当前位置: 仪器信息网 > 行业主题 > >

塑料熔体速率仪

仪器信息网塑料熔体速率仪专题为您提供2024年最新塑料熔体速率仪价格报价、厂家品牌的相关信息, 包括塑料熔体速率仪参数、型号等,不管是国产,还是进口品牌的塑料熔体速率仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料熔体速率仪相关的耗材配件、试剂标物,还有塑料熔体速率仪相关的最新资讯、资料,以及塑料熔体速率仪相关的解决方案。

塑料熔体速率仪相关的资讯

  • 思尔达发布熔体流动速率仪新品
    RL-Z1B1+ 系普通材料型,RL-Z1B1- + 系耐腐型。 熔体流动速率测定仪(亦称熔融指数仪)是测定热塑性塑料在一定条件下的熔体流动速率的专用仪器。热塑性塑料的熔体流动速率(熔融指数)是指热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积,用MFR (MI)或MVR 值表示,它可区别热塑性塑料在熔融状态下的粘流特性。对热塑性塑料及化纤的原料、制品等产品的质量保证,有着重要的意义。本机控制温度精度高,关键零件氮化处理,强度、硬度高,变形小,这对精确测定流动速率提供了良好的条件。RL-Z1B1-型的料筒、活塞杆、口模及相关零部件均采用了航空发动机用的特殊材料,耐腐蚀性能好,甚至能用于测试F46(四氟乙烯六氟丙烯聚合物)等材料。 各国都对测试温度的精度作了相应规定,其中ASTM定为±0.2℃,ISO定为±0.5℃,JIS定为±0.2℃,我国规定为±0.5℃。 本仪器符合ISO1133:1997(E)、ASTMD1238-95、JIS-K72A以及国家标准GB3682-2000、JB/T5456、JJG878和其它相应标准制定的技术指标。 RL-Z1B1熔体流动速率仪是在RL-Z1B型的基础上对结构作进一步改进而成的。一. 主要技术参数1. 温度控制范 围 100 - 400℃ 准 确 度 不劣于±0.2℃(125℃~300℃内) 国际标准ISO1133,GB3682规定的试验温度:125、150、190、200、220、230、250、265、275、280、300℃ 波 动 不劣于±0.1℃(国家检定规程JJG878规定,不得超过±0.5℃) 8h 漂 移 ≤0.1℃ (国家检定规程JJG878规定,4h内不得超过±0.5℃) 分 布 ≤0.5℃ (国家检定规程JJG878规定,不得大于1℃) 分 辨 率 0.1℃ 误差修正 随机2. 加料后料筒温度恢复时间≤4min3. 计 时 钟 范 围 0~9.999s~999.9s~9999s; 分 辨 率 0.001s/0.1s/1s4. 切割装置4.1 自动切割装置切割:定时切割0~999s4.2 手工切割刀切割5. 口模内径 Φ2.095±0.005mm16. 料筒内径 Φ9.550±0.020mm7. 负荷: 精 度 不劣于±0.5% 组合负荷:325g,1200g,2160g,3800g,5000g,10000g,12500g,21600g(根据ISO1133、GB3682全配备)8.国家标准样品(PE)试验: 重复精度 ≤2%(国家检定规程JG828规定,不超过8%) 准 确 度 ≤5%(国家检定规程JJG828规定,不超过±10%)9. 测定范围 0.02~2000g/10min(自动测试时) 0.03~50000px3/10min(自动测试时)*能保证在预热恒温时,熔料不流出的情况下;手动切割测试时由于存在人体反映速度,对高流动速率值有较大影响。10.电 源 220V,AC,50Hz,6A11.外形尺寸 1×b×h=520×410×890mm312.重 量 主机40Kg,砝码箱25Kg二.主要构造 本仪器主要是由电脑系统、检测装置、负荷、自动测试机构及电动切割装置五大部分组成。1. 检测装置(附图1)1.1 料筒* 采用氮化钢材料,并经氮化处理制作,HV≥700。1.2 料杆(活塞杆)* 采用氮化钢材料,并经氮化处理制作,HV≥600,料杆头部比料筒内径均匀地小0.075±0.015mm,顶部装有一隔热套,使料杆与负荷隔热,在料杆上有二道相距30mm的刻线作为参考标记,它们的位置是:当料杆头下边缘与口模顶部相距20mm时,上标记线正好与料筒口持平(见图2)。1.3 口模*Φ2.095±0.005mm,HV≥700。*RL-Z1B1- 耐腐蚀型,由制造航空发动机的特殊材料制成。创新点:电动加载砝码,触摸屏,自动计算打印
  • 一种新型磁性材料可快速去除水环境中的微纳塑料
    从河流到湖泊,从大江到海洋,有着“白色污染”之称的塑料垃圾对人们的生活环境造成了严重的污染,而微纳尺度的塑料作为一种新兴的污染物更是对环境和人体健康具有潜在的危险性。面对这些潜在威胁,开发出高效去除水环境中微纳塑料的技术迫在眉睫。广西科学院生态环境研究所环境新型污染物综合治理与生态修复创新团队李婉赫研究实习员、黄慨研究员、王俊教授等开发了一种新型磁性材料,可对水环境中的微纳塑料进行快速去除,该项研究成果近日发表在国际期刊《整体环境科学》上。“团队开发的这种新型磁性材料主要针对安全饮水领域,尤其是纳米级塑料颗粒的处理。”黄慨说。新型磁性材料具有亲水和疏水特性作为一种人造材料,塑料被广泛应用于国民经济各个行业,在工业、农业、交通运输等多个领域发挥着不可替代的作用,但也带来了严重的环境问题。“微纳塑料在水生环境中广泛分布已是不争的事实,它会对人类健康构成潜在威胁。”黄慨表示,由于微纳塑料体积小,很容易被水生生物吸收,最终进入食物链而对终端消费者人类产生危害。同时微塑料在水中还会从周围环境中吸附其他有毒污染物(比如重金属和永久性有毒物质),这会造成微纳塑料的毒性成几何倍数放大。因此,如何解决水环境微塑料的污染问题,探索有效去除水中微塑料的策略势在必行。“塑料颗粒纳米化后,其在水体中的分散作用更强,疏水性变弱,常规的吸附材料难以在水体中有效地吸附纳米级塑料颗粒。”黄慨说。为此,团队设计并研制了一种具亲水和疏水特性的双亲性吸附材料,该材料既能在水体自由分散又能寻找并吸附塑料微粒,从而实现高效去除和实现生态环境修复的目标。李婉赫介绍,双亲性磁性材料是一种具有化学不对称性的磁性粒子,其表面具有两种或两种以上性质相反的化合物。这种不对称赋予了粒子独特的特性,使材料表面同时具备亲水/疏水、极性/非极性等特点。双亲性磁性janus粒子结构示意图,表明它具有两种亲水疏水基团结构。受访者供图“团队开发的这种新型双亲性磁性材料,以磁性微球为原料,通过皮克林乳液定向控制和磷酸基高分子定向表面修饰,得到的一种单侧花状结构的双亲性磁性粒子。这种粒子具有适宜的电动电势(Zeta电位)和接触角,亲水侧有利于在水环境中充分分散与其他粒子接触,疏水侧则表现出较强的吸附带负电荷塑料粒子的能力。在磁场中,这种双亲性磁性粒子能够实现快速分离,从而完成对水环境中微米级/纳米级塑料微粒的富集与分离。”李婉赫说。未来能广泛应用于水环境中的吸附治理与其他吸附材料相比,此次合成的这种新型磁性材料用于吸附微纳塑料有何优势?“这种新型磁性材料的优势在于对低浓度高度纳米化的微纳塑料具有更显著的吸附能力,亲水侧有利于充分分散接触,疏水侧有利于吸附目标物,在磁场作用下能快速聚集分离。目前从吸附动力学和热力学研究上看,它吸附聚苯乙烯(PS)微粒的吸附速率为每分钟0.759,吸附容量达到每克能吸附2.72克聚苯乙烯微粒,而它吸附聚乙烯(PE)微粒的吸附速率为每分钟0.539,吸附容量达到每克吸附2.42克聚乙烯微粒,这些吸附能力数据比非双亲性吸附材料都要高,因此它在处理聚苯乙烯和聚乙烯两种微纳塑料方面具有更强的竞争优势。”李婉赫说。作为该团队的最新研究成果,该新型双亲性磁性材料在许多领域具有实用价值。“我们开发的新型双亲性磁性材料,不仅可以应用于水环境中微纳塑料颗粒的吸附治理,未来也能应用于水环境中抗生素和其他永久性有机污染物的吸附治理,团队正逐步对相关应用领域开展研究工作。”黄慨说。该团队经过研究还发现,此次研究开发的新型吸附材料,对聚苯乙烯和聚乙烯两类带负电荷塑料微粒表现出强的吸附效果,而对于其他带正电荷塑料微粒的吸附效果不明显,比如吸附带正电荷(MR)的能力就很弱。“相关的甄别研究工作是下一步研究的重点。”黄慨表示,未来,团队将会设计强化亲水侧作用的吸附材料,同时完善材料甄别更多目标物的吸附能力,掌握更丰富的吸附数据,构建各类型塑料微粒的吸附数据库。同时团队与自来水厂合作开展集成设计去除塑料微粒的装置模块,为今后大规模工程化应用研究提供基础数据。
  • ECHO发布固体在生(回收)燃料生物降解呼吸仪(土壤/堆肥/塑料)新品
    固体在生(回收)燃料生物降解呼吸仪DRI技术使用真实动态呼吸指数(DRI)确定检测固体再生(回收)燃料的当前有氧微生物活动速率。 目前的好氧微生物活动率测量固体再生(回收)燃料的实际化学和物理性质下的生物稳定性。n 固体在生(回收)燃料固体在生(回收)燃料(SRF,也称为“垃圾衍生燃料”- RDF)是由非危险废物准备的固体燃料,用于焚烧或混合焚烧厂的能量再生(回收)。“准备好”在这里意味着加工,均质化和升级到可以在生产者和用户之间交易的质量。它们可以来自家庭垃圾,商业垃圾,工业垃圾和其他可燃垃圾。它们已被用于替代水泥窑,发电站和工业锅炉中的化石燃料。 n 原理固体在生(回收)燃料生物降解呼吸仪DRI测量O2来确定在确定的连续气流和绝热条件下可降解有机物质中微生物的活性。样品在密封的容器(绝热)中测量,产生由欧盟和其他标准确定的受控条件。 n 测试过程和控制该测试包括根据滞后的持续时间将样品保持在动态测试系统中观察1天至4天阶段(如果存在),以小时间隔(RDRI h)获取指数值。此外,如果在第四天结束时,RDRI趋势是恒定的或增长的,则通过获得至少其他24个值(RDRI h)来延长呼吸测量测试。连续气流式有氧装置,包括:l 气密密封的绝热反应器,最小操作体积以升表示,等于或小于以毫米表示且不大于30毫米的平均样品尺寸(例如,对于平均尺寸小于10毫米的样品,反应器体积是10升),反应器结构必须在离开反应器之前迫使输入空气穿过整个样品,避免混入输入空气和排出空气;l 反应堆气密性验证系统;l 曝气系统配有流量调节器和容量计;l 用于抽取废气中氧浓度的系统(%/v);l 数据采集系统以1小时间隔连续记忆测量参数,记忆的数据必须是在所考虑的间隔期间读取的所有值的平均值(至少60)。 n 符合国际/欧洲标准和用途l UNI 11184 - 通过DRI确定生物稳定性,生物稳定性决定了易于生物降解的有机物质分解 的程度。l EN 15590 - 通过DRI确定目前的好氧微生物活动速率,该方法估计了气味产生的潜力,载体吸引等。目前的生物降解速率可以用毫克O2 kg-1 dm h -1表示。l 固体废物降解的其他应用。 n 优点l 多通道系统:3, 或6或12通道, 测量三个相似的不同样本进行统计评估; l 即插即用设计(易于安装,使用和维护);l -每个容器中包含温度传感器;l 自动冷凝水去除系统;l 温度,流量,压力和湿度测量;l 传感器O2:范围0-25%,精度:2%;l 各种尺寸的容器:2l,10l,20l,30l;l 用户友好软件与excel导出文件;l 远程电脑控制;l 气泵;l 无需特殊连接;l 适用于不同领域的各种应用;l 选配传感器,如二氧化碳或甲烷,用于详细过程分析和监控;l 用于容器,控制器和PC的机架(支架); n 技术规格l 尺寸 - 控制器:48 x 40 x 28 cm;重量:17kg;l 尺寸 - 容器支架:140 x 60 x 150 cm;重量:50kg;l 尺寸 - 10升容器:42 x 42 x 45 cm;重量:9kg;l 尺寸 - 2升容器:33 x 33 x 28 cm;重量:5.5kg。 n 亿斯埃欧呼吸仪DRI软件创新点:检测固体再生(回收)燃料的当前有氧微生物活动速率 多通道系统:3, 或6或12通道 固体在生(回收)燃料生物降解呼吸仪(土壤/堆肥/塑料)
  • 塑料拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,根据《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸模量 泊松比塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持对中装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10kN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2的1A型试样,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启试样保护,将夹持后的预应力消除,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,然后将引伸计清零,再以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后,停止测试,将引伸计卸除。测量过程中的力以及变形数据,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图8-试验曲线PP图9-试验曲线PP+EPDM+TD20图10-试验曲线ABS图11-试验曲线PC图12-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,模量大刚性高的样品,曲线斜率更大,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 塑料拉伸强度及伸长率试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、大变形引伸计,根据《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸强度及伸长率试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸强度 伸长率 标称应变塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的大变形引伸计具有响应快、精度高的特点,配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具大变形引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级) 加载试验速率:5mm/min、50mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2标准1A型哑铃状试样,中间平行部分宽度约10mm,厚度约4mm,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能消除样品夹持后的预应力,将大变形引伸计夹持在试样的中间部位后将引伸计清零,对应不同伸长率的样品分别以5mm/min、50mm/min的速度进行试验,直至样品断裂,设备监测到试样断裂后自动停止,设备将测量过程中的力以及变形数据完整记录,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果 图13-试验曲线PP图14-试验曲线PP+EPDM+TD20图15-试验曲线ABS图16-试验曲线PC图17-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,其中PP/PP+EPDM+TD20/PC/ABC试样有屈服现象,PA6+30GF无屈服现象,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、大变形引伸计,可以完全满足《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 新研究阐明微塑料在呼吸道沉积
    研究表明,人类每小时可能会吸入约16.2块微塑料,相当于1周吸入1张信用卡的塑料量。而这些微塑料通常含有有毒污染物和化学物质,吸入后可能会造成严重的健康风险,因此了解它们如何在呼吸系统中传播对于预防和治疗呼吸系统疾病至关重要。据13日发表于《流体物理学》杂志的论文,来自澳大利亚悉尼科技大学、伊朗乌尔米亚大学、孟加拉国科米拉大学等单位的一个国际研究团队开发出一种计算流体动力学模型,分析了微塑料在上呼吸道的传输和沉积特征。团队研究了不同形状(球形、四面体和圆柱形)和大小(直径为1.6、2.56和5.56微米)的微塑料在缓慢和快速呼吸条件下的运动。微塑料往往会聚集在鼻腔、口咽或喉咙后部的热点部位。研究人员解释说,呼吸道的形状复杂且高度不对称,加上鼻腔和口咽部复杂的流动行为,导致微塑料偏离流动路径并沉积在这些区域。流动速度、颗粒的惯性和不对称形状影响微塑料的总体沉积,并增加其在鼻腔和口咽区的沉积浓度。呼吸条件和微塑料大小影响呼吸道内总的微塑料沉积速率。流速越大,沉积越少,最大的(直径5.56微米)微塑料比较小的微塑料更容易沉积在呼吸道中。2022年,科学家首次在人类呼吸道深处发现了微塑料,这引发了人们对严重的呼吸道健康危害的担忧。研究人员强调,人们需要更多地意识到空气中存在微塑料及其对健康的潜在影响。他们希望这一结果能为靶向药物输送系统提供参考,并改善健康风险评估。
  • 探微知著:微塑料多维检测技术的发展与应用
    微塑料(Microplastic)的定义是指尺寸小于5 mm 的塑料颗粒、微纤维或者薄膜等。从目前的研究报道看,微塑料在环境中的分布已极为广泛,从深海到高山,从极地到赤道地区,几乎无处不在。近几年微塑料的环境影响引起了全球的关注,它们能够被多种生物摄取,通过食物链的传递可能对生态系统造成长期且复杂的影响。此外,微塑料还能吸附水中的有毒物质,如重金属和有机污染物,这些物质可能通过食物链累积并放大,最终对人类健康构成潜在风险。微塑料逐渐成为一种需特别关注的潜在环境污染物,越来越受到研究人员和公众的关注。 “微塑料”的概念最早于2004年《Lost at Sea: Where Is All the Plastic? 》文章中被首次提出。2012年《The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments》文章发表,红外光谱技术被引入微塑料的定性表征检测,很荣幸珀金埃尔默的Spotlight红外显微成像系统担任了文章中检测微塑料光谱信息的任务。 2017年中国重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”启动,同年3月份辽宁省海洋水产科学研究院起草发布了国内首个微塑料的检测标准《DB21/T 2751-2017 海水中微塑料的测定 傅立叶变换显微红外光谱法》。 △ 点击可查看大图 在微塑料科研和检测方法的发展过程中,珀金埃尔默始终和各行各业的客户合作,助力客户的科研和检测工作,改进完善微塑料的检测方案。 2018年,一项由新闻机构Orb Media组织的研究对全球11个国家的259瓶瓶装水进行了测试,结果显示其中93%的瓶装水样本含有微塑料。微塑料污染问题引起了国际社会的广泛关注,成为全球环境和健康议题的一部分。 微塑料相关领域的研究人员,采用了各种测试方法来确定微塑料在环境中的分布和来源。其中红外及显微红外光谱法,被用作检测和鉴别各种环境和样品基质中的微塑料的标准方法。珀金埃尔默的红外及显微红外已有完善的准确可靠检测方案,另外还充分挖掘不同检测设备的优势,将热分析-红外光谱-色谱质谱联用方法和单颗粒ICPMS方法引入微塑料研究,以提供微塑料多维检测数据,更好的服务于行业客户对全面表征数据的需求。 Part.1 ✦ ✦ 微塑料的红外及显微红外 光谱检测方案 ✦ △ 点击可查看大图 多尺寸 提供1.56微米以上多尺寸全光谱范围的微塑料的红外光谱法检测方案,可以根据测试尺寸要求的下限,自由选择不同的检测手段。现场检测大尺寸的微塑料,比如在船上直接检测拖网上的颗粒,可以直接使用红外光谱仪Spectrum 3或Spectrum 2。在实验室测试肉眼不可见的微米级别的微塑料,可使用Spotlight200i红外显微镜或Spotlight400红外显微成像系统。采用Spotlight200i红外显微镜,配合珀金埃尔默自主开发的微塑料自动分析统计软件,可以快速得到整张滤膜的微塑料的测试数据和尺寸统计等信息。下图是自来水样品过滤到滤膜上之后,整个滤膜全自动扫描微塑料光谱和微塑料自动计数的数据。 △ 点击可查看大图 测试10微米以下尺寸的微塑料,采用Spotlight400红外显微成像系统,配合ATR成像附件,最小可以原位测到1.56微米尺寸的微塑料。下图是海洋中贝类样品的小尺寸微塑料的ATR成像原位测试的数据。 △ 点击可查看大图 全光谱 珀金埃尔默方案提供微塑料完整的红外光谱图定性结果,光谱范围至少覆盖7800cm-1~600cm-1波段,保证谱图符合光谱学的定性三要素(特征峰位置、峰形状和峰强度),确保微塑料定性结果的准确无误。 其他使用局部波段的检测技术,会出现微塑料光谱图的误判情况,导致微塑料成分鉴定是不准确的。 △ 点击可查看大图 上图是高密度PE微塑料和ABS微塑料的全波段红外光谱图,在1900cm-1以上和900cm-1以下的波段有非常关键的特征官能团和指纹吸收峰(标阴影区域),如果只是采集中间局部光谱图,比如1900-900cm-1的谱图来定性微塑料,会缺少待测物质的特征信息,不符合光谱学的定性三要素,不能始终给出可靠的光谱学定性结果。 Part.2 ✦ ✦ 微塑料的热重-红外-GCMS 联用技术检测方案 ✦ 微塑料通常悬浮在水面,被生物摄入后进入食物链,并在体内蓄积。随着微塑料带来的环境问题越来越受关注,除了微塑料颗粒、纤维的定性定量研究外,越来越多的研究人员,也在研究微塑料吸附的污染物以及微塑料降解产物的成分相关信息。在研究开始早期,微塑料的热裂解气相色谱-质谱联用技术,被用于分析和鉴定微塑料及其裂解产物的分析。但是随着研究方法使用的深入,暴漏了一些方法的弊端,比如无法获得关于降解产物特性的充分信息,几乎无法获得关于降解产物形成时间的信息。 △ 点击可查看大图 珀金埃尔默将热重分析(TGA)-红外(IR)-气相色谱-质谱(GC/MS)联用方案引入微塑料研究,可以程序控制样品升温速率,实时分析微塑料基质中微塑料PE、PP、PS的总离子色谱图(TIC)数据热分解产生的产物,对逸出气体进行深入表征,获得更多关于降解产物特性的信息以及关于降解产物形成时间的详细信息。 下图为珀金埃尔默联用技术TGA-GCMS模式,悬浮液体中的微塑料(聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS))成分分析数据。 △ 点击可查看大图 另外珀金埃尔默联用技术的TG-IR模式,可快速的对可降解性塑料的成分进行界别,下面是可降解性塑料餐盘(上)和不可降解性塑料(下)的对比热红联用数据。 △ 点击可查看大图 Part.3 ✦ ✦ 微塑料的TGA-ICPOES 及单颗粒ICPMS技术检测方案简述 ✦ 微塑料吸附的污染物,有机污染物部分可以用前面所述的联机技术进行检测。可能吸附的无机污染物部分,可采用珀金埃尔默开发的TGA-ICPOES联用技术,对微塑料上吸附的重金属等无机污染物进行定性表征,如下图为微塑料的热失重和热重逸出气体的实时ICPOES响应曲线数据。 △ 点击可查看大图 单颗粒ICPMS(SP-ICP-MS)技术,也可作为一种快速筛选方式,作为微塑料表征手段的一种补充工具。 相比其他分析手段,SP-ICP-MS分析速度较快,可以在更短的时间内采集更多颗粒,并能提供粒度分布和颗粒浓度的更多信息。通过监测C13的信号,使用NexION系统的SP-ICP-MS,可以成功用作微塑料测定的筛选工具或补充技术。利用单颗粒ICP-MS分析技术采用的快速瞬时采集能力(NexION 系列ICP-MS高达100000点每秒),C13背景得以大大降低,从而实现纳微塑料颗粒的准确分析。将SP-ICP-MS与可鉴别微塑料成分的红外光谱技术相结合,可以获得有关微塑料的更全面信息。右图为SP-ICP-MS筛选塑料茶包中微塑料颗粒的分析数据。 △表1:塑料茶包中含碳颗粒结果 综上,珀金埃尔默仪器与解决方案,在微塑料检测技术的发展中扮演着关键的角色,不断推动各项测试技术的创新与更新。我们的微塑料检测方法开发团队不仅积极参与当前的研究工作,而且与不同行业的合作伙伴携手,共同推动检测标准的建立与完善。我们坚信,微塑料问题所在之处,正是珀金埃尔默技术和解决方案发挥作用的地方。珀金埃尔默的使命是致力于创造一个更加美好的未来,我们期望能够支持和帮助更多投身于微塑料研究和检测的科研工作者。我们共同努力,为了我们共同生存的地球环境的改善和可持续发展贡献力量。 关注我们
  • 警惕!人体47处被检出微塑料,或成健康研究下一个热点
    p style=" text-align: justify text-indent: 2em " 微塑料这一概念是在2004发表的一篇Science的文章(Lost at Sea:where is all the plastic)中首次提出。 strong 微塑料是一种会污染环境的微小颗粒,任何长度小于5毫米的塑料碎片都可以称为微塑料。 /strong /p p style=" text-align: justify text-indent: 2em " 目前微塑料可以分为大致两种,一种是进入环境前就已经小于5毫米的塑料碎片,一般来自清洗衣服后的废水。悉尼大学沿海城市生态影响研究中心发现,每洗一件衣服,就会冲洗掉1900多根纤维。其次是一些大型塑料的碎片污染,包括我们熟知的饮料瓶、渔网、塑料袋等。微塑料会通过各种方式转移到人体中,造成潜在的健康风险。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 497px height: 306px " src=" https://img1.17img.cn/17img/images/202008/uepic/de3d9add-ae58-4a8b-b79f-d9d204d8696f.jpg" title=" 企业微信截图_20200824094021.png" alt=" 企业微信截图_20200824094021.png" width=" 497" height=" 306" border=" 0" vspace=" 0" / /p p br/ /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " 微塑料已经入人体 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 近日,据外媒报道,来自美国亚利桑那州立大学的一项研究显示,在人体提取的47个组织样本,均发现了塑料颗粒。 /strong /span /p p style=" text-align: justify text-indent: 2em " 美国亚利桑那州立大学的查尔斯· 罗尔斯基(Charles Rolsky)表示, strong 现在地球上的塑料污染已经几乎无处不在,虽然有证据表明塑料正在进入人体内,还没有人研究这些材料在食用后如何在人体器官中堆积。 /strong /p p style=" text-align: justify text-indent: 2em " strong 该项研究提取了肺、肝、脾和肾中的47个组织样本,研究小组认为这些器官是最有可能遇到微塑料的器官。利用计算机编程、拉曼光谱和质谱的结合,能够从组织样本中识别和提取塑料,并生成颗粒计数数据、以及碎片的质量和表面积。 /strong /p p style=" text-align: justify text-indent: 2em " 利用这项技术,研究小组检测出数十种不同的塑料,包括聚乙烯、聚碳酸酯以及双酚A(BPA)。而所有的组织样本中都有双酚A,它曾经从矿泉水瓶、医疗器械到及食品包装的内里,可谓是无处不在,但由于潜在的健康危险引发了争议。 /p p style=" text-align: justify text-indent: 2em " 去年,世卫组织的的一项研究报告显示,人体不太可能吸收大于150微米的微塑料,估计对较小颗粒的吸收也有限。极小的微塑料颗粒的吸收和分布可能较高,但这方面的数据极其有限。 /p p style=" text-align: justify text-indent: 2em " strong 研究人员表示,虽然目前我们还不清楚这些微塑料会对人体带来什么影响,但是这项技术将有助于发现人体内的塑料并进行更深一步的研究,以揭示塑料污染对人体健康带来的危害。 /strong /p p style=" text-align: justify text-indent: 2em " strong br/ /strong /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " strong 我国微塑料污染现状 /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong 2019年,在我国发布的首部《中国海洋生态环境状况公报》中 /strong ,披露了我国海洋的污染情况和程度,其中包含针对渤海、黄海和南海海域,开展了4个断面的海面漂浮微塑料的监测工作,主要监测指标为平均密度、主要物质分类以及主要成分。此次 strong 检测到的微塑料平均密度为0.40-1.09个/立方米,主要为碎片、纤维和线,成分主要为聚丙烯、聚乙烯和聚对苯二甲酸乙二醇酯,可见我国海洋微塑料污染已逐渐严重。 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 今年,发改委和环境部联合发布《国家发展改革委 生态环境部关于进一步加强塑料污染治理的意见》 /strong /span ,其中指出:开展不同类型塑料制品全生命周期环境风险研究评价。 span style=" color: rgb(255, 0, 0) " strong 加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。 /strong /span strong 可见,国内已开始逐渐重视微塑料污染,微塑料及人体健康的相关研究,或将成为下一个热点。 /strong /p p style=" text-align: justify text-indent: 2em " strong 我国近几年对微塑料的研究也逐渐增多,但在研究中遇到诸多瓶颈及亟待解决的问题。 /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e8ce0aa5-0b79-46d6-bfe7-6055f65bac6a.jpg" title=" 12452a35-9722-4544-aa3a-17b8ebc1579b.jpg" alt=" 12452a35-9722-4544-aa3a-17b8ebc1579b.jpg" / /p p br/ /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " strong 微塑料解决方案提供仪器企业 /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong 在诸多仪器厂商中,目前赛默飞、安捷伦、珀金埃尔默、岛津、雷尼绍等均针对微塑料检测提供了仪器测试方法和解决方案。 /strong /p p style=" text-align: justify text-indent: 2em " strong 1.赛默飞 /strong /p p style=" text-align: justify text-indent: 2em " 对于微塑料的粒径大小、形状、腐蚀程度、颜色等物理形貌分析常用的方法主要是显微法和目检法。对于化学成分分析,目前常用的方法主要是显微红外法和SEM-EDX法。赛默飞显微红外光谱仪可以高效快捷的实现水体中微塑料的定性,给出区域微塑料成分含量的参考结果;SEM-EDX可对样品表明进行直接观测和分析;而拉曼光谱作为另一种重要的分子光谱技术,具有非接触、无惧水等特点,在微塑料的成分定性和颗粒统计中同样发挥着一定作用。与显微红外相比,显微拉曼在微小的塑料粒子或纤维片段分析中具有更高的空间分辨,且无需挑出样品,不受水分干扰。 /p p style=" text-align: justify text-indent: 2em " strong 2.安捷伦 /strong /p p style=" text-align: justify text-indent: 2em " 微塑料分析通常仅报告其颗粒数量。然而,塑料的易碎性使其在后续过程中很容易分解为许多尺寸更小的颗粒,因而这种方法在本质上存在缺陷且不准确。因此,报告中也应该包含颗粒的尺寸,在评估微塑料毒理学影响时,尺寸和丰度都应考虑在内。应该注意的是,微塑料对环境和健康的潜在影响随着颗粒尺寸的减小而增加。尺寸测量通常仅报告颗粒的最长尺寸而忽略了其形状,使长颗粒往往被认为与球形或其他形状的颗粒相同。为了实现更全面的了解,塑料的定量分析应该作为一个三维问题考虑:尺寸 × 形状 × 材料。 /p p style=" text-align: justify text-indent: 2em " 安捷伦激光红外成像系统、傅里叶变换红外光谱仪均可对微塑料进行检测。其中,激光红外成像系统可测试5cm*5cm区域超过1000个微塑料颗粒,测试完成仅需2个小时,扫描结束后即得到测试结果,包括每个颗粒定性结果,尺寸、面积、重量等信息,并同时自动获得海量统计结果,包括不同尺寸、不同种类的塑料颗粒的个数、粒径分布,以及含量%等信息。 /p p style=" text-align: justify text-indent: 2em " strong 3.珀金埃尔默 /strong /p p style=" text-align: justify text-indent: 2em " 要对海洋中的微塑料进行管控,第一步是要对这些微塑料的成分和含量进行检测,从而对污染的严重性和主要来源进行评判,对下一步的治理提供依据。PerkinElmer红外光谱及红外显微成像系统可为检测过程提供有力的支持。 /p p style=" text-align: justify text-indent: 2em " 红外光谱仪已经广泛用于鉴别大尺寸的高分子材料,对于较大的塑料样品可以选择不怕潮可电池供电的珀金埃尔默红外光谱仪放到船上做快速塑料的鉴别 而对于肉眼无法识别的微小的塑料颗粒,就需要选择红外显微镜成像系统用于这些微塑料的检测和鉴别。 /p p style=" text-align: justify text-indent: 2em " 珀金埃尔默常规红外ATR方法可直接快速测试肉眼可见的大尺寸微塑料,对于肉眼不可见的小尺寸微塑料可采用珀金埃尔默Spotlight+ATR成像附件进行测试。珀金埃尔默实现了微塑料的原位测试,测试最小尺寸可达1.56um。原位ATR成像技术分析的微塑料尺寸更小、速度更快、操作更简单而且还不会丢失微塑料样品。 /p p style=" text-align: justify text-indent: 2em " 除此以外,傅里叶化学成像/显微技术可分析微塑料化学成分及空间分布等信息 /p p style=" text-align: justify text-indent: 2em " 功率补偿型DSC的HyperDSC技术可辅助红外显微/成像进行塑料单微粒结构定性,可对复合微塑料半定量研究 /p p style=" text-align: justify text-indent: 2em " 逸出气体联用技术全模块均可用于研究微塑料的成分定性/半定量及降解机理等信息 /p p style=" text-align: justify text-indent: 2em " LCMSMS串级质谱技术不仅可以用于定量塑料含量,还可以测定微塑料内部增塑剂等环境激素的含量,便于开展环境毒理学工作 /p p style=" text-align: justify text-indent: 2em " ICPMS单细胞直接进样技术,可用于研究微塑料负载重金属对于单个细胞毒理学的研究工作 /p p style=" text-align: justify text-indent: 2em " TGA-ICP联用技术可评价焚化过程产品微塑料/重金属的结合过程研究 /p p style=" text-align: justify text-indent: 2em " TGA-GCMS联用技术可以用研究微塑料对持久性有机污染物环境迁移的输运机理等。 /p p style=" text-align: justify text-indent: 2em " strong 4.岛津 /strong /p p style=" text-align: justify text-indent: 2em " (1)红外显微镜 /p p style=" text-align: justify text-indent: 2em " 傅里叶变换-红外光谱分析法(FTIR)是目前最常用的化学组分鉴定方法。岛津红外显微镜可实现对微塑料的观察、定义测量位置、测量、鉴别结果,全部操作都能自动执行,并提供高灵敏度结果。 /p p style=" text-align: justify text-indent: 2em " (2)热分析-红外联用系统(TG-FTIR) /p p style=" text-align: justify text-indent: 2em " 岛津热分析-红外联用仪,可以将TGA过程产生的气体通过可加热管线引入到红外光谱仪中,分析聚合物等材料热裂解过程产生的气体成分,从而得到聚合物的组成,更好的对热重结果进行分析;和红外联用,实现材料的定性及定量分析。 /p p style=" text-align: justify text-indent: 2em " (3)能量色散型X射线荧光光谱仪 /p p style=" text-align: justify text-indent: 2em " 岛津能量色散型X射线荧光分析仪,采用新型硅漂移检测器(SDD),具有高灵敏度、高分辨率的优点,能够进行快速无损定性-定量分析,方便快捷,无须化学前处理。 /p p style=" text-align: justify text-indent: 2em " 通过EDX能量色散型X射线荧光光谱仪对微塑料的定性和定量分析,就可初步知道该微塑料可能的材质塑料(也可进一步使用PY-GCMS有机化合物快速筛查系统进行塑胶材质的确认),同时可以确认该微塑料中的有害元素。 /p p style=" text-align: justify text-indent: 2em " (4)热裂解-气相色谱质谱联用系统(PY-GCMS) /p p style=" text-align: justify text-indent: 2em " 热裂解-气相色谱质谱联用技术(PY-GCMS)可以用来鉴定微塑料类型。PY-GCMS是通过不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入GCMS检测,从而推断高聚物类型的一种方法,同时可鉴定聚合物及添加剂。 /p p style=" text-align: justify text-indent: 2em " POPs、全氟类化合物、多环芳烃、农药等有机污染物易富集在微塑料表面,岛津全面的色谱质谱分析手段,亦可提供全面的毒理效应研究方案。 /p p style=" text-align: justify text-indent: 2em " (5)电子探针 /p p style=" text-align: justify text-indent: 2em " 岛津电子探针可实现微塑料表面的元素及形貌分析研究。通过电子探针分析微塑料表面,在检测出K、Na、Ca、Mg、Al的同时,还可检测Cl、S、Cr和Fe等元素。 /p p style=" text-align: justify text-indent: 2em " strong 5.雷尼绍 /strong /p p style=" text-align: justify text-indent: 2em " 传统的实验室技术,如气相色谱/质谱(GC-MS),可以量化塑料量,但不提供有关颗粒大小或数量的信息,这两种方法预计同等重要。红外显微镜可以做到这两点,但不适合分析非常小的颗粒,也受到颗粒形态的挑战。雷尼绍针对微塑料提供了其共焦拉曼显微镜作为检测手段。雷尼绍共焦拉曼显微镜可自动定位粒子并确定它们的大小和统计,然后产生颗粒的拉曼图,使用高度跟踪保持良好的焦点,并使用高级光谱分析来识别塑料和无机物,其结果是关于颗粒的数量、大小、形状和化学组成的全面数据。 /p p style=" text-align: justify text-indent: 2em " 在英国广播公司(BBC)《食物:真相还是恐惧》节目中,雷尼绍共焦拉曼光谱仪被格拉斯哥大学(University of Glasgow) 用于鱼类中的微塑料研究。 /p p style=" text-align: justify text-indent: 2em " strong 6.布鲁克 /strong /p p style=" text-align: justify text-indent: 2em " 分析微塑料颗粒(MPP)有许多方法,如采用不同的光谱技术以达到不同的分析要求。 /p p style=" text-align: justify text-indent: 2em " 红外显微镜是MPP分析的主要技术。它可以对微颗粒进行化学鉴定,并且非常易于使用。在MPP分析中,拉曼显微镜虽然不如红外显微镜常用,但它具有的独特优势,如可通过透明材料测量,比红外显微镜更高的空间分辨率等,使得拉曼显微镜适用于分析非常小的颗粒。 /p p style=" text-align: justify text-indent: 2em " Alfred Wegener 研究所(AWI)作为亥姆霍兹极地和海洋研究中心,选择了具有焦平面阵列(FPA)检测器的布鲁克红外显微镜作为MPP表征的解决方案。他们近期发表在《科学进展》的研究中采用了具有FPA检测器的红外显微镜,在北极积雪中检测出大量的微塑料颗粒。FPA检测器实现了在单次扫描中以最佳光谱分辨率收集大量的光谱数据。这项技术具有自动化分析,高精确度,极其快速,将人为错误降至最低等优点。 /p p style=" text-align: justify text-indent: 2em " 布鲁克提供红外,FPA和拉曼的全套解决方案,实现了对微塑料的观察、测量和鉴别。 /p p style=" text-align: justify text-indent: 2em " br/ /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " span style=" font-size: 24px " 延伸阅读: /span /h1 p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190529/486131.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 首部《中国海洋生态环境状况公报》发布 含海洋微塑料监测情况 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200522/539216.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 发改委& amp 环境部:加强江河湖海微塑料污染机理、监测等研究 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190821/491686.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 微塑料的“全球化”亟需解决方案 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190820/491533.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 北极微塑料从哪儿来?科学家又发现新证据 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190704/488323.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 微塑料:一场不知不觉的污染 /span /strong /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20190613/486919.shtml" target=" _blank" strong span style=" color: rgb(84, 141, 212) " 微塑料研究:精确的分析方法是关键——访浙江工业大学潘响亮教授 /span /strong /a /p
  • 【不止于塑,仪领未来】南京大展仪器惊艳亮相2024宁波国际塑料橡胶展
    随着科技的不断进步和行业的迅速发展,橡塑行业作为国民经济的重要支柱之一,正不断吸引着全球的目光。在这个背景下,2024国际宁波塑料橡塑展如期而至,汇聚了来自世界各地的众多有名的企业,共同探讨和展示行业内的新技术与成果。    在这个展示前言技术、交流行业趋势的平台上,南京大展仪器携多款核心产品亮相,其中包括:差示扫描量热仪、热重分析仪、导热仪、炭黑含量检测仪等,展现了其在塑料橡胶检测仪器领域的优秀实力和成熟技术。    差示扫描量热仪:该设备能在程序控制温度下,测量物质与参比物之间的功率差与温度的关系,广泛应用于材料的研发、生产质量控制等领域。    热重分析仪:用于测量样品在程序控制温度下的质量和温度以及质量变化速率之间的关系,可进行材料的组分分析、热稳定性研究等,适用于橡塑、陶瓷、金属等各类材料的热性能研究。    导热仪:基于瞬态平面热源技术,能准确测量不同类型材料的导热系数,适用于塑料、橡胶、复合材料等多种材料的热传导性能评估。    炭黑含量检测仪:主要针对橡塑材料中炭黑含量的测定而设计,通过准确测量样品中的炭黑含量,对提高材料性能的稳定性和可靠性具有重要意义。    展会期间,南京大展仪器的展位前始终人头攒动。参展团队成员积极与客户互动,详细了解客户的需求,同时针对客户提出的各种问题进行耐心解答,一起探讨未来合作的可能。并且,通过现场的仪器操作演示和案例分享,让参观者直观地感受到仪器的优良性能和操作的便捷性。    通过参加2024宁波国际塑料橡塑展,南京大展仪器不仅展示了其在高分子材料测试领域的技术实力,也进一步加深了与行业内其他企业及潜在客户之间的联系,为公司未来的发展开拓了新的视野。南京大展仪器将继续秉承创新驱动发展的理念,致力于为橡塑行业提供更多高性能、高精度的检测仪器,为橡塑行业产品技术进步和创新,提供准确的测试服务支持。
  • 塑料软包装溶剂残留检测又有新规定
    5月22日,参加塑料软包装溶剂残留标准制定会议的北京兰德梅克公司王庆国高工对记者表示,这次塑料软包装溶剂残留检测标准草稿的修改会议上,把原来的取样要求取0.2m2,裁剪为1×3cm的小块,放入500ml玻璃瓶进行烘烤。改为取内表面积100cm2放入20ml玻璃瓶进行烘烤,并且样品不要求裁剪。   这次修改是根据国外最新标准制定的,新方法比原来有三个优点:   1、 面积减小后容易取样。因为对于已经分切的卷膜,因为要除去边缘处,面积太大不方便取样。   2、 减少复合膜层间粘合剂层的溶剂干扰。溶剂残留主要指表层印刷的溶剂残留量,如果裁剪成很多小碎片,层间粘合剂层暴露多,集中挥发的溶剂对结果影响大。   3、 方便操作,减少了工作量。   王庆国高工是国内最早关注软包装溶剂残留的权威人士之一,曾经主持设计了专门用于软包装溶剂残留的2061C 、3061C气相色谱仪,是这次会议专家组中唯一被邀请的塑料包装检测仪器生产代表。
  • 微塑料检测技术革新—使用TG-GC/MS联用技术
    随着环境污染问题日益突出,微塑料作为新型污染物已引发全球关注。微塑料污染已成为全球广泛关注的主要环境问题之一。有关微塑料的研究,特别是针对亚毫米大小的微塑料愈发深入。珀金埃尔默为此推出了一项利用热重-气相色谱-质谱联用(TG-GC/MS)技术来精准检测和分析悬浮固体中微塑料的方法。 实验配置 TG-GC/MS联用系统 研究人员运用珀金埃尔默公司的TG-GC/MS联用系统获得准确的热分解数据,随后对逸出的分解产物进行鉴定。该系统构建了高效检测系统。在实验过程中,样品经历一系列精确的温度程序,其中包括从30°C升至700°C,以20°C/分钟的速率加热,并以35 mL/min的载气流量将样品引入TL 8500e热裂解装置,最终热解产物在280°C下得到分析。 △图1:珀金埃尔默联用系统 △图2:方法参数 珀金埃尔默TGA 8000™系统的加热型转接阀由于具有气体流量控制,本质上不受过压影响,尾气管位于加热炉底部。嗅探管位于样品盘旁边,以接触天然气体,防止炉壁上的气相沉积。TGA 8000加热炉设计使死体积可忽略不计。此外,阀门设计使其易于关闭,从而TGA 8000系统能够作为独立仪器运行。下图显示了传输线持续加热至最高350°C时主动联用系统的流量控制方法,而不是压力控制方法。 △图3:传输线持续加热至最高350°C时主动联用系统使用流量控制方法,而非压力控制方法。 对于悬浮固体中微塑料成分的分析,珀金埃尔默的TG/GC/MS联用系统有助于鉴定降解产物,并提供有关降解产物形成时间的信息。该方法表明,无需大量的样品制备工作即可在数小时的分析时间内检测基质中的微塑料。 与现有的常规方法相比,TG/GC/MS具有出色的测量灵敏度,无需进行额外的样品分离或富集。珀金埃尔默的技术服务和解决方案极大地推进了微塑料污染监测和治理工作,为解决环境领域紧迫的微塑料污染问题提供了强有力的支持。 扫描左侧二维码 获取更多资料 关注我们
  • 梅特勒托利多荣获2011塑料行业荣格技术创新奖
    由荣格工业传媒有限公司及旗下《国际塑料商情》杂志共同举办的&ldquo 第六届塑料行业荣格技术创新奖&rdquo 评选结果在中国广东深圳隆重揭晓,经行业协会、科研院校、用户企业的资深专家组成的独立评委团严格评选,梅特勒托利多的OneClickTM 一键称量热失重分析在&ldquo 测量与检测&rdquo 领域荣获&ldquo 2011年度技术创新大奖&rdquo 。 梅特勒托利多是全球领先的精密仪器和服务供应商,也是全球最大的实验室、工业和食品零售业称重设备的制造商和销售商。梅特勒托利多在全球范围内拥有四十多家分公司和销售机构,在全国范围内建有三十多家办事处,与两百多位分销商紧密合作。 梅特勒托利多为塑料行业提供的解决方案,基本覆盖到所有的科研、研发、生产及质量控制过程。梅特勒托利多致力于为用户提高生产力和经济效益,并始终关注在节能减排、绿色环保等各个领域的贡献。 上图:梅特勒托利多天平部经理贾柏峰出席颁奖典礼 上图:梅特勒托利多荣获2011塑料行业荣格技术创新奖及获奖证书 关于梅特勒托利多(Mettler-Toledo) 秉承&ldquo 品质至上、勇于开创、追求变革&rdquo 的企业宗旨,梅特勒托利多集团始终致力于为全球客户提供质量卓越的精密仪器和衡器产品,以及全面细致的技术支持服务。 更多关于梅特勒托利多,请登录:www.mt.com
  • 衡翼凝萃专利产品参加2016中国(余姚)国际塑料展览会
    作为全球专业的“塑料检测设备”专家--上海衡翼精密仪器有限公司将在2016中国(余姚)国际塑料博览会上推出一系列的塑料检测仪器,敬请全球塑料生产企业以及相关上下游产业链的公司前来参观。 展会名称:2016中国(余姚)国际塑料博览会----第十八届中国塑料博览会 开展时间:2016年11月6日~9日 地点: 余姚中塑会展中心 衡翼展台编号:6022 作为塑料检测仪器资深经验丰富的制造商--上海衡翼精密仪器有限公司,将会展示我司的精品荟萃:一.塑料拉力试验机和塑料弯曲试验机,二者统称为万能试验机;万能试验机分为单臂和门式,型号为hy-0580,测塑料原材料及塑料件的话,用单臂和门式的拉力试验机都是可以满足塑料的检测抗拉力、最大变形、抗拉强度、断裂伸长率、屈服强度、弹性模量,还有可以测出抗弯力、抗弯强度、弹性模量等等参数,还可以根据客户要求来增设其他的参数。 二.塑料冲击试验机,分为简支梁冲击试验机和悬臂梁冲击试验机。 悬臂梁冲击试验机技术参数: 1.冲击速度:3.5m/s;2.摆锤能量5.5j、11j、22j(可选)3.摆锤扬角:160°4.打击中心距:0.322m5.摆锤力矩:pd5.5=2.8354nmpd11=5.6708nmpd22=11.3417nm6.角盘分度:0-5.5j最小分度0.05j(内圈)0-11j最小分度0.1j(内圈)0-22j最小分度0.2j(内圈)7.冲击刀刃至钳口上面距离:22±0.2mm8.刀刃圆角半径:r=0.8±0.2mm9.能量损失:5.5j<0.03j 11j<0.05j 22j<0.01j10.使用温度:15-35℃11.电源:220v  50hz12.外形尺寸(长×宽×高):420×320×705mm13.重量:60kg2.数显简支梁摆锤冲击试验机 一.功能、适用范围:本试验机主要用于硬质塑料(包括板材、 管材、塑料异型材)、增强尼龙、玻璃钢、陶瓷、铸石、电绝缘材料等非金属材料冲击韧性的测定。广泛应用于化工行业、科研单位、大专院校质量检测等部门。汉字液晶屏显示结果,可存储多组试验结果,并具有能量损失自动修正功能。是一种结构简单、操作方便、数据准确可靠的冲击试验机。二.执行标准:符合iso179、gb/t1043、gb/t21189、gb/t2611标准的要求。 三.技术参数:1) 冲击能量:7.5j、15j、25j、50j2) 冲击速度:3.8m/s 3) 摆锤预扬角:150°4) 冲击刃园角半径:(2±0.5)mm5) 冲击摆力矩:m7.5=4.01924nm m15=8.03848nmm25=13.39746nm m50=26.79492 nm6) 打击中心距:395mm7) 冲击刀刃夹角:(30±1)o8) 钳口圆角半径:(1.0±0.1)mm9) 钳口支撑线间距离:62mm10)测量精度: ±0.1% 分辨率:1%11) 能量损失:7.5j-50j—0.5%;12)电 源:0.1kw 220vac 50hz13)外形尺寸:长500mm×宽400mm×高900mm 14)所需空间:前后0.4m, 左右1.5m,上部1.5m15) 试样类型、尺寸、支撑点间距离(单位:mm)试样型号长 度(l)宽 度(b)厚 度(h)支撑线间距离l180±210±0.5 4±0.262四.配置:1) 主机 一台2) 冲击摆(7.5j、25j) 两把 3) 砝码(15j、50j) 四对4) 钳口 一对(62h) 5) 对中样板 一块(62h)6) 内六角搬手4mm、5mm、6mm 各一把7) 电源线 一根三、热变形维卡软化点温度测试仪 hy(rw)-300hb热变形、维卡软化点温度测定仪技 术 参 数仪 器 主 要 配 置hy(rw)-300hb型热变形、维卡软化点测定仪运用plc可编程控制器进行温度调节采用计算器显示操作。该产品操作简单、使用方便、性能稳定、产品精度高,并在试验过程中可时实监控试验温度和变形量;试验结束时系统自动停止加热,并可打印试验报告和试验曲线。该系列机型是各质检单位、大专院校和各企业自检的必备仪器。该机主要用于非金属材料如塑料、橡胶、 尼龙、电绝缘材料等的热变形温度及维卡软化点温度的测定。产品符合is075(e)、is0306(e)、gb/t8802、gb/t1633、gb/t1634等标准要求。 主要技术参数:温度控制范围:环境温度—300℃升温速率:(120±10)℃/h (12±1)℃/6min (50±5)℃/h (5±0.5)℃/6min 温度示值误差:0.1℃ 温度控制精度:±0.5℃ 最大形变示值误差:±0.001mm, 变形测量范围:0—1.5mm 实验架个数:3个 负载杆及托盘质量:68g 加热介质:甲基硅油(运动粘度一般选择200厘斯)或变压器油 冷却方式:150以上自然冷却,150以下水冷或自然冷却。 加热功率:4kw仪器尺寸:528mm×545mm×37mm 技术凝萃创新,专利迸发力量。国际橡塑展期间,衡翼仪器将与来自五湖四海的技术人士就塑料检测仪器话题展开自由讨论,通过充分互动激发技术灵感,促成新的创新诞生。届时,衡翼仪器诚邀您来参观!
  • 微塑料正在进入你的体内|前沿应用
    塑料吸管=隐形杀手?今年,包括星巴克在内的不少餐饮企业正在尝试停用塑料吸管,转而使用直饮杯盖及纸质吸管。尽管新杯盖和纸质吸管因使用不便遭到一些网友的吐槽,作为专注前沿研究领域的科学仪器公司编辑,我们还是非常肯定这些企业的做法,也号召更多的企业和个人加入减少塑料使用的行动当中来。因为,正是这一看似不起眼的小小塑料吸管,正在破坏地球生态系统,甚至成为威胁人类健康的“隐形杀手”。据《福布斯》杂志统计,2017年, 全球每分钟卖出约100万个塑料水瓶,然而,仅有9%被回收利用。其中塑料吸管这类制品,因体积很小,通常可以躲过自动化回收而不被填埋,且有相当一部分被冲入河流湖泊和海洋,被动物尤其是海洋生物摄入,终进入人类体内。世界经济论坛警告说,到 2050年, 海洋中的塑料将比鱼还要多。这些小小的塑料吸管如何能够威胁我们的生命呢?事实上,这些未被回收利用的大小塑料在阳光、空气和海洋的共同作用下,终都会碎裂或降解为较小的碎片,当其尺寸小于5毫米时,就称为“微塑料”。与“白色污染”的可见塑料相比,这些微塑料肉眼难以分辨,更加危险的是,它可以通过层层食物链进入人体。无处不在的“微塑料”很多人会问:“如果我不吃鱼,不吃任何海鲜,是不是微塑料就影响不到我?”答案依然是否定的。事实上,目前研究发现,微塑料已经渗透到人类生存环境的各个食物链条当中。根据《国家地理》2018年的一份报告,研究人员对全世界多个品牌的食盐进行了抽样检测,其中90%都发现了微塑料,亚洲食盐中的微塑料密度尤为高,因此亚洲被该杂志列为塑料污染的重点地区。不仅是食盐等食物,在人们看不见甚至难以想象的地方,微塑料也存在。据《时代》杂志报道,有研究人员对9个国家购买的11个品牌的259例瓶装水进行了测试,其中90%以上的水中都含有微塑料。因为微塑料体积很小,粒径范围在几微米到几毫米,甚至有一些只能在显微镜下才能看到,因此可以轻松通过饮用水的杂质过滤器。“微塑料”危害有多少事实上很多塑料本身都具有毒性,而一些环保材料在高温高压等条件下还会释放出有害物质,给人类带来二次伤害。此外,塑料作为一种高分子聚合物,都会在不同程度上聚集污染物、细菌、病毒、化学物质和有害藻类等,成为有害物质的“载体”。阿肖克• 德什潘德博士是美国东北渔业科学中心的化学家,对微塑料在海洋等领域的影响有深入研究,他对微塑料的影响表示忧虑,“塑料就是藻类和细菌殖民的运输管道,我们每个人都无法逃脱微塑料的影响“。显然,潜在的健康隐患令人胆战心惊,我们已经很难忽视微塑料带来的影响,它正在通过各种看得见看不见的方式进入人体内。阿肖克德什潘德博士拉曼光谱助力,防治已见成效无处不在的微塑料已经给我们的生存敲响警钟,防治工作迫在眉睫。庆幸的是,目前微塑料已经成为日益受关注的话题,专项研究也已经在全球各地的大学和研究机构开启。要对付这些看不见的微塑料,首先是确定其类型,进而确定环境污染物的来源,在此基础上,就可以有针对性的对污染源进行监测和控制。目前已有多种技术手段被用于帮助科学家表征微塑料进而确认其污染源。德什潘德博士通过研究发现,鱼体内的微塑料可以用气相色谱 (GC) 热解、质谱、红外光谱或拉曼光谱等多种技术来表征。其中,显微拉曼光谱仪由于集成了拉曼光谱和光学显微镜, 既能获得待测样品的显微形貌,又能得到样品具体位置的拉曼光谱,因此成为识别聚合物高效、有效的技术手段之一。利用显微拉曼光谱仪能够进行微区分析、表征亚微米级别材料这一优势,德什潘德博士团队将采集到的微塑料拉曼光谱与已知聚合物拉曼光谱库进行比对,从而轻松识别出微塑料的种类,为确认其来源提供了可靠的依据。制备好的含微塑料的沙粒样品等待进行分析而加拿大多伦多大学生态与进化生物学系切尔西• 罗奇曼博士及其所在团队,则将研究重点放在利用拉曼光谱仪获取微塑料类型、尺寸及数量等信息上。她们利用XploRA™ PLUS拉曼光谱仪进行研究,尝试开发出一套快速简便且准确的微塑料样品表征方法,从而提高表征效率。她指出“因为有太多不同类型的塑料,为了表征这些材料,进而衡量它们对动物的影响,像拉曼显微镜这样的分析工具是必不可少的。”毫无疑问,这些科学家的研究为确定环境污染物的来源,进而监测控制污染源找到了科学高效的方法。HORIBA XploRA™ PLUS智能型全自动拉曼光谱仪注:如需了解该研究中HORIBA 拉曼光谱仪的详细介绍及使用问题,欢迎点击左下角“阅读原文”留言,我们的技术专家会尽快联系您进行答疑解惑。微塑料“循环”中的生命研究目前,庆幸的是科学家已经能够表征部分微塑料。德什潘德博士表示,接下来的挑战是识别出贝类和其他小生物中的小纤维,从而了解微塑料是如何通过食物链层层富集进入人体的。因为食物链是层层递进的,贝类摄入微塑料,鱼再吃下贝类等浮游生物,体型较大的海洋生物又会吃掉较小的鱼,这一过程中微塑料在一层层富集。可以想象,有多少条鱼摄入微塑料,处于食物链顶端的我们遭受的微塑料污染就有多严重。减少塑料,从我做起对微塑料追本溯源是科学家们在做的事,作为普通人的我们能做些什么呢?近进行的如火如荼的垃圾分类就是重要方式,通过回收利用散落在各地的大小塑料,避免其流入湖泊海洋进入人体;抑或是多用环保袋代替塑料袋;少点外卖也是个不错的方法,毕竟外卖盒用多了也对健康无益。其实我们能做的事情还挺多。点击观看视频, 了解更多微塑料研究今日话题环境问题一直是人类生存的大问题,你所在实验室目前关于环保和环境方面的研究有哪些呢?不妨留言说出你的想法或正在进行的研究,我们将在下期前沿应用中介绍给更多科研小伙伴。 点击查看更多往期精彩文章 严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】JGR-Atmospheres: 中国典型燃煤城市的大气颗粒物中发色团的粒径分布特征发现生命的轨迹——化石中的碳元素分析 | 前沿应用复旦巧用增强拉曼“识”雾霾 | 前沿用户报道“钢铁侠”背后的清洁能源之梦【GDS微课堂-5】 HORIBA科学仪器事业部 HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。 如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。 点击下方“阅读原文”,咨询相关技术服务。 阅读原文
  • 塑料人时代何以为家? 四种武器解构新“灭霸”
    p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 600px height: 338px " src=" https://img1.17img.cn/17img/images/201905/uepic/6fb0d832-b53f-4b69-bcdc-885592a82aa2.jpg" title=" qazqz.jpg" alt=" qazqz.jpg" width=" 600" height=" 338" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 或许若干年后,能够将人类与人工智能区别开来的,将不再是大脑,而是人类体内的微塑料含量。那些我们以为大自然会免费埋单的塑料垃圾,如今又将轮回为人类自己背负的十字架。据一项最新的研究报告预测,全球约 /span span 50% /span span style=" font-family:宋体" 人口的体内都能找到塑料微粒,《复仇者联盟》中灭霸历尽万劫却枉费心机的“理想”,竟被微塑料在悄无声息中打了响指,塑料人时代已经来临。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 虽然该预测仍有待证实,但是微塑料对人类社会的大范围入侵却已是不争事实。 /span span 2015 /span span style=" font-family:宋体" 年联合国首次将微塑料污染列为新型环境污染的一大类型,与全球气候变化、臭氧污染、海洋酸化并列为全球重大环境问题。那么微塑料到底是何方神圣?小小的它能对自然和人类造成怎样的危害?又有哪些分析方法可以帮我们应对这个敌人,保护我们的家园呢? /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" 美丽的代价 /span /strong strong span style=" font-family:宋体" 滥用的惩罚 /span /strong /p p style=" text-align:center" span img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f3a003d5-b641-442d-844a-f6300cb51dd3.jpg" title=" timg_看图王.jpg" alt=" timg_看图王.jpg" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 微塑料的概念首次出现在 /span span 2004 /span span style=" font-family:宋体" 年的美国《 /span span science /span span style=" font-family:宋体" 》期刊上,英国纽卡斯尔大学海洋污染研究团队在其关于海洋水体及沉积物塑料碎屑污染的研究论文中对之进行了描述。根据其定义,微塑料是指直径小于 /span span 5mm /span span style=" font-family:宋体" 的塑料纤维、颗粒与薄膜。海洋是微塑料的主要囤积场所,目前,海洋中微塑料垃圾大约有 /span span 10.5 /span span style=" font-family:宋体" 万吨,甚至在北极,每立方米海冰中含有的微塑料颗粒都多达 /span span 240 /span span style=" font-family:宋体" 个,因此微塑料也得到“海中 /span span PM2.5 /span span style=" font-family:宋体" ”的形象称呼。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 微塑料的诞生可以毫不夸张地说基本是人类活动的产物。与神话传说的分类方式类比,微塑料也大致可以分为两类,一类是初生微塑料,一类是次生微塑料。初生微塑料的主要来源也可一分为二,一类是化妆液、防晒霜、剃须膏、牙膏等个人护理、清洁用品中的柔珠,用以加速人体皮肤角质祛除,增加人体皮肤光滑度,进而达到深度清洁的目的。这种“柔珠”就是典型的微塑料。特别是打着“深层护理、深度清洁”招牌的护理用品,基本上都是依靠微塑料来满足人类爱美、爱干净的天性。另一类初生微塑料来源于洗衣机产生的超细纤维碎屑。据统计,一个 /span span 10 /span span style=" font-family:宋体" 万人口规模的小城市,每天经过洗衣机向水体中排放的细小纤维就会达到 /span span 110 /span span style=" font-family:宋体" 千克,大部分属于微塑料,其污染程度相当于向自然水体中扔掉 /span span 1.5 /span span style=" font-family:宋体" 万个塑料袋所造成的污染。 /span /p p style=" text-align: center " span img style=" max-width: 100% max-height: 100% width: 600px height: 420px " src=" https://img1.17img.cn/17img/images/201905/uepic/b375936c-59f1-499c-9565-be4af986e667.jpg" title=" 2wxd.jpg" alt=" 2wxd.jpg" width=" 600" height=" 420" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 相当一部分的初生微塑料可以通过政策法律等措施进行有效限制,比如美国政府就在 /span span 2016 /span span style=" font-family:宋体" 年 /span span 5 /span span style=" font-family:宋体" 月颁布了全国首个微塑料禁用立法,明确禁止在个人护理用品、化妆品中使用微塑料,英国也紧随其后颁布了相似法律。但是次生微塑料却复杂难办得多,次生微塑料的来源主要是塑料垃圾和浮渣在水环境中破碎而产生的碎屑。塑料经过物理、化学、生物的分解作用,可以从大塑料变小,由小变微产生的碎屑,形成各种尺寸和形状的微塑料。次生微塑料具有更大的生态危险,由于塑料用品已经渗透到人类生活的方方面面,想要令行禁止,短期之内基本等于天方夜谭。 /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" “幽灵”消失之谜 /span /strong strong span style=" font-family:宋体" 两大危害足以撬动地球? /span /strong /p p style=" text-align:center" strong span img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201905/uepic/809db240-70ac-4ae4-a3ba-1304879c6759.jpg" title=" 0d0604ede9bd2365d7d45def088584d1_timg_image& amp quality=80& amp size=b9999_10000& amp sec=1559114114& amp di=d013ac74340170828cf0750f0c48ce20& amp imgtype=jpg& amp er=1& amp src=http%3A%2F%2Fimg7.itiexue.net%2F2884%2F28848079.jpg.jpg" alt=" 0d0604ede9bd2365d7d45def088584d1_timg_image& amp quality=80& amp size=b9999_10000& amp sec=1559114114& amp di=d013ac74340170828cf0750f0c48ce20& amp imgtype=jpg& amp er=1& amp src=http%3A%2F%2Fimg7.itiexue.net%2F2884%2F28848079.jpg.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /span /strong /p p style=" text-indent: 27px text-align: justify " span style=" font-family:宋体" 来无影去无声,除了纤细无声地潜入外,微塑料竟然也能像幽灵蜃景一样悠忽间消失,最近一项研究结果显示,大洋海水中测到的小于 /span span 4.75 mm /span span style=" font-family:宋体" 的微塑料数量比预测的要少 /span span 90% /span span style=" font-family:宋体" 左右。如此庞大的微塑料群体都去了哪里呢?一种假说是微塑料被海洋生物吞食了。细思极恐的是,这个假说已在多项研究中得到了证实,数百种海洋鱼类、藤壶、牡蛎等海洋生物的消化道内都发现了微塑料。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 大鱼吃小鱼,小鱼吃虾米,随着食物链层层传递,这些微塑料最终会随着食物链进入人类体内。事实上,越来越多的研究表明,除了海洋外,越来越多的微塑料已经进入了陆地食物链,土壤里、蚯蚓体内、母鸡粪便和胃里、城市自来水系统、食盐、蔬菜、海盐、啤酒、蜂蜜等产品中都发现了微塑料的痕迹,这也是为什么微塑料最终会进入人体的重要原因。 /span /p p style=" text-align:center" span img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/a6c7de9a-9dae-410a-8751-9c79e2c63bfd.jpg" title=" fe04b5189c428128b6dbf5eea6cdfcc6_timg_image& amp quality=80& amp size=b9999_10000& amp sec=1558519713638& amp di=ae07fb089a8d8e73b4b3d50b181251d6& amp imgtype=0& amp src=http%3A%2F%2Fs1.sinaimg.cn%2Fmw690%2F006WIuVxzy7horBXd5u20%26690.jpg" alt=" fe04b5189c428128b6dbf5eea6cdfcc6_timg_image& amp quality=80& amp size=b9999_10000& amp sec=1558519713638& amp di=ae07fb089a8d8e73b4b3d50b181251d6& amp imgtype=0& amp src=http%3A%2F%2Fs1.sinaimg.cn%2Fmw690%2F006WIuVxzy7horBXd5u20%26690.jpg" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 微塑料主要会带来四大环境效应,上述讲到的食物链效应首当其冲。生物摄食微塑料后,首先会由于其难以消化降解在体内累积,可造成生物的肠道堵塞、消化不良、体重减轻、行为迟钝、生长生殖速率减慢等短期不良效应。最终这些随着食物链从餐桌进入人体的微塑料,也会对人体的健康带来危害,不少微塑料在生产中会加入阻燃剂、增塑剂等含有氯化烃类、邻苯二甲酸酯类等毒性物质,大量摄入可能影响生殖发育,干扰内分泌等,更恐怖的是微塑料对重金属和有机污染物具有吸附作用,这些具有显著生物毒性的物质,难以被生物降解,富集在生物体内,容易造成蛋白质的失活或者引起慢性中毒。而纳米尺度的微塑料甚至可以穿过生物细胞膜,对人体造成物理性的危害。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 除了对人类的伤害外,微塑料对整个生态系统也有巨大的破坏作用,一方面,微塑料的生物吸附作用可使得水体中的微塑料作为微生物和藻类提供附着位点,形成生物膜,并提供较稳定的微生物居住环境。由于微生物的附着,可能会改变塑料颗粒的某些物理性质如密度等,影响其迁移,并影响当地生物的生存状况,一些致病性的有害微生物可给所入侵的生态系统带来巨大的危害。另外,微塑料可向周围环境中释放毒性物质,这些毒性物质经常能与周围环境发生一系列的反应,通过吸附或者其他表面相互作用结合周围环境中的污染物,产生具有更大危害毒性的复合污染物,对生物产生复合毒性效应。 /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" 蛮荒之地 /span /strong strong span style=" font-family:宋体" 四大分析仪器开路 /span /strong /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201905/uepic/da0b5178-1991-4faa-b412-bc41f1ac12e9.jpg" title=" xsaa.jpg" alt=" xsaa.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 微塑料的提出已经有十多年的时间,但是真正作为重大污染源进行系统研究,也就在近几年才刚刚热了起来。因此关于微塑料的分析检测还基本是一片蛮荒之地,有大量的工作亟待开展。目前在微生物的分析检测中主要用到的仪器有非破坏性分析仪器和破坏性分析仪器两种,仪器信息网编辑对之进行了不完全的整理,汇总如下,以飨读者: /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体 color:red" 非破坏性分析方法 /span /strong /p p style=" text-indent: 28px text-align: justify " span 1 /span span style=" font-family:宋体" 扫描电子显微镜分析( /span span SEM /span span style=" font-family:宋体" ) /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family: 宋体" 在微塑料的物理性质中,颗粒粒径与微塑料在环境中的迁移行为有密切关系,目前微塑料颗粒检测的常用方法为筛分法,但实际上,相当一部分微塑料的粒径范围在激光粒度仪和纳米粒度仪的射程范围之内,该市场或许将成为激光粒度仪发展的又一片黄金沃土,在此先按下不表。而对微塑料另外一种重要物理性质——腐蚀性的分析,则需要用到扫描电子显微镜。 /span /p p style=" text-align: center " span img style=" max-width: 100% max-height: 100% width: 400px height: 345px " src=" https://img1.17img.cn/17img/images/201905/uepic/0dfa4d59-aeec-4c1a-b66d-ff2ba533b910.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 400" height=" 345" border=" 0" vspace=" 0" / /span /p p style=" text-align: center " strong span SEM-EDS /span /strong /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 微塑料的腐蚀主要是由生物降解、光降解、化学风化等环境外力造成的。腐蚀作用会在塑料表面产生裂缝,导致塑料断裂成更细小的碎片,对微塑料表面形貌的表征需要再较高放大倍数下进行,因此研究中多以 /span span SEM /span span style=" font-family:宋体" 为辅助,如扫描电镜 /span span - /span span style=" font-family:宋体" 能量色散 /span span X /span span style=" font-family:宋体" 射线联用分析技术 /span span (SEM-EDS) /span span style=" font-family:宋体" ,环境扫描电子显微镜 /span span - /span span style=" font-family:宋体" 能量色散 /span span X /span span style=" font-family:宋体" 射线联用分析技术 /span span (ESEM-EDS) /span span style=" font-family:宋体" 等。这种方法可在进行形态表征的同时,分析微塑料的元素组成,此外还能利用元素指纹排除采样过程引入的微塑料,但该检测方法的成本较高。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 事实上,目前在微塑料的物理性质表征的领域,颜色、形状等大部分参数尚需要依靠目检法完成。随着人们对分析表征结果要求的提高,立体显微镜等高分辨率仪器也开始被用来确定微塑料的形态特征。 /span /p p style=" text-indent: 28px text-align: justify " span 2 /span span style=" font-family:宋体" 、红外光谱分析 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family: 宋体" 红外光谱分析同样是一种非破坏性的检测分析手段,此外还可以用未知样品的红外谱图可与标准谱图进行比对鉴定。目前傅里叶变换 /span span - /span span style=" font-family: 宋体" 红外光谱分析法 /span span (FT-IR) /span span style=" font-family: 宋体" 可以说是微塑料界最常用的化学组分鉴定方法之一。 /span /p p style=" text-align: center " span img style=" max-width: 100% max-height: 100% width: 400px height: 200px " src=" https://img1.17img.cn/17img/images/201905/uepic/c67c7f0a-b47a-4c32-b645-eb5e9f8847de.jpg" title=" timg (1).jpg" alt=" timg (1).jpg" width=" 400" height=" 200" border=" 0" vspace=" 0" / /span /p p style=" text-align: center " strong span FTIR /span /strong /p p style=" text-indent: 28px text-align: justify " span FTIR /span span style=" font-family: 宋体" 的衰减全反射 /span span (ATR) /span span style=" font-family: 宋体" 、透射与反射等 /span span 3 /span span style=" font-family: 宋体" 种模式在微塑料分析领域均有所应用,但应用范围有所差异。 /span span ATR /span span style=" font-family: 宋体" 模式适用于不规则微塑料的鉴定;透射模式能够提供高分辨图谱,但分析材料需足够透明、轻薄,确保能被红外线穿透;发射模式则可以完成厚、不透明材料的分析。 /span span FTIR /span span style=" font-family: 宋体" 法仅需通过过滤等简单的预处理操作即可直接分析样品中的微塑料,但该方法的鉴定结果受被测微塑料不均匀性、材料老化、环境尘埃等严重干扰,需要进一步完善以更好地适应环境样品分析。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family: 宋体" 随着研究的不断深入,基于焦平面阵列 /span span (FPA) /span span style=" font-family: 宋体" 的显微 /span span FTIR /span span style=" font-family: 宋体" 法 /span span (Micro FTIR) /span span style=" font-family: 宋体" 也开始应用于微塑料的鉴定。 /span span Micro FTIR /span span style=" font-family: 宋体" 法充分结合了显微镜与 /span span FTIR /span span style=" font-family: 宋体" 的优点,即在采集视场内的景物图像的同时也能获得视场内每一个像元对应的红外谱图。 /span span Micro FTIR /span span style=" font-family: 宋体" 法分析迅速,仅数分钟即可完成一次全面测试,再结合 /span span FPA /span span style=" font-family: 宋体" 就能满足小粒径微塑料检测及区域范围检测的要求。 /span /p p style=" text-indent: 28px text-align: justify " span 3 /span span style=" font-family: 宋体" 、显微拉曼 /span /p p style=" text-align: center text-indent: 28px " span img style=" max-width: 100% max-height: 100% width: 400px height: 194px " src=" https://img1.17img.cn/17img/images/201905/uepic/5fbc80b2-a398-492d-bbd9-6f554a3d7de4.jpg" title=" 1231额3受委屈爱心.jpg" alt=" 1231额3受委屈爱心.jpg" width=" 400" height=" 194" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 28px " strong span Micro Raman /span /strong /p p style=" text-indent: 28px text-align: justify " span style=" font-family: 宋体" 拉曼光谱法被应用于微塑料的化学组分鉴定。拉曼光谱 /span span - /span span style=" font-family: 宋体" 显微镜联用技术 /span span (Micro Raman) /span span style=" font-family: 宋体" 不仅能够获得表面官能团的信息,还可以观测到局部的微观形貌。然而显微拉曼主要的狩猎范围为 /span span 10um /span span style=" font-family: 宋体" 以下的微塑料,而如何从环境中分离到 /span span 10um /span span style=" font-family:宋体" 以下的塑料进行实验是一大挑战,因此该分析方法,并没有得到大范围的应用。 /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" 4.红外成像系统 /span /strong /p p style=" text-align:center" strong span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 400px height: 400px " src=" https://img1.17img.cn/17img/images/201905/uepic/e968e66e-fdba-4106-9b87-bb66628c62d4.jpg" title=" 41081a9fbd9f845c02d5ee0e2cc90aea_b7904802-818b-43a1-b13c-7a3b8c8da14e.jpg!w300x300.jpg" alt=" 41081a9fbd9f845c02d5ee0e2cc90aea_b7904802-818b-43a1-b13c-7a3b8c8da14e.jpg!w300x300.jpg" width=" 400" height=" 400" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: center " font face=" 宋体" b 红外显微成像系统 /b /font /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 红外显微成像系统将傅里叶变换红外光谱与红外显微镜及微区成像技术有机结合,已被广泛应用于微塑料的定性检测,可测量尺寸小至约 10 µ m 的微粒。目前知名仪器厂商如安捷伦、珀金埃尔默等都有丰富的微塑料红外成像解决方案。 /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体 color:red" 破坏性分析方法 /span /strong /p p style=" text-indent: 28px text-align: justify " span style=" font-family: 宋体" 热解吸 /span span - /span span style=" font-family: 宋体" 气相 /span span - /span span style=" font-family: 宋体" 质谱联用技术 /span span (Pyr-GC-MS)& amp /span span style=" font-family: 宋体" 热重 /span span - /span span style=" font-family: 宋体" 气相 /span span - /span span style=" font-family: 宋体" 质谱联用技术( /span span TGA-GC-MS /span span style=" font-family: 宋体" ) /span /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 400px height: 150px " src=" https://img1.17img.cn/17img/images/201905/uepic/f1dbcbf9-081f-42eb-8cc5-fbad673b51f0.jpg" title=" 9dc6020d20455eb5d76f8aa8adcca231_20150317100100.jpg" alt=" 9dc6020d20455eb5d76f8aa8adcca231_20150317100100.jpg" width=" 400" height=" 150" border=" 0" vspace=" 0" / /span /p p style=" text-align: center " strong span TGA-GC-MS /span /strong /p p style=" text-indent: 28px text-align: justify " span Pyr-GC-MS /span span style=" font-family: 宋体" 是不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入 /span span GC-MS /span span style=" font-family: 宋体" 测定质荷比,从而推断高聚物类型的一种方法。而 /span span TGA-GC-MS /span span style=" font-family: 宋体" 只是热解的方法有所变化,后续分析过程与前相同。所有微塑料的热解过程均为一步热解,且所有微塑料均完全热解。如果仅通过 /span span TGA /span span style=" font-family: 宋体" 识别聚合物,则结果容易受到其他因素的影响导致假阴性或假阳性 /span span . /span span style=" font-family: 宋体" 因此,为了准确的量化微塑料,必须对热分解产物进行 /span span GC-MS /span span style=" font-family: 宋体" 化学结构解析。虽然该方法对实验条件要求较高,但具有样品用量小、可定性定量分析、无需额外投加试剂等优点。做微塑料吸附实验时,用这种方法比较多。 /span /p p style=" text-align: center " span img style=" max-width: 100% max-height: 100% width: 600px height: 303px " src=" https://img1.17img.cn/17img/images/201905/uepic/c44a6b83-bea3-48e9-afb4-1e48c5560095.jpg" title=" 4_看图王.png" alt=" 4_看图王.png" width=" 600" height=" 303" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 在上述几种分析方法中,目前最受学界依赖的还是红外光谱分析方法。另外,根据微塑料的颗粒大小,上述四种方法也有不同的适用范围。由上图可知, /span span FTIR-ATR /span span style=" font-family:宋体" 适用的微塑料粒径范围大概在数百 /span span um-5mm /span span style=" font-family:宋体" 的范围内,显微红外光谱的适用范围在 /span span 10um- /span span style=" font-family:宋体" 数百 /span span um /span span style=" font-family:宋体" 之间,而显微拉曼的范围则在 /span span 1um-10um /span span style=" font-family:宋体" 之间。 /span span Pyr-GC-MS /span span style=" font-family: 宋体" 和 /span span TGA-GC-MS /span span style=" font-family: 宋体" 则适用于 /span span 1um /span span style=" font-family: 宋体" 以上的全尺寸微塑料。另外,上图没有显示的扫描电镜 /span span - /span span style=" font-family:宋体" 能量色散 /span span X /span span style=" font-family:宋体" 射线联用分析技术 /span span (SEM-EDS) /span span style=" font-family:宋体" 以及环境扫描电子显微镜 /span span - /span span style=" font-family:宋体" 能量色散 /span span X /span span style=" font-family:宋体" 射线联用分析技术 /span span (ESEM-EDS) /span span style=" font-family:宋体" 适用的微塑料粒径范围一般需要大于 /span span 20um /span span style=" font-family:宋体" 。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 微塑料的复杂性决定了其研究方法的千差万别,目前,在微塑料的分析研究中,有三大问题是研究中遇到的难点:首先横亘在研究者面前的就是分离前处理 strong , /strong 微塑料的环境来源千差万别,可以是垃圾场、垃圾渗出液或者污水厂等,如何在某个场景下的进行完善的分离和前处理是一个难点。其次,如前所述对小粒级的微塑料鉴定也非常棘手,因为样品很难得到,直接从矿泉水样品中过滤有可能得不到微塑料,而野外样品中如何分离出 /span span 10um /span span style=" font-family:宋体" 以下的微塑料又难以解决。除此之外,在进行红外光谱分析时,如何快速计数滤膜上的微塑料颗粒也是研究者之殇,现有的很多研究都需要一个个遴选样品颗粒并上机检测,效率较低。 /span /p p style=" text-align:center" span img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/d8b4e8cc-3a32-407c-9fb3-8593d4bf88aa.jpg" title=" w21w1.jpg" alt=" w21w1.jpg" / /span /p p style=" text-align: justify " span style=" font-size:14px font-family:宋体" & nbsp & nbsp 知己知彼方能百战不殆,如何解决微塑料分析研究中遇到的难点,关系着人类对微塑料的研究可以深入到什么程度,在这场人类与微塑料的战役中,我们需要更多、更有效的分析仪器和检测手段来扮演钢铁侠的角色。毕竟人类自己孕育的新“灭霸”,需要整个人类联盟共同去抵抗,而科技和智慧就是我们自我救赎最好的武器。 /span /p p style=" text-align: justify " span style=" font-size:14px font-family:宋体" & nbsp & nbsp 微塑料检测典型仪器点击 a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" strong span style=" font-size: 14px font-family: 宋体 color: rgb(0, 176, 240) " 绿色通道 /span /strong /a 获取。 /span /p
  • 焦塑料——经过火焚烧转变而来的一种新型塑料污染
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/1400f8bf-32a9-4176-aba4-1392bd6a7d02.jpg" title=" 塑料垃圾.jpg" alt=" 塑料垃圾.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 人们在康沃尔海滩上收集的塑料垃圾& nbsp 图片来源:ROB ARNOLD /span /p p   在环绕英国西南部海岸线的沙湾上,人们可以找到各种各样的石头,从小鹅卵石到厚重的镇纸石,散落在漂浮物中。它们的颜色是深浅不一的灰色,表面平滑、没有棱角,看起来很不起眼。 /p p   但如果你拿起它们看时,很快就会发现,这些看起来毫不起眼的“石块”其实根本不是岩石。 /p p   这是焦塑料——经过火焚烧转变而来的一种新型塑料污染。地质学家甚至也对它们的外表感到困惑。英国普利茅斯大学环境科学家Andrew Turner最近在《全环境科学》上发表的一篇论文中对这种物质进行了描述。他认为,这种污染可能隐藏在世界各地。 /p p   “因为它们看起来像地质变化形成的,这让很多人经过时都不会留意到它们。”Turner说。 /p p   几年前,康沃尔塑料污染联盟志愿者联系到Turner时,他第一次听说了这种奇怪的新垃圾。 /p p   海滩拾荒者发现了一些奇怪的鹅卵石和石块的塑料仿制品,它们非常轻,可以漂浮在水面上。Turner说,一些志愿者已经收集了数千块。环境艺术家Rob Arnold甚至为当地一家博物馆设计了一个展览,让游客在塑料中找真正的石块。很少有人能够分辨出来。 /p p   “这个活动非常成功,但也令人震惊。”Arnold说,“人们很惊讶他们居然完全没有注意到这些污染。” /p p   一年前,Turner决定更系统地研究这一现象。在社交媒体上发出呼吁后,他收到了从苏格兰到英属哥伦比亚等地的垃圾样本,他的分析最终集中在从惠特桑德湾附近收集的垃圾上。这是一个受保护的大海湾,其中包括康沃尔郡一部分最好的海滩。在进行大小和密度测量后,该团队用X射线和红外光谱检测了塑料的化学成分。 /p p   他们了解到,这些“石头”是由聚乙烯和聚丙烯构成的,这是两种最常见的塑料。它们还含有大量的化学添加剂,但最让研究人员吃惊的是它经常和铅、铬一起出现。 /p p   Turner认为,这些是铬酸铅的痕迹。几十年前,制造商将这种化合物添加到塑料中,使其呈现出鲜艳的黄色或红色。而这些颜色可能由于燃烧而变暗。该团队在实验室里熔化了一些颜色鲜艳的塑料,验证了这个想法。果然,它们变成了深灰色。 /p p   与此同时,多年的风和水的侵蚀可以让这些经过高温的塑料形成光滑的边缘和风化的外观。 /p p   “想象一下,如果一块卵石在地质学上发生这样的变化,它会需要几十万年的时间。”Turner说,“我们在这些塑料上看到了同样的情况,但它发生的速度要快得多。” /p p   康沃尔热塑性塑料的确切起源仍然是个谜。Turner认为可能有很多来源,从篝火到旧的垃圾填埋场,篝火与夏威夷塑料—岩石混合物“塑小球”的形成就存在关联。他认为,其中一些塑料垃圾可能是从萨克岛漂到英吉利海峡对岸,因为最近的报告显示,萨克岛的垃圾在焚烧后被倾倒在海里 另一种可能是从加勒比海岸一路漂到英吉利海峡对岸。 /p p   无论如何,高温塑料已经在世界上出现了,Turner想知道它们会对环境造成什么样的危害。他发现几个蠕虫样本中似乎富含铅,这表明这些生物可以摄取塑料,并将重金属引入食物链。 /p p   Turner与美国的一位合作者分享了一些样本。这位合作者正在做进一步分析,以确定这些样本中是否也含有有害的有机化合物。“在不受控制的环境下燃烧塑料,会产生各种有害物质。”他说。 /p p   除了直接的生态效应,热塑性塑料的出现还表明环境中的塑料无处不在。英国莱斯特大学古生物学教授Jan Zalasiewicz想知道,这些东西最终是否会在岩石记录中留下痕迹。 /p p   无论高温塑料的最终命运如何,Zalasiewicz说,很清楚的是,塑料正在“成为地质循环的一部分”。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/60eaff85-f756-497e-837e-d605b32afed6.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 微塑料污染进入人体 专家说是否威胁人类健康尚不明确
    p   短短60秒内,全球就能卖出100万个塑料瓶,200万个塑料袋。 /p p   人类平均每年制造800万吨塑料废物,然而,这些急速增加的塑料要等1000多年才能降解。等不及降解,它们很快就会碎裂成被称为“微塑料”的微小碎片,无处不在:海平面以下四五公里,极圈的海冰里,瑞士的高山上,水龙头里,鱼类体内,甚至你桌上的啤酒和盐罐里?? /p p   现在,它还出现在了人体内。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/40dd7986-7878-483a-944b-afebdd54e8fb.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center "   科学家观察海水中的微塑料 图据纽约时报 /p p   据《纽约时报》报道,正在维也纳举行的欧洲联合胃肠病学周10月22日的学会上发布了一项新研究,该研究首次确认,人体内发现了多达9中不同种类的微塑料。 /p p   微塑料对海洋的污染,对动物的危害已经说得不少,但它们对人体有什么危害,又是从哪里来的呢? /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/361c2bd5-6190-4800-930c-995d846a6c6c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "   遭到塑料污染的海洋 图据每日邮报 /p p    strong 研究首次确认微塑料进入人体 /strong /p p   “塑料在日常生活中无处不在,人类以太多方式暴露在塑料中,但我个人根本没有想到每个样本都能检测出微塑料。”该研究的第一作者,维也纳医药大学胃肠病学家菲利普· 施沃布尔表示,“研究结果令人震惊。” /p p   过去十多年来,微塑料——长度小于0.5毫米的碎片,已经成为环境研究学者的主要忧虑之一。海洋生物学家一直警告海洋微塑料污染的危害,海洋生物体内已检测出高含量微塑料。不只是海洋,陆地水源也被严重污染。去年,全球83%的水龙头样本中检测到微塑料。其中最为严重的是美国,94%的水龙头水样本都被污染。 /p p   研究人员早就怀疑,微塑料终会进入人体。 /p p   “这是第一个关于人体内微塑料的研究。”施沃布尔及其团队研究人员想确认人体内是否存在任何微塑料。他们从芬兰、意大利、日本、波兰、俄罗斯、英国、奥地利和荷兰8个国家分别选择了一名志愿者。这些年龄33到65岁的志愿者,进行了为期一周的饮食控制,最终提供粪便样本供研究。 /p p   结果,8个样本均发现了微塑料,而且多达9种不同种类的微塑料,大小从0.05~0.5毫米不等,比头发丝还小几倍。其中最常见的为聚丙烯(PP)和聚对苯二甲酸乙二醇酯(PET)——两者皆为塑料瓶和瓶盖的主要成分。 /p p   根据这个研究,施沃布尔估计,全球50%的人口体内都有微塑料,不过,这还需要进一步做更大样本的研究进行确认。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/facd36e5-4a7b-4e6f-8d8c-f0ba4f613dc0.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center "   随处可见的塑料污染 图据美国新闻周刊 /p p    strong 微塑料对人体的危害暂未明确 微塑料进入人体,到底有什么危害呢? /strong /p p   海洋里,多达114种水生物种的体内发现了微塑料。研究表明,它们和塑料的遭遇结果往往是致命的。小至浮游生物,大到鲸鱼,都不可避免地吃进了各种塑料。微塑料能进入动物血液,淋巴系统,甚至肝脏,造成肠道甚至生殖系统的损害。 /p p   但微塑料是否对人类造成健康威胁,到底造成什么程度的威胁目前尚不明确。 /p p   研究人员指出,肠道内的微塑料可能影响消化系统的免疫反应,或帮助有毒化学物和病原体的传播。但鉴于此次研究的样本量小,很难做太多结论。这次实验中发现的微塑料因为体积够大而不太可能造成严重威胁,同时,平均每10克粪便中含20个微塑料颗粒,这种污染浓度相对算低。 /p p   不过,据CNN报道,当微塑料进一步分解为更小的微粒后,很可能被人体循环系统吸收,进而进入人体器官。此外,这些塑料在制造过程中可能有一些化学物。“当浓度足够的时候,这些化学物质能伤害甚至杀死细胞。细胞可能会被成功替代,也可能不会,蛋白质及DNA都可能受到伤害。”伦敦国王学院教授弗兰克· 凯里称。 /p p   伦敦国王学院环境健康科学家斯蒂芬妮· 怀特也指出,“这些大体积微塑料的更大威胁是,它们是否在人体内留下相关化学污染,并且在人体组织内逐渐累计起来。” /p p strong   微塑料污染的来源相当广泛 人体内的这些微塑料到底从哪来的? /strong /p p   人类每年平均制造800万吨塑料废物,这些废物从海岸地区进入海洋。在阳光和海浪的共同作用下,这些塑料废物变成小颗粒,污染海洋,进入海洋生物体内。陆地上,微塑料也无处不在。合成纤维衣服上的纤维,尤其是聚酯和丙烯酸,会通过洗衣机排水进入淡水系统。 /p p   “绝大多数实验参与者都喝瓶装水,鱼类和海产品的食用也比较普遍。”施沃布尔称,“很可能食物在加工和包装的各个步骤都受到了微塑料污染。” /p p   不管是食用已经受了污染的食物,或者无意识吃下食品包装上的微小塑料都可能造成人体内的微塑料污染。一份研究曾预测,经常吃贝类的人每年可吃进1.1万片微塑料。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/a7bd0afb-8949-435a-acd1-de9ec53e5675.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center "   微塑料被发现进入人体 图据Getty Images /p p   “在人体内发现那么多种不同的聚合物,这说明污染来源非常广泛。”伦敦国王学院环境健康科学家斯蒂芬妮· 怀特也表示。此次实验有两名参与者并没有吃海产品,依然检测出微塑料。 /p p   “如果人类不改变现状,塑料污染程度会进一步恶化。”施沃布尔强调,人类需要减少塑料制品的使用,提高回收再利用。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/d73036b6-c761-4b9c-b207-8e85ee9e09e6.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center "   塑料污染问题严重 图据美国新闻周刊 /p p   关于塑料的危害强调已久,全球范围的禁塑行动已经在陆续开展,很多国家已经完全禁止使用塑料袋。美国很多城市计划禁止使用塑料吸管及其他一次性塑料制品。今年,欧洲议会还投票禁止在化妆品中使用微塑料。到2025年,欧盟国家一次性塑料瓶的回收率将达到90%。但这种程度的努力,被质疑为杯水车薪。 /p p br/ /p
  • 塑料回收或迎新突破!新催化剂可混合分解塑料,不产生温室气体
    塑料垃圾是我们这个时代最紧迫的环境问题之一,对不同类型的塑料垃圾进行分类使回收变得棘手。而现在,麻省理工学院(MIT)的工程师们已经开发出一种有效的新催化剂,它可以将混合塑料分解成丙烷,然后丙烷可以作为燃料燃烧或用于制造新的塑料。塑料在我们的现代世界中无处不在,这意味着大量的塑料最终会进入环境,而且令人担忧的是,似乎很少有地方不受影响。现在,从南极到北极,从海底到珠穆朗玛峰顶,都可以发现塑料,而且正在沿着食物链向上移动,以至于现在我们的身体里也能找到塑料。塑料有非常强的碳键,这使它们在使用过程中具有弹性和可靠性,但回收起来却非常麻烦。更糟糕的是,不同类型的塑料需要不同的回收方法,使其难以分类和大规模回收。但MIT的研究小组现在提出了一种新技术,可以处理混合在一起的多种塑料,并将它们转化为丙烷,而丙烷本身有很多用途。解决问题的关键是一种催化剂,它由一种叫做沸石的多孔晶体组成,里面塞满了钴纳米颗粒。研究人员指出,其他催化剂会在不可预测的地方打破碳键,产生不同的最终产品时,而新的催化剂只会在一个特定的、可重复的位置打破碳键。这个位置意味着它基本上切断了丙烷分子,留下剩下的碳氢化合物链,准备反复进行这个过程。这适用于多种类型的塑料,包括最常用的塑料,如聚乙烯(PET)和聚丙烯(PP)。在对现实世界的混合塑料样品进行的测试中,研究小组发现,该工艺可以将大约80%的塑料转化为丙烷,而不产生甲烷作为副产品。甲烷是仅次于二氧化碳(CO2)的第二大人为制造温室气体。由此产生的丙烷可以直接作为一种相对低影响的燃料,或者作为原料在一个部分封闭的循环系统中制造新的塑料。而最重要的是,催化剂的成分(沸石、钴和氢气)相对便宜且容易获得。这项研究成果已于近期发表在了《JACS Au》杂志上。尽管这项研究很吸引人,但研究人员表示,未来的工作将需要关注该技术如何在现实世界的塑料回收流中应用,以及胶水和标签等污染物如何影响该技术。
  • 必能信荣获弗戈中国塑料工业十年历程创新附属技术奖
    中国上海 - 2012年4月27日,Emerson公司(纽约证券交易所代码: EMR)所属业务品牌艾默生工业自动化子公司 - Branson Ultrasonics(以下简称必能信)宣布其研发的2000X 系列超声波塑料焊接机荣获著名工业媒体VOGEL集团评选的2002-2012中国塑料工业十年历程创新附属技术奖。 中国塑料工业十年历程系列奖由总部位于德国的著名工业资讯媒体公司VOGEL弗戈传媒主办,由中国塑料行业专家委员会针对过去10年众多创新研发技术及产品进行独立评审,旨在表彰在业界具有突出贡献的创新产品和技术。必能信作为材料焊接领域唯一公司获此殊荣,充分体现了必能信在亚太和中国材料超声波焊接行业主要技术及可持续发展领导者的地位。 必能信领先的2000X系列塑料焊接机是全球首款全数字式控制超声波塑料焊接机,除继承了以往必能信超声波焊接机的诸多优势外,还显著提高了焊接操作、过程控制、人机交流和使用便捷性,满足了现代工业操作的高标准要求,广泛适用于消费电子、汽车、包装和医疗等行业,拥有极高的品牌知名度和良好的口碑,成为全球业界的标志性产品。 谈及此次获奖,必能信超声集团亚太区副总裁/总经理John Yen表示:&ldquo 我们很高兴能获得这一殊荣。这是业界对于必能信产品在技术创新和可持续发展方面的认可,也充分体现了过去十年必能信对中国及亚太市场的持续投入。我们将在中国市场不断推出新技术新产品助力日新月异的中国塑料工业的发展。&rdquo 关于艾默生工业自动化 (Emerson Industrial Automation) 艾默生工业自动化是Emerson公司(纽约证券交易所股票代码:EMR)所属业务品牌,提供技术领先的生产解决方案,包括机械、电力及超声波等,为全球多种多样的行业提供最先进的工业自动化。该业务品牌广泛的产品和系统应用于生产过程和设备,包括运动控制系统、材料焊接、精密清洗、物料测试、液压控制阀、交流发电机、马达、机械动力传输驱动器和轴承等。了解详细信息,请浏览www.emerson.com或www.emerson.com.cn。 关于必能信 (Branson Ultrasonics Corporation) 必能信超声波是美国艾默生工业自动化所属子公司,创立于1946年,至今有60多年历史,是全球材料焊接和精密清洗行业的领导者。公司主要提供各类超声波清洗、超声波焊接、振动摩擦焊接、热板焊接、激光焊接、旋转焊接、超声波金属焊接方案和超声波细胞破碎方案。公司在全球范围内拥有70多个销售网点和近2000名员工,并在美国、加拿大、墨西哥、德国、斯洛伐克、中国、中国香港、日本以及韩国设立有研发和生产基地。成立于1993的必能信超声(上海)有限公司是必能信在亚洲最大的生产和销售配套服务基地,也是国内最大的综合性超声设备生产和技术开发企业。我们承诺为客户的切实需求提供解决方案,并与客户分享最先进的产品和工艺技术。我们全球化的营销组织确保了为全世界的客户提供各方面资源和服务。了解更多详细信息,请浏览www.bransonultrasonics.com或 www.branson.com.cn。
  • 塑料粒子及PVC粉末黑点外观检测仪一体机面世
    近日,卡尔帕斯(塑料黑点缺陷扫描仪厂家)总部传来消息,用于检测塑料树脂黑点和PVC黑点杂质的产品在一台机上自由切换的技术完美解决。 塑料树脂粒子表面外观上会出现黑点、黑斑点,甚至整颗都是色粒,将粒子快速挑选出来并进行分析是几乎每个工厂质检部门都希望的事情,用人眼按照现行国标1公斤的方法,量太大,重复性差,颗粒外观仪器法国家标准在2016韵鼎公司承办至今仍在推荐,黑点缺陷扫描仪检测技术也越来越好,快速、重复性高。 PVC粉末中也经常存在黑点或杂质,很多生产厂在经过对比后,选择卡尔帕斯黑点缺陷扫描仪的产品。 有些客户两种产品都有,虽然原来的技术也是一台主机就可以测量塑料粒子和PVC粉末的黑点外观,但需要更换备件,现在两者的一体化设计让这类客户非常方便测试。 到目前为止,卡尔帕斯黑点缺陷扫描仪产品多模块化的设计可以自由组合完成客户任意对颗粒或粉末样品中黑点、黑斑点、色粒、纤维、拖尾、连粒及塑料膜上鱼眼的快速测量、评估。
  • 微塑料:一场不知不觉的污染
    p   人类和塑料的关系可能比你想象得还要“亲密”。除了生活中接触到的各种塑料制品,塑料还会降解成直径从0.1到5000微米不等的塑料微粒。这些微粒在陆地上随处可见,也被发现存在于河流、海洋甚至北极。 /p p   本世纪初,人们首次在海洋中发现微塑料的存在,至今已有不少研究聚焦于这些小小颗粒的降解和迁移过程。 /p p   如今人们发现,它们不仅会走水路,还会“借东风”。 /p p   《自然—地球科学》本月发表了一项研究,法国国家科学研究中心的研究团队跑到人迹罕至的偏远山地,收集大气中的沉积物样本,发现其中含有大量塑料微粒。模拟实验表明,这些塑料微粒通过大气旅行,最初动身之地距离落脚处可达100公里。 /p p    strong 微塑料的前世今生 /strong /p p   粒径5毫米以下的塑料颗粒被称为微塑料,通常以碎片、纤维等形式存在。 /p p   中国科学院水生生物研究所助理研究员熊雄告诉《中国科学报》,微塑料的来源主要分为两种。一种是生产时体积就很小的原生微塑料,常见于带有磨砂成分的个人护理品,在人类使用过程中进入水体。另一种是原本体积较大的塑料,经过光照、氧化、机械磨损等作用,逐步降解为微塑料。 /p p   在此过程中,有些微塑料可进一步降解至微米甚至纳米级别,因而有更高风险进入到细胞或生物体内,甚至对整个食物链产生影响。 /p p   先前对微塑料的研究较多集中于水体环境。从马里亚纳海沟到南极圈冰冻层,都已发现微塑料的存在。在中国,一些较为偏远的水体如西藏、青海等地的湖泊,也已检测到不同浓度的微塑料。 /p p   有研究指出,河流是海洋中微塑料的重要输送来源。熊雄等人调查长江中下游水体的微塑料污染情况后发现,内陆水体不仅是微塑料从陆地到海洋的传输渠道,其本身也聚集了数量可观的微塑料。 /p p   研究结果显示,长江中下游的微塑料浓度均值约为每平方千米50万个微塑料颗粒。这一结果在采用相似方法的河流中处于中等偏高水平。 /p p   熊雄告诉《中国科学报》,继这一研究后,其课题组仍在继续进行内陆淡水水体的调查。 /p p   在课题组近期发表的一项研究中,他们对一年四季湖水中微塑料的表面生物膜生长情况进行了调查,发现微塑料在水体内的沉降不仅受生物膜生长影响,也受水中悬浮颗粒物影响。 /p p   虽然没有确凿证据可以追溯这些微塑料从何而来,“但可以推测人们日常生活生产中使用的塑料制品是微塑料污染的主要来源”。熊雄表示。 /p p    strong 乘风而来 /strong /p p   如果说前述研究探讨的是微塑料如何在水体中停留和沉积,那么接下来的研究则发现,一旦微塑料体积足够小,它们的旅程就可以走得足够远。这意味着除了潜入水底,微塑料占据的领土达到了前所未有的广度。 /p p   之前有科学家曾对城市周边的大气微塑料含量进行研究,确认了大气沉降是表层土壤微塑料污染的源头之一,但当时并没有观点认为微塑料会迁移到非常远的地方。 /p p   《自然—地球科学》此次发表的文章指出,微塑料可能会通过大气“长途旅行”。 /p p   为了搞清微塑料可以走多远,Deonie Allen等研究人员在法国西南部的比利牛斯山脉进行了长达5个月的追踪研究。离他们选取的研究点最近的城市在近百公里外。 /p p   科学家从灰尘、雨水和雪中提取沉积物,对从中获得的微塑料类型和大小进行区分,并计算了相应的个数和含量。科学家发现,单位平方米中存在不同比例、不同形态的微塑料,如碎片、薄膜和纤维。测量区域的微塑料日沉积率约为365个颗粒/平方米。 /p p   建立大气模型进行模拟后,科学家推测这些微塑料在到达偏远山区之前,最可能产生于周边的城市。塑料微粒在大气中游荡,最终降落在几十公里外的山区土壤中。 /p p   文章指出,微塑料的体积和重量足够小后便能在大气中漂浮。这也意味着,它们不可能被绝对清理干净。因此Allen等人建议,目前唯一可行的办法就是从源头控制塑料的使用。 /p p   “目前对于微塑料在大气中迁移和沉降的研究很少,特别是在人迹罕至的偏远地区。这项研究会为同领域的研究者带来更多启发。不同区域微塑料在大气中的污染状况及其影响因素、微塑料在大气中的迁移规律及机理、大气中微塑料对人体的健康风险,都是值得继续探讨的问题。”北京市农林科学院副研究员徐笠这样评价道。 /p p   “随大气迁移并沉降到地表是土壤中微塑料的一种来源途径。在一些自然保护区或未开发利用地区,这可能是主要途径。”浙江农林大学环境与资源学院教授章海波告诉《中国科学报》,“但在农田土壤中,微塑料的主要来源还是有机肥、污泥农用、灌溉等。” /p p    strong 研究瓶颈 /strong /p p   从难以察觉的细小微粒到海洋中体量庞大的“怪物”,人们研究塑料垃圾造成的污染由来已久,相对应的研究手段也各不相同。 /p p   熊雄等人在长江中下游进行调查时,将333微米孔径的拖网放置在水体中拖曳,进行样品收集。 /p p   英国海洋生物协会近日发表的一项针对塑料垃圾数量的调查,也采用在水体中拖曳的方式,利用一种名为浮游生物连续记录仪的采集器,拖曳距离累计超过1200万公里。 /p p   徐笠告诉《中国科学报》,采集水体样本后,在实验室中往往还需要经过一系列处理。过滤就是一种常见手段。研究者根据微塑料的体积大小选择有适合孔隙的过滤膜。硝酸纤维、醋酸纤维、尼龙等是常见的滤膜材质。 /p p   徐笠指出,“膜的选择应根据具体实验要求,其孔隙大小和材质是需要重点考虑的问题。样品过滤后,通常含有有机质、藻类等各种干扰杂质,这些干扰因素可以用双氧水等进行消解,再用消解液过滤一遍,留在滤膜上的就是微塑料了。” /p p   如果想测定土壤中的微塑料,在过滤之前还要经历一道浮选的过程。浮选的溶液有氯化钠、碘化钠、氯化锌等。利用不同浮选液密度,可将不同类型的微塑料从土壤中浮选出来。 /p p   “这也是为什么调查土壤中的微塑料更为困难,因为微塑料沉积在土壤中,较难浮选出来。目前通用的解决办法是多次浮选,增加微塑料的回收率。”徐笠说。 /p p   这之后,研究者会在显微镜下观察样品大小、形状、颜色等特征,并用红外光谱或拉曼光谱对所选样本的具体种类进行鉴定。 /p p   章海波表示,受技术条件影响,目前研究主要还是以野外调查与室内模拟相结合,标记示踪也是一种方法。“但技术上目前对土壤中微塑料的分离分析方法还不够完善,受土壤复杂介质的影响较大。” /p p   “目前微塑料相关研究还没有一个统一的标准方法,未来还应制定统一的采样和样品处理方法,让微塑料研究更规范、环境浓度数据可比性更强。”熊雄表示。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4882a329-5b7b-49ce-accd-ca3aadad5ca8.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 研究首次证实微塑料 能引发机体慢性炎症反应
    10月30日,记者从深圳市人民医院获悉,该院心内科专家团队完成了一项“聚苯乙烯微塑料暴露对血管的毒性影响”研究课题,首次证实微塑料能引发机体慢性炎症反应,并由此导致血管钙化的发生发展。相关成果近日发表在《整体环境科学》上。深圳市人民医院心内科主任医师董少红、尹达,副主任医师孙鑫及医学博士颜建龙等组成的课题组研究发现,血管钙化患者粪便中均含有不同类型的微塑料聚合物,包括聚苯乙烯、聚乙烯、聚酯纤维、聚丙烯等。“其中排在前三位的分别是聚苯乙烯、聚乙烯和聚酯纤维,占比为42.4%、16.3%和15.7%。”孙鑫介绍,研究发现粪便中微塑料的来源与饮用瓶装水、食用外卖食品、暴露于有灰尘的工作环境等息息相关,同时还发现聚苯乙烯与血管钙化有一定的关联性。为了进一步验证聚苯乙烯微塑料与血管钙化之间的关系,课题组在饮用水中添加了聚苯乙烯微塑料颗粒,给予正常大鼠与维生素D和尼古丁诱导的大鼠自由饮用。结果发现,聚苯乙烯微塑料颗粒使正常大鼠心脏和主动脉血管均产生了轻微钙化,并明显加重尼古丁诱导的大鼠心脏和血管钙化。与此同时,为了明确聚苯乙烯微塑料颗粒对肠道菌群的干扰,研究人员还对大鼠的肠道菌群进行基因测序,结果发现暴露于聚苯乙烯微塑料颗粒环境中,可致厚壁菌门和拟杆菌门丰度的下降。“肠道微生物是构成肠道屏障的基础,当肠道菌群失衡时,致病性革兰氏阴性细菌释放脂多糖,可破坏并穿透肠道屏障,并使脂多糖进入人体循环。”颜建龙介绍,血液中积累的脂多糖会触发机体慢性炎症反应“开关”,并加快血管钙化进程。结合研究发现颜建龙建议,生活中应尽量少用或不用一次性塑料制品 家庭中可用过滤装置处理自来水,不用塑料产品盛装油、酒、醋等 不食用家禽、海产品等胃肠道、内脏和腮的部分,这些部位容易贮存微塑料 不建议用塑料砧板处理生肉、蔬菜和水果等。
  • 我国塑料包装检测仪器市场崛起
    目前国内塑料凹版油墨以溶剂型油墨为主,超标的苯对人体危害极大,而凹印速度高,必须使用挥发性强的油墨才能满足印刷要求,这使得环保问题在凹印工艺中尤为突出。水性油墨由于不含挥发性有机溶剂,完全消除了溶剂型油墨中的有毒有害物质,避免对包装商品产生污染,是目前各种油墨中唯一经过美国FDA认可的无毒油墨。目前国内仅有极少数厂家生产该品种水墨,但由于水性油墨在凹版印刷中其附着力、印刷速度、光泽等方面还不能完全达到溶剂型油墨性能水平,一时无法满足塑料薄膜彩色包装印刷厂商的要求。   在国家和用户要求包装制品严格按标准生产的呼声越来越高的情况下,用于包装原辅材料和制品的检测仪器市场开始渐热,各种国产和进口的包装专用检测仪器纷纷出现在市场上。   据统计,我国年销售收入5,00万元以上的包装企业有1万余家,其中近三分之一为塑料包装制品企业。这些企业中过去只有少数企业拥有自己的检测试验室,而现在小企业也开始重视建立自己的检测室。专家指出,由于塑料包装制品大多具有阻隔水蒸气、氧气、二氧化碳功能,所以有关这方面检测仪器的需求将越来越大。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 微塑料污染之忧将解 中大规模产可在海水中“消失”的塑料
    p   新华社北京9月5日电(记者喻菲)为解决日益严峻的海洋塑料污染问题,保护海洋生态环境,中国科学家最近研制出一种可在海水中降解的聚酯复合材料,有望在诸多领域替代现有难以降解的通用塑料。 /p p   中国科学院理化技术研究所高级工程师王格侠介绍,其团队研制出的这种结合了水溶性与降解性的材料具有一定的环境耐受性,废弃后能在数天到数百天内在海水中降解消失,最终分解为不会对环境造成污染的小分子。 /p p   王格侠说,长期以来人们聚焦于陆地上的白色污染及其治理。直至近年,大量塑料污染致使海洋生物遇害的现象被频繁报道才引起广泛关注。 /p p   据保守估计,人类每年向海洋投放的塑料垃圾为480万吨到1270万吨,占海洋固体污染物总量的60%至80%。目前,人类活动和洋流导致这些塑料垃圾集中分布于北太平洋、南太平洋、北大西洋、南大西洋及印度洋中部。 /p p   世界经济论坛也发出警告,2050年全球海洋塑料总重量将超过鱼类的总重量。 /p p   专家介绍,目前几乎所有类型的塑料都已经在海洋中找到。这些塑料微粒或者漂浮在海水中,或者沉入海底,几十年甚至几百年不会分解,对整个海洋环境造成了严重的污染。塑料在使用后被直接丢弃或从陆地经过河流、风吹进入海洋,在海水中受到光、海水风化,以及洋流和生物群的作用,导致塑料最终形成小于5毫米的微塑料。 /p p   一些海洋生物,如信天翁、海龟等,误食塑料袋会产生一系列的胃肠问题,以至于无法再进食,最终被饿死。最令人震惊的一项科学数据显示:有90%的海鸟是因为误食了塑料袋而死于非命。 /p p   王格侠指出,尽管海洋中塑料污染问题已经非常严峻,但目前人们对于这些塑料污染仍然没有有效的应对措施。海洋特殊水域环境使得人们不能像在陆地上一样对这样大量分散的垃圾进行集中收集和处理。最根本有效的办法就是让材料废弃进入海水后能自行降解消失。 /p p   据介绍,中国科学院理化技术研究所降解塑料和工程塑料研究组是中国率先开展生物可降解塑料研究的单位。生物降解塑料大都是含酯键的高分子材料,分子链相对脆弱,因而可以被自然界许多微生物分解、消化,最终形成二氧化碳和水。 /p p   目前,该团队的生物降解塑料生产及应用技术已经向4家中国企业完成了技术授权,其中3家已经顺利投产,总产能达到每年7.5万吨,占全球总量的一半。 /p p   在认识到海洋塑料污染的严重性后,科研人员希望研发出在海水中可降解的材料。然而他们发现,在陆地上能够快速降解的生物降解材料在海水中却难以降解,甚至长时间都不降解,不能用来解决海洋中的塑料污染问题。 /p p   经过多次反复实验,理化技术研究所的科研团队将非酶水解过程和水溶过程与生物降解过程结合起来,实现了材料在海水中快速降解。科研人员通过对材料的设计、合成、改性和加工使得其降解性能可根据不同的应用需求进行调控。 /p p   在近期于深圳举行的旨在提升中国自主创新能力、加大先进科技成果转化的第一届“率先杯”未来技术创新大赛上,这一技术位列30个优胜项目之一。 /p p   中国已将生态环境保护提高到前所有未有的层面,在解决本国生态问题的同时也为解决全球环境污染问题贡献中国智慧。 /p p br/ /p
  • 微塑料登上世界最高峰|上海净信冷冻研磨仪解决塑料难题
    珠峰是一个遥远、纯净的地方,在世界之巅却发现了微塑料的痕迹!    据英国《新科学家》周刊网站11月20日报道,首次在珠峰上发现直径不足5毫米的塑料微粒。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。       报道称,“污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。“    在过去的几年里,我们在全球各地收集的样本中都发现了微塑料,足迹遍布从北极到河流、深海。那么,什么是微塑料?    微塑料是指粒径很小的塑料颗粒以及纺织纤维。由于学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。相比于“白色污染”塑料,因微塑料体积小,意味着就有更大的比表面积(比表面积是指多孔固体物质单位质量所具有的表面积)。而比表面积越大,吸附污染物的能力越强,这就是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因。    它的污染分布如何呢?这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。    大气中:纺织产品生产使用过程中产生的超细合成纤维、工业上材料切碎和磨削等加工产生;质轻,可作为污染物载体,通过呼吸道进入人体。    水域中:塑料污染主要来源,海洋、地表河流、湖泊、水库、居民饮用水中均已发现;市政污水排放、大气微塑料干湿沉降、工业产生塑料废弃物、纺织行业废水排放、个人日用护理品及其包装等。    土壤中:市政污泥的土地利用、有机肥的长期施用、农用地膜的残留分解、大气微塑料的沉降、地表径流和农用灌溉水的带入等;通过食物链传递并富集。    上至世界之巅,下至世界最深的海沟,微塑料可谓无处不在。有研究指出,每年每人平均会摄入70000颗微塑料。目前微塑料对人体的危害如何还需要深入的研究,但这类无孔不入的物质无疑为我们人类敲响了警钟!我们必须加强对微塑料的研究,尽早提出可行的塑料减排和处理方案。    提到塑料研究,不得不提塑料的前处理。由于塑料制品对温度极其敏感,且加热后会变形、变性,只有在超低温环境下,才能保证样品的完整性。所以,在样品前处理这块着实让科研工作者头疼,因为常规的仪器根本搞不定它。    上海净信浸入式液氮冷冻研磨仪(JXFSTPRP-MiniCL),却完全可以做到!    这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻,全程-196度低温下研磨粉碎。保持了生物物质活性,确保易挥发物质的保留;防止热不稳定化合物的受热降解,对热和机械压力敏感的代谢物、异构体和复杂化合物保持原有的敏感特性物质。传统需要五分钟的粉碎研磨,而本设备只需要三十秒,称得上是研磨界的终极手段!
  • AS塑料制品丙烯腈单体总量不能超标
    近日,宁波慈溪检验检疫局在对辖区某食品接触材料企业出口美国和科威特的两批次真空保鲜罐产品进行安全卫生项目检测时,连续检出不合格,其AS材质塑料部件检测项目“丙烯腈单体总量”结果分别超出美国标准FDA 21 CFR 177.1040和我国国家标准GB17327-1998《食品容器、包装材料用丙烯腈-苯乙烯成型品卫生标准》中的限量要求。   AS(丙烯腈-苯乙烯共聚物)是一种具有高透明度、耐油性和耐化学腐蚀性的塑料原料,在食品用具中广泛使用,如食品餐具、塑料水杯等。AS塑料中可能残留的丙烯腈则是一种对健康有着严重危害的化学物质,一旦人体摄入过量,轻者头晕、恶心,重者直接造成呼吸中枢的麻醉,出现四肢阵发性强直抽搐、昏迷。为此,中国、欧盟、美国、韩国及日本等国家和地区均将该物质纳入对食品接触AS塑料的必检项目,并严格限制其迁移量或总量。   经查找原因,问题出在使用了不符合食品接触材料标准的AS原料。原料采购时企业盲目相信供方提供的合格检测报告,却没有核实检测项目是否符合进口国相关标准。最终该两批产品被判不合格、不准出境,企业为此遭受较大损失。   检验检疫部门提醒相关食品接触材料企业,加强进口国标准及具体检测项目的了解学习,原料采购时仔细核对供方提供的检测报告。必要时可以在大量生产前对原材料中容易超标的项目如“丙烯腈单体总量”进行委托检测。
  • 梅特勒托利多水分测定技术荣获2010‘荣格塑料行业技术创新奖
    备受业界关注的荣格2010塑料行业技术创新奖于8月10日在上海揭晓,梅特勒托利多、帝斯曼、德固赛等在内的31家国内外获奖企业约120位高层代表与业界专家齐聚上海浦东淳大万丽酒店出席了颁奖典礼,分享本年度最新创新技术将给塑料行业乃至社会生活带来的深刻变化和影响。 此次活动由荣格传媒主办,中国塑料加工工业协会专家严格评选,在300多家入围企业中共有20项最新技术获此殊荣,这些创新技术和产品涵盖了7个产品类别。梅特勒托利多的HR83卤素水分测定仪在检测技术分类中获得了塑料行业技术创新奖。 梅特勒托利多始终致力于技术的不断革新,HR83卤素水分测定仪是在生产环境和塑料企业质量实验室中进行水分测定的最佳选择,提供快速、简单的水分测定过程,具有准确、可靠的测定性能,并且能够测定低至200ppm的水分含量。如果原材料的含水量适宜,则可确保合成与注塑成型顺利进行,实现注塑成型零件的表面光滑并且具有理想的力学性能。通过优化干燥和调节过程,帮助用户节省时间和精力。  - 瑞士荣格工业传媒致力于通过专业杂志、荣格工业资源网站(www.industrysourcing.com)和会议活动等渠道,为工业界提供最广泛的新技术与新产品报道、技术转让、实用解决方案及采购信息;  - 荣格技术创新奖于2005年开始举办,包括塑料、食品、包装和金属四个领域,评选团均由专家委员会独立评审决议,依据技术、产品优势,以及对该行业的重大技术贡献而决定。
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 热分析如何让塑料变得更加环保
    前言塑料如今名声狼藉。每年生产的塑料超过3.8亿吨,其中近60%作为废物丢弃。实际上,把废弃塑料收集在垃圾填埋场和海洋中,这往往会导致灾难性的后果。然而,在减少排放对防止失控的气候灾难至关重要的时期,塑料可通过减轻运输重量、提高车辆的燃油效率和保持食物新鲜的方式帮助降低有害温室气体排放。事实上,加拿大最近发布的文件证实,因塑料产生的问题是源于对塑料废物管理不善,而塑料作为一种材料,对环境有诸多积极的影响。1. 回收塑料的挑战目前,仅“16%的塑料废物得到回收,用于制造新塑料”。其余的塑料被焚烧、送往垃圾填埋场,或最终排入大海。由于原油价格波动以及回收过程依赖于人工对废物进行分类,回收问题往往非常复杂。有时,制造新塑料比回收旧塑料成本更低。许多塑料产品包含塑料或添加剂的混合物,使得塑料成分过于复杂而无法回收,即使确定塑料成分,也无法确定回收塑料是否与原始材料完全相同。与原始塑料相比,回收物品因暴露于雨水、紫外线辐射和高温,其材料特征可能会改变。好消息是塑料回收率正在逐渐增加。但我们的全球塑料使用量也在以惊人的速度增长,这意味着尽管回收率变高了,但每年丢弃塑料废物变多了。针对这一全球性问题的解决方案非常复杂,但可以快速准确地确定回收材料成分和潜在性能的简单技术将有助于生产设备使用更多可用的回收材料。这就是热分析发挥作用的地方。热分析在塑料回收中的作用在塑料的生命周期中,热分析有三种主要用途:原材料测试:热分析可向您提供正在处理的聚合物类型,如PET或HDPE,纯度以及混合塑料中每种成分的百分比浓度。最终产品检查:在经过生产过程后,您可使用热分析检查塑料产品是否符合经认可的规范。您可能已验证原材料,但如果您在其中添加元素或将材料置于高温下,那么您需要在过程结束时验证实际特征。新产品研发:当您正在开发具有特定特征的新型聚合物时,热分析可帮助您全面了解新型聚合物的表征,而无需对成品进行寿命测试。热分析可帮助您选择正确的添加剂,从而确保不产生任何不利影响,如不必要的颜色变化。因此,如果您使用回收塑料,热分析可帮助解决关于使用回收塑料相关的问题。您可准确确定塑料类型和数量,并根据指定产品或新型聚合物开发来检查其性能特征。现在,我们来看看热分析在塑料生命周期中的具体示例。示例1Example 1 用于原材料识别的DSC此示例可以让您检查回收原材料的聚合物类型。使用差示扫描量热仪,通过测定玻璃化转变温度和熔点以便识别材料。您可将熔融温度和/或玻璃化转变温度值与已知值进行比较,以验证聚合物类型。在此示例中,我们使用了DSC200仪器。示例2Example 2 用于检查杂质的DSC现在,我们来看看稍微复杂的示例。回收聚合物中的任何杂质均会影响其特性,因此DSC可用于检测微量有害物质。在此示例中,我们测试了含0.5% PP的HDPE,以说明如何在测量过程中检测少量PP。在此案例中,我们使用了DSC600,这款仪器的灵敏度更高,为0.1µW。在测量杂质含量非常低的材料时,需要高灵敏度的仪器。两种聚合物的熔点差异显著,这种灵敏度水平可使您更容易看到PP的峰值。示例3Example 3 用于检查回收塑料稳定性的TGA您可能需要检查回收聚合物的另一个特征,即稳定性。如果材料用于高温环境,这可能适用于最终产品用途,但您也可检查材料是否可承受您自身的生产过程。这时,我们使用了同步热重分析仪STA200RV的TGA功能。我们分析了三种PET:90%回收、60%回收和0%回收。图表显示,与原始材料相比,回收材料具有较低的稳定性,并在较低的温度下开始分解。材料的百分比越高,开始分解的温度越低。然后,您可将温度与生产过程中达到的温度进行比较,以确定回收材料的适用性。示例4Example 4 您是否可在生产中使用重新研磨的部件?这种情况有助于减少浪费和节约生产成本。问题在于,您能否将生产过程中产生的废物回收到生产中。我们寻找的关键点是聚合物有机成分和无机成分之间的组成是否有任何变化。STA/TGA能帮助让您了解任何成分变化。通过图表,您可看到实线(原始材料)和虚线之间的差异。500℃和550℃之间的差异表明,在再利用样品中,无机材料(玻璃纤维)的浓度较低。然而,为确定这是否是最终产品应用中的问题,我们使用了我们特有的RealView系统,该系统允许您在扫描过程中查看样品的情况。 原始材料 重新研磨的材料这些图片可为您提供额外信息。例如,您可以看到重新研磨的材料具有较少的玻璃纤维,或者即使有,其纤维含量也比原始样品的纤维含量低。这只是一个示例,说明RealView技术能够为您提供比单纯的图形输出更全面的信息。如需更多与日立系列热分析仪如何帮助您在生产中使用更多回收塑料有关的信息,您可进入日立分析官网查看我们关于热分析如何为塑料和地球带来更美好未来的网络研讨会,或联系我们就您的具体应用进行讨论。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制