当前位置: 仪器信息网 > 行业主题 > >

水中重金属检测

仪器信息网水中重金属检测专题为您提供2024年最新水中重金属检测价格报价、厂家品牌的相关信息, 包括水中重金属检测参数、型号等,不管是国产,还是进口品牌的水中重金属检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水中重金属检测相关的耗材配件、试剂标物,还有水中重金属检测相关的最新资讯、资料,以及水中重金属检测相关的解决方案。

水中重金属检测相关的资讯

  • 重金属元年:水中重金属自动监测现状与对策
    政策解读重金属具有较强的迁移、富集、潜伏性和生物毒性,威胁生态环境安全和人体健康。“十三五”时期,重金属污染防控取得积极成效,但重金属污染防控仍任重道远,党中央、国务院对此高度重视,于3月7日发布了《关于进一步加强重金属污染防控的意见》。《意见》明确指出强化重点区域、重点行业重金属污染监控预警,对有色金属冶炼企业集中的工业园区、重点区域及其周边水、气、土壤等开展重金属长期跟踪监测,对铅、汞、镉、铬和砷五种重金属污染物排放量实施总量控制。管控的重点行业包括重有色金属矿采选业,重有色金属冶炼业,铅蓄电池制造业,电镀行业,化学原料及化学制品制造业,皮革鞣制加工业等6个行业。因此,为了贯彻落实“十四五”规划,切实抓好重金属污染防治,保护人民群众身体健康、促进社会稳定和谐,亟需开展重金属污染环境监测工作,提高生态环境监测现代化水平,为生态环境持续改善和生态文明建设实现新进步奠定坚实基础。1监测技术目前,我国重金属的测定方法包括前处理和测定两个部分,前处理主要采用传统酸消解及微波消解。测定方法包括分光光度法、电化学分析法、原子吸收法、原子荧光法、电感耦合等离子体质谱法等。 分光光度法具有设备简单、 方法可靠、 简便快速 、 应用广泛等优点 , 已成为测定重金属的重要方法之一 ,但是其存在易被其他离子干扰等问题。电化学分析法在环境监测中占有重要地位。电化学方法主要是阳极溶出伏安法,大大降低了重金属的检出限值 。原子吸收法该方法具有灵敏度高 、检出限低、 分析速度快、选择性好、抗干扰能力强等优点 , 被列为测定地表水、废水中金属元素的标准分析方法。电感耦合等离子体质谱法(ICP-MS)检出限低,主要用于痕量重金属的检测,但目前由于仪器价格高、检测成本高等问题,尚未得到广泛应用。2重金属自动监测行业现状01标准规范方面l 自动在线监测仪标准不全:目前近年来,中国生态环境部陆续发布了总铅、总镉、总砷、六价铬在线监测仪标准规范,通过对产品性能检测、实际应用等进行定性评价。但目前,标准规范还不全面,需要进一步补充完善,为规范重金属在线监测行业提供技术保障l 目前尚未发布重金属自动在线监测仪的运行、安装、验收等标准规范02监测技术方面l 测定准确度低:市面上部分重金属自动监测产品无前处理过程,加之现场水样复杂,缺乏抗干扰能力,标液能测准,但面对实际水样测试,频繁“超标”、测定不准等问题就逐渐暴露出来;l 测定易受干扰:含重金属废水成分复杂,重金属测定过程中易受其它因素(色度、浊度、其他离子)干扰,监测过程中易发生沉淀,系统管路易堵塞,需要定期手工清洗;l 检测方法不适用:不同应用场景中(地表水、水源地、排放废水等)重金属浓度不同,对水质监测设备的检出限值、检测方法的适用性方面提出要求;l 创新性不强:目前整个重金属检测行业创新性不强,很多技术面临卡脖子问题,如ICP-MS中关键元器件国内尚不能实现自主研发;l 远程运维能力不足:目前,国家要求运维人员每周须到现场进行运维,耗费人力物力,且运维效率低,运维成本高。3对策(1)应该进一步完善重金属监测方面的法律法规,制定更合理、更严格的标准规范。加快重金属监测的先进技术分析方法的标准化工作,进一步完善重金属自动监测仪表(技术要求、运行、安装、验收等)的相关规范,为重金属精准管控提供有力保障;(2)目前能用于重金属监测的方法多,每种方法都具有一定的检出限值,在实际的监测过程中能够根据水质的实际情况针对性地选择一种或者两种配合使用。通常来说,对含量比较低的地表水和饮用水源地的重金属监测,使用电化学法和原子吸收法;而对于污染源企业排放废水来说,经济、准确的分光光度法也是一个好的选择;(3)企业自身应加强关键核心技术研发,建立以质量为基础的品牌发展战略。开展关键材料、设备的研发和生产,推进产学研用协同创新,解决卡脖子技术难关,全面提高我国重金属监测能力和水平;(4)加强智慧感知-远程运维监测体系建设。综合运用“监测数据+质控数据+流程日志+参数识别+平台反算”的数据防伪技术,结合远程质控测试、仪器校准、故障诊断等功能,建立自动预判、智能审核及人工审核相结合的多级数据审核机制,增强异常数据报警诊断。运用GIS定位、AI智能、自动控制等技术对运维人员、车辆、仪器设备、备品备件、运维维护等信息进行动态管理,实现运维全过程留痕。关于我们朗石是水质监测领域公认的技术领先企业,自成立以来一直潜心研究重金属监测技术:阳极溶出伏安法、化学比色法、冷原子吸收法以及适应各种应用场景的前处理技术。产品系列齐全,环境保护产品认证证书齐全,监测参数包括铅、汞、镉、总铬、六价铬、砷、锌、铜、镍、锰、银、铁等,覆盖了国内现阶段重点关注的重金属污染物,可以满足不同场景的应用,为了满足运维需要,还推出了WEIMS智慧运维平台,欢迎前来咨询。
  • 苏州采购7套在线ICPMS用于监测水中重金属
    p  对于水质重金属分析仪,目前市场上大部分产品采用分光光度法或者阳极溶出伏安法,但是近期苏州市吴江区环境保护局采购了七套水中锑等重金属自动监测站,此次采购的产品采用ICPMS原理,总中标金额1350万元。/pp  详情如下:/pp  一、项目名称及项目编号:/pp  项目名称::水中锑等重金属自动监测站,7套(本项目不接受进口产品投标,具体要求详见招标文件)。/pp  项目编号:SZYC2018-WJ-G-014-B/pp  二、采购项目的简要说明:/pp  水中锑等重金属自动监测站,7套(本项目不接受进口产品投标,具体要求详见招标文件)。采购预算: 1380.00万元。/pp  五、中标信息:/pp  中标单位:苏州远正科学仪器有限公司/pp  中标单位地址:苏州工业园区东长路18号中国节能环保科技产业园41栋903/pp  中标金额:壹仟叁佰伍拾万元(13500000.00)/pp  中标项目内容:谱育科技SUPEC7010水中锑等重金属自动监测站7套(含二年运维服务,4套简易站房)。/p
  • 饮用水中痕量重金属的快速检测方法介绍
    p style="text-align: center "strong饮用水中痕量重金属的快速检测/strong/pp style="text-align: center "上海仪电科学仪器股份有限公司/ppstrong摘要:/strong饮用水中痕量重金属的快速检测是分析测试技术上的一个难点。本文尝试使用阳极溶出伏安法,实现了饮用水中痕量重金属离子的检测。结果显示,饮用水中痕量的铅、镉和汞离子可以通过阳极溶出法进行检测,其检测下限可以达到ppb级。与其他分析测试技术相比,阳极溶出伏安法具有设备体积小,操作简单,使用成本低廉等独特优点,使得其在饮用水的现场快速分析中拥有广阔的应用前景。/ppstrong关键词:/strong饮用水,重金属,阳极溶出伏安法/pp /ppstrong一、实验原理/strong/pp长期以来电化学溶出伏安法一直被认为是检测水环境中痕量重金属的一个有效方法[8]。溶出伏安法是基于电化学原理进行的(如图1)。在一定电压条件下,先将溶液中的待测元素通过还原反应沉积在电极表面,随后通过施加反向电压,使沉积在电极表面的重金属发生氧化反应而溶解,形成峰电流,峰电流的大小或峰面积与被测金属离子浓度成正比。由于电沉积过程中的富集作用,溶出伏安法可以达到1 μg/L以下的检测下限。/ppbr//ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/09550700-f887-41a8-947c-4d9cb9759796.jpg" title="1.png" style="width: 402px height: 309px " width="402" vspace="0" hspace="0" height="309" border="0"//pp style="text-align: center "strong图1. 溶出伏安法原理图/strong/ppstrong二、 使用仪器/strong/pp便携式重金属分析仪(SJB-801,上海仪电科学仪器股份有限公司),工作电极为玻碳电极,辅助电极为铂电极,参比电极为银/氯化银双盐桥电极;纯水机(GT-30,上海仪电科学仪器股份有限公司);微量进样器(WKYVI-1000,上海求精生化试剂仪器有限公司);分析天平(BSA224S,德国赛多利斯科学仪器有限公司)。/ppstrong三、溶液和试剂/strong/pp铅标准溶液(标准物质编号GBW(E)082058,浓度1000mg/L),镉标准溶液(标准物质编号GBW(E)082061,浓度1000mg/L),汞标准溶液(标准物质编号BW085523,浓度100mg/L)采购自深圳市华测标准物质研究所,使用18.2 MΩ实验室超纯水稀释到指定浓度。/pp铅/镉电解液、汞电解液、汞清洗液、镀金液等为便携式重金属分析仪的配套试剂,由上海仪电科学仪器股份有限公司提供。/pp浓硝酸、浓盐酸等试剂为分析纯,采购自国药集团试剂有限公司。/ppstrong四、操作过程/strong/pp1、电极的准备/pp工作电极:工作电极为玻碳电极。每次使用之前需要在抛光绒布上加抛光粉进行打磨,并用去离子水冲洗,处理好的工作表面应该覆盖一层均匀的水膜。/pp参比电极:参比电极为饱和氯化钾式银/氯化银双盐桥电极。第一次使用参比电极时,配置好内溶液,打开加液塞将配备好的参比内溶液加入到参比电极内腔中(注意参比内腔要保留一小段空隙),然后将该参比电极在盛有饱和氯化钾溶液的保护瓶中浸泡至少1小时,最好浸泡一上。参比电极平时不用时要塞上加液塞和底部浸泡在保护瓶中,保护瓶中要保持有饱和氯化钾溶液。每次使用前,将电极的保护瓶拿掉用水将氯化钾溶液清洗干净,开始测试时,将加液塞打开。/pp对电极:对电极为铂电极,一般不需要处理,可直接使用。/pp2、重金属离子的分析/pp溶出伏安法测定铅、镉、汞标准溶液:准确量取超纯水100mL至烧杯中,加入1mL铅镉电解质溶液,取20mL溶液至测量杯中。仪器选择“铅镉”测定模式,扫描溶出伏安法曲线,测定结束后,记下峰面积。随后依次添加10μL、20μL、30μL、40μL20mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。仪器选择“预镀金膜”模式,在镀金液中完成金膜于都操作。准确量取超纯水100mL至烧杯中,加入汞电解质溶液20mL,取20mL溶液至测量杯中。仪器选择“汞”测定模式,扫描溶出伏安曲线,测定结束后,记下峰面积。随后分别添加5次40μL 1mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。/pp饮用水中铅、镉、汞的测定(标准曲线法):测定水中铅和镉离子时,先使用40 μg/L和100μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入铅/镉电解质溶液1mL。量取20mL测试水样至测量杯中。仪器设定为测定“铅镉”,测定3次浓度值,记下数据;测定结束后,往测量杯中添加20μL 20mg/L铅/镉离子标准溶液,测定3浓度值,记下数据。测定水中汞离子时,先对工作电极进行预镀金膜操作,随后使用4 μg/L和10μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入汞电解质溶液20mL。量取20mL测试水样至测量杯中。仪器设定为测定“汞”,开始测定3次浓度值,记下数据;测定结束后,往测量杯中添加40μL 1m g/L汞离子标准溶液,测定3次浓度值,记下数据。/pp饮用水中汞的测定(二次添加法):准确量取自来水样100mL至烧杯中,加入汞电解液20mL得到测试水样。量取20mL测试水样至测量杯中。选定测定金属“Hg”,选择标准添加法,设定第一次和第二次分别添加40μL 1mg/L汞标准液,确认后开始测量,测试结束后,记下测定的汞离子的浓度值。/ppstrong五、结果与讨论/strong/pp1、溶出伏安法测定铅、镉、汞标准溶液:/pp为验证溶出伏安法对于重金属铅、镉离子的测量性能,对0μg/L、10μg/L、30μg/L、60μg/L、100μg/L铅镉标准溶液进行分析测试。由于支持电解液中含有一定浓度的铋离子,在富集过程中,铅离子、镉离子和铋离子可以在玻碳电极表面形成共沉积。在随后的伏安扫描过程中,几种元素又可以被氧化和释放,形成尖锐的溶出峰,如图2所示。铅离子和镉离子的溶出电位分别为-0.5V和-0.8V,峰形尖锐,对称性较好,相互之间不产生干扰,因此铅离子和镉离子可以使用溶出伏安法同时测定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/5b435af9-24f2-4698-9f3c-c62f714dd98a.jpg" title="2.png"//pp style="text-align: center "strong图2 铅离子和镉离子标准溶液的测定曲线/strong/pp采用峰面积作为相应信号,根据峰面积和浓度关系,绘制标准曲线(图3),R2分别为0.9961(Pb),0.9952(Cd),标准曲线的线性均良好,可见在0-100μg/L的浓度范围,铅离子和镉离子可以通过溶出伏安法进行同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/066e6e59-eae1-4430-baa3-d45c431d2e2a.jpg" title="3.jpg" style="width: 600px height: 194px " width="600" vspace="0" hspace="0" height="194" border="0"//pp style="text-align: center "strong图3(a)铅离子标准曲线;(b)镉离子标准曲线/strong/pp汞离子标准溶液使用类似的方法进行分析。为提高汞离子的富集效果,在富集和测定前,需要对玻碳电极进行预镀金膜操作。该操作可以通过使用仪器自带的预镀金膜模式和镀金液进行。随后,不同浓度的汞离子标准溶液通过循环伏安法进行分析测试,结果如图4A所示。汞离子在金膜上的溶出电位约为0.55mV,峰形较好,对称性良好。/pp汞离子的标准曲线如图4B所示,R2为0.9878,标准曲线线性良好,可见浓度范围在0-10μg/L的汞离子,可以通过溶出伏安法进行测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6512c3c9-4202-40c0-91fb-7e5f1e594607.jpg" title="4.jpg"//pp style="text-align: center "strong图4 (A)汞溶出伏安曲线;(B)汞离子标准曲线/strong/pp2、饮用水中铅、镉、汞含量的测定/pp饮用水中铅镉汞离子含量采用标准曲线法进行测定,结果如表1所示。饮用水中的铅离子浓度约为1.90μg/L,重复性为± 0.4μg/L;镉离子浓度约为0.01μg/L,重复性为± 0.01μg/L;而饮用水中的汞离子浓度极地,低于溶出伏安法的最低检出限。/pp为验证溶出伏安法在饮用水中测定的可靠性,在饮用水样品中添加铅、镉、汞离子标准溶液,使得离子浓度分别提高了20μg/L、20μg/L和2μg/L。加标后的样品溶液在同样方法下进行测试,结果显示,对于铅离子、镉离子和汞离子,其加标回收率分别为98%,81%和50%。通过三种离子加标回收率,可以看出,标准曲线法在测定饮用水中铅、镉离子时,回收率较高,测试具有较高的可靠性。而对于饮用水中的汞离子,标准曲线法的测试回收率较低,测试可靠性和误差较大,这可能是由于饮用水中背景离子的存在干扰了汞离子的富集和测试过程。/ppstrong表1 使用标准曲线法测定饮用水中铅、镉、汞离子/strong/ptable width="577" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="86" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="175" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="200" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定值/span/pp style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style="font-size:15px font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="116" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"回收率/span/p/td/trtr style=" height:4px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"铅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.90/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "98%/span/p/td/trtr style=" height:4px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "21.40/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"镉/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.01/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.01/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "81%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "16.20/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.20/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "50%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.99/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.6/span/p/td/tr/tbody/tablep二次添加法是电化学分析中的常用方法,该方法通过将一定已知浓度的标准溶液加入到待测样品中,通过对加标前后的样品溶液进行分析建立标准曲线,从而进行浓度分析。由于该方法标准曲线的建立是在样品溶液背景下进行的,可以降低实际样品中背景离子的干扰,实得测量结果更准确。饮用水样样品、以及加标后的饮用水样品使用二次添加发进行了分析测试,结果显示,使用二次添加法进行测试时,汞离子测试的回收率提高到了92%,相对于标准曲线法,其测试的可靠性和准确性得到了大幅提高。/pp表2 使用二次添加法测定饮用水中汞离子含量/ptable width="570" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:32px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="83" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="180" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="170" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"测定值(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="137" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:宋体"回收率/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="83" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水水样/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="137" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:' Arial' ,' sans-serif' "92%/span/p/td/trtr style=" height:7px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样/span span style=" font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.83/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.16/span/p/td/tr/tbody/tablepstrong六、结论/strong/pp本文研究了阳极溶出伏安法在重金属离子铅、镉、汞测定中的应用。对标准溶液的测定结果表明,阳极溶出伏安法在0-100 ug/L的范围内可以实现铅、镉离子的同时检测,在0-10 ug/L的范围内可以实现汞离子的检测,结果呈现良好的重复性和线性相关性。阳极溶出伏安法可以被应用到生活饮用水中痕量重金属的检测中来。通过简单的两点校准,饮用水中的铅离子和镉离子即可被同时检测,其加标回收率在80%-100%,显示出方法具有较好的可靠性。由于饮用水中背景离子的干扰,汞离子使用标准曲线法测定的回收率仅为50%。二次添加法可以显著降低样品的背景干扰,通过采用二次添加法,饮用水中汞离子测量的可靠性和准确性得到明显改善,其测定回收率提高到92%。/pp本文使用基于溶出伏安法的便携式重金属分析仪,测定饮用水中的铅、镉、汞离子含量。实验中重金属的质量浓度和与阳极溶出的峰面积呈良好的线性关系,获得较高的回收率,实验结果较为满意,符合快速检测的要求。该设备操作简单,便于携带和操作,灵敏度和准确度高,选择性好,运行费用低,体积小,特别适合现场的快速检测。/ppbr//ppstrong作者:/strong孟旭,工程师,18616817423,mengxu@lei-ci.com, br//ppstrong通讯地址:/strong上海市嘉定区安亭镇园大路5号。/p
  • 安捷伦MP-AES仪器平台同时在线监测水中多种重金属
    近年来,水中重金属污染事件频发,包括2006年湖南省岳阳县饮用水源砷污染事件、2011年福建紫金矿业铜酸水渗透事故、2012年广西龙江河镉污染事件等。重金属污染毒性较大、易在生物链中富集和扩大且不会随时间降解,因此水中重金属超标及其造成的问题已经严重危害到生态环境和人类的生命健康。  利好政策加速监测体系建设  《水污染防治行动计划》和《国家环境保护“十三五”科技发展规划》都明确提出,要建立水污染监测预警机制,保障监测数据的准确性。为了进一步完善国家地表水环境监测网,环保部于2016年印发了《十三五环境监测质量管理工作方案》,在质控手段的创新、环境监测能力的建设等方面提出了更高的要求。方案指出,要完善自动监测数据采集和远程质控系统,开发自动监测仪器关键参数的实时采集和传输功能以及水质自动监测仪器远程校准、维护等质控功能。同时,加强国家质控平台及环境空气、地表水、土壤环境监测质量核查能力建设,完善环境空气和地表水自动监测在线质控系统、国家网环境监测数据采集和远程控制系统等,提高国家质控能力水平。  在线监测是构建全国统一的生态环境监测规范体系中的重要一环。目前,常用的在线水质重金属监测技术包括比色法、阳极溶出法和电位滴定法。针对从水质监测过程中产生的大量数据进行分析,能够有效地提高水质监测的效率并扩大水质监测的范围,也有利于全面提高环境监测数据的真实性、准确性和可比性,为环境管理科学决策提供重要保障。  合作创新引领技术发展  作为环境领域的技术领导者,安捷伦对重金属检测技术及国内外相关检测标准有着深入的研究。凭借在环境分析和法规遵从性方面 40 多年的专业经验,安捷伦能提供高分析效率、高通量的工具,帮助用户和合作伙伴对水质进行可靠和高效的监测。  2012年,安捷伦携手中国广州分析测试中心(中广测)和广州伊创仪器有限公司(伊创科技),成功将微波等离子体原子发射光谱仪(MP-AES)系统应用到在线监测领域,助力伊创科技和中广测研发出基于安捷伦MP-AES仪器平台的Online 5100 MP多参数重金属在线分析仪(5100 MP)。  伊创仪器负责人王加勇先生介绍搭载安捷伦MP-AES的5100 MP  在伊创科技负责人王加勇先生看来,MP-AES独特的优势就是可以使用空气运行、实现无人操作和远程控制的情况下实现多元素监测。通过搭载安捷伦MP-AES的5100 MP,可以通过一次采样分析即获得多个重金属元素的数据结果,及时了解水质情况。“远程监测还可以帮助用户进行快速响应。假如某条河流的成分在夜晚发生了一些变化,用户可以一边进行远程监测,一边派人过去,这样可以保证第一时间控制污染事件。”王加勇先生表示。  中广测是华南地区唯一的国家级分析测试中心,2013年与安捷伦合作建立了安捷伦-中广测联合技术中心,借助安捷伦先进的仪器平台,继续推动分析测试的新方法、新技术研究,共同提升行业的分析测试水平。中广测新技术实验室副主任郭鹏然研究员表示:“安捷伦的4210 MP-AES操作简单,以氮气作为工作气体,运营成本较低,安全性高,适用范围广,而且其自动化软件允许进行远程的元素分析,这就为环境的在线监测提供了可能性。”  MP-AES助力24小时监测  安捷伦行业领先的MP-AES系统是一款功能强大、低成本和易于使用的系统,适用于从常规分析到复杂贵金属分析等多种应用。安捷伦 MP-AES 系统使用空气运行,既可节约成本,又比需要可燃性气体的替代方法更为安全。全新推出的Agilent 4210 MP-AES 系统配备了先进阀切换系统、惰性矩管、温控雾室、多模进样系统和增强型诊断软件等,新的配置扩展了仪器的分析性能、样品通量和易用性。与传统的在线监测技术方法相比,MP-AES具有更低的检测限、更强的重复性、更好的稳定性和更高的安全性。  得益于安捷伦提供的MP-AES仪器平台,伊创5100 MP可以同时在线分析包括镉、铅、铜、锌、铬等在内的十几种重金属元素,并且能够实现远程监测、远程监控和远程服务,适合大型水质自动站进行省与省之间的断面监测和超级水质自动站的24小时在线监测工作。据王加勇先生介绍,搭载安捷伦MP-AES的5100 MP已投入应用到多个省市的水中重金属在线监测系统中,并且获得了来自终端用户的积极反馈。  结语  水是人类生命之源,是自然界和人类生存发展过程中不可或缺的重要因素。安捷伦作为业界公认的行业领导者和实验室首选合作伙伴,为客户提供全方位的解决方案,推动行业稳步健康发展,应对全球性的挑战。随着中国人民对生活品质和安全关注度的不断提高,安捷伦科技致力于为中国客户提供值得信赖的解决方案,共同提升生活质量。
  • 日立ZA3000原子吸收双孔注入连续进样快速检测水中重金属含量
    近期,兰州自来水污染,江苏靖江因长江水源出现水质异常,8吨有毒化学物流入富春江等系列水污染事件引发了公众对水质安全的关注。水环境是同人民生活息息相关的几大自然要素之一,快速检测水环境中重金属等有毒有害元素是水环境安全的重要保障之一。  天美公司高度关注水环境安全问题,日立ZA3000原子吸收分光光度计最新搭载的双孔注入连续进样功能在快速检测水中重金属含量方面具有独特的优势,参照《水和废水检测分析方法(第四版)》,我们为您提供了检测地表水,地下水及废水中铅、镉、铜的解决方案。http://www.instrument.com.cn/netshow/SH100322/s327145.htm 公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 废水中重金属元素怎么测?莱伯泰科有妙招!
    随着现代工业的发展和人类生活水平的提高,越来越多的重金属污染物被排放到地表水中。地震、泥石流等自然灾害也可能会导致地下、地上的矿物大量浸入地表水,上游的化工厂等一旦被破坏,更是会严重污染水源,造成水中重金属元素超标,威胁人类健康。准确测定废水中重金属含量是废水治理中重要的一环,对如何合理选择治理方案,评估治理结果及后续工作的开展具有重要的指导作用。分光光度法、原子荧光法、原子吸收光谱法、电感耦合等离子体发射光谱法被广泛应用于废水中金属元素的测定。但是,分光光度法、原子吸收光谱法、原子荧光法只能单元素逐一测定,且不同元素需要不同的前处理方法,测定多个元素耗时时间长,工作效率低。电感耦合等离子体发射光谱法(ICP-OES),具有多元素同时测定,检出限低,精密度高、干扰小等优点,并且分析时间短,准确度高,线性范围宽,广泛用于水中重金属含量的测定。本文采用硝酸+盐酸+过氧化氢辅以微波消解的样品前处理技术,结合ICP-OES法测定废水中Pb、Cd、Cr、As、Se、Cu、Ni、Hg等8种重金属元素,方法检出限为0.023~0.089mg/L,RSD为2.37~4.25%,加标回收率为84.1~107.6%。结果表明,微波消解样品处理具有较好的准确性和重现性、操作简单、快速高效、污染小、检出限低、基体干扰小等优点,可用于废水样品的批量分析。具体操作方法主要仪器与试剂ETHOS UP微波消解仪(意大利MILESTONE公司) iCAP7400电感耦合等离子体发射光谱仪(美国赛默飞世尔科技有限公司)10mg/L等离子发射光谱分析混合离子标准物质(Pb、Cd、Cr、As、Se、Cu、Ni)上海市计量院测试技术研究院GBW(E)080124汞单元素标准溶液100mg/L硝酸、盐酸、过氧化氢优级纯实验室用水为超纯水。标准曲线的配制 分别吸取0,0.50,1.00,2.50,5.00,10.00mL混合标准溶液和0,0.05,0.10,0.25,0.50,1.00mL汞元素标准溶液于50mL容量瓶中,用3%的硝酸定容,最终得到浓度分别为0.00,0.10,0.20,0.50,1.00,2.00mg/L的标准溶液。实验步骤 吸取25mL废水于微波消解罐中,然后加入2.5mL硝酸,2.5mL盐酸和2mL过氧化氢。另取1个消解罐做空白实验。安装好消解罐,设置消解程序如表1。消解完成后,待消解罐冷却至室温后再通风柜内打开消解罐,用去离子水定容至50mL。表1 微波消解条件步骤时间t/min功率P/W温度℃1518001202518001203518001804151800180仪器工作条件冲洗泵速100rpm;分析泵速50rpm;RF功率1150W;雾化器流量0.5L/min;辅助气流量0.5L/min;冷却气流量12L/min。微波消解-ICP-OES法测定废水重金属的线性范围、准确度、精密度和检出限3.1 线性范围用浓度为0.00mg/L,0.10mg/L,0.20mg/L,0.50mg/L,1.00mg/L,2.00mg/L的标准溶液,做标准曲线。表2 各元素的曲线拟合方程元素曲线拟合方程相关系数Pby=866.6x+8.30.9999Cdy=45192x+245.50.9999Asy=1974.4x+34.80.9998Sey=2246.8x+53.90.9999Cuy=33768x+299.70.9999Niy=13515x+102.70.9999Hgy=5482.6x+76.30.9995Cry=33132x+249.70.9999《污水综合排放标准》中**类污染物**允许排放的浓度要求,各重金属限值在0.05~1.5mg/L。因此选择以上浓度点来做标准曲线。由上表可知,待测的8个重金属元素的相关系数都在0.995以上。3.2方法的检出限方法的检出限通过分析检测连续的11个测试空白进行计算。计算公式为:MDL=3s,s指连续11次测试空白的标准偏差,结果见表3。表3 ICP-OES测定水中各元素的方法检出限(mg/L)测定元素检出限测定元素检出限Pb0.079Cu0.089Cd0.043Ni0.031As0.028Hg0.027Se0.032Cr0.023各元素的检出限在0.023~0.089mg/L之间,低于《污水综合排放标准》**类污染物**允许排放浓度要求中各种金属元素的限值,符合分析要求。3.3方法精密度与准确度实验 取一所采水样,加入标准溶液,原样和加标样分别测定6次,计算精密度和回收率,测试结果见表4,加标回收率在84.1~107.6%之间,RSD为2.37~4.25%。表4 加标回收试验元素本底值(mg/L)加标量(mg/L)测定值(mg/L)回收率/%RSD/%Pb0.21170.20000.4187103.52.57Cd0.19240.20000.387897.72.37As0.15780.20000.356799.53.02Se0.19080.20000.386597.92.92Cu0.21220.20000.403495.62.87Ni0.22020.20000.410395.02.73Hg0.15110.20000.319384.14.25Cr0.19150.20000.4068107.62.64微波消解-ICP-OES法是测定废水中重金属的有效方法。该方法消解时间短,试剂用量少,检出限低,具有良好的精密度和准确度,加标回收率结果满意,完全满足当前环境监测中测定废水中重金属含量的要求。
  • 水质重金属的检测项目包含哪些?
    水质重金属的检测项目涵盖了多种对人体健康和环境具有潜在危害的重金属元素。这些检测项目通常包括但不限于以下几个方面:铅(Pb):铅是一种有毒重金属,长期摄入可能对人体健康造成严重影响,包括神经系统和肾脏损伤。世界卫生组织(WHO)和美国环保局(EPA)都设定了饮用水中铅的限量标准。镉(Cd):镉也是一种有毒重金属,长期暴露可能导致肾脏和骨骼问题,甚至增加癌症风险。WHO对饮用水中镉的含量也有明确的限制。汞(Hg):汞是一种高度毒性的重金属,对中枢神经系统、肾脏和免疫系统都有不良影响。WHO规定了饮用水中汞的最大允许含量。铬(Cr):铬的化合物具有不同的毒性,其中六价铬(Cr6+)是对人类健康有害的。因此,饮用水中六价铬的含量也是检测的重点之一。砷(As):砷是一种致癌物质,长期暴露可能导致癌症和其他健康问题。WHO对饮用水中砷的含量有严格的限制。除了上述几种重金属外,水质重金属检测还可能包括以下几种元素:铜(Cu):虽然铜是人体必需的微量元素之一,但过量摄入也可能对健康造成不利影响。锌(Zn):锌同样是人体必需的微量元素,但过量摄入同样需要关注。铝(Al):铝在水中的存在可能对神经系统造成长期影响。镍(Ni):镍是一种潜在的致癌物质,其在水中的含量也需要监测。锰(Mn):锰的过量摄入可能导致神经系统问题。此外,根据具体需求和检测标准的不同,水质重金属检测项目还可能包括其他金属元素,如锑、铍、硒、银、锂、钡、钛、锡、硼、锶、钴、钼、钍、铀、钒、铋、镓、锗、碲、铊等。需要注意的是,水质重金属检测项目的选择应基于当地水源状况、水质标准以及公众健康需求等因素综合考虑。同时,随着科技的发展和检测技术的进步,水质重金属检测项目也可能会有所调整和更新。 为了确保水质安全,环境监测机构会定期或不定期地对饮用水源进行重金属检测,并根据检测结果采取相应的措施来保护水源和保障公众健康。此外,公众也可以通过了解相关知识和采取适当的措施来减少重金属摄入的风险。
  • 水质重金属常用检测技术及特点
    p 目前,对a href="http://www.instrument.com.cn/zc/1650.html" target="_blank" title="" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "strong水中重金属的检测/strong/span/a技术多停留在实验室阶段,最常用的方法是原子吸收分光光度法(AAS)、电感耦合等离子-质谱法(ICP-MS)、电感耦合等离子体-发射光谱法(ICP-AES)、化学比色法和电化学分析方法。其中,原子吸收分光光度法分为石墨原子化原子吸收分光光度法(GF-AAS)、氢化物发生原子吸收光度法等等,石墨原子化原子吸收分光光度法是现行大多数重金属分析的标准方法之一。除此之外,一些使用到的方法包括化学比色法、X射线荧光法、中子活化法、离子色谱等等,以及在此基础上的联用技术等。/pp 原子吸收光谱法一般一次只能分析一种元素,检测限相对较高,电感耦合等离子-质谱法和电感耦合发射光谱法能够同时分析多种元素。但是,原子吸收光谱法、原子发射光谱法、离子色谱法、质谱法、电感耦合等离子体法无论是设备费用还是设备运营维护费用,成本都较高。因此,以上技术并没有真正应用于重金属监测领域。/pp 目前,国内外真正应用于水中重金属分析的技术主要是比色法和电化学分析方法。比色法又称分光光度法,是化学分析中常用的方法之一。重金属电化学分析方法由海洛夫斯基(MichaeL Heyrovsky,其因发明该方法而获1959诺贝尔化学奖)发明,后经众多学者优化发展。就水中重金属监测产品而言,由于国内重金属监测起步相对较晚,大多数公司主要以代理国外产品为主,仅有少数几个公司具有自主知识产权的重金属分析产品。/pp 比色法是经典的化学分析方法之一,主要基于Lambert-Beer定律(朗伯-比尔定律,光吸收基本定律,是说明物质对单色光吸收的强弱与吸光物质的浓度(c)和 液层厚度 (b)间的关系的定律,是光吸收的基本定律,是紫外-可见光度法定量的基础),在一定的条件下,重金属离子与某一特定的试剂进行化学反应,在溶液中产生新的化学物质,该物质一般具有特定吸收波长光 当一束与新产生的化学物质匹配的单色光通过该溶液时,溶液的吸光度与溶液中新产生的化学物质浓度相关,据此建立吸光度与被测组分的浓度关系。/pp 该方法原理简单,不需要特殊设备,一般分光光度计即可满足需求,因此在实验室重金属分析中依旧较为常见。当该技术应用于水质重金属分析时,选择合适的显色剂,以及消除其他金属组分干扰是关键 其次是获得稳定可靠的单色光,以及光强检测系统。/pp 阳极溶出伏安法,是将电化学富集与测定方法有机地结合在一起的一种方法。先将被测物质通过阴极还原富集在一个固定的微电极上,再由负向正电位方向扫描溶出,根据溶出极化曲线来进行分析测定。阳极溶出伏安分析技术(ASV)使得样品中很低浓度的金属都能够被快速检测出来,并有良好精密度。/pp 对于电化学溶出分析技术而言,由于重金属在水环境——特别是地表水、饮用水源地等水环境中的含量不高(基本在μg/L数量级),即便是市政以及工业企业污水排放口,也仅仅在几十到几百μg/L数量级,因此检测限低的电化学溶出分析技术在重金属监测中将发挥更大的作用。/pp 随着我国重金属污染问题越来越受到重视,重金属监测会得到更大程度的关注。目前的两种重金属监测方法,比色法较为传统,设备成本比电化学分析仪成本低,在一些特殊的场合,特别是待分析重金属成分浓度较高时,可以考虑该类型分析仪。/pp 在中低浓度的重金属监测中,如地表水、饮用水、水处理设施排放口重金属监测,基于电化学溶出分析技术的重金属分析仪能够对μg/L数量级的重金属进行精准定量分析,无疑是首选。br//ppbr//p
  • 重金属离子纳米检测技术取得新进展
    反应过程   随着纳米技术的飞速发展和纳米产业的不断扩大,许多纳米材料不断地涌现出来。由于金纳米颗粒具有较高的摩尔吸光系数和依靠距离可变的光学性质,它在化学、物理和生物等领域已有广泛的应用,其中可视化检测则是金纳米颗粒重要的应用之一。   中国科学院成都生物研究所天然产物研究中心邵华武研究员课题组与国家纳米科学中心蒋兴宇研究员课题组合作发展了一种用金纳米颗粒肉眼就可以检测水中的重金属离子的新方法。其操作是首先把含有多巯基的木瓜蛋白酶吸附在金纳米颗粒上,该蛋白表面的一些功能团(如巯基、羧基和氨基等基团)可以识别一些重金属离子(汞离子、铅离子和铜离子),而这些离子的加入则可以使金纳米颗粒聚集,同时在此过程中溶液的颜色则会从红色变为紫色,根据这个现象我们用肉眼就可以直接检测水中的重金属离子。   实验结果表明,检测灵敏度与金纳米颗粒的大小有关,较大的金纳米颗粒的检测灵敏度更高。该方法在水质监测中将具有潜在的应用。   该研究结果已在Biosensors and Bioelectronics (2011, 26, 4064-4069)上发表。
  • 原子荧光光谱仪助力海洋资源重金属检测
    作为拥有我国自主知识产权的原子荧光光谱仪被广泛应用在食品化妆品检测、环境监测、地质选矿等领域中,其中包括海洋矿产资源中砷、汞等重金属的检测。有数据源显示我国入海河流每年携数万吨的重金属入海,严重影响我国近岸海域的生态环境健康与安全。原子荧光光谱仪作为检测重金属的主要仪器在海洋资源检测中发挥重要作用。相关学者指出我国重金属污染已经从逐步积累进入到突发性、 连锁性的爆发阶段, 污染范围在不断地扩大。海水中汞和砷等重金属严重超标引起相关部门的高度重视,并制定出相应的专项规划以及整治任务。海洋治理规划的制定需要准确的检测数据做依据。原子荧光光谱仪检出限低、稳定性好是检测海洋中重金属的得力助手,在检测海洋重金属得到广泛应用。例如在期刊《河北渔业》中文章《微波消解-原子光谱法测定海洋生物体中砷和镉》以及在《北方环境》收录的文章《原子荧光法测定海水中砷方法的改进》都有应用原子荧光法研究海洋中重金属的记录。为了使海洋中重金属的检测更加规范,检测的数据更加准确,国家还制定了相应的检测标准,例如国家标准《GB 17378.4-2007》《GB 17378.5-2007》《GB 17378.6-2007》分别要求应用原子荧光光谱仪检测海洋中海水、沉积物以及生物体中砷、汞元素的方法。环境标准《HJ 442.3-2020》除了砷、汞之外原子荧光法可以检测海水中的硒。另外在海洋行业标准《HY∕T 0283-2020 海水中镉的测定 原子荧光法》要求使用原子荧光光谱仪检测海水中镉含量。可见原子荧光光谱仪被广泛应用在海洋中重金属的检测。据说一位艺术家耗时15年用贝壳打造了一座雕像,而艺术家本人却因长时间接触被重金属污染的贝壳被诊断为重金属中毒并患有严重痴呆。这个令人惋惜的故事警示我们海洋中重金属污染严重威胁近岸海域的生态环境健康与安全。原子荧光光谱仪等检测仪器是保卫近岸海域的生态环境健康与安全的重要防线。北京金索坤技术开发有限公司作为生产重金属检测仪器的生产厂家会坚持为原子荧光技术的发展探索乾坤,不断地用更加优质的原子荧光产品为保卫近岸海域的生态环境健康与安全贡献力量。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 水质重金属检测仪对污水检测有哪些帮助【恒美首发】
    点击了解更多产品详情→水质重金属检测仪 水质重金属检测仪对污水检测有以下几个方面的帮助: 1.快速检测:水质重金属检测仪使用先进的光谱或电化学技术,能够快速、准确地检测污水中的重金属含量。相比传统的实验室检测方法,它的检测速度更快,可以在现场实时检测污水中的重金属含量,节约了时间和人力成本。 2.准确结果:水质重金属检测仪具有高灵敏度和高准确性,能够对污水中的重金属进行精确测量。它能够实时监测并记录重金属的含量,提供准确的结果,避免了人为误差和数据不确定性。 3.现场监测和预警:水质重金属检测仪可以在现场对污水中的重金属含量进行实时监测,并可以设置预警阈值。一旦重金属含量超过设定的安全值,仪器会自动发出警报,提醒操作人员及时采取措施,保障环境和人体健康。 4.数据记录和分析:水质重金属检测仪能够自动记录检测数据,并生成检测报告。这样可以方便后续的数据分析和统计,为环境评估和决策提供科学依据。 5.便携式和易操作:水质重金属检测仪体积小巧、便携式,并具有简单易懂的操作界面。这样可以方便操作人员在现场进行检测,不需要将样品送到实验室,减少了样品转运和处理的时间和成本。 综上所述,水质重金属检测仪在污水检测方面具有快速检测、准确结果、现场监测和预警、数据记录和分析等多方面的帮助。它的应用可以提高污水监测的效率和可靠性,为保障环境和人体健康提供重要的技术支持。
  • 农产品重金属快速检测关键技术理论取得重要进展
    工业废气和工业废水中含有大量的重金属,没有经过处理后直接排放到土壤、水、气的生态环境中会对生态环境造成巨大的危害。资料显示,环境(土、水、气)中的污染物主要以镉(7%)、镍(4.8%)、砷(2.7%)、铜(2.1%)、汞(1.6%)、铅(1.5%)、铬(1.1%)等污染为主。资料显示,我国土壤点位总超标率为16.1%,其中1.1%为重度、1.5%为中度;耕地土壤点位超标率为19.4%,其中重度1.1%、中度1.8%。土壤、地表水和地下水中未消解的重金属进入作物和水产品,这些产品被人类食用后这些重金属在人体内累积,会对人的身体健康造成严重损害,近些年频发来的食品安全事件就是重金属污染的一个缩影。近年来农产品特别是粮食、蔬菜、水产品的重金属污染问题备受关注,但是常规的重金属检测技术耗时、费力,无法现场快速分析,难以在田间地头和生产一线及时发现重金属污染,从而采取有效防控措施。其中,电热蒸发技术(ETV)可以直接分析固体样品,无需复杂样品处理,具有快速、绿色、高效的特点。但是,该技术一直困囿于目标元素传输效率低、复杂样品基质干扰,从而影响重金属的精准测定。近日,中国农业科学院农业质量标准与检测技术研究所“农产品质量安全风险评估”创新团队,在重金属快速检测的关键技术理论方面取得重要进展,首次提出了基于电热蒸发微等离子体的重金属元素传输增强技术,揭示了重金属原子及其纳米颗粒物在传输过程中的形态演变机理。该研究首次开发了基于介质阻挡放电的微等离子体传输增强技术,电热蒸发导入砷元素的传输效率达到100%,并利用微等离子体石英阱技术,实现固体进样的基体干扰消除;同时,揭示了重金属砷在蒸发、传输、捕获和释放过程中的分子原子形态演化机理,为进一步实现重金属速测仪器的现场化和小型化提供了基础理论和技术储备。
  • 重金属污染严重,常用五大检测方法要了解
    重金属的污染主要来源工业污染,其次是交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害,工业污染的治理可以通过一些技术方法、管理措施来降低它的污染,最终达到国家的污染物排放标准。重金属一般以天然浓度广泛存在于自然界中,但由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染,危害人类健康!   针对重金属废水的特性,目前常用的处理重金属污水方法有:化学沉淀法、氧化还原处理、溶剂萃取分离、吸附法、膜分离法、离子交换法。通过这些方法对其检测治理,采取将有毒化为无毒、将有害转化为无害,并且回收其中的珍贵金属,将净化后的废水循环使用等措施,消除和减少重金属的排放量。检测时所需的标准物质都可以找专业的检测机构或平台进行购买,如BePure。   1、化学沉淀法  化学沉淀法是使重金属废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。   2、氧化还原处理(化学还原法)  电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离往除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操纵易于把握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。   应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂用度高,处理本钱大,这是化学还原法的缺点。   3、溶剂萃取分离  溶剂萃取法是分离和净化物质常用的方法。由于液一液接触,可连续操纵,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操纵时留意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。   4、吸附法  吸附法是利用吸附剂的独特结构往除重金属离子的一种有效方法。利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等。活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理。腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量明显低于污水综合排放标准。   5、膜分离法膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀产业废水,处理后废水组成不变,有利于回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备。反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理。采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环。液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进进到初步产业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中。膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展。 以上就是常见的五种检测方法,但想要有效的控制与消除污染源,须源头控制———过程阻断———末端治理相结合,其中,源头控制是关键。如若短期内不能做好源头控制,就必须做好检测,购买检测相关的标准物质都可以找我们BePure。 曼哈格BePure专注于标准物质的研发和生产已有20多年,推出过多种重金属污染检测的相关标准物质,如土壤中重金属(铅)、土壤中的重金属 砷铜镍铅镉汞等,帮助您快速完成检测项目。
  • 水质重金属检测仪触摸屏显示,读数直观、简单
    水质重金属检测仪是一种专门用于测量水体中重金属元素含量的仪器,该仪器可以监测河流、湖泊和海洋等水体中的重金属污染程度,提供科学依据和数据支持,以评估环境质量并采取相应的保护措施,适用于环境监测、工业生产、自然水体保护等领域。  水质重金属检测仪产品详细介绍→https://www.instrument.com.cn/show/C511390.html 一、水质重金属检测仪使用注意:  1、在使用水质重金属测定仪之前,我们需要对仪器进行确认,这包括检查仪器的型号和测试范围是否符合标准,避免检测结果出现误差;  2、在进行测量之前需要对样品进行预处理,正确的预处理方法能够有效地去除样品中的干扰因素,使得测定结果更加准确;  3、测试时我们需根据所测试的样品来选择合适的功能,同时,还需要注意控制测试条件的稳定性和精度,以确保测定结果的可靠性;  4、测试完成后需要对重金属水质检测仪进行清洁和维护,保持仪器的良好状态,在清洁过程中,应使用适当的清洁剂和工具进行清洁,避免使用可能导致仪器损坏或污染的物质。  二、水质重金属检测仪优势:  1、精确性:水质重金属检测仪通过采用先进的分析技术和精密的传感器,能够提供高精度的重金属元素检测结果。它能够准确测量水体中的各种重金属元素,如铅、汞、镉、铬等,具备较高的测量准确性。  2、快速性:水质重金属检测仪具有快速测量的特点。它通常能够在短时间内完成对水样的检测,减少了等待结果的时间。这对于监测和应急情况下的水质评估非常重要。  3、便携性:水质重金属检测仪通常具有便携式设计,体积小巧,重量轻,便于携带和操作。它适用于户外野外工作和实地测试,可以灵活应用于不同的水体环境。  4、多功能性:水质重金属检测仪通常支持多种元素的同时测量,具备一定的多功能性。除了重金属元素,有些检测仪还可以测量其他水质指标,如pH值、溶解氧、温度等,提供了全面的水质分析功能。  5、易于操作:水质重金属检测仪通常具备简单易用的操作界面和操作流程。它们一般具备直观的显示屏和用户友好的菜单,使得操作人员可以方便地进行测试和结果查看。  6、数据记录和传输:水质重金属检测仪通常具备数据记录和传输功能。它们可以将测量结果进行自动记录、存储,并支持数据的导出和传输,方便后续分析和报告生成。  三、水质重金属检测仪参数介绍:  1、技术参数:  波长配置:420nm、470nm、520nm、560nm、620nm、700nm;  示值误差:≤±5%;  仪器稳定性:<0.5%;  仪器重复性:<0.5%;  光化学稳定性:20min内数值漂移≤0.002A(10万小时寿命);  2、物理参数:  比色方式:比色管(16mm消解比色一体管)、比色皿(10mm、30mm、50mm);  操作系统:Android7.1.1智能操作系统  操作界面:中文或英文操作界面;  显示屏:8英寸(1024*768分辨率)高清晰度彩色液晶触摸屏;  曲线数量:820条标准曲线、420条拟合曲线  网络接口:USB2.0、HDMI、WiFi、蓝牙、热点、RJ45;  云平台:仪器带有监管平台,连接有线/无线网络,检测结果直接传输至环境安全监管平台。  打印机:热敏行式打印机;  数据储存:800万组,可自由调用查看;  数据导出格式:Excel表格;  仪器尺寸:367x243x125mm;  仪器重量:5.3kg;  3、环境及工作参数:  环境温度:(5-40)℃;  环境湿度:相对湿度<85%(无冷凝);  额定功率:10W  工作电源:AC220V±10%/50Hz;  可配置:大容量锂电池。  治理水中重金属需要使用专业的水质重金属检测仪来实时监测水中含量和成分,从而制定针对性较强的治理措施,正确操作和维护重金属水质检测仪,这样才可以保证仪器的准确性和可靠性,为水质监测和保护工作提供有力的支持。
  • 哈希:重金属在线监测仪市场或将迎来爆发
    水质重金属在线监测仪是现场自动监测水中重金属污染物含量的在线监测仪器,该仪器市场是目前环境监测仪器市场中最引人注目的新兴市场之一。为让广大业内人士了解重金属在线监测仪技术发展情况,各品牌产品的特点,以及该类仪器目前的市场情况,仪器信息网编辑将陆续走访或采访水质重金属在线监测仪国内外主流供应商。   日前,美国哈希公司发布了HMA-TCR总铬在线分析仪、HMA-CR6六价铬在线分析仪、HMA-总铜在线分析仪3款重金属在线分析仪,仪器信息网编辑(以下简称:Instrument)就这3款新品采访了该公司中国区负责水质重金属在线监测仪产品线的产品经理周恒安。   Instrument:贵公司此次推出的重金属在线分析仪,为什么选择光度法,而不是阳极溶出法?   周恒安:在产品开发的前期,哈希对两种方法进行了很多比较,包括技术上的比较与市场需求方面的比较。我们觉得光度法比较符合目前的需求。光度法与阳极溶出法,其实各有各的优缺点,但综合评比起来,在总铬、六价铬、总铜的在线检测上,光度法的优势更明显。   阳极溶出法比较容易受到干扰,测到的数据比较不稳定,电极需要经常更换,如果是用于污染源废水监测的话,估计每半年就要换一次。用户需要打磨电极,电极打磨不好的话,也会影响到测试的准确度。目前阳极溶出法使用的电极基本是汞电极,电极本身含有汞,会带来较严重的二次污染。   相比而言,光度法的运行成本比较低,量程更宽,适用范围也比阳极溶出法更广,既可以应用在地表水,也可以用在废水排放口。   阳极溶出法虽然可以同时测多个参数,但是我们在对用户进行调查时发现,用户对多参数的重金属在线监测仪需求并不大。地表水监测是需要多参数的仪器,但数量更多的工业用户其实只需要针对特定参数的仪器,比如电子行业的用户需要测镍,或者只需要测铅,电镀行业只需要测总铬或者总铜。这些工业用户如果购买基于阳极溶出法的重金属在线分析仪,花钱多还不说,有的参数还用不上。所以综合下来,光度法会比较有用些。   Instrument:贵公司未来是否会推出基于阳极溶出法的重金属在线分析仪?   周恒安:对于哈希公司来说,我们追求的目标是提供给客户测量准确、操作安全简单且维护量低的产品。基于上述理念,我们会综合评估所有可能的测量方法及技术,选择其中我们认为最优的、能够给客户带来最大利益的方法开发成产品推向市场。目前在线重金属检测领域,可用于重金属检测的方法不仅仅包括光度法、阳极溶出法还包括X射线荧光法、原子吸收法、离子选择性电极法。对于后续的重金属产品的开发,我们会综合评估上述所有方法,找出最优。   Instrument:光度法测量结果的准确性可能会受到样品的浊度、色度、掩蔽剂等的影响,贵公司此次推出的新品是如何克服这些不利影响的?   周恒安:HMA系列(六价铬除外)均配有高温消解装置,能彻底消解水样,降低水中杂质及有机物干扰,能更好消除浊度、色度对测量的影响。我们曾经用浊度、色度很高的水样进行过实验,消解后水样变得很澄清。如果色度很高本身是因为水中重金属浓度过高导致,此时可以先稀释后测量,HMA系列本身是带有自动稀释功能的。而且仪器会自动选择稀释倍数,保证测量结果的准确性。   至于掩蔽剂的影响,主要通过仪器设计和试剂配方来消除。我们的试剂配方是哈希化学家们多年经验的沉积,并经过多次实验的优化。我们有数据证明我们的试剂配方可以消除各种常见的隐蔽剂的影响。我们会在产品使用手册中附带试剂配方,以方便用户自动调制试剂。   Instrument:为什么会选择总铬、六价铬、铜这三种参数,而不是汞、铅、镉、砷、锌、镍?   周恒安:这三款产品是专门针对中国的法律法规为中国用户开发的。之所以先推出这三种参数的监测仪器,是因为这三个参数的产品只需要在目前哈希成熟的产品平台上稍作改良就可以满足市场需求并成功上市了,且目前这三种参数的重金属在线监测仪的市场需求可能更旺盛。哈希后续也会推出监测镍、锰、铅、镉、砷等其他参数的产品。   Instrument:之前许多仪器厂商已经先于哈希推出了重金属在线分析仪,有的还取得了不错的销售业绩与市场份额。哈希在此时推出新产品是否稍微有点晚?   周恒安:其实就目前市场和法规的情况来看,推出时机倒还不算晚。虽然现在市场上有很多此类仪器,但国家目前还没有就此类仪器推出规范。因为没有规范去检验仪器,所以市面上大家都是各说各的好,市场并不规范,关键在于谁家的仪器能真正做到准确测量、稳定运行。这点哈希有信心在产品上市后取得优势。   Instrument:此次所推出新品的市场竞争优势是什么?哈希准备如何打开市场局面?   周恒安:哈希用了大量时间调研客户的需求,评估选择最优化的检测方法,因此虽然较其他品牌推出的时间稍晚,但我们还是有自身优势的。这一系列仪器零部件的选用,测量流程的设计,以及所用试剂的研发,都紧紧围绕着仪器的准确性展开。经过哈希多个研发中心综合评价,此次推出的这三款重金属在线分析仪在准确性与稳定性上具有优势。这三款产品的定价也考虑到目前市场上的情况,定价绝对合理,是一款拥有高性价比的产品。   哈希已经开始推广这些新品,一些工业企业已经在试用,同时我们也会通过参加各种活动深入环保单位去推广我们产品。另外,这些产品将搭配着哈希本来比较全的产品线一起出售,相信还是有机会在市场中占有一席之地的。   Instrument:未来几年(“十二五”期间),重金属在线监测仪的市场容量会有多大?   周恒安:按照相关“十二五”规划,这五年间国家会投入750亿元去治理重金属污染,用于相关清洁工艺的改造、监测设施建设等方面。我们预计750亿元中预计有至少30%的资金是用于水质分析仪器的购置,这还不包括企业自身在这方面的投入。   就在线监测而言,该类仪器的市场容量主要看国家政策导向以及地方政府对这些政策执行的力度有多大。我们乐观地估计,政府层面的资金投入预计有十分之一是用于购置重金属在线监测仪的。   Instrument:目前重金属在线监测仪市场似乎相对“寂静”,未来是否会迎来市场爆发?如果会有爆发,预计什么时候能够到来?   周恒安:目前市场相对而言还是寂静。未来如果国家对重金属污染防治抓得紧,确实是有爆发的可能。但如果相关法规落实不到位,那么这个市场就可能有平稳的、渐进式的增长。我们估计市场爆发的可能性还是很大的。   这两年,市场对重金属在线监测仪的需求会慢慢地增加。但从国家政策的颁布,到落实到地方政府,地方政府再制定相应的措施,最后再落实到环境监测部门与工业企业,是需要一个过程的。重金属在线监测是这个过程的最末端,所以如果按照这个流程,该类仪器的市场预计会在后面两年有较大增长。 (撰稿编辑:杨丹丹)   附录1:美国哈希公司   http://www.hach.com.cn   http://hach.instrument.com.cn/   附录2:哈希公司重金属在线分析仪介绍   http://www.hach.com.cn/qita/zhongjinshu.shtml   附录3:水质重金属监测仪专场   http://www.instrument.com.cn/zc/HeavyMetal.asp
  • 智能所开发出新型重金属离子选择性检测技术
    近日,中科院合肥物质科学研究院智能所仿生功能材料与传感器件研究中心973首席科学家刘锦淮研究员和中科院“引进海外杰出人才”黄行九研究员的课题组针对重金属离子的选择性电化学检测,创新性地提出了“选择性吸附产生选择性的电化学响应”的检测策略。   重金属离子污染一直是环境安全所面临的重大问题之一。其中,如何发展快速、高选择性地检测重金属离子方法成为了控制和处理重金属离子污染的关键环节。电化学检测方法以其响应速度快、灵敏度高等特点,成为最具应用前景的检测方法之一。目前通常是采用生物分子电极或通过层层化学自组装修饰电极等方法来提高电化学检测的灵敏度和选择性,但这些方法通常存在对环境要求苛刻、稳定性差以及操作复杂等问题。   智能所课题组研究人员合成了对汞离子具有选择性吸附的聚吡咯/还原石墨烯氧化物纳米材料,经过一系列试验,发现该纳米材料对汞离子具有选择性响应,其电化学响应规律与吸附过程具有高度一致的关联性,很好地诠释了“选择性吸附产生选择性的电化学响应”的电化学检测机理。本研究为设计和构筑基于纳米结构材料的高选择性电化学传感器提出了新的思路,尤其对揭示其中纳米结构材料的作用具有重要的指导意义。   相关研究论文已发表在英国皇家化学学会学术期刊《化学通讯》(Chem. Commun.)上,并受邀作期刊封底报道。审稿专家认为:“此工作提出了水中有毒金属离子检测的新方法,首次将纳米材料的吸附性能和电化学响应相关联起来,为有毒金属离子的选择性电化学检测开辟一种新的途径。这种方法非常可靠。”   以上研究工作得到了国家重点基础研究发展计划(973项目)“应用纳米技术去除饮用水中微污染物的基础研究”和中科院“引进海外杰出人才”百人计划项目等的支持。   检测示意图   《化学通讯》封底报道插图
  • 研究发现香蕉皮能净化水中重金属污染
    香蕉好吃且营养丰富,但大多数人可能不知道,看似“一无是处”的香蕉皮还蕴藏一些神奇的功能,比如保养皮具、擦亮银器等。此外,香蕉皮还可以吸附水中的重金属污染物。   巴西圣保罗州大学的研究人员发现,切碎的香蕉皮可有效去除饮用水中有害的铜、铅等重金属。用香蕉皮制成的水净化设备,即使连续使用11次,其吸附重金属污染的特性依然显著。   研究人员认为,香蕉皮能在水质净化领域发挥重要作用,因为同目前采用的净化方法相比,这一方法不但环保低廉,而且耐用性更好。   受矿冶产业和工农业污染影响,不少地区饮用水的重金属含量超标,严重危害人体健康。过去常用化学方法处理重金属污染,即在水中加入药剂与重金属反应,但这种方法不仅成本高,使用的药剂本身也可能有害。因此,开发廉价高效的水质净化方法是目前的一个科研难题。
  • 简易纳米黏合系统能速查水中重金属
    可用于检测食品中汞和镉等有毒污染物   据物理学家组织网9月9日报道,瑞士和美国的一个研究小组在纳米粒子的基础上,设计出一种简单的纳米黏合搭扣系统,其颗粒上附着的细毛可及时发现并捕获汞、镉等重金属分子。该技术使检测水中及食用鱼体内有毒污染物变得更为容易且廉价。研究结果发表在9月9日的《自然材料》上。   甲基汞是一种具有神经毒性的环境污染物,主要侵犯中枢神经系统,可造成语言和记忆能力障碍等。它很容易在河流和湖泊中发现,被湖中的鱼虾吞食后,毒素会顺着食物链累积到金枪鱼和箭鱼等大型掠食性鱼类中,如果被人食用则会累积在人体大脑中。美国、法国、加拿大的公共卫生当局建议孕妇禁食鱼类,因为汞会损害胎儿神经系统的发育。而问题是,甲基汞很难被检测出来,同时目前的监测技术过于昂贵和复杂。   瑞士洛桑联邦理工学院和美国西北大学的研究人员说,这项技术将一条覆盖着一层多毛的纳米粒子的玻璃浸入到水中,当离子也就是带正电的粒子如甲基水银或是镉离子,进入到两条毛线之间,毛线即会收拢起来,将其捕获。电压测量装置会显示捕获的污染物数量,原理是被困在纳米黏合搭扣内的离子越多,产生的电力便会越多。通过改变纳米毛线的长度,研究人员可以检测各种特定种类的污染物。   研究人员说,该测量设备的成本只有几百美元。如果在现场做分析,结果可以立即获得。而用传统的方法,还必须取样送到实验室,用价值数百万美元的设备进行分析。   研究人员分别在芝加哥附近的密歇根湖和佛罗里达州的大沼泽地进行了测试。在分析相同的样品之后,如此简易低廉的设备与美国地质勘探局的设备检测报告得出了近乎相同的数据结果。研究人员说,该系统可以作为一种必要的公共卫生措施,检测饮用水和食品,特别是在将鱼投放到市场之前进行必要检测。
  • 青岛成功开发水质重金属监测仪
    工作人员展示仪器   含重金属离子的废水是对水污染最严重、对人类危害最大的工业废水之一。12月9日记者了解到,青岛市正开发能自动监测水中重金属元素含量,并在线发送数据的仪器——水质重金属监测仪。这种机器可监测多种地表水和工业废水中含有的重金属离子,给环保帮上大忙。   12月10日,记者来到位于城阳区的水质重金属监测仪生产厂家,在厂房里看到了两个高约一点五米的“柜子”,这就是水质重金属在线自动监测仪。两台机器的外观相似,都由上下两个柜门、一个小型显示屏、一个类似自动取款机凭条口的小口组成。“两台仪器都是监测水中重金属元素浓度的,原理不同。左边利用的是光学法,右边利用的是电化学法。”该厂研发部的工作人员陈丽华告诉记者。   “光学法”指的啥?“不同的重金属离子和不同的药品反应,会生成新的物质,这些物质对各种光强的光吸收不一样。通过分析生成物对光的吸收量,就可以监测出离子浓度了。”陈丽华介绍说。电化学法就是把需要监测的水样中加上一些化学试剂,再插上电极,通电之后,这个构造相当于一个电池,会产生电压。离子的浓度不同,产生的电压也不同,通过已经设定好的浓度和电压的曲线关系来计算重金属离子的浓度。   记者看到,两台机器中间都固定着一个小容器,上方是两个泵,下方有五个贴着小标签的阀门,各个部件由细小的管子上下连通。陈丽华告诉记者,泵用来抽取水样和储存在下面“柜子”里的化学药品,打开阀门,泵会自动把需要的药品和水样抽到中间的反应杯里,结果经检测会在屏幕上显示。   陈丽华告诉记者,检测完之后的水样,如果重金属离子浓度大,会经过处理再排放出去,如果达标直接通过废水口排出。陈丽华告诉记者,“这台仪器可自动完成取水、反应、检测、显示结果等多个步骤,同时它相当于一台小电脑,把数据自动发送到外部连接的电脑上,随时报告水源地的重金属浓度,监测水质。”   “只要是排放废水的企业,这台机器都适用,环保局等环境监测单位也会用到它。”陈丽华告诉记者。据了解,目前电化学法在线自动监测仪正在改进中,预计2011年投入生产,光学法在线自动检测仪已经在东北、上海等地开始发挥作用了。
  • 岛津推出海水中微量重金属元素的直接分析方法
    目前,我国水体重金属污染问题十分突出。重金属通过矿山开采,金属冶炼,金属加工及化工生产废水,化石燃料的燃烧,施用农药化肥和生活垃圾等人为污染源,以及地质侵蚀,风化等天然源形式进入水体。重金属具有毒性大,在环境中不易被代谢,易被生物富集并有生物放大效应等特点,不但污染水环境,也严重威胁人类和水生生物的生存。   污染海洋的重金属元素主要有汞、镉、铅、锌、铬、铜等。海域受重金属污染,治理困难,应以预防为主,控制污染源;改进生产工艺,防止重金属流失,回收三废中的重金属,切实执行有关环境保护法规。对海域进行监测和监视是防止海域受污染的重要措施。 岛津公司长期关注环境污染问题,已拥有丰富的重金属元素检测手段和应用经验,为各国用户提供了一系列的相应解决方案。此次,为您介绍岛津公司推出的基于电加热原子吸收法的海水中微量元素的直接分析方法。在分析中使用的石墨炉原子化器GFA-EX7采用数字温度控制和数字气体控制,通过改造石墨炉和管道,可高精度地分析基体含量高的试样。本文介绍海水中重金属微量元素(Pb、Cd 、Cr)的分析。 有关“岛津电加热原子吸收法海水中微量元素的直接分析”的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_162812.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • “超级沙”可高效吸附水中重金属离子
    据英国广播公司(BBC)6月24日报道,美国科学家将普通沙子涂上便宜且来源丰富的氧化石墨,使其变身为“超级沙”,能有效地除去水中的汞和染料分子,普通沙子过滤10分钟就会饱和,而“超级沙”吸收重金属可超过50分钟,净水能力提高了5倍。这种成本低廉的实用产品可广泛应用于发展中国家,相关论文发表在美国化学学会出版的《应用材料与界面》杂志上。   参与此项研究的美国莱斯大学的高薇(音译)表示,当水被病原体、有机污染物和重金属离子污染时,普通粗沙的净化效率比细沙低,但细沙存在过滤速度慢的缺点。他们将具有很强吸附能力的氧化石墨同普通粗沙混合在一起放入水中,然后将混合物加热到105摄氏度,待水挥发掉,就得到了这种水流通过量大、净水效率更高“超级沙”。   该研究的领导者、莱斯大学的普利克尔阿加延表示,为了使该“超级沙”能有针对性地吸附污水中的某些有机污染物或特定金属,可对氧化石墨进行修改。   澳大利亚莫纳什大学的梅耐克马巨德表示,这项技术的另一优势是便宜,“超级沙”的性能可与市面上的活性炭相媲美,但却使用的是便宜且储量丰富的氧化石墨,如果能在室温下制造,会更具成本优势。   世界卫生组织(WHO)表示,撒哈拉以南非洲国家仅有60%的居民、大洋洲仅有50%的居民能方便地获得饮用水。用沙子净化水已有6000多年的历史了,这种涂了氧化石墨的“超级沙”有望让这些国家和地区的人民更方便地获得饮用水。
  • 中科院建立重金属离子可视化检测新方法
    中科院合肥智能机械研究所王素华研究团队近期在重金属离子污染现场快速敏感检测研究领域中取得重要进展,建立了可视化检测的新方法,并研制出新型的可视化传感器。相关研究成果分别发表在美国化学会的Analytical Chemistry、英国皇家化学会的Journal of Materials Chemistry和Nanotechnology国际期刊上。   痕量重金属离子检测目前主要依赖于原子吸收、原子荧光、电感耦合等离子体、质谱等实验室方法。尽管这些方法检测精度比较高,但仪器耗资昂贵、运行费用高、操作要求多,检测比较费时、费力,而且测量时需萃取、浓缩富集或抑制干扰等复杂前处理过程。   针对这些难题,智能所研究人员通过设计制备出针对汞离子的特异性有机螯合配体,与汞离子通过配体交换反应形成螯合物,进一步在发光量子点表面发生快速的阳离子取代反应,导致量子点的荧光效率发生改变,从而通过荧光强度和颜色的变化实现对汞离子的高灵敏选择性检测(Anal. Chem. 2012, DOI: 10.1021/ac302822c)。随着汞离子浓度的增加,荧光发射峰位逐渐向长波方向移动,同时伴随着量子点的黄光会逐渐演变成红光(如图示)。研究人员进一步设计并组装了针对汞离子的纸质传感器,实现了对纯水、自然湖水中汞离子的快速可视化检测。   研究团队提出的可视化检测方法具有不依赖大型贵重的分析仪器、可进行裸眼观测、响应时间快等优点,能够实现痕量重金属离子的现场快速可视化检测。   研究人员又设计并研制了一种基于发光氧化石墨烯的新型比率荧光纳米复合探针,通过探针不同颜色荧光的比率变化,可将其应用于可视化检测分辨不同价态的铁离子(Fe2+)。在紫外光照下,随着Fe2+浓度的增加,探针的荧光颜色从红色变为蓝色,从而实现对Fe2+的可视化检测(Nanotechnology 2012, 23, 315502)。此外,研究团队还通过对氧化石墨烯的多层规整自组装,研制出了由多层氧化石墨烯组装的电极材料,结合电化学原理,可实现对铜离子的高选择性和敏感检测(Journal of Materials Chemistry 2012, 22, 22631)。   该研究得到国家973项目“应用纳米技术去除饮用水中微污染物的基础研究”、国家自然科学基金委及中科院“百人计划”支持。 图示:针对重金属汞离子的现场快速可视化检测
  • 重金属和有机污染物检测一周缩至半天
    南方日报讯 重金属和有机污染物检测由一周缩到半天,将大大提高突发性水污染应对速度。记者昨日从佛山水业集团获悉,长达两年的北江水污染防治课题研究通过专家组评审,该研发结果拟在国内其他水厂推广。   2009年6月佛山水业集团与中山大学合作,开展长达两年的课题研究,针对北江流域实际情况,从各类水源污染物着手,探讨各类的化学污染物的现代快速监测分析方法,为应对突发性水污染,建立快速预警和应急反应体系提供技术支持。该项目负责人佛山水业集团水质监测中心主任黄剑明介绍,本课题研究立足于北江流域水资源及相关污染的一些特征,建立以GC-MS、ICP-MS和LC-MS为主的有机物、无机金属快速全面准确的监测分析方法集成 建立5套快速广谱检测水中金属、挥发性有机物、半挥发性有机物及有机氯有机磷农药的检测方法。   “利用这项目技术,可以对超过200种重金属和有机污染物进行快速检测,检测种类覆盖国家相关饮用水和地表水标准中规定的重金属和有机污染物,检测时间由常规检测方法的一周缩短到半天。”黄剑明表示,这意味着一旦发生水质污染事故,可实现快速鉴别引起事故发生的污染物质类别是否在目标物内、估算污染物的浓度、快速监控污染物的种类和浓度变化,为突发污染事故的处理与处置提供了有力的技术支持。
  • 重金属镍在线监测最新应用动态来啦!
    1背景介绍 镍具有磁性和良好的可塑性和耐腐蚀性,广泛用于飞机雷达等各种军工制造业、民用机械制造业和电子电镀工业等。然而,镍摄入过多会导致人体皮肤炎、呼吸器官障碍及呼吸道癌症,也会对环境产生较大的污染。正因为此,镍被列为第一类污染物,国家制定了相应的标准,严控涉镍企业排出污水中总镍污染物的浓度。因此镍指标的监测非常重要。表1 相关水环境质量标准和行业标准规定的镍排放限值2镍的在线监测技术目前镍的测量方法主要有原子吸收分光光度法(AAS)、电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-AES)、化学比色法和电化学分析法,但是AAS、ICP-MS等方法无论是设备费用还是设备运维维护费用,成本较高。目前国内外真正应用于水中金属镍在线监测技术主要是化学比色法和电化学分析法。化学比色法:比色法还可分为丁二酮肟分光光度法和双硫腙分光光度法。丁二酮肟分光光度法准确度高、重现性好,测量范围较宽,仪器结构和操作较为简单。但是灵敏度较低,合适于高浓度废水中镍的检测——例如电镀废水、采矿废水和钢铁冶炼废水等在线监测。部分厂家采用双硫腙分光光度法,但是双硫腙试剂是剧毒品,采购困难。电化学分析法:检测限低,可以对水中μg/L数量级的镍进行精确地定量分析。但是其检测条件苛刻,仪器操作难。表2 国内和行业水质中镍的测定标准方法3镍在线监测痛点1. 目前市场上很多产品对高色度、浊度和成分复杂的水样的预处理和抗干扰能力较差,测量不准确。2. 检测出的并不是水样中的总镍含量,只是简单的游离态镍(镍离子),消解不完全或无消解过程,测量数据不可靠(仅能测准标液)。3. 定量下限较高,无法满足城镇污水处理厂总镍的排放要求。4应用情况监测设备:PhotoTek 6000 总镍水质自动在线监测仪应用场景:近年来,电镀在冶金、机械、电子等领域不断有新的配套进展,然而,电镀生产过程中产生了包括酸碱废水、含氟废水、金属废水、有机废水、氰化物废水等。这些废水必须经过处理达标后才能排放。长期以来,电镀行业一直是生态环境部门重点监管和规范整治的污染行业之一。浙江省某电镀园区采购了数台PhotoTek 6000 总镍在线监测仪,用于进出口废水总镍的监测。去年9月安装至今,用户反馈仪器稳定运行,测量数据准确。定期核查标液,结果偏差在3%之内。应用现场和运行数据如下:应用现场图 图2 PhotoTek 6000总镍在线监测仪现场运行部分数据关于朗石朗石是水质监测领域公认的技术领先企业,自成立以来一直潜心研究重金属监测技术:阳极溶出伏安法、化学比色法、冷原子吸收法以及适应各种应用场景的前处理技术。产品系列齐全,环境保护产品认证证书齐全,监测参数包括铅、汞、镉、总铬、六价铬、砷、锌、铜、镍、锰、银、铁等,覆盖了国内现阶段重点关注的重金属污染物,可以满足不同场景的应用,为了满足运维需要,还推出了WEIMS智慧运维平台,欢迎前来咨询。
  • 国产原子光谱检测污水重金属新方法通过验收
    上海市科委于2010年11月23日对中国科学院上海硅酸盐研究所承担的“改性介孔材料分离富集和原子光谱鉴定污水体系重金属的新方法研究”(项目编号:09142201800)项目组织并通过了验收。   该项目是上海市科委2009年度投入的十项国产科学仪器应用新方法之一。是基于上海光谱仪器有限公司研发生产的流动注射分析系统与SP-3801型火焰原子吸收光谱仪平台上研发的一种针对污水与废水中重金属检测的新方法。   专家组听取了项目总结报告、技术报告和验证报告,审阅了有关技术资料后一致认为:通过改性获得介孔材料,利用一步合成法进行改性后对Hg(Ⅱ)有较高的选择性吸附 基于改性的介孔材料,建立了国产流动注射固相萃取与火焰原子吸收光谱法联用技术实现了在线分离富集Cu(Ⅱ) 、Cr(Ⅵ) 、Cd(Ⅱ)、Hg(Ⅱ)等痕量分析方法 建立了“胺基改性介孔材料对废水中Cr(Ⅵ)在线分离吸附与火焰原子吸收光谱法测定”的方法。该分析方法具有低成本、快速和绿色环保的特点,并能显著提高检测灵敏度 完成促进了国产流动注射分析系统与火焰原子吸收光谱仪联用技术的发展,将有利于拓展国产仪器的应用。项目研究成果在国内核心学术期刊和学术会议上已发表论文3篇。
  • 重金属检测与监测仪器市场“被引爆”
    2011年7月21日,涪江上游普降暴雨,四川省阿坝州松潘县境内一电解锰厂尾矿渣流入涪江,涪江沿岸江油至绵阳段城乡过百万居民饮用水受影响。而2010国内年相继发生了江苏大丰、四川隆昌、湖南嘉禾、甘肃瓜州、湖北崇阳、安徽怀宁等多起血铅事件。据统计,自2009年以来中国已连续发生30多起重特大重金属污染事件。 更多信息请点击专题:重金属检测与监测仪器市场“被引爆”   面对重金属污染高发态势,中国政府已将治理重金属污染正式提上日程。在2011年2月,《重金属污染综合防治“十二五”规划》(以下简称:《规划》)成为第一个被国务院正式批复的“十二五”国家规划。该规划明确了我国“十二五”期间重金属污染防治的总体目标与政策方向,将对我国重金属污染防治产生广泛影响。   《规划》:总量控制5种重金属,锁定138个重点防护区、4452家重点防护企业   此次《规划》中进行重点监控与污染物排放量控制的重金属主要有5种,即汞、铬、镉、铅和类金属砷。   按照《规划》要求,到2015年,“重点区域”铅、汞、铬、镉和类金属砷等重金属污染物的排放,要比2007年削减15% “非重点区域”的重点重金属污染物排放量不超过2007年水平。   所谓“重点区域”,包括内蒙古、江苏、浙江、江西、河南、湖北、湖南、广东、广西、四川、云南、陕西、甘肃、青海等14个重点省份和138个重点防护区。   此外,《规划》还确定了4452家重点防控企业,这些企业分布在采矿、冶炼、铅蓄电池、皮革及其制品、化学原料及其制品等五大重金属污染防治的重点行业。   由于《规划》具体内容并没有对外公布,所以公众并不知道这些重点防护区、重点防控企业具体是哪些。但值得注意的是,环保部近日开始披露相关信息:7月22日,环保部发布《2011年上半年重点流域水环境质量状况》,该公告特别披露了19个地表水国控断面的重金属超标情况;8月1日,环保部公布了2011年铅蓄电池生产、组装及回收(再生铅)企业名单(详情请参见附录1)。未来环保部可能还会持续披露相关内容,仪器信息网将持续关注。   我国重金属检测与监测仪器市场需求将大增   环保部部长周生贤在接受《中国环境报》采访时曾说到,“十二五”重金属污染防治的目标是通过未来5年内国家计划投资750亿元,建立比较完善的重金属污染防治体系、事故应急体系和环境与健康风险评估体系。重金属污染检测与监测体系作为该体系的重要组成部分,起到评估与预警的重要作用,国家自然也会在相关检测与监测仪器方面加大投入。此外,各大涉“金”企业也会在相关仪器方面增加投入。因而,预计我国重金属检测与监测仪器市场需求将大增。   当前,用于重金属污染控制的仪器大致可以分为三类:(1)实验室重金属检测仪器,包括原子吸收、原子荧光、ICP等;(2)在线重金属监测仪器,如水质重金属在线分析仪、大气重金属在线监测仪等,此类仪器的最大特点是能够进行连续自动检测,主要安装在水体或大气介质中,目前尚无可对土壤中重金属实现实时监测的相关仪器;(3)便携式重金属检测仪器,包括XRF、便携重金属分析仪等。   以上重金属检测与监测仪器供应商既有国内的,也有国外的(详情请参见附录2:部分重金属检测与监测仪器国内外生产厂商);相关仪器既有高端的,也有中低端的。各用户单位拥有很大的选择空间。而许多厂商也在仪器信息网上展示了他们的各种相关仪器或解决方案,例如:    朗石便携式重金属测定仪助力8.16全国环境应急监测演练    天瑞产品全方位支持重金属检测    北京普立泰科仪器有限公司展示重金属汞的检测方案    PerkinElmer:2011 重金属检测技术    岛津推出海水中微量重金属元素的直接分析方法    赛默飞世尔科技:环境中持久性有机污染物及重金属解决方案    隆力德展出加拿大AVVOR重金属检测仪    德祥推出EE石墨消解系统 重金属检测项目操作带来质的飞跃    百灵达(Palintest)推出新型重金属检测仪    德国耶拿公司推出WEEE&RoHS法令中有害重金属分析解决方案――直接固体进样技术    牛津仪器新款手持式XRF光谱仪,满足土壤中重金属分析的要求    国内首台瑞士万通ADI 2045 VA 重金属在线监测仪顺利安装   仪器信息网编辑视点:   原子荧光或领涨实验室重金属检测仪器细分市场   实验室重金属检测仪器发展比较成熟,原子吸收、原子荧光、ICP等生产厂商众多,市场竞争之激烈自然是不言而喻的,各生产厂商自然都会有所斩获。但笔者认为,原子荧光的增长速度有可能高于其他仪器种类,且国产仪器厂商应当会继续占领优势市场位置。   之所以这样认为,是因为2010年举办的第一届全国环境监测专业技术人员大比武比赛项目中有一项即是采用原子荧光光度法测定砷和汞,采用的仪器即是国产仪器——原子荧光光度计。此项举动的意义在于,通过此次全国性质的、普及到各省地(市)级、县级环境监测站的政府部门活动,原子荧光光度计有可能成为站“拥”一台、环境监测系统测定重金属的一种“标配”,各地涉“金”企业为顺利通过环境监测部门的审查,自然倾向于采用与环监部门同种类的仪器。这对于推进原子荧光在基层环保单位及企业的普及应当是非常给力的。借着大比武的“余温”,原子荧光市场或被催化,进而领涨实验室重金属检测仪器各细分市场。   值得注意的是,原子荧光作为我国少数具有自主知识产权、技术水平超过进口产品的分析仪器之一,相关国产仪器厂商市场优势明显(请参见附录2)。《重金属污染防治“十二五”规划》的实施或许会让原子荧光国产生产厂商获得有利的市场环境,进而发展得更为强大。   市场需求将在“十二五”后期充分释放   作为第一个被国务院正式批复的“十二五”国家规划,《重金属污染综合防治“十二五”规划》虽早在2011年2月就宣布获得批复。但是,该规划的详细内容以及重金属污染的具体措施尚未对外公示。环保部部长周生贤强调,各省(区、市)政府要按照“一区一策”原则,编制各重点区域的重金属污染防治规划和年度实施方案,落实防治措施和资金 环保部还将会同有关部门制定重金属污染防治的考核办法,办法将明确地方政府为责任主体,要求各地把重金属污染防治成效纳入经济社会发展综合评价体系,并作为政府领导干部综合考评和企业负责人业绩考核的重要内容。   这样,《规划》从国家政策层面落实到地方政府,地方政府制定相应的措施,再将已制定的具体指标与措施落实到基层与企业,这需要一定的流程与时间。重金属检测与监测仪器作为重金属污染治理这条产业链的最后端,估计市场的响应时间会稍有滞后。预计到“十二五”的后期,重金属检测与监测仪器的市场需求才会充分释放。   (敬请广大读者批评指正:yangdd # instrument.com.cn)   附录1:2011年铅蓄电池生产、组装及回收(再生铅)企业名单 序号 统计类别 数量 1 北京市 7 2 天津市 16 3 河北省 105 4 山西省 9 5 内蒙古自治区 7 6 辽宁省 18 7 吉林省 4 8 黑龙江省 3 9 上海市 17 10 江苏省 484 11 浙江省 328 12 安徽省 102 13福建省 97 14 江西省 60 15 山东省 133 16 河南省 95 17 湖北省 56 18 湖南省 32 19 广东省 191 20 广西壮族自治区 15 21 海南省 0 22 重庆市 47 23 四川省 58 24 贵州省 1225 云南省 21 26 西藏自治区 0 27 陕西省 5 28 甘肃省 3 29 青海省 0 30 宁夏回族自治区 3 31 新疆维吾尔自治区 2 32 新疆建设兵团 0   合计 1930   附录2:部分重金属检测与监测仪器国内外生产厂商 仪器种类 国内生产/供应商 国外生产/供应商 原子吸收 北京北分瑞利分析仪器(集团)公司 北京普析通用仪器有限责任公司 上海光谱仪器有限公司 上海森谱科技有限公司 北京浩天晖科贸有限公司(北京瀚时制作所) 北京海光仪器公司 沈阳华光精密仪器有限公司 北京朝阳华洋分析仪器有限公司 北京东西分析仪器有限公司 北京瑞昌汇博科技有限公司 北京盈安美诚科学仪器有限公司 安徽皖仪科技股份有限公司 浙江福立分析仪器有限公司 上海精密科学仪器有限公司 上海天美科学仪器有限公司 北分谱齐中心分析仪器与自动化研究所 德国耶拿分析仪器股份公司 珀金埃尔默仪器(上海)有限公司(PerkinElmer) 赛默飞世尔科技 安捷伦科技有限公司(原瓦里安) 岛津国际贸易(上海)有限公司 英国可林化学有限公司 原子荧光 北京吉天仪器有限公司 北京海光仪器公司 北京东西分析仪器有限公司 北京金索坤技术开发有限公司北京普析通用仪器有限责任公司 中国地质科学院物化探研究所 北京北分瑞利分析仪器(集团)公司 欧罗拉生物科技有限公司 ICP 北京豪威量科技有限公司 上海泰伦分析仪器有限公司 北京海光仪器公司 北京华科易通分析仪器有限公司 北京纳克分析仪器有限公司 无锡市金义博仪器科技有限公司安捷伦科技有限公司(原瓦里安) 岛津国际贸易(上海)有限公司 赛默飞世尔科技 珀金埃尔默仪器(上海)有限公司(PerkinElmer) 法国HORIBA JobinYvon S.A.S 德国斯派克分析仪器公司 英国可林化学有限公司 利曼中国 重金属在线监测仪器 江苏天瑞仪器股份有限公司 深圳市朗石生物仪器有限公司 青岛佳明测控仪器有限公司 广州市怡文环境科技股份有限公司 北京利达科信环境安全技术有限公司 北京华夏科创仪器技术有限公司 中科天融(北京)科技有限公司 聚光科技(杭州)股份有限公司 长沙华时捷环保科技发展有限公司 河北先河环保科技股份有限公司 宇星科技发展(深圳)有限公司 安徽蓝盾光电子股份有限公司 德国WTW中国技术服务中心 / 厦门隆力德环境技术开发有限公司.. 加拿大AVVOR公司 XRF 江苏天瑞仪器股份有限公司 百学仪器(苏州)有限公司 北京京国艺科技发展有限公司 天津市博智伟业科技有限公司 四川新先达测控技术有限公司 深圳市华唯计量技术开发有限公司 北京普析通用仪器有限责任公司 深圳三思纵横科技股份有限公司 广东正业科技股份有限公司 德国斯派克分析仪器公司 牛津仪器(上海)有限公司 精工盈司电子科技(上海)有限公司 岛津国际贸易(上海)有限公司 德国布鲁克AXS 荷兰帕纳科公司 3V仪器(中国)有限公司 赛默飞世尔科技 HORIBA,LTD株式会社堀场制作所 EDAX Inc.美国伊达克斯有限公司 思特技术(香港)有限公司 便携式重金属分析仪 深圳市朗石生物仪器有限公司 青岛佳明测控仪器有限公司 加拿大AVVOR公司 英国wagtech公司 英国百灵达有限公司 备注:本表仅列举了部分厂商,不排除还有一些主流厂商没别列入,敬请见谅!(排名不分先后)
  • 我国大气重金属污染现状及检测标准的发展
    我国大气重金属污染的现状   我国的环境污染现状已使环境问题成为了公众焦点,其中难以降解的重金属污染以其对环境的破坏及人体的危害又成为焦点中的焦点。国务院于2011年2月19日批复了首个&ldquo 十二五&rdquo 专项规划&mdash 《重金属污染综合防治&ldquo 十二五&rdquo 规划》(以下简称《规划》),《规划》要求,重点区域重点重金属污染物排放量比2007年减少15%,非重点区域重点重金属污染物排放量不超过2007年水平。   《规划》的防治对象主要为铅、汞、镉、铬、砷等生物强且污染严重的重金属元素,以及铊、锰、铋、镍、锌、锡、铜、钼等重金属 《规划》防控的5大重点行业为:有色金属矿(含伴生矿)采选业、有色金属冶炼业、含铅蓄电池业、皮革及其制品业、化学原料及化学制品制造业,重点防控企业有4452家。同时,内蒙古、江苏、浙江、江西、河南、湖北、湖南、广东、广西、四川、云南、陕西、甘肃、青海14个省区被列为重点治理省区,其中,以湖南被列入重点监控的企业最多。另外,新疆、宁夏、西藏、贵州也有少量企业被列入重点监控。   环保部部长周生贤曾透露,未来5年,中央财政将以百亿元为单位增加对重金属污染防治的投资,而2012年环保部的重金属污染防治专项资金可达32亿元。另外,一些地方也规划了重金属防治计划和投资,如浙江省制定了《浙江省重金属污染综合整治规划》,整治区域和监控企业较国家规划均有所增加,不包括对关停企业的赔偿在内的治理投资将达28亿元。   对于重金属污染,由于大气污染物的无形无色,比之水中重金属易被人忽视,但实际上,根据第一次全国污染源普查结果,2007年全国大气中上述铅、汞、镉、铬、砷污染物年排放量已达约9500吨。这些重金属污染物可能通过呼吸,或迁移至水、土壤后,经食物链进入人体。   相关标准方法的发展   在大气颗粒物中金属元素的检测方面,目前国内外并存着原子吸收光谱法(AAS)、电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X-射线荧光光谱法、中子活化分析法以及质子诱导X射线发射光谱法等检测方法,其中,国内采用较多的有AAS法、ICP-AES法和XRF法。   大气颗粒物的组成成分复杂,颗粒物中不同金属元素的浓度范围相差很大,在数十甚至数百个ppm至ppt级的范围内,由于需要控制的金属元素不断增加,而部分元素的基准浓度或控制限浓度都非常低,因此对仪器及检测方法提出了较高要求。分光光度法、石墨炉原子吸收分光光度法等在一次检测过程中都只能检测一种金属元素,且对一般元素的检出限只能达到ppb级或亚ppb级,原子荧光分光光度法检出限可达ppt级,但同样只能检测一种金属元素。ICP-AES法能同时检测多种元素,其可检元素种类也多于AAS法,是一种相对较成熟的方法,但ICP-AES法对Se、Hg、Be、As、Pb、Tl、U等元素往往无法满足相应的控制限浓度的要求,必须与石墨炉原子吸收(GF-AAS)和汞冷原子吸收(CV-AAS)技术结合使用才能达到大部分元素的分析要求。XRF法的优势在于检测快速、简便、无需复杂的前处理工作、检测无损性、同时检测多种元素,因此其可以实现现场和在线监测,但XRF法的缺点也很明显,检出限仅达ppm级,检测对标样有依赖性,对样品量的要求使其需要一定的富集时间,也部分抵消了其现场优势。ICP-MS法可以实现多元素分析,具有灵敏度高、检出限低,分析取样量少等优点,它可以同时测量周期表中大多数元素,测定分析物浓度可低至纳克/升(ng/L)或万亿分之几(ppt)的水平,但也有着仪器价格高昂,使用难度和维护使用费用均很高,用于大气颗粒物金属检测时重现性不佳的缺点。   因此,目前我国在大气颗粒物中的金属检测方法标准方面,目前以针对一种金属元素检测的环境保护行业标准为主,而许多大气重金属检测仪器如天瑞大气重金属在线监测仪、聚光大气重金属分析仪等也参考了一些国际标准。   随着仪器及检测技术的发展,国内也开始制修订一些新的标准方法,目前,部分现有暂行方法正在修订,而基于电感耦合等离子体质谱法、电感耦合等离子体原子发射光谱法、原子荧光光谱法或氢化物吸收原子荧光光谱法、X射线荧光光谱法的新标准方法也均在同时制定之中。
  • 智能所饮用水重金属离子去除和电化学检测机理研究获进展
    饮用水中重金属离子的去除与检测,是21世纪人类面临的重大研究课题。重金属离子以多种形态存在于饮用水中,只要微量浓度即产生毒性效应,且具有持续性和放大作用。因而,发展高效去除和检测饮用水中的重金属离子的技术至关重要。   近期,中科院合肥物质科学研究院智能所仿生功能材料与传感器件研究中心973首席科学家刘锦淮研究员和中科院“引进海外杰出人才”黄行九研究员率领的课题组首次制备了具有蛋形水母状的γ-AlOOH(勃姆石)@SiO2/Fe3O4空心磁性微球,该磁性微球能够高效地去除水中的Pb2+,Cu2+,Hg2+,Cd2+,Zn2+等二价重金属离子,且能够通过磁性分离解决常规吸附剂难以回收利用的难题。同时,课题组科研人员采用蛋形水母状的γ-AlOOH(勃姆石)@SiO2/Fe3O4空心磁性微球修饰电化学电极,能实现对痕量Pb2+,Cu2+,Hg2+,Cd2+,Zn2+五种重金属离子实现高灵敏同时的电化学检测,且具有非常好的选择性和检测下限。课题组科研人员经过一系列论证表明,修饰电极的电化学行为和修饰材料的优异吸附性能之间具有相关性,并在此基础上提出了吸附-电化学还原-溶出的重金属离子检测模型,模型对于揭示纳米材料修饰电极的电化学行为具有极其重要的科学意义。   以上研究工作得到了国家重点基础研究发展计划(973项目)“应用纳米技术去除饮用水中微污染物的基础研究”、“面向持久性有毒污染物痕量检测与治理的纳米材料应用基础研究”、国家自然科学基金委重大研究计划“纳米制造的基础研究”、中科院“引进海外杰出人才”百人计划等项目的支持。相关研究结果已分别发表在英国皇家化学学会(RSC)的国际知名学术期刊《材料化学期刊》(J. Mater. Chem., 2011, 21, 16550-16557)和《化学通讯》(Chem. Commun., 2011, 47, 11062-11064)上。    蛋形水母状的γ-AlOOH(勃姆石)@SiO2Fe3O4空心磁性微球去除水中Pb2+的吸附容量曲线    蛋形水母状的γ-AlOOH(勃姆石)@SiO2Fe3O4空心磁性微球修饰电极实现对水中Pb2+,Cu2+,Hg2+,Cd2+,Zn2+五种重金属离子实现高灵敏同时检测
  • 农业重金属和新型污染物检测取得突破
    重金属、农药、化肥以及不断出现的新型污染物,侵蚀着我国农业资源环境。2012年,国家863计划启动了&ldquo 农业生境检测与修复技术研究&rdquo 项目,由西北农林科技大学牵头,目前,已在农业生境中重金属和新型等污染物检测技术上取得突破性进展。  该项目开发出无固定化点靶标的核酸适配体筛选技术与信号表达技术,结合分子探和无固定化点靶标SELEX技术,开发出基于纳米金粒子聚集的共振散射信号表达技术等。该方法快速、灵敏度高、选择性好、操作简便。对铅离子最低检测限远低于美国EPA和WHO对饮用水中铅最高含量标准,对汞离子、四环素、三价砷的最低检测限均低于美国标准,检测限低于国际食品最高标准检测浓度的2&mdash 50倍。相关成果发表在相关领域国际著名期刊上,被英国皇家化学学会关注,获得高度评价,目前已发表SCI论文14篇,申报发明专利11项。  结合纳米金烧制、金标抗体制备、试纸条组装以及免疫试纸条检测技术,项目组研制出快速检测各种农药的免疫金标试纸条产品,建立了吡虫啉、甲基毒死蜱、杀螟硫磷、水胺硫磷四个单通道农药金标试纸条检测体系,检测时间为5分钟。  国际农药免疫检测成本高、耗时长,课题组首次以抗吡虫啉、水胺硫磷、甲基毒死蜱的三种高效单克隆抗体为基础,结合胶体金免疫层析试纸条技术,研发出简易型农药三通道半定量免疫快速检测试纸条,检测时间为7分钟,在青菜、水和土壤的样品检测中,回收率大于88%。
  • 地表水重金属专项监测方案征求意见
    关于征求《地表水重金属专项监测方案》意见的通知   总站水字[2011]177号   内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省、重庆市、贵州省环境监测中心(站):   为配合《重金属污染综合防治“十二五”规划》的实施,结合2011年6月在京召开的重金属专项监测研讨会的有关精神,我站编制了《地表水重金属专项监测方案》(征求意见稿)(详见附件)。方案中监测断面由各省环境监测中心(站)根据重点区域情况设置,同时总站增加了部分重点区域内的国控监测断面(含“锰三角”地区15个监测断面),共计299个。   现就《地表水重金属专项监测方案》向你站征求意见,同时,请你站补充监测断面表中相关断面的具体地理位置(表中指标项为“所在地区”具体到某县、某乡镇、某村)和经纬度(详见方案中表5)。请于8月21日前,将意见或建议电子版发送至总站水室邮箱(Email:water@cnemc.cn),纸质版请邮寄至总站水室。   根据安排,我站拟定于今年9月份正式开展地表水重金属专项监测工作,具体开展时间和工作安排,我站将另行通知。   联系人:姚志鹏 电话:010-84943091   附件:《地表水重金属专项监测方案》(征求意见稿)   二〇一一年八月五日   地表水重金属专项监测方案   (征求意见稿)   中国环境监测总站   二〇一一年八月   一、 目的   为配合《重金属污染综合防治“十二五”规划》(以下简称“规划”)的实施,结合重点地区、重点企业重金属排放状况,以全面、准确、客观地反映重点地区地表水重金属污染状况为目的,通过开展重点地区地表水重金属专项监测工作,及时发现重点地区地表水重金属污染状况和潜在风险,为重金属环境治理提供数据支持和技术支撑,制定本方案。   二、 监测范围和期限   监测范围主要是《重金属污染综合防治“十二五”规划》中重点省份(内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省)的重点地区(名单见附表1)、“锰三角”地区和其他存在重金属污染风险的地区,同时增加重金属经常超标的国控地表水监测断面和饮用水源地断面。   地表水重金属专项监测工作,原则上由地市级环境监测站承担监测任务,结合《重金属污染综合防治“十二五”规划》开展为期5年的专项监测工作。   三、 监测断面设置原则   监测断面(点位)设置原则上采用现有国控、省控、市控断面,各省环境监测中心(站)结合本辖区内重点区域污染源排放情况设置监测断面(点位),主要原则如下:   1、重点区域内受现有或潜在重金属污染风险的主要干流、湖(库)体及一级支流的的国控、省控、市控断面   2、重点区域内受重金属污染潜在影响的河流型或湖库型的集中式饮用水源地   3、重点区域内受重金属重点污染源影响的河流设置监测断面。   4、将“锰三角”监测断面纳入到重金属专项监测之中   四、 监测指标   开展重金属监测工作前,各承担重金属监测工作的单位每年开展一次重金属全分析监测工作,筛选重金属特征污染物,作为当年度的选测指标。   1、监测指标   监测指标包括必测和选测指标,必测指标为:铅、汞、镉、铬(六价)、砷 选测指标:铜、锌、硒、镍、钒、铊、锰、钴、锑或其他当地特征污染物。   2、每年在枯水期开展一次重金属全分析工作,监测指标为:铅、汞、镉、铬(六价)、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑及当地特征污染物。   3、底泥监测,每年开展一次底泥全分析监测,监测指标与水体相同,监测结果不参与评价,作为水体中重金属含量的参考。   五、 监测方法   1.分析方法   我国重金属监测的标准分析方法主要以分光光度法和原子吸收分光光度法为主。由于我国环境监测仪器的分析能力近年来有较大提高,因此本工作主要推荐使用国内应用较多的原子吸收法、原子荧光法以及较先进的电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体-质谱法(ICP-MS)作为分析方法。   当选择原子荧光法、原子吸收法、电感耦合等离子体发射光谱法(ICP-AES)分析地表水中重金属指标时,可依据我国水环境中重金属监测常用标准分析方法进行(表1、表2)。由于我国目前缺少电感耦合等离子体-质谱法(ICP-MS)的现行标准分析方法,故选择电感耦合等离子体-质谱法分析地表水中重金属指标时,本监测方案推荐统一采用EPA标准分析方法 200.8(1994)《Determination Of Trace Elements In Waters And Wastes By Inductively Coupled Plasma - Mass Spectrometry》(电感耦合等离子体-质谱法测定水和废物中痕量元素)。   必测与选测重金属指标的推荐标准分析方法见详见表1、表2。   表1 5种必测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铅 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 汞 冷原子吸收分光光度法 HJ 597-2011水质 总汞的测定 冷原子吸收分光光度法 冷原子荧光法 HJ/T 341-2007 水质 汞的测定 冷原子荧光法(试行) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镉 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铬(六价) 二苯碳酰二肼分光光度法 GB7467-87水质 六价铬的测定 二苯碳酰二肼分光光度法 砷 氢化物发生 原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 表2 9种选测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铜 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锌 火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 硒 石墨炉原子吸收分光光度法 GB/T 15505-1995水质 硒的测定 石墨炉原子吸收分光光度法 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镍 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钒 石墨炉原子吸收分光光度法 GB/T 14673-1993水质 钒的测定 石墨炉原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铊 萃取石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锰 火焰原子吸收分光光度法 GB 11911-89水质 铁、锰的测定 火焰原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钴 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锑 原子荧光法 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8   2.前处理方法   2.1 样品采集   样品采集后均现场沉降30分钟,取上清液保存,24小时内回实验室分析。如现场不具备沉降条件的,可在24小时内回实验室沉降30分钟后取上清液测定。24小时内不能及时分析的,需酸化保存。   2.2 样品制备   样品均按照水和废水监测分析方法(第四版增补版)中前处理要求(除非国标有特殊规定要求),消解后上仪器进行测定。所有前处理消解过程中均不加氢氟酸。选用ICP-MS方法分析地表水中重金属元素时,前处理过程按照EPA200.8方法中相关要求进行消解处理,详见表3。   表3 ICP-AES与ICP-MS分析样品的前处理方法 监测项目 监测方法 前处理方法 方法来源 铅、镉、砷、铜、锌、镍、钒、锰、钴 电感耦合等离子体发射光谱法(ICP-AES) 取一定体积的均匀样品(自然沉降30min取上层非沉降部分),加入(1+1)硝酸若干毫升(视取样体积而定,通常每100mL样品加5.0mL硝酸)置于电热板上加热消解,确保溶液不沸腾,缓慢加热至近干取下冷却,反复进行这一过程,直到试样溶液颜色变浅或稳定不变。冷却后加入硝酸若干毫升,再加入少量水,置电热板上继续加热使残渣溶解。冷却后用水定容至原取样体积,使溶液保持5%的硝酸酸度。 水和废水监测分析方法(第四版增补版) 铅、汞、镉、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑 电感耦合等离子体-质谱法(ICP-MS) 前处理时,将水样摇匀,量取(100±1)ml水样于250ml烧杯中。加入2ml(1+1)硝酸和1.0ml(1+1)盐酸于上述烧杯中。电热板(置于通风柜中)上加热消解,加热温度不得高于85℃。消解时,烧杯应盖上带架的表面皿,或采取其他措施,保证样品不受通风柜周边的环境污染。在85℃持续加热,直至样品蒸发至20ml左右。在烧杯口盖上表面皿,以减少过多的蒸发,并保持轻微持续回流30min。待样品冷却后,将其全部转移至50ml容量瓶或A级具塞比色管中,用试剂水定容,加盖,摇匀保存。若消解液中存在一些不溶物可静置过夜或离心以获得澄清液。样品在上机前,应调节水样中氯离子的浓度,取20ml已制备的样品于50ml容量瓶中,用试剂水定容,混匀若溶液中溶解性固体含量>0.2%,需要进一步稀释,以防固体颗粒堵塞采样锥和截取锥。若执行的是直接加入程序,内标在上机前即加入样品中。因为无法估计不同基体对被稀释溶液稳定性的影响,所以一旦样品前处理完毕,应尽快进行分析。 EPA 200.8   3.方法选择原则   3.1各承担重金属监测工作单位依据现有实验室仪器条件,选择相应的重金属标准分析方法(表1,表2),具备ICP-MS与ICP-AES的监测单位可优先选用推荐的ICP-MS与ICP-AES标准分析方法,监测项目和前处理步骤见表3及方法文本。   3.2 若ICP-AES、火焰原子吸收分光光度法等方法检出限高于或接近地表水环境质量标准《GB3838-2002》中该重金属标准限值时,应选择检出限较低,灵敏度较高的石墨炉原子吸收分光光度法或ICP-MS方法。   3.3 若承担监测的单位不具备实验室仪器条件的,也可选用分光光度方法(国标)进行分析。   六、 监测时间频次   手工监测:每月1—10日 逢法定假日监测时间可后延,最迟不超过每月15日。每月开展一次。   重金属全分析在每年枯水期开展一次。   七、 数据报送及报告编制   各有关环境监测站20日前向相关省(自治区)环境监测中心(站)报送水质监测数据。数据报送参照附表3、4,各省(自治区)环境监测中心(站)审核后,在每月25日前暂以excel格式数据通过FTP(地址ftp://11.200.0.101)报送中国环境监测总站水室。“锰三角”地区监测结果按照原有的方式报送。   重金属全分析结果通过FTP报送总站水室。   八、 数据报送格式   报送监测数据时,若监测值低于检测限,在检测限后加“L”,未监测项目填写“-1”,超标项目由相关监测站组织核查,并向总站报送超标原因分析,数据报送格式表见附表4、5。   九、 质量控制和保证   监测数据实行三级审核制度,省站对报送的监测结果负责。   质量保证按照《地表水和污水监测技术及规范》(HJ/T 91-2002)及《环境水质监测质量保证手册》(第二版)有关要求执行。   十、 附表   表1:重金属污染重点区域 序号 省份 重点区域 1 内蒙古 巴彦淖尔乌拉特后旗 2 赤峰巴林左旗 3 赤峰克什克腾旗 4江苏 无锡惠山区 5 泰州姜堰市 6 泰州靖江市 7 泰州海陵区 8 浙江 温州鹿城区 9 温州平阳县 10 宁波鄞州区 11 宁波余姚市 12 嘉兴海宁市 13 台州玉环县 14 湖州长兴县 15 江西 赣州大余县 16 赣州南康市 17 上饶市上饶县 18 上饶弋阳县 19 赣州章贡区-赣县 20 南昌进贤县 21 赣州崇义县 22 河南 焦作济源市 23 三门峡灵宝市 24 安阳龙安区 25 洛阳栾川县 26 焦作孟州市 27 三门峡义马市 28 周口项城市 29 湖北 黄石市区 30 黄石大冶市及周边 31 襄樊谷城县 32 十堰郧县 33 荆门钟祥市 34 孝感大悟县 35 湖南 株洲清水塘及周边地区 36 湘潭竹埠港及周边地区 37 郴州三十六湾及周边地区 38 长沙七宝山地区 39 娄底冷水江地区 40 岳阳原桃林铅锌矿及周边地区 41 意义按桃江安化涉砷锑地区 42怀化沅陵、辰溪、溆浦等涉砷镉地区 43 邵阳邵东县 44 永州东安县 45 张家界慈利县镍钼矿开采区 46 常德石门县雄黄矿地区 47 广东 韶关乐昌市 48 韶关浈江区 49 清远清城区 50 珠三角电镀区 51 韶关大宝山矿区及周边区域 52 韶关凡口铅锌矿周边 53 汕头潮阳区 54 广西 河池金城江区 55 河池南丹县 56 河池环江县 57 四川 凉山会东县 58 凉山会理县 59 德阳什邡市 60 凉山西昌县 61 内江隆昌县 62 宜宾翠屏区 63 绵阳安县 64 云南 昆明东川区 65 红河个旧市 66 曲靖会泽县 67 怒江兰坪县 68 文山马关县 69 昆明安宁市 70 曲靖陆良县 71 保山腾冲县 72 红河金平县 73 玉溪易门县 74 陕西 安康旬阳县 75 宝鸡凤县 76 渭南潼关县 77 宝鸡凤翔县 78 商洛商州区 79 汉中略阳县 80 汉中宁强县 81 商洛洛南县 82 商洛镇安县 83 宝鸡陈仓区 84 甘肃 白银市 85 金昌金川区 86 陇南成县 87 酒泉瓜洲 88 陇南西和县 89 陇南徽县 90 嘉峪关甘肃矿区 91 酒泉玉门市 92 酒泉肃北县 93 西宁湟中县 94 海西格尔木市 95 西宁城东区 96 西宁大通县 97 吴中青铜峡市 98 锰三角地区 贵州松桃县、重庆秀山县、湖南花垣县   表5 重金属监测断面表(略)   表6 锰三角地区监测断面表(略)   表7 河流监测断面数据报送格式表(略)   表8 湖库监测点位数据报送格式表(略)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制