研,根据市场需求积极创新,发展出更满足客户需要的产品。B1140超纯水机所制高纯水满足离子色谱;气相色谱;痕量金属分析;原子吸收/原子发射光谱;质谱分析仪;缓冲溶液;高纯标准溶液配制;微量元素的定量分析;HPLC高效液相色谱;毒性检测等。 仪器特点:1、水源低压断水保护功能,避免无故断水时引起的设备故障。2、超纯水定量取水,方便用户使用。3、制水系统定时自动冲洗功能,提高设备自动化程序。4、在线实时监测水质,预设超标报警,保障制水质量。5、重要组件及耗材均采用**材料。6、整机保修一年,终身维护。7、LCD彩色触摸屏。 技术参数电  源: 220V,50Hz水  源: RO水,蒸馏水或去离子水超纯水纯水;5-40μs/cm,超纯水18.2MΩ.cm 总有机碳:TOC<10ppb热源含量(热源):<0.001Eu/ml微杂质颗粒物含量:<1/ml 细菌(微生物)含量:<1cfu/ml金属阳离子含量《ppb》,Cu0.005,Ai0.005,Ni0.005,Fe0.005 Zn0.02,Cr0.005,Na0.01,K0.02 金属阴离子含量《ppb》Ci0.01,NO2-0.02,NO3-0.02,SO42-0.01 符合GB6682-2008国家实验室一级用水标准,美国材料实验学会ASTM标准规格功 率(W):50W
  • 正式授牌!智慧无人分析检测系统赋能水质监测
    3月28日,由水利部国际合作与科技司指导、水利部科技推广中心主办的第十九届国际水利先进技术(产品)推介会在广州市顺利举行。本次会议主题为“推广先进适用技术,赋能水利高质量发展”。开幕式上隆重举行首批12家水利部科技推广中心技术推广基地授牌仪式,祝贺珠江委水文局组织申报的水质智能监测技术推广基地成功入选。珠江委水文局水质智能监测技术推广基地自主研发建成以水质生物监测与评价、微量有毒有机污染物监测预警、水利工程过鱼设施效果监测评估和无人智慧实验室监测等多项技术于一体的水质智能监测技术体系,聚焦新阶段水利高质量发展需求,着力打造水质智能监测领域技术创新的示范区、引领区和先行区,充分发挥水利科技成果在开发、转化、推广、产业化中的示范引领作用.近年来,北裕仪器与珠江委水文局协同创新,开展了智慧水质监测前沿技术推广活动,北裕仪器AI智慧无人分析检测系统,以国家监测分析方法标准为依据,将传统的分析仪器与人工智能、区块链、物联网等符合新质生产力发展要求的新技术进行充分应用,技术达到国内领先水平。双方合作开发和申请的知识产权共4项,其中已授权实用新型专利2项、软著1项,申报已受理中的1项。
  • 复盘丨地表水水质监测现状与规约
    地表水是人类可利用的宝贵资源,随着人类文明的不断发展,分布于全球各地的地表水系正经历前所未有的挑战。作为世界水质检测、分析和处理领域的价值引领者,赛莱默正致力于为包括中国在内的全球各国和机构提供我们的全套解决方案及得到广泛应用的知识体系。9月11日,由赛莱默分析仪器应用专家赵博老师主讲的在线课程《地表水水质监测现状与规约》,为大家带来关于地表水监测方面的前沿干货,现在就让我们一起领略吧!讲座视频 精彩的课程听不够未来赛莱默分析仪器会不定期邀请行业专家及技术工程师为大家带来更多有价值的课程,敬请关注赛莱默分析仪器官方微信平台!
  • 江西3418万277套水质监测仪器大单揭晓
    相关新闻:黄河水利委1765万水质监测仪器大单揭晓   江西汇众招标咨询有限公司受江西省环境保护厅的委托,按照江西省政府采购办(2010)部门9号、(2011)部门748号和(2012)部门198号批复,就其水质自动监测站项目(招标编号: JXHZ2012-G040)进行公开招标,招标活动于2012年6月11日09:30时在江西省南昌公共资源交易中心四楼四号开标室进行。经评标委员会评定,采购人确认,中标结果如下: 项目编号 采购项目 包号 品 目 数量 中标厂商及金额 10B009002 11B748001 11B748002 10B009003 10B009004 11B748003 11B748004 12B198001 地表水水质自动监测站 饮用水源保护区水质自动监测站 多参数便携式分析仪、 水质自动采样器(进口产品) 01 全省地表水水质自动站系统管理软件(国产产品) 1 北京尚洋东方环境科技股份有限公司 18,680,000.00 采水配水系统(国产产品) 21 控制和数据采集及通讯系统(国产产品) 22 五参数自动分析仪(进口产品) 21 高锰酸盐指数自动分析仪(进口产品) 21氨氮自动分析仪(进口产品) 21 总磷总氮自动分析仪(进口产品) 12 氰化物自动分析仪(进口产品) 4 六价铬自动分析仪(进口产品) 4 挥发酚自动分析仪(进口产品) 4 重金属自动分析仪(铜、镉、铅)(进口产品) 2 重金属自动分析仪(铜、镉、铅、砷、汞)(进口产品) 1 生物综合毒性自动分析仪(进口产品) 1 自动采样器(进口产品) 9 便携快速测定仪(氨氮、CODCr) (进口产品) 9 托管站(国产产品) 7 10B009002 11B748001 11B748002 10B009003 10B009004 11B748003 11B748004 12B198001 地表水水质自动监测站 饮用水源保护区水质自动监测站 多参数便携式分析仪、 水质自动采样器(进口产品) 02 全省地表水水质自动站系统管理软件(国产产品) 1 北京晟德瑞环境技术有限公司 15,500,000.00 采水配水系统(国产产品) 13 控制和数据采集及通讯系统(国产产品) 13 五参数自动分析仪(进口产品) 13 高锰酸盐指数自动分析仪(进口产品) 13 氨氮自动分析仪(进口产品) 13 总磷总氮自动分析仪(进口产品) 9 氰化物自动分析仪(进口产品) 9 六价铬自动分析仪(进口产品) 9 挥发酚自动分析仪(进口产品) 9 重金属自动分析仪(铜、镉、铅、砷、汞)(进口产品) 1 自动采样器(进口产品) 4 便携快速测定仪(氨氮、CODCr) (进口产品) 4 托管站(国产产品) 6   本公告自发布之日起七个工作日内若无异议,将向中标供应商发出《中标通知书》。   代理机构联系人:彭芳 采购项目联系人:冯涌   代理机构联系电话:0791-86647475 采购项目联系电话:0791-88591168 江西汇众招标咨询有限公司   相关新闻:黄河水利委1765万水质监测仪器大单揭晓        湖北环保厅1164万水质分析仪器大单公布        甘肃环境检测中心站采购227台仪器        广东环境监测中心采购1635万仪器设备        宁波环境监测中心120台仪器大单揭晓        江苏环境监测中心1400万监测仪器中标公示        宁夏环保厅采购近100台环境监测仪器
  • Think-lab思科莱博纯水系统中标国家质检总局 2018年专用仪器设备采购项目
    2018年04月23日,中国北京,Think-lab思科莱博纯水系统中标国家质检总局2018年专用仪器设备采购项目,这是Think-lab思科莱博继2015年、2017年中标国家质检总局专用仪器采购设备项目后,再次中标该项目,实验室中央供水系统也进入了中标目录,这也是对Think-lab思科莱博中国团队与全国广大合作伙伴辛勤付出的莫大鼓励和肯定。 Think-lab思科莱博纯水/超纯水系统 希望Think-lab思科莱博纯水系统可以为国家质检系统广大科研检测人员提供有力的工具,同时也为其他领域的广大科研工作者提供更好、更有力的工具。目前Think-lab思科莱博纯水系统已经进入清华大学、北京大学、复旦大学、上海交通大学、中国科学院、中国中医科学院等顶级科研单位的实验室,并运行良好。更多信息可联系Think-lab思科莱博中国区技术服务中心或Think-lab思科莱博各地授权经销商。 关于Think-lab思科莱博: Think-lab思科莱博是一家专注于生命科学研究相关的实验室设备及实验室信息系统领域的供应商,为了更好服务中国市场,已成立了Think-lab思科莱博中国区技术服务中心。Lavonova是Think-lab思科莱博旗下专注于高端实验室纯水/超纯水业务的品牌,产品全部来自于德国,工厂拥有超过30年的实验室纯水/超纯水生产经验,从实验室中央供水系统,到实验室小型纯水/超纯水系统,到以工艺精湛、品质稳定著称,拥有业内最精准的技术,成为广大科研工作者新选择。目前,Think-lab思科莱博产品已经进入北京、上海、广州、深圳一线城市的高端用户,并完成了全国市场布局。
  • 中国首次“实时公开发布”七大水系水质
    7月1日中午12∶30分,太湖中的氨氮成份从北向南呈现为∶0.36mg/L(水质Ⅱ)、0.15、mg/L(水质Ⅰ)、0.24mg/L(水质Ⅱ)、1.96 mg/L(水质Ⅴ)、0.92mg/L(水质Ⅲ)、2.05mg/L(水质劣Ⅴ)。   这些数据来自于围绕太湖的6个监测点,即江苏无锡沙渚、江苏宜兴兰山嘴、江苏苏州西山、上海青浦急水港、浙江嘉兴王江泾水和浙江嘉兴斜路港水质自动监测站。   前三个监测站主要监测太湖“湖体”水质,后三个监测站监测太湖跨省水体的水质,如浙江嘉兴斜路港水质自动监测站监测的斜路港河,属于苏浙省界——监测数据显示,太湖流域一旦“遭遇”跨省,流域水质明显恶化。   从7月1日开始,公众上网便可随时获得上述水环境信息。环保部决定:即从该日起,环保部向社会发布国家地表水水质自动监测站的实时监测数据。至此,全国七大水系在内的63条河流,13座湖库水质的实时状况向社会公开。   作为政府信息公开的尝试,环保部认为,此举可以预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制落实情况。   100只“眼”紧盯跨界断面水污染   “相比以前的年报或月报,对外公布实时监测数据,有利于水域环境监督。”中国政法大学环境资源法研究所所长王灿发对记者表示,环境信息公开是环境监管的最有效办法。   此前,环保部对外每天公布的环境监测数据主要重点城市空气质量日报,对于水质监测,只有全国主要流域重点断面(包括河流和湖泊跨省界部分、河流上下游分界处、主流支流分界处)水质自动监测周报。   此次公布的“实时”监测数据,不仅是改变了周报的节奏,而且是一日六次更新。即监测频次为每四小时一次,每天动态发布六次监测数据。   “之所以能实时公布监测信息,源于近些年来环监能力得到提高。”环保部环境监测司有关人士表示,比如环保部在全国布控了水质自动监测站。   环保部已在中国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。   这100个水质自动监测站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中,位于河流上有83个水站,湖库17个 位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中。   “目前公布监测指标主要有五种,以后会根据条件逐步增加监测指标。”上述环保部环境监测司人士表示,目前公布的主要指标包括:pH、溶解氧、CODMN、氨氮、TOC。以后,像“考评”湖泊水质的总氮和总磷,和挥发性有机物(VOCs)、生物毒性及叶绿素a都可能对外公布监测数据。   “相比抽样检查测试,实时监测更具有科学性和说服力。”上述人士称,近些年频发的跨行政区域的水污染事故纠纷,怎么给出一个令人信服的数据,是追究事故责任的关键。   事实上,自动实时监测已发挥了环境事件的预警作用。如在2007年、2008年、2009年太湖蓝藻预警监测期间,太湖沙渚、西山和兰山嘴水质自动监测站开展了加密监测,通过水质pH、溶解氧等藻类生长的水质特异性指标预测判断水体的藻类生长状况,为饮用水水质预警提供了大量实时数据。   “公众和社会组织也多了一个渠道获悉实时信息。”公众与环境研究中心主任马军表示,这些信息实质上环保部门已经能够掌握,对社会公布,有助于形成公众监督。无形中,给了地方压力。   下一步:信息共享跨越部门樊篱?   “目前涉水的部门很多,监测信息都应该进一步向社会公众公布。”王焕发表示,如地下水、饮用水源地等。   现行体制下,水质量监测和管理分散在各个部门中,包括环保、水利、建设、卫生部门。其中,环保和水利部门“涉水”最多。   就水利部门而言,水质监管和监测主要集中在两个领域:地下水和整体的水资源质量状况。   水利部相关网站表明,对于地下水监测数据,目前只有“深埋(水位)监测数据”可以看到,而对于水质的监测数据截止到2007年12月,从2008年开始就没有更新数据。   多头管理,不仅使得环境监测信息公开步伐不一致,而且导致部门间环境信息可能出现冲突。   “每个部门都有自己的监测机构,监测结果可能就不一样。”王焕发解释,目前环保部门和水利部门各有一套关于水质的监测机构,交叉监测。而且两家的监测方法并不一样,水利部门是对水的整体情况,包括水质和水量等一起进行监测的,而环保部门进行的是专门的水污染监测,双方使用的仪器和方法都不一样。   如在2005年,原环保总局与水利部就水资源信息公布权发生了争议,相互表示对方公布数据存在超越职权范围。   尽管新修订的《水污染防治法》对“涉水”部门的管理权限和职能进行了界定。但从目前状况看,两部门之间的水监测数据还存在协调问题。   “监测数据相互信息并没有沟通过。”7月1日,水利部水资源司水资源保护处有关人士对本报记者称,目前环保部发布的地表水实时监测数据还尚未与该部门沟通与协调。   “淮河流域我们主要负责跨省断面水体质量监测,每月都会公布质量状况。”水利部淮河水利委员会办公室王科长对记者表示,目前该部门有自己的监测机构,即淮河流域水环境监测中心,每月会对淮河流域跨省河流50个省界断面水质进行抽样监测。监测项目包括水温、pH、溶解氧、高锰酸盐指数、化学需氧量(COD)、五日生化需氧量、氨氮、总磷、铜等二十项。   “我们没法做到实时监测信息,因为人员和设备所限。”王表示,自动监测设备的成本不小,只有部分监测站有在线或自动监测设备。   “一方面是环境监测能力、设备薄弱,另一方面是资源无法有效利用。”环保部环境规划院一位专家表示,由于体制原因,监测机构分散各主管部门,相互信息不能有效沟通,难以形成监测合力和效率。   如目前环保部对外公布的淮河流域实时监测数据,均依靠于环保部门系统内的27个自动监测站,即27个监测点。“如果能和其他部门的监测机构在监测上有效配合,就会多几个点的淮河监测数据。”
  • 顶层设计加速国家水网建设 水质监测市场迎来新增需求
    为加快构建国家水网,建设现代化高质量水利基础设施网络,统筹解决水资源、水生态、水环境、水灾害问题,中共中央 国务院于 2023 年 5 月 25 日印发《国家水网建设规划纲要》。本规划纲要是当前和今后一个时期国家水网建设的重要指导性文件,规划期为 2021 年至 2035 年。《规划纲要》勾勒了国家水网总体布局,并提出完善水资源配置和供水保障体系、完善流域防洪减灾体系、完善河湖生态系统保护治理体系、推动国家水网高质量发展等具体要求。《规划纲要》中提出要加快智慧发展:加强水网数字化建设。深化国家水网工程和新型基础设施建设融合,推动水网工程数字化智能化建设。以自然地理、干支流水系、水利工程、经济社会信息为主要内容,建设数字孪生水网,加快构建映射物理水流过程及其响应过程的数字化场景,提升水网工程数字化水平,实现物理水网与数字水网间动态实时信息交互和深度融合。推进水网工程与相关行业数字化平台衔接,实现信息共享。提升水网调度管理智能化水平。加快推进国家水网调度中心、大数据中心及流域分中心建设,构建国家水网调度指挥体系。通过智慧化模拟,支撑水网全要素预报、预警、预演、预案的模拟分析,提供智慧化决策支持,提高水网防洪、供水、生态等综合调度管理水平。完善水网监测体系。充分利用已有监测站网,加快重要江河干流及主要支流、中小河流监测站网优化与建设,加强水文水资源、取排水、河湖空间、水生态环境、水土保持、水工程安全等监测,全面提升水网监测感知能力。推动新一代通信技术、高分遥感卫星、人工智能等新技术新手段应用,提高监测设备自动化、智能化水平,打造全覆盖、高精度、多维度、保安全的水网监测体系。仪器信息网《国家环境专用水质分析仪市场调研报告》显示,水质监测体系涉及众多产品,根据仪器类型不同,可以分为在线式、实验室型和便携式;根据检测项目不同,可以分为COD分析仪、氨氮分析仪、总磷总氮分析仪以及多参数水质分析仪等等。在线式仪器的体量是实验室仪器的5倍之多,相比于水质在线自动监测仪,实验室/便携环境专用水质分析仪总体市场规模较小,但其应用范围较广。随着检测项目的不同,相应仪器的市场规模也有较大差异。水质监测市场准入门槛相对较低,在巨大的市场商机下,众多小体量的技术型公司纷纷进入市场,同时,对于环境监测外的行业公司也产生了极大的吸引力,外部企业依据自身的行业特点,跨界进入环境监测领域。如IT司、治理公司,甚至是房地产公司,跨界进入监测行业,并结合自身的优势,打造不同侧重点的监测竞争力,如IT公司从智慧环保平台切入,打造整体监测解决方案;房地产公司依靠其物业管理的强势,将物业管理思维引人环境监测领域。典型的公司有万科、华为、平安集团等。国家水网的建设明确提出对水网监测体系的建设需求,将成为水质监测行业新的增长点,及时了解市场格局,将有助于把握市场机会。更多关于水质监测行业的市场信息,欢迎订阅《国家环境专用水质分析仪市场调研报告》(2021版)。【服务热线】: 400-637-7886【电子信箱】: survey@instrument.com.cn报告目录:第一章 环境专用水质分析仪概述 11.1在线环境专用水质分析仪概述 11.2实验室/便携环境专用水质分析仪概述 3第二章 国内环境专用水质分析仪市场综合分析 52.1国内环境专用水质分析仪市场竞争格局 52.2国内细分品类环境专用水质分析仪年销售额 62.3国内细分品类环境专用水质分析仪主流品牌 72.4十三五国内环境专用水质分析仪市场规模及十四五预测 92.5国内环境专用水质分析仪市场发展机遇与挑战 10第三章 国内环境专用水质分析仪招标采购市场分析 133.1 2020年环境专用水质分析仪招标采购省份分布 133.2 2020年环境专用水质分析仪招标采购单位分布 153.3 2020年环境专用水质分析仪招标采购时间分布 173.4 2020环境专用水质分析仪招标采购设备类型分布 183.5 2020环境专用水质分析仪招标采购设备价格分析 20第四章 水质分析市场重大政策及相关标准 224.1近四年水质分析市场重大政策 224.2环境专用水质分析仪相关技术要求 35第五章 总结 38附录:国内水质监测行业主流品牌经营状况分析 40扫二维码加好友,即可获得《国家水网建设规划纲要》word文件
  • 浙江耗2.1亿建饮用水源地水质监测系统
    浙江省环保厅日前发布消息称,浙江饮用水源地水质自动监测系统建设工作已完成,可实现全省县级以上集中式饮用水源地水质实时监测,最大限度保障城乡居民饮用水安全。   据了解,浙江省原先饮用水源地水质监测主要依赖于人工采样,监测频次少、数据有限,存在安全隐患。浙江省环保厅自,历时两年多全面完成。   浙江省环保厅总工程师陈茜说,整套系统共有藻类、生物毒性及有机物在内的40多项指标,是全国监测因子最为齐全的水质监测系统。该系统建设项目共有81个监测点位,有监测设备88套,耗资2.1亿元,能够分别监测和预警21个市级饮用水源和60个县级饮用水源的水质质量。建成的中心管理控制系统,能够实现对81个水源地水质自动监测数据的处理,实现省、市、县三级数据审核上报和紧急情况下的预警。   “一旦自动监测系统检测到污染等情况,将由环保监测部门形成预警报告,环保监察部门将立即启动监察预案和处置预案。”陈茜说。
  • 第一次水利普查公报发布,水质监测仪器需求巨大
    国家统计局和水利部近日联合对外发布了《第一次全国水利普查公报》。此次水利普查是我国第一次进行类似普查,其意义重大,首次查清了我国水资源的“家底”,了解了我国江河湖泊的基本情况,水资源的开发、利用和保护的现状,以及经济发展对水资源的需求,很多本底资料填补了长期以来的空白,高分辨率的电子地图系统,建立了我国江河湖泊的数字水系,为水资源监控、治理等多方面工作提供了依据和基础。   地下水监测将受更多重视,治理或将加快   从公报普查的数据来看,截至2011年底,我国流域面积在100平方公里河流约有2.3万条,比上世纪90年代的统计减少了2.7万多条。此外,经济社会年度用水量为6213.2亿立方米,其中,居民生活用水473.6亿立方米,农业用水4168.2亿立方米,工业用水1203亿立方米,建筑业用水19.9亿立方米,第三产业用水242.1亿立方米,生态环境用水106.4亿立方米。   另据公报数据,经济社会年度用水量为6213.2亿立方米,而其中地下水年取水量已达1084亿立方米,地下水取水量已占据全部用水量的1/6以上,上述数据表明地下取水仍是目前全社会用水量的重要来源之一,而部分城市尤为依赖地下水资源。近期频发的地下水污染事件一定程度上反映了地下水水质的状况,地下水监测将会受到更多重视,全国地下水治理进程也可能因此加快。   水质监测仪器需求巨大   2011年中央水利工作会议上就曾经提出,十年内我国水利的年均投入要比2010年翻一番,要投资将近4万亿元人民币用于国家水利建设。目前的水资源状况下,4万亿元的水利投资将继续,并有可能加速落实。   全国政协委员、水利部副部长胡四一月初在回答媒体提问时透露,中国约38%工业用水和70%农业用水还未监测计量,50%的水功能区尚无监测手段,52%的省界断面未开展水质监测,距离我国明年建成全国水资源信息管理系统的目标还有不小的差距,而通过该系统,将加强取水、用水和排水以及重要的饮用水水源地的监测,能够使得全国取用水总量的70%,和80%的重要水功能区的水质状况,都得到监测。仅该系统官方投入就达到19亿元人民币。   而按照相关规划,“十二五”期间涉水专项工程治理的主要任务之一是强化水质监测能力,特别是地下水监测系统覆盖率。按照规划要求,全国重点城市环境监测站具备水质全分析能力,县级监测站标准化建设达标率比“十一五”末提高20个百分点。   而如果全国河湖取水口、地表和地下水源地均实现水质监测系统全覆盖,据此估算,“十二五”期间的水质检测仪器需求至少将达200亿元。
  • 制药用水系统的过程分析技术和实时TOC检测
    使用Sievers® 分析仪进行总有机碳TOC和电导率的实时检测,可以优化制药用水系统的监测流程。通过在线监测,制造商可以实现更好的过程控制、效率提升以及CGMP过程的风险管理。TOC实时检测的优点降低或消除与传统采样相关的成本、资源、污染、实验室误差和数据延迟。对超标(OOS)或超趋势(OOT)的结果进行实时检测和补救。展示持续的控制和系统验证状态。记录和预测趋势,并使用数据为特定系统建立预警和行动级别。同时使用TOC、无机碳和电导率数据进行根本原因分析。采用美国FDA过程分析技术(PAT)指南,以提高质量和效率。充分利用相同的Sievers TOC膜技术,从实验室方法转移到在线分析技术。制药行业要求精益工艺和持续改进。高效的流程可以让患者在需要时获得安全、优质的产品。美国FDA关于过程分析技术(PAT)的指导文件不仅描述了如何以及何时配置技术,还强烈鼓励制造商在其系统内采用PAT。总有机碳TOC和电导率监测是纯水系统质量和控制的重要方面。使用PAT实时生成TOC和电导率数据,可确保在节省取样和分析时间的同时,对工艺过程进行控制和了解。制药用水是安全有效的药品不可或缺的一部分,通常会在整个药品生产过程的多个步骤中使用。对纯化水系统的实时监测,可确保不同批次或或设备中使用的水在使用前、使用后和使用时都符合法规和内部质量要求。过程分析技术(PAT)Process Analytical Technology过程分析技术PAT指南是一份不具约束力的FDA文件,它鼓励在CGMP生产中积极创新和提高产品质量。PAT的主要优势是在整个生产过程中保证产品质量的同时提高效率。这是通过稳健的设计、可靠性、风险管理和易用性来实现的。PAT的优势可实现设计质量(Quality by Design,QbD)、示范性验证、过程理解和过程控制。理解和控制纯化水系统须要能够准确可靠地检测其质量属性,并利用这些数据做出重要的质量决策。从而控制和调整纯化水过程,使其保持一个理想的、经过验证的状态。对纯化水系统展现出高度的过程理解和控制能力可以提供内在的质量收益。例如,当实时检测到超趋势(OOT)或超标(OOS)的结果时,可以在质量受到影响之前对给水或水系统特性进行补救。在寻求优化制药用水系统的方法时,请考虑采用PAT指南来配置实时TOC和电导率监测。实时TOC数据用于持续控制和根本原因分析用于CGMP生产的制药用水系统需要进行总有机碳TOC和电导率检测。这些分析分别由美国药典USP 和USP规定。虽然这些分析是强制性的,但也为制造商提供了宝贵的数据,以减少浪费,提高工艺效率,特别是在使用在线技术进行实时监测时。在线TOC技术,特别是同时提供TOC、无机碳和电导率数据的技术(如Sievers分析仪提供的数据),可以准确预测和了解水系统的趋势。预警及行动级别应根据既定的历史数据来设定,以验证对水系统的控制。尽管USP TOC检测实际上是一个限度测试,但谨慎的做法是根据超趋势数据建立控制规范。例如,如果一个水系统一直在生产50 ppb的水,而在线TOC分析仪开始检测到300 ppb左右的数据点,虽然该数据仍然在USP 500 ppb的合格限定值范围内,但与50 ppb的趋势有偏差。尽管可能在USP规定范围内,但这是一个严重的危险信号,表明系统已超出趋势并且失去了控制。如果没有适当的预警和行动级别,这种偏差将不会被发现。此外,TOC比正常值增加250 ppb的原因也不会被发现,根本原因既不会被确定,也不会得到补救。设定适当的预警和行动级别需要使用经过验证的定量TOC技术。验证为了充分发挥PAT的潜力,技术必须经确认,方法必须按照USP和ICH要求进行验证。没有经过适当的验证,就会丧失实时数据的价值。当从实验室转向在线时,需要进行等效性研究/可比性方案,强调确认和实施方法。重要的是要有一个记录在案的实施策略来证明等效性。在此基础上来评估任何差异(如果适用)。例如,可能由于温度的变化或样品处理方式的变化,实验室和在线的结果略有不同。观察到的变化对于方法转移来说可能是可以接受的;但是,这些类型的差异需要进行确认和评估。需要重点注意的是,根据所采用的技术类型,一些方法的转移可能比其他方法转移更容易。如果在实验室中使用Sievers膜电导TOC检测技术,方法转移到在线Sievers技术就会变得简单,因为它们是同类技术。虽然FDA鼓励PAT的实施,但检查员将保持相同的审查级别,并根据技术进行调整。重要的是要了解什么是合规技术和合规工艺。PAT的实施需要能够经受住与任何其他CGMP工艺相同级别的检查,特别是在考虑数据可靠性时。数据可靠性并不是一个新概念,然而,随着电子记录和电子签名成为行业标准,数据可靠性的合规受到了更多的审查。您的TOC和电导率数据是否符合ALCOA+和21 CFR第11部分的要求?ALCOA+并不是数据可靠性的全部,但根据这些原则对过程和数据管理进行挑战无疑是一个好的开始。在配置PAT时,需要明确定义数据生成和数据管理规范,并符合数据可靠性法规。总结当为CGMP水系统寻找工艺优化和工艺改进的机会时,应考虑将过程分析技术(PAT)用于TOC和电导率检测。FDA指导文件鼓励制造商在工艺中采用PAT,以提高质量和效率。在线TOC和电导率监测在提供稳健的工艺理解和控制的同时,也提高了质量和效率。实时数据的生成和发布消除或大大减少了与传统实验室分析纯化水相关的样品可靠性问题、质量控制资源、实验室误差、取样成本和延迟。最后,对工艺理解程度的提高可以及时且详细地进行根本原因分析、风险识别、风险降低、趋势分析以及实时检测超标(OOS)或超趋势(OOT)结果。使用过程分析技术和实时TOC监测制药用水系统有无数的好处。您能从中受益多少呢?
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制