当前位置: 仪器信息网 > 行业主题 > >

温度测量变送器

仪器信息网温度测量变送器专题为您提供2024年最新温度测量变送器价格报价、厂家品牌的相关信息, 包括温度测量变送器参数、型号等,不管是国产,还是进口品牌的温度测量变送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温度测量变送器相关的耗材配件、试剂标物,还有温度测量变送器相关的最新资讯、资料,以及温度测量变送器相关的解决方案。

温度测量变送器相关的资讯

  • 德图变送器在西门子温室中的应用
    在温室中,环境条件扮演着相当重要的角色,因为即便是非常微小的温度波动都可能导致严重的后果。举例来说:在夜间,温度仅降低一度,温室中的供暖系统就必须连续工作满一小时,才能将温室环境重新调节过来。对植物造成的影响暂且不提,这种温度波动所造成的成本花费及能源浪费就已经非常巨大了。所以对于温室系统中温度、湿度、灌溉的调节工作来说,精准而可靠的测量技术是必不可少的。在西门子德国的I&S部(工业系统及技术服务部),德图的在线测量技术成为温室系统专家们可靠的工作助手。   I&S部门的技术总监,Andreas Bruckerhoff先生是温室自动化方面的权威,他们的客户遍布全世界,有大型的温室、园艺公司、以及很多知名公司的研发部门。在其温室自动化这个复杂的系统中,德图testo 6651和testo 6681变送器扮演着核心的角色。   Bruckerhoff已将新变送器的购买计划推迟了好几个月,因为他在等待德图2007下半年投放市场的最新版仪器。“有了testo,问题就简单多了” Bruckerhoff如是说,“完美的技术,一流的服务,同时德图还负责帮你校准。最重要的是,产品的性价比很好,而且只要带上适当的工具,现场就可以对仪器进行校准”。   温室自动化系统中变送器的使用绝非易事,这位自动化专家解释道“温室中的高湿环境以及植物保护所使用的多种活跃媒介使得变送器的使用环境变得恶劣,所以我们使用的变送器产品必须是坚固耐用的,3个月就瘫痪掉的,可绝对不行”。所以他们一直在努力寻找适合的温湿度测量探头,直到后来遇到了testoAG,,并与之成为了良好的合作伙伴。德图现在正和西门子合作开发一款专业用于温室环境的温室探头,现已进入测试阶段,不久将会以系列产品的形式面世。
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 英国科学家将差示扫描量热法与热显微镜相结合 用于分析材料的能量变化和光学特征
    英国哈德斯菲尔德大学的Gareth Parkes博士和英国Linkam Scientific Instruments的Duncan Stacey将差示扫描量热法与热显微镜相结合,用于分析材料的能量变化和光学特征。用于本研究的设备的标记照片。 A) 光学 DSC450,b) Linkam 成像站(立体显微镜),c) 高分辨率数码相机,d) 运行 LINK 的 PC,e) 控制器单元,f) 液氮泵单元,g) 触摸屏控制和 h) 液氮储罐© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353了解材料在不同条件下的行为方式对于优化它们在几乎所有应用中的使用至关重要,从工业聚合物到药物研发。热显微镜等热分析方法使研究人员能够观察材料在反应过程中的光学和物理转变。通过集成其他技术,例如差示扫描量热法(DSC),还可以测量能量变化(焓)。DSC是最广泛使用的热分析技术之一,用于测量与材料热转变相关的温度和热流。虽然它可以用来测量几乎任何随着能量变化而发生的反应,但DSC是非特异性的。因此,它必须与其他方法(如热显微镜)结合使用,以直接观察相变,如固-固转变以及聚变反应和分解。尽管结合DSC和热显微镜具有明显的优势,并且可以使用集成这两种方法的系统,但令人惊讶的是,使用同步DSC热显微镜分析各种材料的研究很少。数码显微镜质量的提高和实验室可用计算能力的提高可能会在未来几年引起人们对这项技术的更大兴趣。由Gareth Parkes博士领导的英国哈德斯菲尔德大学热方法研究中心(TMRU)的研究人员研究了将热通量 DSC板结合到热台中以允许对同一样品进行DSC-热显微镜测量的使用,同时。在本文中,我们探讨了这项技术在获取有关各种材料的光学和焓性质信息方面的优势——这些材料的选择是基于它们显示出光学跃迁和/或能量变化并涵盖广泛的系统这一事实。新型热系统在本研究中,最近引入的DSC-热显微系统用于研究硝酸铷的相变和聚乙烯的氧化。这是第一次在同一仪器上使用DSC和热显微镜分析这些材料。光学DSC450系统包括一个集成到热台中的热通量DSC板、一个T96-S温度控制器单元和LINK软件(如上图所示)。该系统在-150至450°C的温度范围内运行。热显微成像是通过与立体显微镜耦合的高分辨率数码相机获得的。聚合物的热稳定性聚乙烯为了更好地了解聚合物材料的氧化降解及其对高温稳定性的影响,TMRU小组对超高分子量聚乙烯 (UHMWPE)进行了氧化诱导时间(OIT)实验。采用光学DSC450系统将样品温度控制在30-205°C之间,并在惰性氮气气氛下分析OIT效应,然后在等温期间切换到干燥空气。在起始温度Tonset 109.9°C时观察到UHMWPE的熔化(如下图左所示),DSC曲线表明放热氧化的开始。同时使用热显微镜,光学显微照片能够以光学方式观察这些过程并与DSC曲线相关联。随着氧化降解的开始,研究人员可以看到液态聚合物熔化后表面质地的变化。OIT测试显示了预期的DSC曲线,但在氧化开始时发生的表面形态细微变化的其他信息通过光学方式揭示。正在对超高分子量聚乙烯(UHMWPE)样品进行氧化诱导试验。DSC曲线(蓝色实线)和温度程序(红色虚线)已绘制为时间的函数。垂直线表示气体何时从N2切换到空气。选定的显微照片(标记为t0和 a-c)链接到 DSC配置文件© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353使用DSC450(Linkam Scientific)分析硝酸铷。差示扫描量热法(DSC)(下)和感兴趣区域 (ROI)强度(上)曲线绘制为温度的函数。选定的显微照片(标记为a、b)链接到DSC和ROI配置文件© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353可视化相变硝酸铷显示出多种多晶型转变的材料通常是有用的温度校准标准,因为它们能够覆盖很宽的温度范围。在这项研究中,该小组评估了硝酸铷的多晶型转变,这是一种在150-280°C温度范围内具有三种不同固态转变的材料。 DSC曲线显示三个峰对应于固-固转变,最终峰对应于样品熔化(如上图左所示)。来自热显微镜的相应感兴趣区域(ROI)轮廓显示与由样品反射光强度(RLI)变化引起的一系列步骤相同的转变。这些结果表明,当样品保持无色时,在辨别相变时,将热显微术中的RLI与DSC结合使用的好处。TMRU的小组还使用DSC450研究了低温校准标准,阐明了温度循环对材料的影响。未来的应用本研究中的实验证明了DSC和热显微镜的互补性,以及同时热分析在揭示某些材料的复杂热过程方面的好处。DSC-热显微术可以在材料研究中提供更丰富的信息,因为光学图像有助于解释通常复杂和重叠的DSC曲线。预计该技术将在聚合物和制药领域变得越来越流行。TMRU的研究小组目前正在探索DSC450的独特设计是否有助于通过光学手段研究材料的导热性。
  • 山东仁科测控:建大仁科NB型温湿度变送器的具体应用
    NB-IoT窄带物联网是IoT领域一个新兴的技术,具备超低功耗、超强覆盖、超低成本、超大链接、大容量等优势,可以广泛应用于多种行业,如通讯机房、远程抄表、智慧农业、档案馆、厂矿、暖通空调、楼宇自控等个方面领域。山东仁科测控技术有限公司在现有NB网络基础上,自主开发研制了建大仁科NB型温湿度变送器,自成一个独立的体系,相较于传统的物联网传感器具有明显的部署优势与维护优势,壁挂式安装,施工简单,无需布线,真正做到即装即用。一、建大仁科NB型温湿度变送器参数:默认: 温度±3%RH(5%RH~95%RH,25℃),湿度±0.5℃(25℃)电路工作温湿度:-40℃~+60℃,0%RH~80%RH探头工作温度:40℃~+120℃ ,-40℃~+80℃(默认)探头工作湿度:0%RH-99%RH安装方式:壁挂式二、产品特点:1、产品采用高灵敏探头,具有信号稳定,精度高的特点;2、设备采样超低功耗微处理器,内置超大容量的锂电池,可支持连续使用3年;3、安装使用方便,外壳整体尺寸:110×85×44mm,拧上黑色保险管安装成功后,设备自动连接开始工作,安装黑色保险管见下图;4、天线内置,设备出厂之前内部安装卡,现场无需接线,采用NB-IOT无线通讯技术将数据上传至山东仁科测控云平台;5、覆盖广且深,海量的连接能力,一个基站可建成6个扇区,一个扇区可建立5万个节点的温湿度数据;6、用户无需自建服务器,设备默认连接到山东仁科测控云平台,安装成功后登录云平台即可查看现场温湿度状况,设备默认1小时定时上传/更新一次数据。三、云平台简介山东仁科测控云平台(www.0531yun.cn)部署于公网服务器,可接入机房监控解决方案中所有网络型设备。云平台用户可通过电脑网页端,手机app,微信公众号等各种方式登录,进行远程监控,可随时随地查看所有NB型温湿度变送器的位置以及实时数值。云平台具有报警功能,报警方式有短信报警、邮件报警、声光报警等,如有情况,给监管人员发告警,及时采取措施解决情况。平台上还可以查询实时数据及历史数据,进行数据统计,同时将数据的导出,下载打印等,还可以多级权限访问。山东仁科测控为NB型温湿度变送器用户更提供配套的管理系统,方便监管人员随时查看、查询、管理所有在线监测设备和数据,为城市环境网格化监测部署好每一步。
  • 梅特勒托利多M800多参数智能彩屏变送器全新上市
    梅特勒托利多始终致力于技术变革和产品创新。最新推出的 M800 系列多参数智能变送器,结合了梅特勒托利多新一代的智能传感器技术(ISM,彩色触摸屏操作,让分析测量更简单、更快捷、更准确!) - 新一代iMonitor传感器诊断功能 配合梅特勒托利多的ISM智能传感器,持续监测传感器健康状况,提供连续的实时智能诊断。iMonitor技术可以提前告诉您何时需要对传感器进行维护、校准或替换,大大降低您的维护工作量并最大程度降低故障出现的几率。 - 多参数多通道技术 M800变送器可以同时进行四个过程参数的测量,这些参数可以是电导率/电阻率、TOC、pH、ORP、溶氧、溶解臭氧与流量的任意组合。多通道多参数技术使用户选型更加便捷,同时降低用户库存成本。 - 大屏幕、高精度LCD彩色触摸屏 大屏幕、高分辨率彩色触摸屏,操作界面更简单。 - 数字智能传感器技术 领先的数字传感器技术消除传感器与变送器之间易于出错的模拟信号传输,提升过程测量的速度和精确度。 了解详情,请致电:4008-878-788
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 德图在线温湿度系列产品抢占行业制高点
    作为全球最大的便携式测量仪器制造商,德图的大部分产品是便携式的,但德图还有一条特色的在线温湿度产品系列。由于用户和市场需求的变化,从2008年上半年开始,德图公司开始在中国大力推广德图的温湿度变送器产品系列,为各行业提供完善的在线测量产品及技术解决方案。德图在线温湿度系列产品线包括testo6621、Hygrotest600、testo6651、testo6681 。其中,testo6621、testo6651和testo6681应用最为广泛。   testo6621 是为中低端市场提供的温湿度解决方案,是暖通空调专用的温湿度变送器,用于检测室内环境。testo6651应用于特殊环境监测,如洁净室等。testo6681应用于检测工业环境,如干燥过程、高温环境、高湿环境、重工业环境、压力露点测量等。相对于testo6621,testo6651和testo6681 这两款新的温湿度测量变送器则定位在高端应用,适合监测关键环境参数,也适合在压缩空气环境下使用。   针对苛刻的使用环境,德图还提供了高品质的传感器,保证了在针对特殊应用时如高湿度、低湿度等场合也可以完成高精度的测量。关于人们对公司产品的稳定性的顾虑,在线产品经理吴保东先生胸有成竹:德图温度传感器通过九大国际权威实验室验证,品质得到了世界各地专家的认可。历经为时5年世界各地实验室不同方式的检验,德图的温度传感器都表现出了优异的品质,精度均优于1%rH,拥有最高的精度。这个验证给广大客户注入了极大的信心。   德图在线产品的湿度应用的经典案例很多,仅以云南玉溪卷烟厂卷包车间的应用实例简单介绍。传统的温湿度传感器的温度范围为0-50摄氏度,相对,湿度的精度维持在5%以内。在新的生产工艺中,空调进风口的温度大于50摄氏度,卷包车间风温上限为120摄氏度,这就需要精度更高、量程更大的温湿度变送器。Testo6651温湿度变送器具有以下特点:经验证的长久稳定、数字式可更换探头、相对湿度为1.7%的精度,温度范围达到120摄氏度、先进校准概念,能够满足最新的卷包车间工艺要求。因此,云南玉溪卷烟厂选择德图testo6651温湿度变送器应用于工艺空调系统中的温湿度监测,替代原有系统。目前卷包车间温湿度控制值为相对湿度57%,温度24摄氏度。玉溪卷烟厂空调系统总负责人张工程师给于肯定:“德图testo有一流的温湿度产品!”另外,厦门卷烟厂在烟草膨化加湿工艺中也启用了德图的温湿度变送器。   药厂洁净室,食品的存储,建筑环境及秦兵马俑发掘过程中的温湿度监测,都是德图在线温湿度系列产品大显身手的地方。德图在线温湿度系列产品已经走进中国华能电厂、加申节能、庄怡实业、龙博科技等知名企业。中国环保节能的标杆工程深圳建科大厦全部的变送器都选用了德图,用于监测调控大厦的环境。在不到两年的时间里,德图在线温湿度系列产品迅速地抢占各行业温湿度监测的制高点。
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 应对三大挑战 德图湿度传感器的环球之旅
    ■从1996至2001,德图湿度传感器5年全球验证 在工农业生产、气象、环保、国防、科研、航天等部门,经常需要对环境湿度进行测量及控制。对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。但在常规的环境参数中,湿度是最难准确测量的一个参数。湿度测量始终是世界计量领域中著名的难题之一。这是因为测量湿度要比测量温度复杂得多,温度是个独立的被测量,而湿度却受其他因素(大气压强、温度)的影响。一个看似简单的量值,深究起来,涉及相当复杂的物理&mdash 化学理论分析和计算。 从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接收不同的方式的检测,精度都优于1%RH。德图湿度传感器的环球之旅给各地用户以一流的长期稳定性及卓越的品质保障。高品质温湿度变送器的核心在于高品质的传感器。无论是高湿、腐蚀介质、还是常规的净化室环境,testo都能应对挑战,提供卓越的温湿度解决方案。 ●挑战高湿度&mdash &mdash 为探头创造稳定微环境 在高湿度环境下,此时传统传感器的响应速度会明显变慢,且高湿环境通常会包含一些腐蚀性介质,这些腐蚀性介质危及传感器的使用寿命及稳定性。高湿度环境的测量工作是对测量技术的一个挑战。 针对这个情况,德图提供了一个独特的解决方案:testo 6614。通过加热,可创造一个高度稳定的微环境,从而确保了较快的响应速度,高精度的测量结果及良好的防腐蚀性能。外加一个用来测量实际温度的温度探头,经由微处理器计算,便可得出正确的湿度值。在此之前。高湿环境的长期稳定性与高度精确性二者一直是无法兼得的。 ●挑战腐蚀性介质&mdash &mdash 预警系统和自检测预防式维护 如今,专业的温湿度测量变送器已成为湿度调整链上可靠的连接。Testo的贡献是源于稳定的防结露的testo湿度传感器。然而,如果制程中有腐蚀性介质,传感器不久就会失效,伴随而来的是昂贵的退货(最终产品质量缺陷)和系统停工。 Testo针对以上情况开发出来了testo&ldquo 早期预警湿度探头&rdquo testo 6617。可以连续监测testo湿度传感器受到腐蚀的早期征兆。这样工作人员就可以及早得到警示。在测量错误或中断发生前就及时响应,避免损失。 由于使用了早期预警,系统管理员可以及时处理预警,及早进行探头替换,无需中断测量系统。专家都明白,与&ldquo 早期预警&rdquo 所节省的费用相比,其投资仅是很小的一部分,它确保了系统的长期可用性。 ●挑战漂移&mdash &mdash 完整信号链的全方位校准 在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,电子式湿度传感器会产生老化,精度下降,电子式湿度传感器年漂移量一般都在± 2%左右,甚至更高。一般情况下,生产厂商会标明1次标定的有效使用时间为1年或2年,到期需重新标定。 德图有着完整信号链的全方位校准,探头校准方式灵活多变,除了现场校准外,因为有数字接口,我们也可对探头进行单独校准。除了单点校准(偏移量)和两点校准(借助于盐瓶或湿度发生器)以外,P2A软件支持各个模拟输出通道的调整。使用高精度的数字万用表,整个测量链路(含数模转换器)可以进行调整。
  • 纳米钻石温度计问世 可测量干细胞内部温度
    纳米钻石可用于量子计算机中处理量子信息。近日,哈佛大学的研究人员利用纳米钻石的量子效应,将其变为&ldquo 温度计&rdquo ,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。   在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。   研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石&ldquo 温度计&rdquo 来精确控制。&ldquo 现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。&rdquo 参与该研究的哈佛大学物理学家彼得· 毛瑞尔说。   他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石&ldquo 温度计&rdquo 将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。&ldquo 你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。&rdquo 毛瑞尔说。   目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石&ldquo 温度计&rdquo 的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该&ldquo 温度计&rdquo 的敏感度已经达到0.0018开的温度波动。
  • 印证理论和实验测量极限,mK温度下的磁学测量延伸——Quantum Design mK温度磁学相关测量组件
    温度是自然科学领域中非常重要的一个物理量,在现代物理实验尤其是凝聚态物理实验中,改变温度测量研究材料的物理相变特性已经成为了非常常规和必要的一种手段。随着测量技术的不断发展,越来越多的低温测量设备和测量手段变得触手可及。在1K以下,不断接近于零度的过程中电子-声子散射作用逐渐被抑制,能够观察到更多被掩盖的量子态,对材料的本征物理特性的研究具有重大意义,同时也拓展了材料研究新的领域。例如非常规超导体重费米子材料、自旋液体材料等引发的对BCS超导理论、强关联电子电子复杂行为、量子阻挫行为的深入探讨。然而目前传统的mK温度下的测量手段仍然非常有限,在mK温度的测量对系统的稳定性要求较高,微弱的扰动都可能导致温度的剧烈波动,使得电学输运的研究手段成为了长久以来“”的选择。人们也似乎很难将常规需要在探测线圈中移动样品才能进行的磁学测量手段与mK限低温联系起来。近年来,Quantum Design公司在低温测量领域的开发仍在不断延伸,推出了基于MPMS3磁学测量系统的低温iHelium3氦三直流磁学测量组件和基于PPMS综合物性测量系统稀释制冷机的ACDR交流磁化率组件,成功实现了mK温度区间的直流磁学和交流磁学的测量功能,是继mK电学、热学测量功能后补全的又一块拼图。在此限低温下对磁性的研究将有助于科研工作者对超导材料的抗磁特性、临界电流、中间态能隙以及自旋玻璃材料自旋量子阻挫特性等进行深入的研究。 精选案例: 1. 低温下重费米子材料NdV2Al20的超导特性研究富山大学並木孝洋教授课题组在0.5-2.5K范围对重费米子材料NdV2Al20低温的超导特性进行了细致研究,除了采用常规的电学测量外,也使用MPMS系统的iHelium3选件对NdV2Al20材料在[001][101][111]三个方向的0.01T和0.1T背景场下的MT曲线进行了测试,并通过该数据对材料的Tc相变点进行了判定。MPMS3 iHelium3选件测量NdV2Al20材料在[001][101][111]三个方向的MT直流磁化率曲线@0.01T&0.1T 【参考】T. Namiki, Q. Lei, Y. Isikawa, K. Nishimura, Possible Heavy Fermion State of the Caged Cubic Compound NdV2Al20. Journal of the Physical Society of Japan 85, 073706 (2016).2016年日本 2. Kagome 金属 CsV3Sb5 的超导特性研究中科院物理所科研团队对笼目金属CsV3Sb5的磁化率测量同样利用了MPMS3的iHelium3选件,测量到了低至0.4K的直流磁化曲线,很好地符合了迈斯纳效应的超导抗磁性线性关系。 Cs3Sb5单晶的等温磁化强度和各向异性下临界场研究 【参考】S. Ni etal., Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5. Chinese Physics Letters 38, 057403 (2021).3. 低温下Al6Re铝铼合金超导体相关性质研究2019年复旦大学封东来、李世燕教授课题组合作通过MPMS3的iHelium3组件和DynaCool的ACDR稀释制冷机交流磁化率组件对Al6Re铝铼合金一类超导体在超导转变温度附近的直、交流磁化率进行了测量。对该材料在不同稳态背景磁场下的抗磁特性进行了分析,并根据M-H曲线在磁场超过临界值Hc瞬间失超的特性进一步确认了其一类超导材料属性。随后又结合BCS理论对50mK-1K的交流磁化率数据的磁滞特性进行了细致分析。MPMS3 iHelium3测量到的Al6Re在mK温区的直流磁化率曲线MT、MH(@0.4KDynaCool系统ACDR选件测量的Al6Re在mK温区的交流磁化率曲线【参考】D. C. Peets et al., Type-I superconductivity in Al6Re. Physical Review B 99, 144519 (2019). 4. 低温下NaYbO2超导体相关性质研究加州大学圣巴巴拉分校Stephen D. Wilson研究团队在mK温区分别对NaYbO2量子有序态和无序态的交流磁化率进行了研究,并判定了有序和无序的临界条件,相关成果发表在Nature Physics期刊上。 DynaCool系统ACDR选件测量的NaYbO2在mK温区的交流磁化率曲线【参考】M. M. Bordelon et al., Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nature Physics 15, 1058-1064 (2019).5. 低温下Yb2GaSbO7材料磁性相关研究同样是加州大学圣巴巴拉分校C. R. Wiebe研究团队在对Yb2GaSbO7材料磁基态的研究中观察到350mK的驰豫行为,并在随后的频率和交流磁化率依赖性无关的测量结果中推断出该材料不存在传统自旋玻璃态,并利用交流磁化率的高阶谐波功能对相变机理进行了更深入研究。 DynaCool系统ACDR选件测量的Yb2GaSbO7在mK温区的交流磁化率曲线【参考】P. M. Sarte et al., Dynamical ground state in the XY pyrochlore Yb2GaSbO7. npj Quantum Materials 6, 42 (2021). MPMS和PPMS的低温磁学测量组件了低温mK温区磁学测量的空白,结合主机系统的易用可靠的优势成功化解了诸多测量难题。截止2021年底,国内已安装MPMS系统He3选件14套,稀释制冷机交流磁化率组件6套,分布于北大、物理所、复旦、人大等多个科研团队,为超导、自旋液体、重费米子等关联电子材料研究提供了更多的实验手段,为具有阻挫磁性的笼目材料、二维van der Waals磁性材料和拓扑磁性材料等前沿热点领域的低温量子现象探究提供了更多的测量平台。
  • 国家标准化管理委员会下达2023年第一批《油茶籽油》等推荐性国家标准计划及相关标准外文版计划
    正文下载 相关标准如下:#项目名称制修订计划下达日期1紫砂陶器修订2023-03-212中国森林认证 产销监管链修订2023-03-213油茶籽油修订2023-03-214营养强化小麦粉修订2023-03-215银杏种核修订2023-03-216液相色谱法术语修订2023-03-217香柠檬、柠檬、苦橙和白柠檬精油(已全部除去或部分降低5-甲氧基补骨脂素)中5-甲氧基补骨脂素含量的测定 高效液相色谱法制定2023-03-218鲜梨修订2023-03-219危险化学品企业设备完整性 第2部分 技术实施指南制定2023-03-2110危险化学品企业设备完整性 第1部分 管理体系要求制定2023-03-2111危险化学品企业工艺平稳性 第2部分:控制回路性能评估与优化技术规范制定2023-03-2112危险化学品企业工艺平稳性 第1部分:管理导则制定2023-03-2113食用菌鲜品流通技术规范制定2023-03-2114山楂等级规格制定2023-03-2115沙琪玛质量通则修订2023-03-2116日用真空吸盘类产品通用技术要求制定2023-03-2117日用玻璃陶瓷修订2023-03-2118犬细小病毒病诊断技术修订2023-03-2119犬瘟热诊断技术修订2023-03-2120禽流感诊断技术修订2023-03-2121禽白血病诊断技术修订2023-03-2122脐橙修订2023-03-2123农田防护林建设技术规范制定2023-03-2124牛传染性胸膜肺炎诊断技术修订2023-03-2125蜜蜂生产性能测定技术规范制定2023-03-2126粮油检验 小麦粉加工精度检验修订2023-03-2127粮油检验 碎米检验法修订2023-03-2128粮油检验 米类加工精度检验修订2023-03-2129粮油检验 粮食、油料的杂质、不完善粒检验修订2023-03-2130粮油检验 稻谷整精米率检验修订2023-03-2131黑斑侧褶蛙制定2023-03-2132果蔬汁类及其饮料质量要求修订2023-03-2133格拉瑟病诊断技术修订2023-03-2134糕点质量检验方法修订2023-03-2135糕点术语修订2023-03-2136感官分析实验室 质量控制指南制定2023-03-2137感官分析方法 定量描述感官评价小组表现评估导则制定2023-03-2138蜂王浆及蜂王浆冻干粉中羟甲基糠醛含量的测定 高效液相色谱法制定2023-03-2139分析化学术语修订2023-03-2140肥料中总硫含量的测定 高温燃烧法制定2023-03-2141动物炭疽诊断技术制定2023-03-2142动物布鲁氏菌病诊断技术修订2023-03-2143畜禽遗传资源调查技术规范 第9部分:家禽修订2023-03-2144畜禽遗传资源调查技术规范 第8部分:家兔修订2023-03-2145畜禽遗传资源调查技术规范 第7部分:骆驼、羊驼修订2023-03-2146畜禽遗传资源调查技术规范 第6部分:马、驴修订2023-03-2147畜禽遗传资源调查技术规范 第5部分:山羊修订2023-03-2148畜禽遗传资源调查技术规范 第4部分:绵羊修订2023-03-2149畜禽遗传资源调查技术规范 第3部分:牛修订2023-03-2150畜禽遗传资源调查技术规范 第2部分:猪修订2023-03-2151畜禽遗传资源调查技术规范 第1部分:总则修订2023-03-2152畜禽遗传资源调查技术规范 第11部分:水貂、狐、貉制定2023-03-2153畜禽遗传资源调查技术规范 第10部分:鹿制定2023-03-2154出入境特殊物品使用经营者生物安全控制规范制定2023-03-2155茶叶供应链管理技术规范制定2023-03-2156茶树栽培育种术语制定2023-03-2157菠萝罐头质量通则修订2023-03-2158冰箱、冰柜用硬质聚氨酯泡沫塑料修订2023-03-2159家蚕遗传资源调查技术规范制定2023-03-2160应急避难场所术语制定2023-03-2161应急避难场所分级及分类制定2023-03-2162应急避难场所标志制定2023-03-2163塑料中空成型机安全要求制定2023-03-2164塑料 熔融状态下热塑性塑料拉伸性能的测定制定2023-03-2165塑料 热机械分析法(TMA)第3部分:穿透温度的测定制定2023-03-2166塑料 聚氨酯生产用聚醚多元醇 碱性物质含量的测定制定2023-03-2167节水型企业 木材加工及其制品行业制定2023-03-2168工业用合成盐酸修订2023-03-2169工业炉及相关工艺设备 安全 第6部分:连续涂层焚烧炉及固化炉制定2023-03-2170工业硫酸修订2023-03-2171工业控制系统人机接口组态文件交互 第3部分:扩展交互描述制定2023-03-2172工业控制系统人机接口组态文件交互 第1部分:通用信息制定2023-03-2173工业过程测量变送器试验的参比条件和程序 第5部分:流量变送器的特定程序制定2023-03-2174工业过程测量变送器试验的参比条件和程序 第4部分:物位变送器的特定程序制定2023-03-2175工业过程测量、控制和自动化 第 1 部分:工业设施和智能电网之间的系统接口制定2023-03-2176工业废水电化学处理技术规范 第1部分:总则制定2023-03-2177大型活动安全要求 第5部分:安保资源配置修订2023-03-2178大型活动安全要求 第4部分:临建设施指南修订2023-03-2179大型活动安全要求 第3部分:场地布局、安全导向标识和险情信号修订2023-03-2180大型活动安全要求 第2部分:安全检查和监测修订2023-03-2181大型活动安全要求 第1部分:安全评估修订2023-03-2182禾草综合利用技术导则制定2023-03-2183锅炉用水和冷却水分析方法 用间断分析系统测定选定参数 磷酸盐、氯化物、硅酸盐、总碱度、酚酞碱度、硬度和铁的光度检测制定2023-03-2184婴童用品 标识设计及应用指南制定2023-03-2185医院负压隔离病房环境控制要求修订2023-03-2186医疗器械生物学评价 纳米颗粒脱落和释放测量 颗粒跟踪分析法制定2023-03-2187医疗器械生物学评价 第10部分:皮肤致敏试验修订2023-03-2188医疗保健产品灭菌 微生物学方法 第2部分:用于灭菌过程的定义、确认和维护的无菌试验修订2023-03-2189液体危险货物道路运输金属可移动罐柜安全技术要求制定2023-03-2190血液净化术语修订2023-03-2191玩具中9种初级芳香胺含量的测定 气相色谱-质谱联用法制定2023-03-2192玩具及儿童用品中苯酚的测定 高效液相色谱法制定2023-03-2193生活垃圾采样和检测方法制定2023-03-2194内镜清洗消毒器修订2023-03-2195动物源医疗器械 第2部分:来源、收集与处置的控制制定2023-03-2196动物源医疗器械 第1部分:风险管理应用制定2023-03-2197笔类产品 术语制定2023-03-2198国境口岸经接触传播传染病防控技术规范制定2023-03-2199国境口岸经虫媒传播传染病防控技术规范制定2023-03-21
  • 维萨拉助力保护Eneco的关键电站变压器
    传统上,变压器需要通过定期现场测试对其状况进行评估。然而,我们新推出的DGA(溶解气体分析仪)监测仪让这一测试程序再无必要。连续监测仪让工作人员高枕无忧,能够采取主动措施优化预防性维护,延长变压器使用寿命并降低成本高昂的意外停电风险。作为保障可靠电力输出和降低风险的举措的组成部分,荷兰Bio Golden Raand生物质发电厂安装了一台连续变压器监测仪。维萨拉MHT410可连续测量变压器油中的三个关键参数——水分、氢气和温度。这座由能源公司Eneco拥有和运营的发电厂主要为当地工业提供蒸汽和电能,其产能约为135兆瓦热能和49.9兆瓦电力。背 景变压器材料会随着时间推移发生劣化,这可能导致代价高昂的故障、维修和停机。但由于在变压器发生故障的演进过程中,溶解气体会蓄积在变压器油中,因此在执行预防性维护计划过程中需要对油进行常规检测。Eneco在变压器上安装气体监测仪的目的是为了获得连续数据,减少定期油采样和实验室分析需求。维萨拉MHT410变送器由Flux Transformer Services负责安装,Eneco项目经理和维护专家Laurens Freriksen表示:“我们在历时一年多的在线测量中获益匪浅,无论变压器负载情况如何,变压器油中的氢含量均非常低,这让我们特别放心。”Bio Golden Raand电站Bio Golden Raand电站使用来自无害B级废木材的生物质作为原料进行发电。工厂每年处理大约30万吨废木材,这些废木材主要通过船舶和卡车从荷兰及周边国家运抵代尔夫宰尔。变压器油发电机变压器通常采用灌注油的方式进行绝缘和冷却。举例来说,Bio Golden Raand的变压器内含有大约20吨油。在变压器故障(比如放电或热点)引起的热应力和电应力影响下,油分子发生分解,继而造成油质的劣化。变压器油的检测和监测传统上,每年需要采集一次或两次变压器油样本,并将样本送到实验室分析以确定气体含量。这种现场采样方法只能获得某一时刻溶解气体和油品质量的检测结果。因此,连续监测仪的主要优点在于能够揭示出发展趋势,让用户获得气体含量与变压器负载之间的关系。更重要的是,通过连续测量,DGA监测仪可以提供故障早期预警。溶解气体的水平和趋势可用于故障识别,而这些在DGA监测系统的CIGRE技术手册(编号783)中均有描述。该文档不但列出了不同类型的DGA监测仪,而且针对包括维萨拉OPT100在内的监测仪给出了有力的性能评估。除氢之外,MHT410还可测量作为故障关键指标的温度。此外,监测仪还可测量油中水分,水分会降低介电强度,加快纤维素(绝缘材料)分解,并增加高温条件下形成气泡的风险。Bio Golden Raand的DGA监测Laurens Freriksen在解释安装维萨拉MHT410背后的原因时指出:“电厂变压器是电网宝贵的资产之一,而我们的变压器已经使用了大约10年,并且还将继续使用。但由于没有冗余,因此密切监测变压器状况及性能对我们而言非常重要。”“我们之所以选择MHT410,是因为它让及早发现潜在问题成为可能,而这一降低风险的措施非常重要。及早发现故障就能及时采取纠正措施。”来自MHT410的数据持续不断输入Eneco的数字控制系统,而Laurens从笔记本电脑上就可以访问该系统。这意味着,他可以使用与MHT410测量相同的屏幕界面跟踪变压器负载状况。为快速简便安装而设计的MHT410维护和使用成本很低。这一点特别重要,因为与所保护的资产价值或与停电成本相比,DGA监测仪的成本低到可以忽略不计。总 结Eneco将安装维萨拉监测仪视为降低风险的必要措施,但正如Laurens所述:“能够持续掌握变压器的状况让人特别放心。然而,关键的优点还在于它为我们赢得了在油况劣化情况下制定有效策略的时间,这不但优化了变压器性能,而且还能延长其使用寿命。” 水分、氢气和温度变送器 MHT410用于电力变压器的可靠在线关键气体监测仪
  • 打破常规,挑战mK温度下的磁学测量——Quantum Design mK温度交直流磁学测量组件
    温度是自然科学领域中非常重要的一个物理量,在现代物理实验尤其是凝聚态物理实验中,通过改变温度研究材料的物理相变特性已经成为了一种非常常规和必要的手段。随着测量技术的不断发展,越来越多的低温测量设备和测量手段变得触手可及。通常,在温度低于1K以下并不断接近于零度的过程中,电子-声子散射作用逐渐被抑制,从而能够观察到更多被掩盖的量子态,这对于探索材料的本征物理特性具有重大意义,同时也拓展了材料研究新的领域,例如非常规超导体重费米子材料、自旋液体材料等引发的对BCS超导理论、强关联电子复杂行为、量子阻挫行为的深入探讨。然而目前传统的mK温度下的测量手段仍然非常有限,mK温度的测量对系统的稳定性要求较高,微弱的扰动都可能导致温度的剧烈波动,使得电学输运的研究手段成为了长久以来“仅有”的选择。人们也似乎很难将常规需要在探测线圈中移动样品才能进行的磁学测量手段与mK限低温联系起来。近年来Quantum Design公司在低温测量领域的开发仍在不断延伸,成功推出了基于MPMS3磁学测量系统的低温氦三直流磁学测量组件iHelium3和基于PPMS综合物性测量系统稀释制冷机的ACDR交流磁化率组件,成功实现了mK温度区间的直流磁学和交流磁学的测量功能,是继mK电学、热学测量功能后补全的又一块拼图。在此限低温下对磁性的研究将有助于科研工作者对超导材料的抗磁特性、临界电流、中间态能隙以及自旋玻璃材料量子阻挫特性等进行深入的研究。精彩案例 1. 低温下重费米子材料NdV2Al20的超导特性研究 2016年日本富山大学並木孝洋教授课题组在0.5-2.5K范围对重费米子材料NdV2Al20在低温的超导特性进行了细致研究,除了采用常规的电学测量外,也使用MPMS系统的iHelium3选件对NdV2Al20材料在[001][101][111]三个方向的0.01T和0.1T背景场下的MT曲线进行了测试,并通过该数据对材料的Tc相变点进行了判定。MPMS3 iHelium3选件测量NdV2Al20材料在[001][101][111]三个方向的MT直流磁化率曲线@0.01T&0.1TJ. Phys. Soc. Jpn. 85, 073706 (2016) 2. 低温下Al6Re铝铼合金超导体相关性质研究 2019年复旦大学封东来、李世燕教授课题组对Al6Re铝铼合金一类超导体在超导转变温度附近的交直流磁化率分别通过MPMS3的iHelium3组件和DynaCool的ACDR稀释制冷机交流磁化率组件进行了测量。对该材料在不同稳态背景磁场下的抗磁特性进行了分析,并通过M-H曲线通过磁场抑制超过临界值Hc瞬间失超的特性进一步确认了其一类超导材料的身份。随后又结合BCS理论对50mK-1K的交流磁化率数据的磁滞特性进行了细致分析。MPMS3 iHelium3测量到的Al6Re在mK温区的直流磁化率曲线MT、MH(@0.4K) DynaCool系统ACDR选件测量的Al6Re在mK温区的交流磁化率曲线PHYSICAL REVIEW B 99, 144519 (2019)
  • 红外测温仪该如何精准测量玻璃温度
    在玻璃生产过程中,温度测量和监控是确保产品质量、提高生产效率以及保障安全性的重要环节。对于处于高温熔化状态下的玻璃,准确的温度测量尤为关键,这不仅影响到最终产品的物理特性和结构,还直接关系到生产设备的运行状况和使用寿命。通过使用专业的红外测温仪,如IMPAC IN 140/5 IS 50系列,生产企业能够更好地控制各个生产阶段的温度,从而优化生产流程,降低能耗,并确保高质量的玻璃产品。 玻璃生产中温度测量的必要性1. 确保产品质量:玻璃生产中的温度控制对产品质量至关重要。通过精确的温度测量,生产过程中的熔化、成型和退火环节可以保持在最佳温度范围内,防止出现气泡、应力裂纹等质量问题。特别是在高温熔融状态下,准确测量玻璃表面的温度,可以确保产品的结构稳定性和光学性能。2. 提高生产效率: 精确的温度监控有助于优化能源使用,减少不必要的能源消耗。通过使用高效的温度测量设备,生产过程中的各个环节可以更加快速、准确地进行,从而提高整个生产线的效率。此外,温度的实时监控可以帮助减少生产周期,进一步提升生产能力。3. 延长设备寿命与提高安全性: 在玻璃生产中,过高的温度可能会对设备造成损害,缩短其使用寿命。通过监测温度变化,可以及时发现异常情况,避免设备因过热而损坏。同时,温度的有效监控可以防止意外事故的发生,如炉体破裂或玻璃意外冷却等,保障生产过程的安全性。高温熔化状态下玻璃的温度测量方法在测量高温熔化状态下的玻璃温度时,使用红外测温仪需要特别注意以下几点,以确保测量的准确性和安全性:1. 高温辐射率调整:熔融玻璃的辐射率一般在0.85左右,使用红外测温仪时,必须根据高温熔融玻璃的辐射率进行校准,以获得准确的温度读数。2. 避免反射干扰:熔融玻璃表面光滑且具有较高的反射性,因此,测量时要避免测温仪与玻璃表面成较大角度。尽量保持测温仪与玻璃表面垂直,减少环境光和其他热源的反射干扰。3. 选择合适的测温仪:在测量高温熔化玻璃时,确保使用的红外测温仪能够承受和精确测量高温。普通测温仪可能无法应对熔融玻璃的高温环境,需选择适合测量高温的工业级红外测温仪,如IMPAC IN 140/5系列。4. 防止表面蒸汽或杂质干扰:熔融玻璃表面可能会产生蒸汽或挥发物,这些可能影响测温仪的读数。因此,确保测量时视线清晰,没有干扰物遮挡。5. 保持一定的安全距离:高温熔融状态的玻璃温度极高,为了保护测量人员和设备,测温仪应保持适当的安全距离。IMPAC IN 140/5系列红外测温仪具备非接触测温的功能,可以在安全距离外进行温度测量。编辑搜图IMPAC IN 140/5系列红外测温仪的优势为了在玻璃生产中实现高效的温度测量,IMPAC IN 140/5系列红外测温仪提供了一系列专为玻璃行业设计的功能和技术,具有以下显著优势:- 宽广的测温范围:IMPAC IN 140/5系列的测温范围为250°C至2500°C,适用于玻璃和石英玻璃表面的非接触式温度测量,能够满足各种玻璃生产需求。- 更短的响应时间:这款测温仪的响应时间最短仅为10毫秒,适用于快速测量任务和高效的生产环境。- 高精度光斑尺寸:光斑尺寸最小可达0.9毫米,适用于小型测量物体的精确温度测量,确保每一测量点的准确性。- 多种调焦镜头与取景方式:IMPAC IN 140/5系列配备调焦镜头,适用于不同的测量距离和测量物体尺寸。此外,仪器还配备激光靶光或优化的目视取景器,使测量对准更加精准。- 数字化显示与接口:内置的数字显示屏可以实时显示当前测量温度,所有参数可通过仪器上的集成键盘进行调节。仪器还提供RS232/RS485接口,方便数据传输和远程监控。- 多功能与可靠性:IMPAC IN 140/5-H高速机型不仅适应高速测量需求,还具有极短的响应时间,能够胜任各种玻璃生产中的温度监控任务。通过使用如IMPAC IN 140/5系列的先进红外测温仪,玻璃生产企业能够更好地管理生产过程中的温度变化,确保产品的高质量、提高生产效率,并延长设备的使用寿命。
  • 工业和信息化部发布装备制造业技术进步和技术改造投资方向
    工业和信息化部发布装备制造业技术进步和技术改造投资方向(2009-2011),其主要与仪器相关的部分如下: 十七:工业自动化控制系统及检测设备 1 百万吨乙烯成套装备DCS系统 系统规模达到10万点以上,最小控制周期达50ms,控制系统产品通过CE认证 2 核电站用DCS系统和仪表 具有自动保护和控制功能;就地/远方手动控制功能;实时数据和历史数据的处理功能;仪控系统在线诊断和测试、工艺设备诊断、报警处理信息提示辅助功能;核电站核岛K1级温度传感器和变送器 3 高精度多变量变送器 同时测量差压、压力和温度参数;测量精度:差压0.05%,温度为±1℃(-40℃~650℃),压力为0.075% 4 科里奥利质量流量计 测量精度:液体为0.1%,气体为0.5%;量程比为20:1;同时可测量温度和密度参数;具有模拟、脉冲、HART和现场总线通信功能;满足安全仪表系统(SIS)等级要求 5 高精度超声波流量计 多声道;精度为读数的0.1%(液体)和0.5%(气体);最大流速30m/s;采样速度30次/s;输出信号更新速度4次/s;数字通信功能 6 智能电动执行机构和智能阀门定位器 变频调速智能化控制;精度:0.5%;MTBF﹥5万小时;具备自校准、在线监测、自诊断功能 7 电涡流传感器 用于测量振动、位移、转速、相位,线性范围:2mm;测量范围:0.25~2.3mm;输出值7.87v/mm±6.5%;用于测量轴向位移、斜面差胀,线性范围:4mm;测量范围:0.5~4.5mm;输出值3.94v/mm±10% 8 煤矿气体多参数自动分析系统 CO,C2H2,C2H6测量精度<0.5ppm;C2H6 0.1ppm;CO2 2ppm;H2 5ppm;O2 0.1ppm;系统精度1% 9 固定污染源排放烟气连续监测系统 量程范围:SO2、NO:0~250~2500mg/m3,CO:0~500~5000 mg/m3;线性度:≤±1%FS;重复性:相对标准偏差≤1%;精度:±2% 10 固定污染源排放水质连续监测系统 量程范围:COD: 0~20000mg/L,TOC:0~10mg/L,BOD:0~500mg/L;精度2级,氨氮:10~1500mg/L,相对误差±5%,具有数据远程传输功能 11 焚烧设备烟气排放在线检测装置 在线检测(精度):SO2(5ppm)、HCl(2ppm)、HF(2ppm)、CO(1ppm)、NOx(2ppm)、CmHn(5ppm)、粉尘(1mg/m3)等 12 焚烧设备长寿命快速反应氧量计 测量范围:0~21%;反应时间:0.5s;工作寿命:16000h;能在含重金属、HCl的烟气中使用 13 在线工业X射线CT装置 射线源焦点:0.02mm~0.4mm;射线源能量范围: 20kVP~1000kVP;系统分辨率: >30LP/cm;空间分辨率: 0.03mm 14 扫描电子显微镜 分辨率:优于3.5nm; 放大倍数:12~30万倍; 加速电压:0.3~30kV;可变压力模式:1~270Pa 15 扫描隧道显微镜 垂直方向分辨率:0.01nm;横向分辨率:0.1nm;具有快速通信接口 16 气相色谱—四极杆质谱联用装置 质量数范围:M/Z 1~1024,1~2000;质量稳定性:±0.15amu/24h;分辨率: R≥2.0M;灵敏度: SCAN 1Pg S/ N>30 17 液相色谱和飞行时间质谱联用装置 分析速度:0.1~0.2ms;质量范围:适应于测定生物大分子量;流量范围:2nl/min以下;精确度:0.1%~0.01% 18 光电直读光谱仪 波段范围:175~450nm;曲率半径:750mm;分光仪局部恒温:30℃±0.1℃ 19 智能化傅立叶红外光谱仪 分辨率:优于0.5cm-1 20 高性能气相色谱仪 FID微型检测器;灵敏度:5×10-12g/s;线性范围:106;多种检测器;智能化、微小化 21 高性能液相色谱仪 流量范围:0.01~10ml/min;压力范围:0~42Mpa;UV检测器噪声:±0.35×10-5Au (在254nm) 22 GPS测量系统 24 通道 Ll/L2 码和相位测量;20Hz GPS 数据采样率;RTK精度:±(2cm+2ppm),静态精度:±(5cm+1ppm) 23 全自动气象测量系统 气温、地温:0.05℃;相对湿度:1%R.H;气压:0.05hpa;风速:0.05m/s;风向:3°; 能见度:1m;净辐射:1W/m2 24 工业机器人 包括电焊机器人、弧焊机器人、搬运机器人和装配机器人,及其关键部件国产化 附件:装备制造业技术进步和技术改造投资方向(2009-2011)
  • 得利特深度研究工业溶氧仪电化学法测量方法
    得利特近日关于工业在线溶解氧测量方法做了具体的研究讨论,技术员工进行了内部会议。他们提到以下内容:水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。  工业溶氧仪测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量,荧光法。水中溶氧量一般采用电化学法测量。  氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利定律和道尔顿定律确定,亨利定律认为气体的溶解度与其分压成正比。  氧量测量传感器由阴极和带电流的反电极、无电流的参比电极组成,传感器有隔膜覆盖,覆膜将电极和电解质与被测量的液体分开,只有溶解气体能渗透覆膜,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵人而导致污染和毒化。  电流的大小与被测污水的氧的分压成正比,该信号连同传感器上热电阻测出的温度信号被送人变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。
  • 柔性温度传感器实现高温测量新突破
    近年来,各大品牌的折叠屏手机、柔性可穿戴电子等智能设备层出不穷,成为行业热点。作为柔性电子设备的重要组成部分,柔性传感器用以测量温度,反映人体的各项指标。现有的柔性薄膜温度传感器受柔性衬底、敏感材料等限制,难以实现高温物理场的温度测量。因此,如何继承柔性薄膜传感器优势,实现柔性薄膜传感器在高温环境下的应用是一个值得关注的问题。近日,来自微纳制造领域的一项最新研究成果,为柔性传感器突破高温应用瓶颈提供了新思路。西安交通大学机械工程学院精密工程研究所的刘兆钧博士、田边教授、蒋庄德院士及其合作团队首次制备出了具有良好温度敏感性的高温柔性温度传感器。相关成果发表于工程制造领域期刊《极端制造》。传统柔性温度传感器难以实现高温无损监测柔性传感器是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性,甚至可自由弯曲、折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂表面进行检测。在可穿戴方面,柔性的电子产品适合“人体不是平面”的生理特性,因此更易于测试皮肤的相关参数,其可将外界的受力或受热情况转换为电信号,传递给机器人的电脑进行信号处理,从而实时精准地监测出人体各项指标。“柔性薄膜温度传感器能变形、易附着、轻薄等优点受到了研究人员的广泛关注。”田边说,“热电偶式传感器以结构简单、动态响应快、便于集中控制等优点脱颖而出。”结合二者优势,热电偶式柔性薄膜温度传感器应运而生。“温度传感器主要由两部分组成,由两种不同材料制成的温度敏感层和柔性基板。温度敏感层常由金属以及金属化合物组成,柔性基材则选择已经商业化的聚二甲基硅氧烷、聚酰亚胺等高分子聚合物材料。”田边表示。实际上,柔性传感器的优势使其能运用到多个领域当中,除了可穿戴设备,柔性传感器还在医疗电子、环境监测等领域显示出很好的应用前景。然而,现有的柔性薄膜温度传感器受柔性衬底、温度敏感材料等限制,难以在高温环境场中工作,更无法实现功能化应用。“因为柔性基板的熔点通常低于400℃,在高温环境中发生碳化后会变脆、变硬,因此,很难在高温环境下使用现有的柔性温度传感器。这一点也限制了它们在航空航天、钢铁冶金和爆炸损伤检测等极端环境中的应用。”田边解释道。“现有的高温温度测量手段受限于设备尺寸大、需要破坏结构、破坏气流场、受环境干扰等,难以实现对温度场的无损实时温度监测。”博士生刘兆钧补充道。因此,如何继承柔性薄膜传感器的优势,实现柔性薄膜传感器在高温环境下的安装与应用是亟须解决的关键问题。突破多项柔性温度传感器测量瓶颈为了突破柔性温度传感器的温度测量瓶颈,田边教授团队创新性地选择了具有宽温域的铝硅氧气凝胶毡作为温度传感器的柔性基板。由于柔性基板表面不均匀、粗糙度较大,难以通过传统的微纳制造工艺实现薄膜沉积与功能化,因此团队选用了丝网印刷技术制备厚膜以克服上述困难。在制备传感器的实际操作中,田边、刘兆钧等人使用有机黏合剂混合功能粉末完成浆料配置,利用高温热处理的方法去除薄膜中的多余有机物,如环氧树脂、松油醇等。同时,团队还针对不同应用表面,基于柔性材料可变形、可共形的优势,实现了功能薄膜的特定曲面化制备。“就像球鞋设计者根据球星脚底的尺寸大小来制定码数一样,这种‘独家订制’能有效解决一些问题。”田边表示,这样制备好的柔性温度传感器能够贴附于不同曲率曲面,例如叶片等。同时,其也具有超薄、超轻等优点。这项研究首次实现柔性传感器在零下190℃至零上1200℃这一极广的温度范围内工作,测试灵敏度也达到了可观的226.7微伏每摄氏度(μV/℃)。这是现有所有柔性温度传感器难以实现的。扩大柔性传感器的工作温域,为柔性传感开拓了更广阔的应用领域,它在探险排难、航空航天、钢铁冶金等领域将呈现出巨大的应用潜力。在被问及新型柔性传感器何时能够实现实际应用时,蒋庄德表示:“我们团队的研究人员对制备的柔性温度传感器已经进行了多种实验室级测试与实际测试。其中,包括对航模发动机的尾喷温度进行实时监控,小型物理爆炸场爆炸瞬时温度测量以及对坩埚中金属熔化过程进行温度监测等。传感器在整个测试过程都表现出了优异的测温能力。”在蒋庄德看来,科技发展的目标始终围绕造福人类。他指出:“我们根据柔性温度传感器极轻、极薄的特点,创新性地将其应用于智能穿戴设备,如传感器与环保透明面罩相结合设计出的智能口罩,实现对人体呼吸状态的实时监测,有望惠及长期独居旅行者和慢性病患者。我们的科研成果可以给人们的生活带来便捷,这也让科研有了‘温度’。”目前,柔性传感器许多技术仍停留在研究阶段,柔性传感器产业链整体能力亟待增强。就技术本身而言,传感器本身的稳定性、耐磨损性等还需要进一步提高。而从整个产业链的配套来说,柔性电路、柔性存储,以及软硬连接等环节也需要跟进步伐。在未来,团队也期望将制备的柔性传感器进一步优化,实现飞机表面、涡轮叶片等国之重器上的温度测量,为我国科技进步添砖加瓦。
  • 精确测量纳米级物体温度有新招
    日常生活中通常是用温度计接触物体来测量其温度,然而,测量比人发丝的宽度要小1000倍的纳米级物体的温度,却是一个非常棘手的任务。现在,英国埃克塞特大学和伦敦大学学院的研究小组开发出一种方法,可在纳米级物体的表面温度与周围环境有所不同时,通过分析它们在空气中紧张的运动即布朗运动,来准确测量其温度。该研究成果发表在最新一期的《自然· 纳米技术》上。   1827年,苏格兰植物学家罗伯特· 布朗发现水中的花粉及其他悬浮的微小颗粒不停地做不规则的曲线运动,称为布朗运动。人们长期都不解其中原理。50年后,J· 德耳索提出,这些微小颗粒是受到周围分子的不平衡碰撞而导致的运动。这在后来得到爱因斯坦的研究证明。布朗运动也就成为分子运动论和统计力学发展的基础。   当温度升高,液体分子的运动越剧烈,同一瞬间来自各个不同方向的液体分子对颗粒撞击力就越大,小颗粒的运动状态改变也就越快。故温度越高,布朗运动越明显。由此,该研究小组发现,纳米级物体的表面温度可以通过分析其布朗运动而确定。   埃克塞特大学天文学系量子信息理论家珍妮特· 安德斯博士说:&ldquo 这种运动是由与空气碰撞的分子引发的。研究发现这种碰撞的影响携带了物体表面温度的信息,通过观察其布朗运动,可识别这些信息和推断温度。&rdquo   据每日科学网、物理学家组织网近日报道,研究人员捕获在激光束中的玻璃纳米球,令其悬浮在空气中后加热至融化,借此观察这些纳米级物体的升温。这种技术甚至可以辨别穿过微小球体表面的不同温度。   伦敦大学学院詹姆斯· 米伦博士说:&ldquo 在纳米尺度,与空气碰撞的分子有很大的不同。通过测量纳米粒子和周围空气之间能量如何转移,我们学到了很多。&rdquo   对于许多纳米技术设备,精确了解其温度尤为必要,因为它们的运作在很大程度上依赖于温度。这项发现也有助于目前正努力把大的物体引入量子叠加态的研究。未来其可进一步影响大气中气溶胶的研究,并为控制环境平衡过程的研究打开了一扇门。
  • 市场监管总局发布24项国家计量技术规范
    近日,市场监管总局发布2022年第32号公告,批准《液体活塞式压力计检定规程》等24项国家计量技术规范发布实施。   在无线电计量领域,修订发布JJF 1286—2022《无线信道模拟器校准规范》,重点修订路径时延和路径损耗的校准方法,增加最大多普勒频移的校准,为航天、航空行业应用无线信道模拟器的校准工作提供技术依据。修订发布JJF 1982—2022《电平振荡器校准规范》,将测试信号频率上限扩展为150MHz,同时扩展输出阻抗,在校准方法上兼顾新型数字指示式电平振荡器和传统指针式电平振荡器。修订发布JJF 1238—2022《集成电路静电放电敏感度测试设备校准规范》,为适应相关国际测试标准的变化,增加了机器模型、闩锁模型放电波形的校准,完善了集成电路静电放电测试设备校准方法。制定发布JJF 1983—2022《高清视频信号分析仪校准规范》,高清视频信号分析仪是对高清视频设备、视频终端设备等进行标准符合性测试和合格检验的专用测试仪器,被高清视频设备生产厂家和质量检测机构广泛使用,该规范的制定发布为高清视频产业发展提供计量技术支撑。   在压力计量领域,修订发布JJG 59—2022《液体活塞式压力计检定规程》,重新规定测量范围和准确度等级,提出压力形变系数检定要求并明确重力加速度实测等内容,完善了检定方法和技术指标。修订发布JJG 241—2022《精密杯形和U形液体压力计检定规程》,该仪器在精密加工、航空航天行业的压力(漏率)测量、泄露课题研究等领域被大量使用,本次修订提高了部分准确度等级检定时所用标准器的技术指标要求。制定发布JJF 1986—2022《差压式气密检漏仪校准规范》,对该类仪器的校准项目、校准方法和标准器的选择作出明确规定,校准项目覆盖主要计量性能,校准方法贴近仪器实际工作状态。制定发布JJF 1987—2022《大气数据测试仪校准规范》,改变国内该类型仪器无校准规范可依据的现状,提高航空飞行器飞行参数的计量能力,降低航空事故症候发生概率,提高航空公司签派率和出勤率,服务保障民航运输业。   在温度计量领域,制定发布JJF 1991—2022《短型廉金属热电偶校准规范》,短型廉金属热电偶广泛用于航空航天、石油化工等领域,是常用的温度传感器。该规范主要包括计量特性、校准条件、校准项目、校准方法及测量不确定度评定实例等内容,为短型廉金属热电偶校准工作提供技术依据。   在光学计量领域,制定发布JJF 1988—2022《通信信号分析仪校准规范》,通信信号分析仪用于光通信系统中光发射机、可插拔光收发模块性能指标的测试,该规范的制定发布为有效开展量值溯源创造有利条件。制定发布JJF 1989—2022《光谱照度计校准规范》,明确光谱照度计的计量特性、校准条件和校准方法,支撑电光源产品质量的检验检测工作,助推电光源、显示等产业高质量发展。制定发布JJF 1990—2022《积分球式标准光源校准规范》,积分球式标准光源是校准光谱辐射计、亮度计和面阵探测器的常用仪器,该规范的制定发布有效保障相关领域光谱辐射、光度和色度的量值准确可靠。   在电磁计量领域,修订发布JJG 126—2022《工频交流电量测量变送器检定规程》,本次修订提高了规程的适用性,解决新型数字输出量变送器的量值传递问题,有助于保障智慧城市、智能制造、自动控制等领域安全运行。修订发布JJG 982—2022《直流电阻箱检定规程》,本次修订拓宽适用范围、调整年稳定性考核范围、简化开关变差检定方法,突出检定项目及方法的科学性、合理性和适用性,在保障检定结论准确可靠的同时,提升检定工作效率。制定发布JJG 1186—2022《直流电能表检定装置检定规程》,直流电能表检定装置作为直流电能表的重要检测设备,直接关系直流电能计量的准确可靠,该规范的制定发布为直流电能表检定装置的检定提供依据,为电动汽车、太阳能发电等领域的直流电能计量提供技术保障。制定发布JJF 1985—2022《直流电焊机焊接电源校准规范》,直流电焊机焊接电源作为提供输出特性的设备,其计量特性的准确度直接影响焊接产品质量,该规范的制定发布对提高焊接产品质量、保障相关人员和财产安全起到积极作用。   在高电压计量领域,制定发布JJF 1995—2022《电子式互感器校验仪校准规范》,电子式互感器校验仪是对电子式互感器进行校准的专用仪器,被互感器生产企业和电网建设单位广泛使用,该规范的制定发布解决了长期以来电子式互感器数字量值缺乏统一溯源方法的难题,进一步支撑电子式互感器产品质量的检验检测工作,为新型电力系统建设提供计量保障。   在时间频率计量领域,修订发布JJG 601—2022《时间检定仪检定规程》,时间检定仪是多功能、综合性的时间检定设备,本次修订提供更为科学合理的技术依据,从而确保时间频率工作计量器具的量值准确可靠。修订发布JJF 1984—2022《电子测量仪器内石英晶体振荡器校准规范》,电子测量仪器一般采用石英晶体振荡器作为产生信号的频率源,本次修订提出相对频率偏差、频率稳定度等计量特性的校准方法,为电子测量仪器内石英晶体振荡器提供科学规范的测试依据,保障频率量值传递的准确可靠。   在气象计量领域,制定发布JJF 1992—2022《长波辐射表校准规范》,通过对模拟输出型长波辐射表灵敏度和数字输出型长波辐射表修正系数等计量特性进行校准,从而有效保证长波辐射和净全辐射的准确测量。该规范的制定发布,为长波辐射表的量值溯源和性能评价提供科学统一的依据。 在能源计量领域,制定发布JJF 1993—2022《天然气能量计量技术规范》,能量计量是国际上天然气贸易交接的主要方式,该规范与国家标准充分融合,根据发热量测定的3种不同方式(在线测定、离线测定及赋值)给出天然气能量的不确定度计算方法。该规范可作为计量技术机构对天然气能量计量系统的评估验收及政府部门开展监督检查的依据,也可作为石油天然气公司等用户能量计量管理的参考。   在能源效率计量领域,制定发布JJF 1994—2022《电冰箱能效(性能)测量装置校准规范》、JJF 1261.27—2022《投影机能源效率计量检测规则》,修订发布 JJF 1261.6—2022《计算机显示器能源效率计量检测规则》。电冰箱能效(性能)测量装置,是电冰箱性能参数的主要测量设备,该规范的制定发布,加快推进各检测机构与生产企业实现测量数据准确一致,对规范电冰箱产品能效标识的标注乃至电冰箱产业的发展都发挥积极作用。投影机和计算机显示器作为办公、学习设备被广泛使用,其节能意义重大,本次制修订内容包括相关产品能源效率的计量要求、检测条件、检测项目和方法、检测结果评定准则、检测报告等内容,在引导消费者购买高效节能产品同时,激励生产企业加大研发力度,提升消费者使用体验。   以上24项国家计量技术规范于2023年3月26日正式实施。
  • 干货分享 | 冻干样品配方的关键温度的测量
    *本文内容来源于英国Biopharma技术有限责任公司研发总监Kevin Ward博士样品配方的关键温度在进入冻干工艺的开发前,对配方的深入研究是极有必要的。研发人员必须保证配方中的活性成分在整个冻干周期中都能保持稳定,来保证得到的产品有着良好的外观和性能。有着不良产品外观的产品在冻干过程中可能遭遇了软化甚至塌陷,因为这些样品超过了它们的“关键温度”!样品配方的关键温度指的是:对于有晶体结构的样品,指的是共晶点(Teu);对于非晶体型样品,指的是塌陷温度(Tc);对于混合体系的样品,关键温度则低于上面所指的两种温度。在进入冻干工艺的开发前,有必要对该配方的关键温度进行分析。目前使用的方法主要有:共晶点:热分析(DSC)或阻抗分析(Zsinφ)塌陷温度:冻干显微镜(FDM)冻干显微镜的应用在使用这些分析仪器进行配方分析时,除了关注以上所述的关键温度以外,还可以利用这些仪器进行更多的分析,本文针对冻干显微镜在其中的应用进行详细说明。▲(左图)Biopharma公司最新一代冻干显微镜Lyostat5(右图)冻干显微镜的进样方法冻干显微镜搭载了真空泵,真空计和冷冻台,作为“微型冻干机”,可以在2uL的规模上模拟样品在冻干机中的冷冻和干燥过程,在90min内就可以分析出样品的塌陷温度(Tc)。▲ 在Lyostat5上观测样品的干燥界面在冻干显微镜中进行冷冻干燥,通过摄像机可以观察到样品干燥界面的推移。当温度上升到超过塌陷温度(Tc)时,可以看到样品结构的消失,当再次进行降温后可以重新看到保有结构的干燥界面,借此可以对一个样品进行重复实验以提高测量准确性。▲(左图)温度超过塌陷温度Tc后样品结构消失(右图)再次降温冷冻后观察到新的干燥结构对于某些配方,溶质有可能会聚集于液体表面导致起皮(Crust formulation),这样的配方容易阻碍冷冻干燥的进程。起皮现象也可以通过冻干显微镜进行观察,根据程度判断是否会影响后续的冻干工艺开发。▲(左图)用Lyostat5观察到样品溶质高浓度集中于边缘处(右图)边缘破开后冷冻干燥过程得以继续,由于温度过高样品结构丧失另外,在不同温度下比较样品结晶现象出现的速率,也可以辅助确定该样品是否适用于热退火工艺,以及确认最合适的退火温度。▲(左图)结晶现象不明显(右图)在-10℃继续维持10min后结晶开始增加不仅仅是提供塌陷温度综上所述,冻干显微镜除了能够非常经济便利地提供塌陷温度(Tc)外,能额外分析出样品是否起皮以及退火相关的信息。另外,Biopharma最新一代冻干显微镜Lyostat5还可以使用DSC模块替换掉冷冻台部分,使显微镜作为DSC进行使用,从而测定另一个关键的温度共晶点(Teu)。由Biopharma公司提供的可替换的DSC模块总结在将样品放入冻干机进行研发之前,获取该样品配方的相关信息对研发的效率至关重要。相比“Trial and Error”模式,基于科学方法得出的数据进行开发显得更加有的放矢,对配方特性更全面的掌握,也能更好的避免后续潜在问题的出现。使用冻干显微镜等分析设备在工艺开发前期的重要性不言而喻。下期预告阻抗分析(Zsinφ):冻干配方分析的新维度——详解冷冻状态分析仪Lyotherm3的应用测量冻干饼强度的意义——Micropress仪器的应用
  • 川仪股份研制的1E级安全壳淹没液位变送器(JE61)顺利发运
    近日,川仪股份为国家228工程自主研制的1E级安全壳淹没液位变送器(JE61)顺利发运。注册仪表网,马上发布/获取信息   1E级安全壳淹没液位变送器用于事故后安全壳内液位的长期监测,是保障电站安全停堆及后续监测电站状态的重要设备。该设备工况复杂,需满足在高温、高辐照、地震、LOCA、水淹、严重事故等恶劣工况下的正常运行要求,此前该设备长期依赖进口。   川仪股份联合上海核工院于2018年开始立项研究,在国家科技重大专项支持下,通过持续技术攻关,顺利完成了国产化1E级安全壳淹没液位变送器的产品研发、样机制造、鉴定试验等工作。经鉴定,公司所研制的1E级安全壳淹没液位变送器满足各项指标要求,达到国际先进水平。   依托国家重大专项课题成果转换,公司迅速启动民核取证工作,通过与上海核工院、上海成套院、国核示范精诚合作、快速响应,短短半年便通过设备鉴定试验,成功取得民用核安全设备设计制造许可证。进入设备制造阶段以来,在公司党委书记、董事长吴朋,党委副书记、总经理吴正国精心安排下,川仪流量仪表、四联测控、川仪速达等所属单位按照“坚守核安全底线、严控产品质量、科学策划、严格要求、高效执行”的指导思想全力投入到1E级安全壳淹没液位表的生产制造工作中,精益求精、一丝不苟,争分夺秒,全力以赴,按期实现1E级安全壳淹没液位变送器的顺利交货,有力保障了228工程关键节点,用实际行动践行“两个维护”。   川仪股份始终坚持以川仪所长服务国家所需,1E级安全壳淹没液位变送器(JE61)的顺利发运,实现了国产化设备首台套应用,是228工程1E级设备国产化的又一次重要突破,为核电站关键设备全面实现国产化贡献了川仪力量。
  • 美国SPECTRUM发布新产品TDR350 土壤水分温度电导率三参数测定仪
    美国SPECTRUM发布新产品TDR350 土壤水分温度电导率三参数测定仪。该土壤三参数测定仪具体介绍如下:TDR土壤水分温度电导率三参数测定仪TD350利用可靠的时域反射技术,能够对土壤水分变化全量程的进行精确测量。通过新的功能改进,能够为优化草皮提供精准测量和更加稳定的性能表现。能够对土壤EC进行测量,修正土壤水分读数。一键获取土壤水分读数,多种探针长度可以让您更好的测量目标区域数据。 TDR土壤水分温度电导率测定仪TD350产品特点:提高土壤水分测量精度(体积含水量)能够测量EC值测量草皮表面温度行业独家背光显示内部集成蓝牙和GPS模块能够保存超过50000条含有GPS的测量记录使用改进后的伸缩固定支架,调整探杆长度。6435 TDR 350 complete with case整套设备 TDR土壤水分温度电导率测定仪TD350可选附件红外温度传感器行业独家设计将土壤水分仪与红外温度测量相结合,使困难的测量变得更见快捷,简单容易实现。能够与TDR350很方便的连接高度准确的瞬时红外温度测量,能够读到冠层或土壤表面的温度温度数据与土壤水分、地理信息相结合无需测量土壤水分也可以得到目标温度能够快速准确的测量冠层表面的热量和萎蔫胁迫3676T TDR350红外温度传感器 TDR土壤水分温度电导率测定仪TD350中国总代理:南京铭奥仪器设备有限公司
  • 霍尼韦尔收购气体测量领先企业RMG集团
    霍尼韦尔收购气体测量及控制领域领先企业RMG集团   2009年7月7日,霍尼韦尔宣布签署协议,将以4亿美元收购RMG集团(RMG Regel + Messtechnik GmbH以及RMG所有子公司)。RMG是德国的天然气测量与控制产品、服务及解决方案供应商,它将整合至霍尼韦尔自动化控制集团下属的过程控制部,该交易已提交法律审批。   RMG集团位于德国卡塞尔,成立于1931年,专注于设计和生产天然气控制、测量以及分析设备,包括针对石油天然气公司的流量计量技术、调节产品以及安全设备。 RMG 2009年营业额预估约2.9亿美元。   这次收购将提升霍尼韦尔在天然气运输、存储、配送以及工业消耗领域的能力与地位。RMG与霍尼韦尔现场仪表以及控制解决方案关联紧密。举例来说,RMG气体流量计和调节设备同霍尼韦尔压力和温度变送器以及天然气液位计互为补充。同时,收购RMG也支持了霍尼韦尔提供增强能源效率解决方案的战略。近50%的霍尼韦尔现有技术实现了能源节约和效率。天然气作为可替代清洁能源,在全球成熟和新兴市场中的应用日益广泛。
  • 为什么体感和PM2.5监测值不大一样?扬尘检测仪监测数值到底准不准?
    近年来,工业生产和社会生活的高速发展,使得微颗粒排放物进入大气的比例呈逐年上升趋势,PM2.5污染已凸显为重大的环境问题。为此,中科院安徽光学精密机械研究所副所长刘建国做出了解答。 为什么体感和 PM2.5 监测值不太一样? 什么是体感?就是人们凭自己的感觉判断空气质量,例如通过视觉目测大气能见度,或者通过嗅觉感受所呼吸的空气是否有刺激性气味等等。大气细颗粒物不仅是形成雾滴的凝结核,而且也存在吸湿性增长。在不利气象因素下极易形成恶性循环,形成雾和霾长时间共存、难以消散的局面。因此,人们对雾霾的体感会大大增强。什么意思呢?就是说在恶性循环的情况下,会导致人们感受到的雾霾污染程度比实际情况要严重。“为了身体健康,人们自然会关注空气质量。但要治霾,首先要对霾的主要成因大气细粒子(PM2.5)及其时空分布和区域输送进行系统监测。通过对PM2.5的成分分析,结合大气污染源清单和预报模型,来掌握不同地区PM2.5的来源,我们才能对症下药。”刘建国说。准确监测PM2.5需要解决哪些技术难题?目前监测PM2.5有哪些技术? 目前,国内外对PM2.5浓度的监测主要有滤膜采样———光散射法、人工称重法、石英微量振荡天平法和β射线法。当光照射在空气中悬浮的粒子上时,产生光散射。在光学系统和粉尘性质一定的条件下,散射光强度与粉尘浓度成比例。光散射法测定空气中的粉尘浓度是通过测量散射光强度,经过转换求得粉尘质量浓度的方法。人工称重法是美国环保署和我国环保部推荐的标准方法,但由于需要较长的采样时间,无法提供目前空气质量日报和预报所需要的每小时均值。而石英微量振荡天平法和β射线法等方法是自动监测,每小时可获得一个监测结果,被称作“等效方法”。所有等效方法的监测值都要与标准方法所获得的结果进行比较,以确定其是否准确。如何监测,在监测过程中会碰到哪些难题?“为防止采样过程中水汽凝结的影响,无论是石英微量振荡天平法还是β射线法自动监测设备,采样管都要加温到空气的露点以上,通常是50℃,相对湿度保持在40%以下,整个测量过程都要在恒温恒湿的状态下进行。”刘建国告诉记者,但加温过程会造成颗粒物中挥发性和半挥发性物质的损失,导致测量结果偏低。“现在,我国已经参考美国的做法,增加了补偿装置,可以把挥发性物质和半挥发性物质的损失再补回去,这样就可以使测量结果更可靠。”刘建国称,颗粒物往往是固液混合物,构成非常复杂,即使是 PM2.5监测标准方法——人工称重法,同样也可能由于所采用的滤膜及温湿度的变化产生颗粒物损失等问题。测量结果可靠吗?根据2011年11月1日开始实施的《环境空气 PM10 和 PM2.5 的测定重量法》,人工测定PM2.5须通过具有一定切割特性的采样器,以恒速抽取定量体积空气,使环境空气中PM2.5被截留在已知质量的滤膜上,根据采样前后滤膜的重量差和采样体积,计算出PM2.5的浓度。 “在人工称重法测量过程中,要尽可能避免气态物质被滤膜吸附,滤膜平衡时要做到恒温恒湿。如果这些条件在实际大气环境中不能完全满足,就会引起测量误差。”刘建国强调,现有技术水平下,人工称重法所获得的监测数据已经尽可能地接近了PM2.5的实际状况。通过和人工称重法进行严格比对,光散射法、激光散射法、石英微量振荡天平法和β射线法的测量结果也是可靠的。目前市场上更多的扬尘检测仪都使用激光散射法监测PM2.5,建大仁科泵吸式噪声扬尘监测站最显著的特点是电控箱内安装高精度的空气质量变送器,可以不受环境中水分子的影响,精确监测出工地环境中颗粒物PM2.5、PM10的含量。当监测系统开始工作后,空气经进气口时由电子泵吸入变送器内,先由除湿设备将空气中的水分去除,再将其流动至空气质量传感器内。这时,空气质量传感器通过激光散射测量原理,以独有的数据双频采集技术进行筛分得出单位体积内等效粒径的颗粒物粒子个数,通过科学独特的算法计算出单位体积内等效粒径的PM2.5、PM10质量浓度,并将监测数值同时输出。泵吸式噪声扬尘检测仪配置1路百叶盒监测,通过内置的传感器对工地环境中的温度、湿度、噪声等气象因素进行实时监测;1路风速采集;1路风向采集;1路PM2.5、PM10和TSP采集;1路继电器输出可接现场二级继电器控制雾炮(默认)、吊塔喷淋及工程洗车机等;它所监测到的数据可通过LED屏(54cm*102cm)现场实时显示,也可通过RS485接口或移动卡以GPRS/4G的方式上传至云平台在界面显示,实现远程监控。通过手机扫码下载“噪声扬尘监控气象站”APP配置工具,能够对泵吸式噪声扬尘监测站的参数进行设置,如各项参数的上下限值,限值LED屏显示的内容,继电器开启闭合的时间,以及只能联动雾炮的工作时间等。泵吸式噪声扬尘监测系统由泵吸式噪声扬尘检测仪、通讯技术和监控软件云平台组成,集数据采集、存储、传输和管理于一体,能够24小时全天候在线实时监测现场环境,具有实时性、多参数、智能化的特点。系统支持两种数据上传:一种是无线数据上传,通过内置的移动卡通过根据GPRS/4G通讯方式上传;另一种是通过RS485从站接口,可以实现最远2000米的远距离有限传输。监控中心云平台支持在电脑、移动端、平板电脑等多个终端随时查看工地施工情况和扬尘指数的实时数据和历史数据。为保证工地环境治理符合环保要求,若出现PM2.5、PM10、噪声、TSP等环境数值超标的情况,系统会以平台告警、手机告警、邮件告警形式自动给管理员发告警信息;具有远程联动功能,可联动(雾炮)喷淋控制系统,改善空气质量。
  • 【北京空气质量变好了,还是变差了?】数说PM2.5遭遇战与变化趋势
    北京空气质量变好了,还是变差了?这是问题吗?这当然是问题,尤其经过经济学家严谨的观察和数据分析,一切并非那么“显而易见”。  在本文中,北大国家发展研究院胡大源教授以详实的数据描绘了“PM2.5遭遇战”,并分析了PM2.5的变化趋势。  胡大源教授认为,既然目前北京空气污染物的清除主要靠“等风来”,那么对未来几年风速风向变化的不确定性就应当有充分的预期。一旦遇到2011年和2012年冬季那样的持续静稳天气,PM2.5年均浓度很可能还会出现反弹。  PM2.5遭遇战与信息公开  在北京市各项空气污染治理措施中,耗资巨大的“煤改气”作用最为显著,空气质量监测指标二氧化硫持续改善。1994年为83每立方米微克,1998年曾上升到120微克,此后持续下降,平均每年降幅为11.5%,2015年北京年平均二氧化硫浓度仅每立方米15微克,低于我国环境空气污染物浓度限值20微克的一级标准。  但对公众感受影响更大的是能见度的变化。然而,在环保部门发布的各项监测指标中,大多是气态污染物,并不直接影响能见度。自上世纪90年代以来,国内外学术研究结果不断得到验证:悬浮在空气中更为细小的颗粒物(如PM2.5)对能见度的影响更大。  北京冬天通常的气候特征是干冷多风,然而2011年10月中旬至2012年2月中旬,北京却经历了一个多雪的冬天,先后下了10场中雪或雨夹雪。平均风速低于常年,空气相对湿度高,这些气象条件都不利于空气中污染物的扩散。平均能见度只有往年的50%至60%。  2011年10月,美国驻华大使馆公布的空气质量监测数据,让PM2.5(细颗粒物)质量浓度走进了公众视野。“北京空气质量指数439,PM2.5细颗粒浓度408,空气有害̷”。  对此,我国有关部门负责同志的回应为:“PM2.5是老问题,不是新问题,更不是新发现”。2012年1月,“环保部门整理文献资料后得出的结论是,北京市PM2.5年均浓度已由2000年的每立方米100到110微克降至2010年的每立方米70到80微克”。  2012年2月,中国国务院同意发布新修订的《环境空气质量标准》,该标准增加了PM2.5监测指标。与此同时,北京开始实验性的监测并实时发布每日PM2.5监测数据。在“2013北京市环境状况公报”中首次公布了PM2.5质量浓度年日均值为每立方米90微克,美国大使馆监测的2013年北京PM2.5质量浓度年日均值为每立方米102微克。围绕北京PM2.5数据,“中美监测结果比较”在实时检测结果公布之初曾经引发媒体的热议和公众的广泛关注。  下图是我们收集到的、公开发表的有关北京年均PM2.5浓度的研究与监测结果,其中右侧2013至2015年PM2.5浓度监测数据是2014年以后北京市环境状况公报中正式发布的。如果我们将时间到推至2010年,不难看出“北京10年来PM2.5呈下降趋势”并不明显。无论是美国大使馆的每立方米102微克,还是1993年北京环境状况公报中的每立方米90微克,均明显高于 “2010年的每立方米70到80微克”的结论。  数据造假是公众深恶痛绝的弊端,也是造成政府有关部门失信于民的重要原因。美国大使馆的PM2.5年均浓度由于监测数据信息公开,便于核对,因而容易被公众认为可信。而北京环保部门并未公布PM2.5年均值的具体计算方法和监测数据,无法核对,因此被认为容易受行政干预而降低可信度。尽管有关部门正式发布了PM2.5的实时监测数据,但实时数据通常需要进行必要的审核及补充修正后生成正式记录,年均值应该是在正式记录的日均值基础上计算出来的。此外,北京35个监测点的记录如何平均?是否加权?均应该明确说明。可核对是公众监督的基础,不可核对又怎样保证数据的准确?更谈不上获得公众的信任。  对于这场由特殊天气条件引发的北京PM2.5遭遇战,尽管美国大使馆公布其在北京、上海等城市的PM2.5监测数据“不合法”、“空气有害”或许夸大其词,但却在客观上推动了我国空气质量监测数据的信息公开,体现了我国与发达国家在空气质量上存在的巨大差距。  北京PM2.5的变化趋势  与TSP和PM10相比,PM2.5(空气中的细颗粒物)对能见度影响最大。然而北京有关部门发布的PM2.5年均浓度监测数据只有短短的三年。因此,推断和探讨过去10余年间北京的PM2.5浓度状况,就成为分析判断北京空气质量变化趋势的关键。国内外研究成果均表明,PM2.5在PM10的占比的变化有一定的规律可循。我们收集了过去十余年年全国304个PM2.5和PM10的年均浓度数据,通过建立计量经济模型,推算出北京在2000年之前PM2.5浓度约在125微克左右,与最近三年平均浓度86微克相比,总的来看,呈现出持续波动下降的趋势。  下图为北京PM10监测值与PM2.5模型推测值的变化趋势  事实上,北京的各项空气污染治理确实取得了显著的成效。我们收集了北京1999-2015期间140个PM2.5浓度月度数据,在控制主要天气因素(如风速)和季节变化等解释变量的基础上,分析能源结构调整和烟尘粉尘减排等治理措施与PM2.5浓度变化之间的关联关系。计量经济模型结果表明,北京市日均天然气消费每增加100万立方米,PM2.5浓度就平均下降1微克/立方米。2000年北京市日均天然气消费量为353万立方米,2015年涨到了3983万立方米,15年间增长了3600万立方米。从理论上看,在其它解释变量不变的情况下,“煤改气”对北京PM2.5下降做出的贡献高达36微克/立方米。为此,北京居民也付出了很大的代价,单就供暖一项来粗略估算,成本就增加了3倍左右。  与TSP相比,在北京对于可吸入颗粒物PM10的治理难度通常会更大一些,根据我们收集到的北京年均监测记录估算的PM10平均每年降幅约在每立方米4至5微克之间。根据监测记录建立模型估算的结果为:北京PM2.5浓度平均每年下降2至3微克。  从理论上讲,PM2.5的下降幅度不大可能超过PM10。这不仅由于PM2.5是PM10的组成部分,而且由于PM2.5组成成分更为复杂,治理过程不仅事关工业排放,还会涉及居民出行与日常生活习惯,因而持续下降的难度也会越来越大。三年来北京PM2.5的持续下降既是人努力的结果,也有天帮忙的成分。既然目前北京空气污染物的清除主要靠“等风来”,那么对未来几年风速风向变化的不确定性就应当有充分的预期。一旦遇到2011年和2012年冬季那样的持续静稳天气,PM2.5年均浓度很可能还会出现反弹。  长期以来,政府有关部门对于环境治理只注意到其自然科学和工程技术的一面,而忽视了涉及社会经济与传媒沟通方面的规律。从社会心理学的角度来看,多年来环境信息不公开的一个后果就是导致判断评价事物时的参照系错位。  2002年诺贝尔经济学奖获得者卡尼曼在《思考,快与慢》一书中讲述前景理论时谈到:“评估与中性参照点(如现状)有关,高于参照点的结果就是所得,低于参照点的结果就是损失”。尽管北京十多年前的空气质量更糟糕,然而由于环境质量信息公开程度低,公众与传媒不了解实际情况,一遇突发情况,政府有关部门的回应又难以服众,致使媒体和公众在批判北京空气质量变化趋势时,单凭感觉和记忆,或以发达国家的现状作为参照系,代替了北京以往的空气质量变化实情,从而得出结论:北京的空气质量变差了。  这种参照系错位,不但不利于公众对已有成就的认同,而且增大了未来空气污染治理取得成效的难度。暂且不论北京PM2.5下降到每立方米60微克需要付出的何等代价及其不确定性,即便几年后达到了上述目标,仍与主要发达国家十几微克的现状相距甚远。
  • 黏度测量-发动机油的低温测量解决方案
    发动机油的流动问题与黏度和凝胶有关,当凝胶或黏度太高,油的可泵送性在特定点受到限制,会导致润滑不良和潜在的发动机故障风险。低温情况下针对发动机的冷启动损伤,发动机油的泵送性是一个至关重要的因素。作为预防和保护措施,安东帕旋转黏度计ViscoQC 300根据ASTM D5133的温度扫描技术可以分析油在低温下的黏度和凝胶特性。低温、低剪切速率时发动机油的流变性:低温、低剪切速率时发动机油的黏度性能决定了油品低温启动时是否能流到集滤器,进入油泵并有足够量的油品到达发动机需要润滑的部位,以防止立即或最终损坏发动机。根据发动机制造商不同,已知黏度为30,000mPa.s或40,000mPa.s会引起泵送性问题。当油凝胶化时,油槽中的油会形成空气空隙。油太稠而无法填充空隙,因此泵仅吸入空气。发动机中的油凝胶会随着摩擦力的增加而导致过度磨损,或者在极端情况下会立即停止。油的凝胶化的特征在于,随着温度的降低,黏度的增加超过了黏度的正常指数增加。这归因于机油成分的成核和结晶过程以及结构的形成。 安东帕通过实验分析了黏度曲线随温度变化的斜率。如果斜率在一定温度下迅速增加,油就会迅速变稠并形成胶凝。给出凝胶指数时的摄氏温度就是凝胶指数温度。上图中没有显示出测试油的凝胶性,因为在曲线中没有任何陡峭的斜率。 安东帕具有独特PTD 175的ViscoQC配置符合标准ASTM D5133;V-Curve软件包中包含预定义的全自动测量方法;无需外部冷浴或烘箱即可进行测试;用户友好的界面,数字水平仪,Toolmaster™ 和功能强大的Peltier温度设备等功能使测量变得快速,可靠和容易。使用预定义的测量方法“ AP ASTM D7110”的相同配置也可满足标准ASTM D7110。ViscoQC 300支持选配实验室软件AP Connect,该软件允许全自动收集,存储和分发数据。
  • 2022西安工业测量展览会|2022工业测量展|2022西安数字制造技术展
    同期举办:中国西部国际装备制造业采购商大会批准单位:中国科学技术部主办单位:中国国际贸易促进委员会、中国机械工业联合会、陕西省振兴装备制造业领导小组联合主办单位:中国工业电器协会电炉及工业炉分会、中国机械工程学会工业炉分会组织单位:陕西省机械工业协会、四川省机械工业协会、西安市工业和信息化委员会、成都市经济和信息化委员会承办单位:西安三联执行单位:上海赛贸会展有限公司地址:西安国际会展中心 时间:2022年3月17-20号随着工业的需求面不断扩大与深入,企业对产品质量检验的设施与技术的要求也越来越高,如何提升检测手段、完善检测设备是检测从业人士身负的重任和义务。如何有效的进行过程控制是确保产品质量和提升产品质量,促使企业发展、赢得市场、获得利润的核心。企业要在激励的市场竞争中生存和发展,仅靠方向性的战略性选择是不够的。任何企业间的竞争都离不开“产品质量”的竞争,没有过硬的产品质量,企业终将在市场经济的浪潮中消失。而产品质量作为最难以控制和最容易发生的问题。为迎合这一契机,在得到国内外各级主管部门的大力支持下,“2022第6届中国(西安)国际工业控制及仪器仪表展览会”将于2022年3月17-20日在西安国际会展中心隆重举办为期4天,展会汇聚众多工业控制品牌、仪器仪表产品、围绕工业仪器技术与设备、物理测试与材料试验机、分析仪器、计量与测试技术为主要展出内容,汇集了各地检测设备制造商及代理商带来的高端技术和先进手段与设备,为西部地区业界提供高效的商务合作及交流平台。太仓庄正数控设备有限公司、帝悦精密科技(苏州)有限公司、江苏长沐智能装备有限公司、江苏磐一智能装备有限公司、昆山欧思克精密工具有限公司、苏索利得物联网有限公司、昆山欧思克精密工具有限公司、苏州益耕科技有限公司、苏州汉测测量设备有限公司、苏州稳信智能科技有限公司、苏州普费勒精密量仪有限公司等近300家相关行业企业前来参展。“2022第6届西安工业测量及数字制造技术展”作为2022欧亚工博会重要要组成部分,大会预设6大室内展馆、2大室外展馆,合计展出面积100000平米,可容纳近5000家企业前来参展。重点展示金属切削机床、五金机电、钣金加工、激光切割、工具测量设备、工业自动化及机器人、智能装备及精密部件、动力传动与流体液压、智慧物流、军民融合及航空航天等内容,聚集高端装备制造研发设计、生产加工、制造服务资源,展示创新、绿色、开放发展的新成果,促进实体产业与互联网、大数据、人工智能深度融合。同期举办中国西部制造智能发展论坛暨第三届陕西工业经济发展大会、第三届陕西民营经济与制造业发展大会、第三届中国西部工业信息化发展论坛、第六届中国智能制造企业家大会西部峰会、首届工业微程序大赛等系列重点活动。展览范围:一、工业控制与零部件:控制装置及专用控制器、工厂自动化系统、传感器和测量设备、无线传感器网络设备和应用、定位器、通讯设备和零部件、执行器、控制阀、元件模块和辅助设备、自动化仪表与系统、电子测量仪器、仪表元件、质量控制和检测设备、自动化元器件二、控制系统:控制技术、测量及调整设备技术、网络\工业数据通讯、电动机、机架系统、传感系统、驱动装置、工业无线通讯、嵌入系统、光电技术、电力供应、电气开关工业网络(工业以太网,现场总线技术与设备)、安全自动化(监控组态软件、安全监控系统、机器视觉、故障诊断)、基于PC的自动化、工控机,工业计算机、工业电源、人机界面、控制装置及专用控制器、变频调速、电气传动、运动控制(伺服系统、步进系统、运动控制总线等)、可编程控制器(PLC)、可编程自动化控制器(PAC)、分布式计算机控制系统(DCS)、数据采集、信号处理、工业自动控制系统及装备、楼宇自动化三、仪器仪表:仪器仪表及测试测量:过程控制仪器仪表、环保类仪器仪表(城市供水、污水处理过程检测仪表等)、检测类仪器仪表、测量仪器、质量控制和检测设备、计量分析类仪器仪表、研发和管理技术、测量投影仪、影像量测仪、二次元量测仪、三坐标测量仪、测量机、测试仪、工业体视/ 光学 / 电子显微镜、温度、流速、流量、压力、物位、及其参数计量、各类变送器、测试、显示、记录仪器仪表。
  • 免费试用丨Plover 便携式土壤水分、温度和电导率测量系统
    科学研究可以带领人类探索更多未知的领域,而完成一项研究离不开科研仪器的“加持”,高效精准的仪器设备将为研究人员的探索之路助一臂之力。 自2021年《政府采购进口产品审核指导标准》发布以来,国家支持重大科研设施和仪器设备国产化的力度不断提升,各省市也相继发布支持政策,在保障科研需求的前提下,优先购置国产仪器。 但购置仪器不是一件小事,哪款设备能满足需求?哪款设备性价比高?采购前的持续观望、谨慎研究,只为找到能够更好满足科研需求的设备。 如何更深入地了解一款仪器设备?当然是“用起来”。 为提升用户对国产仪器品牌的了解,解决大家的“采购”之忧,普瑞亿科将招募“产品试用官”,开展一系列国产仪器免费试用活动,让有科研需求或购买意向的用户朋友们亲身体验到国产设备的优势,同时试用官真实的试用报告,也可以给予正在观望的用户非常有价值的参考建议,诚挚邀请大家参与活动,成为我们的“产品试用官”。 本期我们将招募“Plover便携式土壤水分、温度和电导率测量系统”产品试用官,为了让用户亲身感受到产品强大的性能和配置,普瑞亿科将开放3台Plover设备,面向有研究、测试需求的用户,推出15天免费试用活动,无需观望等待,试用后觉得合适您再购买。Plover 便携式土壤水分、温度和电导率测量系统 Plover便携式土壤水分、温度和电导率测量系统是基于“真时域反射”(TureTDR® )技术的土壤三参数测量系统。该系统通过激发并测量高频(~1.5GHz)电磁波的运移时间进行土壤水分和电导率的测量,同时输出土壤温度。其它测量技术因采用低频测量信号,测量过程中存在严重的水和离子极化现象,因而对盐度异常敏感;而基于TureTDR® 技术的Plover土壤三参数测量系统更大限度克服了上述问题,对土壤中的含盐量及各种土壤类型不敏感,可更大限度提高土壤水分和电导率测量的准确性,并进一步拓展该系统的使用场景。 Plover可以实现便携式测量,通过安卓APP手机或平板进行操作并实时记录。该便携式土壤三参数测量系统能为农业、林业、草业、生态等科研和生产场景的土壤含水量便携测量提供稳定可靠数据。15天免费试用即日起至12月31日 可拨打电话详细咨询 试用结束后,可联系工作人员归还产品,也可成为我们的“产品推荐官”,推荐下一位新用户参与试用活动(将新用户联系方式提供给工作人员即可)。1、当新用户正式开始试用产品,即推荐成功,我们将给予“推荐官”200元现金奖励;2、如果新用户试用后决定购买产品,“推荐官”将再获得1500元现金奖励。 活动结束后,我们将在普瑞亿科公众号以推送的形式展示所有试用用户的使用体验,并发起投票活动,票数前三位用户将分别获得600元、400元、200元现金奖励。*该活动最终解释权归北京普瑞亿科科技有限公司所有
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制