温度土壤测试仪

仪器信息网温度土壤测试仪专题为您提供2024年最新温度土壤测试仪价格报价、厂家品牌的相关信息, 包括温度土壤测试仪参数、型号等,不管是国产,还是进口品牌的温度土壤测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温度土壤测试仪相关的耗材配件、试剂标物,还有温度土壤测试仪相关的最新资讯、资料,以及温度土壤测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

温度土壤测试仪相关的厂商

  • 山东省潍坊瑞格测试仪器有限公司成立于2008年3月,是一家专业生产和销售分析检测仪器设备的高科技公司,总注册资金100万元,现有员工35人,其中工程技术人员14人,高级职称技术人员3人。公司积极引进国内外的先进技术,目前,我们开发的PRT系列农药残毒速测仪,采用国内先进技术,具有新颖的操作界面、精准的测量装置及池位自动识别功能等优点,已领先于国内同行业; FT系列土壤粉碎机是我公司具有多项技术专利的产品,其中FT-2000\FT-3000型粉碎机上运用的特殊除尘装置解决了普通粉碎机在粉碎土样时粉尘飞扬的情况,可有效地保护实验室环境和操作人员的身体健康,产品在全国23个省土肥站测土配方施肥项目仪器采购中中标,得到广大用户的好评,与国内同类产品相比优势明显;行星式球磨机系列产品主要应用于环境监测和土壤污染治理实验室以及土肥检测中的微量元素检测,具有效率高、无样品污染、噪音低等优点;针对测土配方施肥项目我们成功开发出土壤养分速测仪、土壤水分测试仪等一系列产品,解决了农民在农业生产中的实际问题;另外我公司成功开发出氮吹仪系列产品和实验室器皿消毒清洗机等产品,为实验室的玻璃器皿清洗问题提供更加优化的清洗方案。我公司有较强的开发与技术合作能力,主要致力于各类化验、检测设备的研究与开发,并且与国家重点科研院校建有长期合作关系,并聘请多位行业内著名学者、专家担任公司的技术顾问。公司与山东大学控制科学与工程学院签署产学研合作协议,依托高校的技术优势,结合我公司的社会资源共同开发相关产品,服务社会。
    留言咨询
  • 山东省潍坊瑞格测试仪器有限公司是一家专业从事分析检测仪器的研发、生产、销售及服务于一体的高科技企业。公司产品主要应用于农业科研、土壤分析、地质勘探、公路建设、食品、医药、化工、卫生防疫、环保检测等领域。 目前公司主要有四大系列产品,分别为粉碎系列、药残检测系列、田间信息管理系列、样前处理系列。产品获得国家17项专利,其中自主研发的“改进型土壤粉碎机”入围2011年度国家星火计划。产品在中科院、社科院、环科院、中国农业大学、山东大学等多个科研院校中得到广泛应用,并在全国多个省土肥站测土配方施肥项目仪器采购中中标。公司还积极拓展海外业务,且远销印度及东南亚等地区。 公司自创立以来,本着“质量第一,用户至上”的原则,秉承“科技服务社会”的理念,积极引进吸收国内外的先进技术,不断研制开发出优质、高效、实用的新型产品。
    留言咨询
  • 金坛市品杰测试仪器有限公司,主要从事气候环境与可靠性试验设备的科研、生产、销售和服务。公司产品是江苏省星火科技扶持项目,公司地址为位于国家科技产业区-著名数学家华罗庚的故乡:江苏省金坛市金城镇工业园区。距常州火车站以及南京禄口机场约一个小时车程,地理位置极其优越便捷。公司本着以“品质为企业的使命”、“服务是友谊的延续”的目标,为客户提供全方位,高品质的测试用试验设备。 公司主导产品有:高低温(交变)试验箱、高低温湿热(交变)试验箱(也称可程式恒温恒湿试验箱)、盐雾腐蚀试验箱(盐水喷雾试验机)、二氧化硫腐蚀试验箱,霉菌试验箱,温度冲击试验箱,防尘、防水(IP外壳防护等级测试设备),光老化(紫外光耐气候,氙灯耐气候),温度老化试验箱等模拟气候类环境试验设备以及各类步入式试验室,产品广泛应用在军工、航空航天、电工电子、仪器仪表、家用电器、汽摩配件、科研质检等各类领域。 公司拥有先进的生产设备及工艺,如数控冲床、折弯机、剪板机、二氧化碳气体保护焊等设备,令生产出的产品工艺更加精湛,公司外购件均采用国内、外知名品牌,如美国Honeywell,韩国三元,法国TE等,制冷压缩机采用法国泰康,德国谷轮等品牌。公司也自行开发专用试验箱控制器,在设计中融入了计算机技术,采用大面积彩色触摸屏的人机交谈方式,发挥了设备更好的性能以及方便了用户对设备的操作。 “客户满意”是公司永远的追求,公司承袭“以诚为本”的经营宗旨,奉行“质量是企业的生命”为用户提供有效可靠的最佳产品解决方案和售后跟踪“保姆式”服务,公司在2008年已经通过ISO9001:2000质量体系认证,真正做到售前指导、售中培训、售后跟踪的完善体系。
    留言咨询

温度土壤测试仪相关的仪器

  • 土壤肥料养分检测仪,土壤肥料养分检测仪厂家,土壤肥料养分检测仪报价一、土壤测试仪 多功能土壤养分测试仪检测项目土壤:土壤铵态氮、土壤有效磷、土壤速效钾、土壤硝态氮、土壤水解氮、土壤全氮、土壤全磷、土壤全钾、土壤有机质(丘林法)、土壤有机质(浸提法)、土壤钙、土壤镁、土壤硫、土壤硅、土壤硼、土壤铁、土壤铜、土壤锰、土壤锌、土壤氯、PH、含盐量、水分。肥料:氮肥中铵态氮、肥料硝态氮、尿素氮、缩二脲、磷肥中磷、磷肥中水溶性磷、钾肥中钾、复合肥全氮、复合肥全磷、复合肥全钾、有机肥全氮、有机肥全磷、有机肥全钾、有机肥硝态氮、有机肥速效磷、有机肥速效钾、有机肥酸解氮、有机质、水溶性腐植酸(风化煤)、水溶性腐植酸(褐煤)、水溶性腐植酸(泥炭)、游离态腐植酸(风化煤)、游离态腐植酸(褐煤)、游离态腐植酸(泥炭)、水溶肥全氮、水溶肥全磷、水溶肥全钾、叶面肥全氮、叶面肥全磷、叶面肥全钾、水中氮、水中磷、水中钾、水中氮(浑浊)、水中磷(浑浊)、水中钾(浑浊)、肥料钙、肥料镁、肥料硫、肥料硅、肥料硼、肥料铁、肥料铜、肥料锰、肥料锌、肥料氯作物:作物硝态氮、作物铵态氮、作物磷、作物钾、作物钙、作物镁、作物硫、作物硅、作物硼、作物铁、作物铜、作物锰、作物锌、作物氯植株:植株全氮、植株全磷、植株全钾 二、土壤测试仪 多功能土壤养分测试仪检测速度土壤中速效N、P、K等多种养分一次性同时浸提测定。检测速度:在正常熟练程度下,测土壤铵态氮、磷、钾三项要20分钟(含土样前处理及药剂准备),测肥料氮、磷、钾三项需50分钟左右,微量元素单项检测需20分钟左右。三、土壤测试仪 多功能土壤养分测试仪功能介绍1.操作系统:Android5.1操作系统,四核处理器主控,CPU主频≥1.8Ghz,16G大容量内存,运转速度快、稳定性强,无卡顿卡机现象。2.7.0寸彩色液晶显示屏(分辨率:1024*600),背光可见便于野外实验操作,仪器外尺寸:470*340*210mm;仪器面板尺寸432*292mm。3.内置中英文双语显示,一键切换,无缝对接。4.密码登录及指纹登录双重保护,可根据需求设置多账户,保障检测数据的安全和分类。5.内置时钟芯片,连接WIFI时可自动校准时间,可同步显示当前的年、月、日、小时、分钟,确保检测数据可以追溯,6.GPS定位功能:可以实时显示卫星定位经纬度,明确当前检测位置。7.数据打印:内置热敏打印机(无需更换色带),可打印出检测项目、检测单位、检测人员、检测时间、通道号、吸光度、养分含量(mg/kg)、以及二维码等信息。8.仪器支持查看全部历史检测记录,以及上传所有检测数据。9.支持WIFI数据上传,检测结果可直接传至专属云农业数据中心,分配企业专属云农业数据中心账户,该账户中心可查看不同检测人员的上传数据。平台数据可直接以表格形式导出到电脑。10.仪器配备双USB接口,可导出历史检测数据。电脑查看时以表格呈现。11.在线上云农业数据中心同时配置测土配方施肥系统,方便管理人员在无检测数据的情况下,核算施肥标准。12.配备手机端微信小程序查看所有历史上传数据。13.内置常见经济作物诊断图谱,在缺乏9种元素的情况下图谱详情,可直观叶面对比进行丰缺诊断。14.样品前处理实验操作步骤全部内置,检测人员无需对照说明书,可以根据仪器提示一步步操作、更适用于新手操作。在检测步骤中内置校准功能,无需手动校准或者开关机校准,确保检测精度。15.内置独立的样品处理操作视频,点击仪器主界面即可观看,一对一指导教学。16.内置测土配方施肥系统,检测完成后可直接进行测土配方施肥计算;同时具有单独配方施肥计算模块;仪器内置百余种常见经济作物标准养分值,内置施肥校正系数,可对目标产量计算施肥量,以此指导农业生产;测土配方施肥结果可打印,打印内容包含作物种类、肥料种类、目标产量、需求总量、建议施肥方案。17.交直流两用供电,仪器内置大容量锂电池,满电状态下可连续工作10小时。18.外接电压显示盘,可以直接显示即时检测电压,确保检测环境稳定,保证检测精确度;并带有断电保护功能,在突然断电时,可以对数据进行自动储存,以防数据丢失。19.4种专用实验光源(红、蓝、绿、橙),光源波长稳定,寿命长达10万小时级别,重现性好,准确度高。20.4通道固定比色池(固态化模块),比色池与仪器融为一体,无机械位移及磨损,避免了机械位移误差,保证了检测结果精度,并设有每个通道检测完成提醒功能。21.比色槽内置于下沉式密闭舱内,直径为15.7cm圆形遮光板全面覆盖遮光,避免实验过程中出现漏光影响检测精度,保证检测结果准确。22.高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,可野外流动测试。四、土壤测试仪 多功能土壤养分测试仪器指标1. 电源:交流220±22V直流12V+5V(仪器内置4800mAH大容量锂电池)2.功率:≤5W3.量程及分辨率:0.001-99994.重复性误差:≤0.03%(0.0003,重铬酸钾溶液)5.仪器稳定性:仪器无需开机预热,一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机一个小时内显示数字无漂移(透光度测量) ,两个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);6.线性误差:≤0.1%(0.001,硫酸铜检测)7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-38.红光:680±2nm 蓝光:420±2nm 绿光:510±2nm;橙光:590±4nm9.显示屏幕分辨率:1024*60010.仪器抗震等级:IP6511.PH值(酸碱度): (1)测试范围:1~14 (2)精度:0.01 (3)误差:±0.112.含盐量(电导):(1)测试范围:0--9999(ppm) (2)误差:±2%13.土壤水分技术参数水分单位:﹪(g/100g);含水率测试范围:0-100﹪;误差小于0.5%14.土壤氮磷钾误差≤1%,有机质误差≤2%,微量元素误差≤5%;肥料单项误差≤0.5%,氮磷钾三项误差≤1%。产品专.利号(Patent NO.):ZL 2022 2 0923165.6五、土壤测试仪 多功能土壤养分测试仪售后仪器整机质保一年,终身免费维修服务(维修只收配件成本价),免费邮寄仪器、免费培训。终身免费提供土肥等农业相关技术支持!六、土壤测试仪 多功能土壤养分测试仪配置清单仪器箱药品箱序号名称数量序号名称数量1主仪器(内置打印机)1台1土壤养分试剂 (氮、磷、钾、有机质)1套2PH笔1支2三角瓶100ml2个3盐分笔1支3容量瓶100ml1个4刻度移液管1ml1支4洗瓶1个5刻度移液管2ml1支5角勺(大中小)1套6刻度移液管5ml1支6定性滤纸2盒7刻度移液管10ml1支7吸球1个8电子天平(0.01g)1台8铝盒1个9电源线1根9塑料量筒50ml1个10说明书、合格证1套1010cm试管(1.5)30个11离心管架1个12比色皿(10个/套)1套
    留言咨询
  • 一、土壤墒情速测仪 便携式土壤水分测试仪产品简介:土壤水分测定仪采用FDR频域反射原理,快速准确测量土壤中含水量,可对多处样地、不同土壤深度的水分含量进行快速检测和长期连续监测。广泛应用于土壤墒情检测、旱作节水灌溉、精细农业、林业、地质勘探、植物培育等领域。二、土壤墒情速测仪 便携式土壤水分测试仪功能介绍:1、可选择记录模式:手动记录、自动记录,自动记录可设置记录时间间隔。2、采用一体化结构设计,集液晶显示仪表+传感器+便携手提箱合成在一个便携式手提箱内,本机体积小巧,操作简单,性能可靠,野外携带较为方便。3、大屏幕中文液晶显示,可实时显示温度值、水分值、组数、低电压示警,存储数据等,便于野外携带作业。4、仪表可设置多种土质配方,便于不同土质的水分测量。5、能存储指定各个点的土壤温度值、水分值,上位机软件功能强大,随时可以通过USB接口将记录中的数据导出到计算机上,并可以存储为EXCE表格文件,生成数据曲线,以供其它分析软件进一步进行数据处理。6、仪器可加配4G联网功能和数据管理平台,将本机存储的历史数据无线上传到智慧云农业平台,方便用户进行数据管理和长期分析。三、土壤墒情速测仪 便携式土壤水分测试仪技术参数:1、测量参数:土壤容积含水量;2、单位:%(m3/m3);3、测试灵敏度:±0.01 %(m3/m3);4、量程:0-100%(m3/m3);5、测量精度:0-50%(m3/m3)范围内)±2%(m3/m3);50-100%(m3/m3)范围内)±3%(m3/m3);6、分辨率:0.1%7、土壤墒情速测仪 便携式土壤水分测试仪测量区域:90%的影响在围绕中间探针直径为3cm长为6cm的圆柱体内;8、稳定时间:通电后约10秒钟;9、响应时间:响应在1秒钟内进入稳定过程;10、供电方式:锂电池或交流电11、通讯方式:USB2.012、软件: 上位机软件免费赠送13、线缆: 水分国标屏蔽线2米,温度聚四氟耐高温导线2米。14、土壤墒情速测仪 便携式土壤水分测试仪测量方式:插入式、埋藏式、剖面等
    留言咨询
  • 一、土壤PH计 土壤PH测试仪产品简介:采用一体化结构设计,可快速准确测量土壤中含水量、温度、电导率(盐分)、酸碱度,可对多处样地、不同土壤深度的水分含量温度盐分和PH进行快速检测和长期连续监测。广泛应用于土壤墒情检测、旱作节水灌溉、精细农业、林业、地质勘探、植物培育、水利、环保等领域。二、土壤PH计 土壤PH测试仪功能介绍:1、本机体积小巧、美观,操作简单方便,性能可靠,野外携带方便。主机连接传感器后可以手动存储记录也可通过主机任意设置采样间隔,自动存储记录数据。2、大屏幕彩色液晶显示屏,全程跟踪记录各个被测环境因子的数值、组数、低电压示警,主机内置大容量存储器,可储存三十万条数据,具有断电数据自动存储保护功能。3、各个传感器插入主机后,主机具有自动识别功能,传感器一致性好,可按需求自行组合传感器,不同参数的传感器接口可以互相转换,对测量精度没有影响。4、仪器具有多通道自动检测扩展功能,可以实现多个传感器同时接入的同步检测。5、上位机软件功能强大,随时可以通过USB接口将记录中的数据导出到计算机上,并可以存储为EXCE表格文件,生成数据曲线,以供其它分析软件进一步进行数据处理。具有设置超限区域着色功能,超限数据变色预警,可作为环境评价的一个依据。6、仪器可加配4G联网功和能数据管理平台,将本机存储的被测点环境因子测量历史数据无线上传到智慧云农业平台,方便用户进行数据管理和长期分析。三、土壤PH计 土壤PH测试仪技术参数:测量参数:土壤容积含水量 单位:%(m3/m3) 测试灵敏度:±0.01 %(m3/m3) 量程:0-100%(m3/m3) 测量精度:0-50%(m3/m3)范围内)±2%(m3/m3)    50-100%(m3/m3)范围内)±3%(m3/m3) 分辨率:0.1%土壤温度范围:-40-120℃ 测量精度:±0.2℃ 分辨率:±0.1℃土壤盐分范围:0-20ms 测量精度:±2% 分辨率:±0.1msPH测量范围:0-14 分辨率:0.1 测量精度:±0.2%土壤PH计 土壤PH测试仪集成电极:土壤水分,土壤温度,土壤盐分三合一,集成到一个传感器;ph复合电极:电极为复合电极,自动温度补偿,测试更稳定更准确。仪器尺寸:10×21×3.5cm供电方式:锂电池供电、交流电两种方式 软件:上位机软件免费赠送
    留言咨询

温度土壤测试仪相关的资讯

  • 中科院地理所刘远团队揭示基质可用性调和不同土壤剖面SOC矿化的温度响应
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达24篇。 今天与大家分享的是中国科学院地理科学与资源研究所刘远团队在调查基质可用性(根系分泌物)的变化如何影响不同土壤剖面中土壤有机碳(SOC)矿化的温度响应(Q10)方面取得的进展,在该项研究中,研究团队利用PRI-8800对SOC矿化率进行高频测量,为研究结果提供了有力的数据支撑。 土壤有机碳(SOC)矿化是导致大量碳从土壤流失到大气中的一个主要过程,而温度会极大地影响这一过程。预计在下个世纪,底土和表土都将经历类似程度的变暖。气候变暖预计会产生土壤碳-气候正反馈,从而加速气候变化。这种正反馈的大小在很大程度上取决于不同深度SOC矿化的温度敏感性(Q10)。因此,更好地了解不同深度的Q10变化及其内在机制,对于准确预测气候变化情景下的土壤碳动态至关重要。尽管在理解全球变暖对底土碳动态影响方面取得了进展,但对于Q10在土壤剖面不同深度的变化方式仍未达成共识。 为了更好地理解气候变化背景下土壤碳动态,刘远团队从三个地点采集了土壤剖面的土壤样品,包括四个深度区间(0-10厘米,10-30厘米,30-50厘米和50-70厘米):两个地点具有典型的矿物质土壤,一个地点是埋藏土壤。研究团队在实验室中使用这些土壤来探讨随着土壤深度的增加SOC矿化的Q10对底物可利用性变化的响应。葡萄糖是一种容易获得的底物,因为它是根分泌物的重要组成部分。土壤在10-25°C的温度下孵育,以0.75°C的温度间隔进行了24小时。然后,在孵育1天后,通过高频率连续测量SOC矿化速率,避免了底物限制和微生物群落的变化对结果的影响,估算Q10。 值得注意的是,针对SOC矿化速率的测量,研究团队使用的是由北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,该系统允许在一定时间内逐步提高孵育温度并与SOC矿化速率的高频测量同步进行,为该项研究提供了更准确的Q10估计。图1:不同土壤深度和不同站点下,控制组(CK)和底物添加组(S+)的土壤有机碳(SOC)矿化的温度响应,使用指数拟合表示。站点:Liangshui(LS)、Huinan(HN)和Hongyuan(HY)。***代表P0.001的显著差异。图2 a:在控制组(CK)和底物添加组(S+)中,土壤有机碳(SOC)矿化速率(R22)在22°C下随深度增加的变化。b:不同站点下不同土壤深度的底物可利用性指数(CAI);c:在CK和S+处理中,SOC矿化的温度敏感性(Q10)随深度增加的变化;d:不同站点下不同土壤深度中CK和S+处理之间Q10的差异(ΔQ10)。 研究结果表明,在典型的矿质土壤中,Q10随深度的增加而降低,但在埋藏土壤中,Q10则先降低后增加。不出所料,在不同的土壤深度,基质的添加会明显增加Q10;但是,增加的幅度(ΔQ10)随土壤深度和类型的不同而不同。出乎意料的是,在典型的矿质土壤中,表土中的ΔQ10比底土中的高,反之亦然。ΔQ10与土壤初始基质可用性(CAI)呈负相关,与土壤无机氮呈正相关。总体而言,气候变化情景下基质可用性的增加(即二氧化碳浓度升高导致根系渗出物增加)会进一步加强SOC矿化的温度响应,尤其是在无机氮含量高的土壤或氮沉积率高的地区。 相关研究成果以“Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles”为题在线发表于期刊《Journal Of Soils And Sediments》上(中科院三区Top,IF5 =3.8)。相关论文信息:Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.原文链接:https://doi.org/10.1007/s11368-023-03602-y 截至目前,以PRI-8800为关键设备发表的相关文章已达24篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
  • 免费试用丨Plover 便携式土壤水分、温度和电导率测量系统
    科学研究可以带领人类探索更多未知的领域,而完成一项研究离不开科研仪器的“加持”,高效精准的仪器设备将为研究人员的探索之路助一臂之力。 自2021年《政府采购进口产品审核指导标准》发布以来,国家支持重大科研设施和仪器设备国产化的力度不断提升,各省市也相继发布支持政策,在保障科研需求的前提下,优先购置国产仪器。 但购置仪器不是一件小事,哪款设备能满足需求?哪款设备性价比高?采购前的持续观望、谨慎研究,只为找到能够更好满足科研需求的设备。 如何更深入地了解一款仪器设备?当然是“用起来”。 为提升用户对国产仪器品牌的了解,解决大家的“采购”之忧,普瑞亿科将招募“产品试用官”,开展一系列国产仪器免费试用活动,让有科研需求或购买意向的用户朋友们亲身体验到国产设备的优势,同时试用官真实的试用报告,也可以给予正在观望的用户非常有价值的参考建议,诚挚邀请大家参与活动,成为我们的“产品试用官”。 本期我们将招募“Plover便携式土壤水分、温度和电导率测量系统”产品试用官,为了让用户亲身感受到产品强大的性能和配置,普瑞亿科将开放3台Plover设备,面向有研究、测试需求的用户,推出15天免费试用活动,无需观望等待,试用后觉得合适您再购买。Plover 便携式土壤水分、温度和电导率测量系统 Plover便携式土壤水分、温度和电导率测量系统是基于“真时域反射”(TureTDR® )技术的土壤三参数测量系统。该系统通过激发并测量高频(~1.5GHz)电磁波的运移时间进行土壤水分和电导率的测量,同时输出土壤温度。其它测量技术因采用低频测量信号,测量过程中存在严重的水和离子极化现象,因而对盐度异常敏感;而基于TureTDR® 技术的Plover土壤三参数测量系统更大限度克服了上述问题,对土壤中的含盐量及各种土壤类型不敏感,可更大限度提高土壤水分和电导率测量的准确性,并进一步拓展该系统的使用场景。 Plover可以实现便携式测量,通过安卓APP手机或平板进行操作并实时记录。该便携式土壤三参数测量系统能为农业、林业、草业、生态等科研和生产场景的土壤含水量便携测量提供稳定可靠数据。15天免费试用即日起至12月31日 可拨打电话详细咨询 试用结束后,可联系工作人员归还产品,也可成为我们的“产品推荐官”,推荐下一位新用户参与试用活动(将新用户联系方式提供给工作人员即可)。1、当新用户正式开始试用产品,即推荐成功,我们将给予“推荐官”200元现金奖励;2、如果新用户试用后决定购买产品,“推荐官”将再获得1500元现金奖励。 活动结束后,我们将在普瑞亿科公众号以推送的形式展示所有试用用户的使用体验,并发起投票活动,票数前三位用户将分别获得600元、400元、200元现金奖励。*该活动最终解释权归北京普瑞亿科科技有限公司所有
  • 土壤氧化还原电位检测仪的测试结果有哪些?
    土壤氧化还原电位检测仪主要用于测量新鲜或潮湿土壤的氧化还原电位,以及其他相关数据。以下是对其测试结果的详细归纳:  一、土壤氧化还原电位检测仪的主要测量参数  1.氧化还原电位(Eh)  定义:土壤氧化还原电位是土壤氧化还原能力的度量方法,通常以电极电势来表示,单位是伏特(V)或毫伏(mV)。  数据范围:其变异范围很广,可以从强度还原状况的-200~300mV到氧化状况的+700mV。  数据解读:   负值:表示土壤处于还原状态,土壤中的许多化学物质可能被还原,如某些金属离子可能形成金属沉淀物,有机物质可能处于较还原的状态。   正值:表示土壤处于氧化状态,土壤中的许多化学物质可能被氧化,如有机物质可能被氧化成二氧化碳和水。   数值变化:如果数值从负值增加到正值,可能表示土壤从还原状态转变为氧化状态。  2.pH值  定义:表示土壤的酸碱度。  重要性:与土壤氧化还原电位密切相关,共同影响土壤的性质和微生物活动。  3.温度  定义:表示土壤的温度。  功能:土壤氧化还原电位仪具有自动温度补偿功能,能够减少温度变化对测量结果的影响。  二、土壤氧化还原电位检测仪的其他功能  1.存储与导出:土壤氧化还原电位仪可存储大量测量结果,并可将数据导出为Excel表格,方便后续分析和处理。  2.数据上传:支持Wi-Fi功能,可将检测结果直接传至监管平台,实现远程监控和管理。  3.用户友好:配备3.5寸彩色触摸屏,提供良好的用户体验。  三、土壤氧化还原电位检测仪的测试结果的应用  1.环境保护:可用于土样、污水、废水的检测,评估土壤和水体的污染程度。  2.水产养殖:可用于监测水质的氧化还原电位和pH值,为水产养殖提供重要参考。  3.工业应用:可用于工业循环水的水质监控测量,确保水质符合生产要求。  综上所述,土壤氧化还原电位检测仪的测试结果包括氧化还原电位、pH值、温度等参数,这些参数对于评估土壤和水体的氧化还原状态、酸碱度以及温度具有重要意义。同时,该仪器还具有存储、导出、上传数据等功能,为数据的后续分析和处理提供了便利。点击此处可了解更多产品详情:土壤氧化还原电位检测仪

温度土壤测试仪相关的方案

温度土壤测试仪相关的资料

温度土壤测试仪相关的试剂

温度土壤测试仪相关的论坛

  • 土壤养分测试仪

    顺龙牌土壤养分测试仪 第十代智能型土壤养分测试仪是我单位与中国农业大学、中科院土肥专家的最新研究成果;同时,也是国内首家推出,真正实现四位一体化的土壤养分测试仪。特点: 1、采用大屏幕汉字显示,人机对话操作。  2、集测试、计算、专家建议施肥方案、打印功能于一体。  3、具有自动检测、自动存储功能。  4、针对70余种农作物对养分的需求特点,输出各自的配方施肥方案。  5、一次可以测试9-12个样品。  6、可以与电脑联网,并具备自动输入配方参数和专家咨询系统。  7、采用独特的定位技术。性能稳定、测试精度高。  8、测试成本低,只需几滴试剂,操作简单。  9、精美铝合金机箱设计。  10、功耗小、省电、体积小、方便携带。  11、室内、野外、车载均可使用。测试项目:氮、磷、钾、有机质、腐殖酸、酸碱度、含盐量。适用于农资经营、肥料生产、农技服务、农机推广、林木、花卉、农业院校等单位。单 位:北京顺龙科技发展有限公司 地 址:北京市海淀区圆明园西路2号 中国农业大学518#

  • 土壤养分测试仪试剂原料

    老板拿了一台土壤养分测试仪。睿龙牌可以测定土壤速效养分。分别添加粉末与试剂。想知道添加的粉末与试剂是什么。怎样测定。

温度土壤测试仪相关的耗材

  • HL-6301 土壤湿度测试仪
    HL-6301 土壤湿度测试仪 HL-6301 土壤湿度测试仪本款仪器是园艺的好帮手,可以测试土壤的湿度,无需电池.工作原理: 通过土壤中有机营养物质的电解值测出植物土壤水份情况, 把探针插入根部就可读出,无需电池.精确有效的测出植物土壤里的湿度;准确掌握各种植物生长的适宜条件;把探针插入根部土壤中就可读出准确的土壤湿度,MOIST是水份键,对应表上的是MOIST, DRY是干, WET是湿,数值1-3(红色部分)说明需要浇水, 4-7(绿色部分)是合适的,请根据植物的品种调整浇水时间, 8-10(蓝色部分)说明太湿了. 使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.用完后把电极洗干净. 如何测量湿度 1.将探棒尽量垂直插入被测土壤中。在测试盆栽植物土壤时,不要使探棒离植物过近,以免伤及植物根系; 2.在探棒插入被测土壤的过程中,你会发现刻度盘内指针所指位置不稳定,这是因土壤湿度不均匀所至。所以请测试两遍以最终确定结果; 3.读取结果; 4.将探棒从被测土壤中取出,请不要拉、拽白色连接线,以免使用时出现接触不良等故障; 5.用棉布将探棒完全擦净,以备下次使用。 如何读取结果 1.湿度标度尺上的数字1-10代表湿度的逐渐递增。没有任何植物可以长时间在1和10代表的两种湿度环境下正常生长。在附表中为您提供了所列植物的湿度环境要求。如果所测结果高于表中规定要求,在此情况下您不需继续浇水;若结果低于规定要求,提醒您应立即浇水。 2.浇灌次数(参考说明书): &mdash * 1周需检查一次 &mdash ** 每4到5天需检查一次 &mdash *** 3天需检查一次仪器读数表 3.特殊水分要求 以下数字代表: i 每天向叶面洒水; ii 不要让土壤变干; iii 保持土壤湿润,但不应过于潮湿; iv 土壤应始终保持湿润; v 在浇灌间隙可令土壤变干; vi 在浇灌前4到5天应使土壤变干; vii 在植物休眠期间应逐渐减少施水量; viii 将水倒入盆栽托盘中;不需洒水在叶子表面。
  • 防雷装置检测土壤电阻率测试仪
    HL-1615T接地电阻土壤电阻率测试仪又叫四线接地电阻测试仪或者土壤电阻率测试仪是检验测量接地电阻常用仪表的常用仪表,他采用了超大LCD灰白屏背光显示和微处理机技术,通过微处理器控制的2线、3线、4线法式接地电阻测试及土壤电阻率测试。  汇集了许多接地测试功能,可快速全面的测量接地网络中的各项参数。,是代替传统摇表测量的新一代接地测量仪表。广泛应用于电信、电力、气象、机房、油田、电力配电线路、铁塔输电线路、加油站、工厂接地网、避雷针等。仪表具有测试快速、简捷、稳定可靠等特点。  由微处理器控制,可检测接地电阻、土壤电阻率、接地电压。其使用了快速滤波技术可将干扰减至最小。同时存储500组数据。1、量程及精度误差测量功能测量范围精度 分辨率接地电阻(R)0.00Ω~30.00Ω±2%rdg±5dgt (注1)0.01Ω30.0Ω~300.0Ω±2%rdg±3dgt0.1Ω300Ω~3000Ω±2%rdg±3dgt1Ω 3.00kΩ~30.00kΩ±2%rdg±3dgt10Ω土壤电(ρ)0.00Ωm~99.99Ωmρ=2πaR (注2)0.01Ωm100.0Ωm~999.9Ωm0.1Ωm1000Ωm~9999Ωm1Ωm10.00kΩm~99.99kΩm10Ωm100.0kΩm~999.9kΩm 100Ωm1000kΩm~9999kΩm1kΩm接地电压AC 0.00~600V±2%rdg±3dgt0.01V注:1. 基准条件:Rh Rs100Ω时的精度。工作条件:Rh max=3kΩ+100R<50kΩ;Rs max=3kΩ+100R<50kΩ2.取决于R的测量精度而定,π=3.14, a:1 m~100m; 2、一般规格功 能二三四线测量接地电阻、土壤电阻率;接地电压测量环境温度湿度23℃±5℃,75%rh以下电 源1.5V(LR14)碱性电池6节干扰电压<20V(应避免)干扰电流<2A(应避免)测R时电极间距a>5d测ρ时电极间距a>20h辅助接地电阻值基准条件<100Ω,工作条件<5kΩ 量 程接地电阻:0.00Ω~30.00kΩ土壤电阻率:0.00Ωm~9999kΩm接地电压:0.00V~600V测量方式精密4线、3线法测量、简易2线测量接地电阻测量方法接地电阻:额定电流变极法土壤电阻率:四极法接地电压:平均值整流(S-ES接口间)测试频率128Hz短路测试电流AC >20mA(正弦波)开路测试电压AC 28V max测试电压波形正弦波电极间距范围可设定1m~100m换 档接地电阻:0.00Ω~30.00kΩ全自动换档土壤电阻率:0.00Ωm~9999kΩm全自动换档背 光可控灰白色背光,适合昏暗场所使用显示模式4位超大LCD显示,灰白色背光测量指示 测量中LED闪烁LCD显示域108mm×65mm仪表尺寸240mm (长)×188mm (宽)×85mm (高)标准测试线4条:红色15m,黑色15m,黄色10m,绿色10m各1条简易测试线2条:黄色1.5m,绿色1.5m各1条辅助接地棒4根测量时间对地电压:约2次/秒接地电阻、土壤电阻率:约7秒/次 接地电压AC 600V以下测量 (接地电压测量功能不能用于测量商用电)数据存储500组,“MEM”存储指示,显示“FULL”符号表示存储已满数据保持保持数据时“HOLD”符号指示数据查阅查阅数据时“READ”符号指示溢出显示超量程溢出时“OL”符号指示报警功能测量值超过报警设定值时发出报警提示电池电压电池电量实时显示,电池电压低时及时更换电池自动关机 “APO”指示,开机15分钟后自动关机功 耗待机: 40mA Max(背光关闭)开机开背光: 43mA Max测量:120mA Max(背光关闭)质 量仪表: 1280g(含电池)测试线:890g(含简易测试线)辅助接地棒:720g(4根)工作温湿度-10℃~40℃;80%rh以下 存放温湿度-20℃~60℃;70%rh以下过载保护测量接地电阻:H-E、S-ES各端口间AC 280V/3秒绝缘电阻20MΩ以上(电路与外壳之间500V)耐 压AC 3700V/rms(电路与外壳之间)外型尺寸55*24*15cm适合安规IEC61010-1(CAT Ⅲ 300V、CAT IV 150V、污染度2);IEC61010-031;IEC61557-1(接地电阻);IEC61557-5(土壤电阻率);JJG 366-2004。接地装置的检测;土壤电阻率的测量北京朋利驰科技有限公司生产产品:可燃气体测试仪,接地电阻测试仪,大地网测试仪,土壤电阻率测试仪,等电位测试仪,环路电阻测试仪,回路电阻测试仪,直流电阻测试仪,防雷元件测试仪,浪涌保护器安全巡检仪,智能高压绝缘电阻测试仪,压敏电阻测试仪 ,标准电阻,感烟探测器功能试验器,感温探测器功能试验器,数字照度计,线型光束感烟探测器滤光片,超声波流量计等。序号仪器设备名称配置台数主要性能要求甲级乙级1. 激光测距仪√√量程:0-150m2. 测厚仪√√金属厚度测量,超声波3. 经纬仪√√量程:0-360°,分辨率:2″4. 拉力计√√量程:0-40kgf;指针式5. 可燃气体测试仪 √√适用气体:可燃气体6. 接地电阻测试仪√√测试电流:20mA(正弦波),分辨率:0.01Ω7. 大地网测试仪√测试电流:3A,分辨率:0.001~99.999Ω,频率可选8. 土壤电阻率测试仪√√四线法测量,测试电流:20mA(正弦波)分辨率:0.01Ω9. 等电位测试仪√√测试电流: ≥1A,四线法测试,分辨率:0.001Ω,具备大容量锂电池;10. 环路电阻测试仪√√电阻测量分辨率:0.001Ω,电流测量分辨率:1μA 11. 防雷元件测试仪√√测试器件:MOV,具备大容量锂电池。12. 绝缘电阻测试仪√√0-1000MΩ13. 表面阻抗测试仪√√测量范围:103-1010Ω14. 静电电位测试仪√√测量范围:±20kv15. 数字万用表√√电压、电流、电阻测量,分辨率:3位半16. 防爆对讲机√防爆对讲17. 标准电阻√√10-3~105欧姆,功率1/2w,线绕型18. 钢卷尺√ √分辨率:0.01m19. 游标卡尺√√量程:0-150mm20. 防雷检测仪器携带箱(选配)●●用于上述设备的存放和携带,内衬激光开模高倍海绵:对仪器提供坚实保护。
  • HL-6322 土壤湿度/酸度/光度测试仪
    HL-6322 土壤湿度/酸度/光度测试仪 HL-6322 土壤湿度/酸度/光度测试仪是园艺的好帮手,可以测试土壤的PH值(酸碱度),土壤湿度以及光照度.无需电池. 使用方法: 测土壤PH值和湿度时,先将探头尽量深地插到土里,探头上面部分留大约1厘米. 拨动笔上的按键到MOIST, MOIST是水份键,对应表上的是MOIST, DRY是干, WET是湿,数值1-3(红色部分)说明需要浇水, 4-7(绿色部分)是合适的,请根据植物的品种调整浇水时间, 8-10(蓝色部分)说明太湿了. 拨动笔上的按键到PH, PH是酸碱度键,对应表上的是8-3.5数值, ALKALINE是碱, ACDIC是酸,数值7基本是中性,数越小说明酸度越大,请根据植物的品种调整土壤酸碱度. LIGHT键是光照度,测量范围0-2000流明,数值越大,说明光照越强,请根据植物的品种来决定是否需要遮阴. 使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.用完后把电极洗干净. 如何分析植物光照强度 1. 将功能键拨至左起第二个档位上。 2. 手持装置,使装置顶端的细长蜂巢状紫色小窗置于植物顶端叶面位置,将小窗朝向最亮的光源方向。在测试过程中,请避免身体和叶子的阴影遮挡小窗。 3. 请记录测试结果(× 1000)及测试时间。 4. 请选择上午、中午、下午的中间时刻测试,所得出的数据就是这一时间段的平均光照强度。 例如: 上午9:00的读数× 4小时= 这一时间段的光照强度(上午7:00到11:00间的平均光照强度) 下午1:00的读数× 4小时= 这一时间段的光照强度(11:00到下午3:00间的平均光照强度) 下午5:00的读数× 4小时= 这一时间段的光照强度(下午5:00到7:00间的平均光照强度) 一天的总日照强度= 以上数据之和。 单位:Foot-candle hours (烛光距) 1 Foot-candle = 10.7639 Lux (勒克斯) 请查阅说明书后的光照要求表。 如何分析湿度 1. 将功能键拨至左起第三个档位上。 2. 将探棒完全插入被测土壤。在测试盆栽土壤时,将探棒插于植物干茎与花盆的中间位置,请不要离植物过近,以免伤及植物根系。 3. 读取数据。 4. 将探棒从土壤中取出,在进行下一次测试或存贮之前,请用棉布将探棒完全擦净。 5. 请不要将探棒长时间插于土壤中,也不要用此装置测试液体,以免对其造成损害。 如何分析土壤的pH值 1. 先移去被测土壤表土约5厘米;然后向下将土壤捣碎至13厘米深。并清理土壤中一切会影响测试结果的有机杂质,如叶子、根系等。 2. 将土壤用水浸透,成泥状。(最好使用雨水或蒸馏水) 3. 将功能键拨至最右边的档位上。 4. 湿润探棒。用购买时随附的特殊清洁棉片将三个探棒中的最右边一根擦净。 5. 将探棒完全插入被测土壤中。 6. 等待1分钟即可读取数据。 7. 测试结束后,将探棒擦净并晾干。 如何使用你的土壤pH值分析计 1. 先移去被测土壤表土约5厘米;然后向下将土壤捣碎至13厘米深。并清理土壤中一切会影响测试结果的有机杂质,如叶子、根系等;将土壤用水浸透,调匀成泥状。(最好使用雨水) 为了达到较准确的分析结果,你可以从被测土壤中采集一部分土,清除石子及有机碎屑物,然后把土壤碾碎成粉末状,并从中取出2杯的样土;准备一个干净的玻璃或塑料容器,倒入2杯蒸馏水或去离子水,再加入样土,搅拌使他们充分混合并压实,倒掉多余的水。 2. 使用购买时随附的清洁棉擦拭探棒约10-12厘米。应小心避免探头接触其它金属表面;再使用棉制品或纸将探棒抹净,每次应从探头擦至探棒尾部。 3.将探棒垂直插入湿润的土壤约10-12厘米深;若探棒不容易插入,请换一个新位置重试。任何情况下都不应强行插入探棒,以免损伤探头。 4.在指间按顺时针、逆时针方向转动探棒若干次,确认潮湿的土壤表土已在探棒周围分布好; 5.等待60秒后读取数据。 6.如果测试结果大于pH 7:从土中拔出探棒,擦掉探棒表面的土壤颗粒。擦拭探棒后,将其重新插入土壤中新的位置再测试一次。 在指间转动探棒2-3次,30秒后读取数据 7.如果测试结果小于pH 7:从土中拔出探棒,擦掉探棒表面的土壤颗粒。不要擦拭探棒,将其重新插入土壤中新的位置再测试一次。在指间转动探棒2-3次,60秒后读取数据。 仪器注意事项 - 探棒插在土壤中的时间不宜过长,以免损坏探棒金属表面; - 确认在存放仪器前,探棒应干燥、干净; - 应使探棒远离其他金属物质; 此仪器只用于测试土壤,请不要将探棒插入水中。 问题及解决方法 指针摇摆不定 * 石子或有机质影响仪器电极 * 土壤样土未完全压实(盆栽和重量较轻的土壤) * 清洁探棒后,有金属颗粒附着探棒 * 土壤在探棒周围分布不均匀 * 探棒距盆壁或盆底过近 * 测试时间离重新装土入盆的时间太近 * 探棒贴近肥料棒或肥料颗粒 指针迟钝或没有反映 * 需要清洁探棒 * 样土过干 * 探棒受损 极端pH值状态(仅限于盆栽土壤) * 因过量施肥而带来的养分增加 * 探棒贴近肥料棒或肥料颗粒 如何测量湿度 1.将探棒尽量垂直插入被测土壤中。在测试盆栽植物土壤时,不要使探棒离植物过近,以免伤及植物根系; 2.在探棒插入被测土壤的过程中,你会发现刻度盘内指针所指位置不稳定,这是因土壤湿度不均匀所至。所以请测试两遍以最终确定结果; 3.读取结果; 4.将探棒从被测土壤中取出,请不要拉、拽白色连接线,以免使用时出现接触不良等故障; 5.用棉布将探棒完全擦净,以备下次使用。 如何读取结果 1.湿度标度尺上的数字1-10代表湿度的逐渐递增。没有任何植物可以长时间在1和10代表的两种湿度环境下正常生长。在附表中为您提供了所列植物的湿度环境要求。如果所测结果高于表中规定要求,在此情况下您不需继续浇水;若结果低于规定要求,提醒您应立即浇水。 2.浇灌次数(参考说明书): &mdash * 1周需检查一次 &mdash ** 每4到5天需检查一次 &mdash *** 3天需检查一次仪器读数表 3.特殊水分要求 以下数字代表: i 每天向叶面洒水; ii 不要让土壤变干; iii 保持土壤湿润,但不应过于潮湿; iv 土壤应始终保持湿润; v 在浇灌间隙可令土壤变干; vi 在浇灌前4到5天应使土壤变干; vii 在植物休眠期间应逐渐减少施水量; viii 将水倒入盆栽托盘中;不需洒水在叶子表面。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制