显微成像分析仪

仪器信息网显微成像分析仪专题为您提供2024年最新显微成像分析仪价格报价、厂家品牌的相关信息, 包括显微成像分析仪参数、型号等,不管是国产,还是进口品牌的显微成像分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微成像分析仪相关的耗材配件、试剂标物,还有显微成像分析仪相关的最新资讯、资料,以及显微成像分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

显微成像分析仪相关的厂商

  • 400-860-5168转3194
    布鲁克(北京)科技有限公司总部位于美国,是在纳斯达克上市的世界著名的高科技分析仪器跨国企业。在 50 多年的发展历程中,布鲁克始终致力于开发和生产性能强大的测量仪器,为我们客户的研究和行业发展铺平了道路。如今,布鲁克已经成为全球领先的分析技术提供商。公司遍布全球的 6000 多名员工正在五大洲逾 90 个地点,努力满足客户需求,扩展科学、工业和医疗分析的范围,为应对这一永久的挑战积极努力着。 布鲁克系统涵盖所有研发领域的广泛应用,被各种工业生产流程所采用,确保质量和流程的可靠性。布鲁克不断扩大其海量的产品和解决方案范围、广泛的已安装系统基础,以及在客户中的强大声誉。事实上,如我们的客户所预期,作为世界领先的分析仪器公司之一,布鲁克持续开发先进的技术和创新解决方案,解决当今的分析问题。 德国布鲁克公司,现属于上市公司布鲁克集团(NASDAQ: BRKR),1997年以前为西门子X射线分析仪器部。她完全继承和延续了西门子X射线分析仪器的研发、生产、销售及售后维护体系。几十年来,她一直引领X射线分析仪器的潮流。布鲁克公司纳米分析仪器部具有近50年能谱仪研发、生产、销售和维护历史,并开创微分析之先河――全球首创电镜用电制冷能谱仪,并将之推广,为用户提供了更好的微分析工具。秉续近20年电制冷能谱仪商用经验,承载6,000多台套电制冷能谱全球用户的殷切希望,作为电制冷能谱仪技术领域领跑者的布鲁克将一直以优异的性能、卓越的稳定性及全面的技术支持,不断超越用户的需求。 About Bruker Nano Analytics The Bruker Nano Analytics (BNA) Division, headquartered at Bruker Nano GmbH in Berlin, Germany, develops, manufactures and markets X-ray systems and components for elemental and structural analysis on the micro- and nano-scale.BNA' s product range comprises analytical tools for electron microscopes, including energy-dispersive X-ray spectrometers (EDS), wavelength-dispersive X-ray spectrometers (WDS), electron backscatter diffraction systems (EBSD), micro-spot X-ray sources for Micro-XRF on SEM and micro computed tomography (Micro-CT) accessories, as well as mobile and bench-top micro X-ray fluorescence (Micro-XRF) and total reflection X-ray fluorescence (TXRF) spectrometers.
    留言咨询
  • 400-860-5168转2376
    2004年9月17日,耶拿分析仪器(上海)公司正式成立,公司主要有分析仪器和生命科学两大核心业务,广泛服务于科研、环保、医药、食品、卫生、农业、石化和生命科学等行业,并为客户提供仪器安装和维护维修、方法应用、技术开发、技术咨询等整体解决方案。 分析仪器业务主要研究、开发、设计和生产制造各类分析仪器,包括原子吸收光谱仪,电感耦合等离子体发射光谱仪,电感耦合等离子体质谱仪,紫外可见分光光度计,总有机碳分析仪,元素分析仪,总有机卤素分析仪,拉曼光谱仪等。 生命科学仪器业务主要研究、开发、设计和生产制造涵盖从样品制备、核酸提取纯化、核酸检测、PCR和定量PCR、电泳、凝胶成像系统、各类实验室常规设备,以及多种自动化液体处理工作站分子生物学高效全套解决方案。
    留言咨询
  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年 徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案 徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询

显微成像分析仪相关的仪器

  • Thermo Scientific™ DXR™ 2xi 显微拉曼高速成像光谱仪,引领新一代显微拉曼化学成像分析技术,DXR™ 2xi所创造的可视化超快速图像采集 、Thermo Scientific™ OMNIC™ 实时同步优化的成像数据处理系统、智能化特征识别与多组分自动分离鉴别等强大功能,为材料研究等应用的拉曼光谱分析开拓了新的解决方案。DXR2xi 显微拉曼成像光谱仪可提供:●让处于任何技能水平的用户均可适应的简便操作●在屏幕上实时优化实验参数,快速实现数据可视化●直观的软件界面可满足高通量数据采集的各种应用需求●以下特点确保测试数据的高精度:Ⅰ自动准直和校准——无需专业工具Ⅱ自动背景扣除●任何用户可于数秒内调整仪器配置——自由更换激光器、滤光片和光栅,无需任何工具●强大的 Thermo Scientific™ OMNIC™ xi 软件可快速实现数据分析和光谱解析●高精度自动聚焦功能和形态分析,快速实现不平整表面的准确定位●利用化学成像分析以及其它多种成像模式可快速定位特征区域激光安全性:●显微镜为一级激光安全认证。可选的光纤附件和一些其他可选的附件为 3B级激光装置,需要激光防范措施和激光安全护目镜。●观察时,激光被护目镜物理阻挡在视径外,以防止眼睛直接暴露于激光。非常适合于以下领域:●纳米技术●材料科学●学术研究●制药●地质学
    留言咨询
  • DXRxi 显微拉曼成像光谱仪可提供:●无需耗时学习操作技术,面向多层次技能水平用户●实时可视化设定优化实验参数,快速获取实验数据●直观的操作与最快的样品测量速度,以满足各种苛刻的应用需求●利用最先进的仪器技术确保实验数据的准确性●仪器自动准直与校标,无需工具和手动操作●自动背景扣除功能●激光器、滤光片和光栅智能模块化设计。可在在数秒钟内快速转换仪器配置●以成像为中心的强大的OMNIC™ xi 软件能够迅速处理和解析巨量光谱数据流●独特的白光像和光谱自动聚焦技术精确聚焦不平坦样品区域 ●多化学特征的剖面分析所提供的图像信息能从整体到细节清楚解析材料的化学和物理特性。 激光的安全等级 ●OMNIC™ xi显微拉曼成像光谱仪为I级激光安全等级为。当外接拉曼光纤探头且处于工作状态时,激光的安全等级为3b级,使用时须采取防护措施,佩戴激光护目镜。● 通过显微镜可视光路观察样品时,激光光路会自动切断,以保护眼睛 DXRxi 以下研究领域的理想选择:●纳米科技●材料科学●学术研究●医药科学●地球科学与地质●生物工程●司法鉴定
    留言咨询
  • 显微成像法zeta电位分析仪的特征:显微成像法zeta电位分析仪的密度高或粒径大的颗粒会沉积在测量室底部。ZetaCompact采取具有角度寻径分辨率的高精度图像分析方案,在垂直平面内测量悬浊液中颗粒的电泳迁移率分布。1、 显微成像法zeta电位分析仪是一种模块化工具,用于解决测量从10nm到50μm颗粒的电泳迁移率所遇到的所有问题,并计算胶体悬浮液的zeta电位仪。2、激光照明和视频接口能实现亚微米粒子的测量。3、石英测量池组装了两对钯电极,构成完全对称的腔室。4、动态安装,便于接入石英池。清洗后的测量池可快速准确地定位。5、显微成像法zeta电位分析仪用快速响应微探针原位测量样品温度。6、图像分析软件对粒子进行全自动跟踪。显微成像法zeta电位分析仪的应用领域:陶瓷聚合物胶乳纳米颗粒水泥乳浊液微乳液脂质体水处理纸浆和纸粘土颜料矿物浮选生物学免疫学
    留言咨询

显微成像分析仪相关的资讯

  • 220万!华中科技大学同济医学院显微成像流式细胞分析仪采购项目
    项目编号:HBCZ-22020156-221518项目名称:华中科技大学同济医学院附属同济医院采购显微成像流式细胞分析仪项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:包号设备名称数量预算总价/最高限价(万元)交货期质保期是否可以采购进口产品备注1显微成像流式细胞分析仪1220合同签订后2个月内2年是 合同履行期限:合同签订后2个月内。本项目( 不接受 )联合体投标。
  • 涉及三维显微成像仪、质谱分析仪等4个项目脱颖而出 西光所举办高端科学仪器国产化开放基金评审会
    西安光机所首次“高端科学仪器国产化及核心部件开放基金”(以下简称基金)实施方案评审会近日举办。本次会议邀请了来自西安光机所大型科研装备规划及共享管理委员会委员、长春光机所、中国仪器仪表学会分析仪器分会及基础科研条件与重大科学仪器设备研发重点专项专家组成员等13位专家组成评审组,对12个申报2022年度基金支持的项目实施方案进行评审。此次参与申报的12个项目负责人均是"院特别研究助理、院/所青促会会员、35岁以下在职博士"这三类人员。12个项目的研究领域为激光器技术、光学成像技术、探测器技术、质谱技术以及生命医疗领域的仪器,在所内有较为成熟的研究基础,而且团队具有创新争先精神,在攻克关键核心技术方面具备一定的潜力。经评审,最终“多通道高分辨大视场智能化三维显微成像仪”“质谱分析仪快响应大面阵阳极探测器”“线性调频窄线宽激光器”和“无创血糖测量的空间外差拉曼光谱仪器研制”四个项目脱颖而出,基金将给予四个项目首批30万元/年的经费支持。待一年执行期满进行考核,根据考核结果落实后续支持政策,直至结题验收。未入选项目,所级中心将全部收入研究所“核心器件及关键技术项目”库,通过向国内相关科学仪器研发机构进行推介,做好“产”“学”“研”“用”的第一班岗。本次会议还特别邀请了多家仪器仪表行业内的骨干企业代表列席会议。会后,企业代表们表示,看好多个项目的未来发展前景,愿意与项目负责人会后进行进一步交流,探索其他合作方式对高端科学仪器国产化及核心部件的国产化给予支持。
  • 岛津成像质谱显微镜应用专题丨多模式成像分析小鼠心肌梗塞
    简介作为一种成像技术,磁共振成像(MRI)广泛应用于日常临床诊疗中。为了在检查过程中增强对比度,可以使用几种不同的造影剂。由于五个或七个不成对电子具有出色的顺磁性,因此最常使用Fe3+、Mn2+或Gd3+。因游离形态的Gd3+具有毒性,此探针与氨基羧酸一起作为复合物给药。大多数钆造影剂(GBCA)是全身分布的,一些靶向特异性GBCA也正在研究中。图1 Gadofluorine P的结构Gadofluorine P是一种靶向造影剂,对富含胶原蛋白的细胞外基质(ECM)具有高亲和性,ECM在发生心肌梗塞(MI)时分泌。多模式生物成像技术能够可视化靶向造影剂的分布。使用激光剥蚀与电感耦合等离子体质谱(LA-ICP-MS)以高空间分辨率在元素水平上生成定量图像,而基质辅助激光解吸电离质谱(MALDI-MS)用于在分子水平上验证研究结果,提供更多分布信息,例如磷脂或血红素b的分布。材料和方法动物实验此项动物实验在明斯特大学医院临床放射学研究所Moritz Wildgruber教授的研究小组进行。使用诱导心肌梗塞六周的小鼠,注射照影剂Gadofluorine P后进行MRI检查。小鼠被处死后,取出心脏并快速冷冻。用冷冻切片机制备厚度为10μm的切片。标准品制备对于LA-ICP-MS分析,用明胶制备基体匹配标准品,用于外标 校正。明胶(10%w/w)添加9种不同浓度,范围为0至5000 μg/g Gd。另制备了厚度为10μm的标准品切片。样品制备对于MALDI-MS成像分析,将切片放置于氧化铟锡(ITO)涂层的载玻片上。先用升华法涂敷α-氰基-4-羟基肉桂酸(CHCA)至组织表面,然后用500μl水和50μl甲醇混合溶液喷雾于组织表面2.5分钟进行再结晶。分析条件对于LA-ICP-MS分析,使用Tygon管,将ICPMS-2030与激光剥蚀系统LSX-213 G2+(Teledyne CETAC)连接,此系统配有HelEX II池和波长为213nm的Nd-YAG激光。氦气用于剥蚀池的冲洗和传输。ICP-MS 2030配有镍采样锥和截取锥。在碰撞模式下,31P、57Fe、66Zn、158Gd和160Gd的积分时间为100ms条件下进行测量。每种标准品的标准曲线使用了10个浓度水平进行分析,并且同样的条件下分析了样品(表1)。表1 LA-ICP-MS的实验条件MALDI-MS分析使用了配有离子阱-飞行时间(IT-TOF)质谱分析仪iMScope TRIO。选择正离子模式,质量范围为m/z 700到1200。其他实验条件列于表2中。基质使用iMLayer升华20分钟。表2 MALDI-MS的实验条件结果LA-ICP-MS用基体匹配标准品进行的外标法定量分析结果显示,在高达5000μg/g的浓度范围内存在良好的线性关系,相关系数R2为0.997。采用15μm光斑尺寸时,基于158Gd的检测限(LOD)为43ng/g Gd,定量限(LOQ)为140ng/g Gd(根据Boumans[1]算出)。图2 小鼠心脏组织切片的H&E染色图2所示为连续切片的苏木精伊红染色结果,检测出心肌梗塞的区域(以黑线标出)。图3 两个连续切片的显微图像(a.和b.);经LA-ICP-MS测定的Gd定量分布(c.);Gadofluorine P的配体分布(d.);配体结构及理论峰值(青色条)、MALDI-MS测定峰值(黑线)(e.)图3所示为两个连续切片的显微图像(a.和b.)。使用LA-ICP-MS(c.),检测到健康心肌中Gd的均匀分布,平均浓度约为50μg/g。梗塞区的Gd浓度高两倍,约为110μg/g,最高值可达370μg/g。由于静脉注射造影剂的作用,心室中也存在较高浓度的Gd。这些分布可以通过MALDI-MS成像进行验证(d.)。该实验中,只能检测到Gadofluorine P的质子化配体,而不是完整的复合物(e.)。结果显示,主峰m/z 1168.39的质谱成像图与LA-ICP-MS检测的Gd分布具有良好的相关性。在心机梗塞和心室区发现了分子探针的最高强度,而健康心肌则显示出低而均匀的强度。结论 该应用表明,元素选择性(LA-ICP-MS)和分子选择性(MALDI-MS)成像技术的组合是可视化心机梗塞后小鼠心脏组织中靶向钆造影剂分布的有力工具。通过LA-ICP-MS技术实现了高空间分辨率和定量,并通过MALDI-MS在分子水平上验证了其分布。参考文献[1] P.W.J.M.Boumans, Spectrochimica Acta 1991, 46 B, 641-665.文献题目《Gadofluorine P多模式生物成像分析用于小鼠心肌梗塞研究》使用仪器岛津iMScope TRIO作者Rebecca Buchholz1、Fabian Lohofer2、Michael Sperling1,3、Moritz Wildgruber4、Uwe Karst11 明斯特大学无机和分析化学研究所 2 慕尼黑工业大学放射学研究所3 明斯特欧洲物种分析虚拟研究所(EVISA) 4 明斯特大学医院临床放射学研究所声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。本文内容非商业广告,仅供专业人士参考。

显微成像分析仪相关的方案

  • 微流成像颗粒分析仪在科研及实际生产中的应用
    在YH-FIPS系列微流成像颗粒分析仪中,样品通过流通池后,会被明亮的光脉冲照亮。粒子运动/图像使用具有明确放大倍率和扩展景深的自定义放大,系统会对此进行记录。原始图像被保存下来,粒子参数保存到数据库中,并可导出为电子表格。粒子数据库的实验后软件分析可生成有关计数、浓度和特征分布 (例如数字加权 PSD) 的信息。实现亚微米到微米级颗粒的计数功能,还可以得到样品的实际颗粒形貌信息,以达样品颗粒的最真实统计。
  • 微流成像粒度仪-微粒成像颗粒分析仪
    如何通过蛋白类制剂中颗粒物的粒度检测,来评判药物的安全性和有效性,是药物研发者重点关注的问题之一。由于可见及亚可见蛋白质聚集物均有可能引发机体不可预测的免疫反应,因此监管机构对于此类制剂的颗粒检测提出了监控手段,例如药典中提出的光阻法、显微计数法及微流成像法。
  • DXRxi显微成像拉曼光谱仪朱文时序应用
    拉曼光谱技术具有指纹识别性,可以实现未知物质的鉴别定性,是一种非接触、无破坏的检测技术,有利于少量宝贵样本的保留。同时根据不同组分拉曼光谱图之间的差异,利用拉曼成像功能可以分析样品上选择区域内成分的分布情况。赛默飞拥有的创新型、超快速成像DXR2xi显微成像拉曼光谱仪,其独特的设计实现超快速、高灵敏度的成像功能,包括拥有高性能电子倍增EMCCD探测器,结合磁悬浮马达驱动与光栅尺反馈控制的高速高精度自动平台,可以实现每秒至少600张光谱的超快速扫描。简单、清晰的用户友好型软件界面轻松实现无以伦比的数据处理速度,真正实现了超快速成像目标理念,所以结合拉曼光谱技术和DXR 2xi显微成像拉曼光谱仪革新的硬件和软件设计,为司法文书等相关材料的鉴定提供了有效的方法。

显微成像分析仪相关的资料

显微成像分析仪相关的试剂

显微成像分析仪相关的论坛

  • 【原创】如何选购显微数码成像分析系统?

    一、前沿2009年10月6日,瑞典皇家科学院宣布,将2009年诺贝尔物理学奖的一半授予美国科学家威拉德• 博伊尔和乔治• 史密斯,因为他们于1969年发明了半导体集成电路成像技术,CCD感应器。经过四十年的发展,CCD技术由实验室逐步走向了市场,具有越来越广阔的应用。CCD数码成像对摄影产生了革命性的影响。在感光胶片之外,人们可以通过电子电路捕捉图像,这些以数字形式存在的图像更加易于处理和分发。数字图像已经成为许多研究领域中不可替代的重要工具。数码成像技术应用到显微镜上,以替代以往的胶卷拍摄,现在已经广泛应用了。以前我们用胶卷来进行显微拍摄,要等一卷拍完,冲洗出来才能确定拍摄的图像是否清晰,如果拍摄的图像不理想,而显微观察的样品又失效了,就需要重新制作样品,给研究工作带来很大的不便,而现在使用显微数码相机来拍摄显微图像,所见即所得,当时就是保存处理,甚至统计分析,极大的提高了工作效率。二、显微数码成像系统的组成显微数码成像系统包括CCD/CMOS专业相机,图像采集处理软件,显微镜接口,数据传输线等,其中最核心的设备是CCD和CMOS图像传感器,前者由光电耦合器件构成,后者由金属氧化物器件构成。两者都是光电二极管结构感受入射光并转换为电信号,主要区别在于读出信号所用的方法。CCD(Charge Coupled Device ,感光耦合组件)上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。CCD的结构分三层 ,第一层“微型镜头”“ON-CHIP MICRO LENS”,这是为了有效提升CCD的总像素,又要确保单一像素持续缩小以维持CCD的标准面积,在每一感光二极管上(单一像素)装置微小镜片。CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。第三层:感光层,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。数码成像的核心器件除CCD,现在越来越多的使用CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体,CMOS和CCD一样同在数码相机中可记录光线变化的半导体。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。CMOS的优势在于成本低,耗电需求少,便于制造, 可以与影像处理电路同处于一个芯片上,缺点是较容易出现杂点。三 显微镜成像系统相关参数对CCD/CMOS数码成像系统的结构和原理有了一个基本了解后,我们再对成像系统的一些基本参数作一个说明。在实际应用中,很多用户对像素多少很敏感,一上来就提到我要多少万像素的成像系统,其实在专业成像应用中,像素多少只是影响成像的一个因素,还有其他很多指标,包括分辨率,感光器件大小,动态范围,灵敏度,量子效率,信噪比等。感光器件的面积大小是衡量显微成像系统质量的一个重要指标,感光器件的面积越大,捕获的光子越多,感光性能越好,信噪比越低。当前数码成像系统中较常应用的感光器件规格如下:1英寸(靶面尺寸为宽12.7mm*高9.6mm,对角线16mm),2/3英寸, 1/2英寸,1/3英寸,另外有时也用到1/1.8英寸,1/2.5英寸的CCD/CMOS感光器件。 像素是CCD/CMOS能分辨的最小的感光元件,显微数码成像系统的像素由低到高有:45万左右,140万左右,200万左右,300万左右,500万左右,900万像素,甚至还有更高的达到2000万像素以上。一般来说,像素越高,图像分辨率越高,成像也就越清晰,但有时候图像分辨率达到一定程度后,就不是影响成像质量的主要指标了。比如图像分辨率高,噪声也很高时,成像质量也不会很好。暗电流是导致CCD噪音的很重要的因素。暗电流指在没有曝光的情况下,在一定的时间内,CCD传感器中像素产生的电荷。我们在做荧光拍摄的时候,需要的曝光的时候比较长,这样导致CCD产生较多的暗电流,对图像的质量影响非常大。通常情况下通过降低CCD的温度来最大限度的减少暗电流对成像的影响。Peltier制冷技术一般可将CCD温度降低5-30°C,在长时间拍摄或一次曝光超过5-10秒,CCD芯片会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像,图像会出向明显的雪花点。CCD结构设计、数字化的方法等都会影响噪音的产生。当然通过改善结构、优化方法,同样能减少噪音的产生。显微荧光或其他弱光的拍摄对CCD噪音的降低要求很高,应选用高分辨率数字冷却CCD成像系统,使其能够捕获到信号极其微弱的荧光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。所以一般在荧光及弱光观察时需要选择制冷CCD。在显微数码成像过程中,对于荧光及弱光的拍摄,除了制冷降低热噪声外,还可使用 BINNING技术提高图像的灵敏度,BINNING像素合并是一种非常有用的功能,它可被用来提高像素的大小和灵敏度,比如摄像头像素大小为5u,当经过2x2合并后,像素大小为10u,3X3合并后,像素大小为15u, 这是图像的整体像素变少了,但成像的灵敏度可提高9倍。动态范围表示在一个图像中最亮与最暗的比值。12bit表示从最暗到最亮等分为212=4096个级别,16bit即分为216个级别,可见bit值越高能分出的细微差别越大,一般CMOS成像系统动态范围具有8-10bit, CCD以10-12bit为主,少部分可达16bit。对动态范围进行量化需要一个运算公式,即动态范围值 = 20 log (well depth/read noise),动态范围的值越高成像系统的性能就越好。量子效率也称像素灵敏度,指在一定的曝光量下,像素势阱中所积累的电荷数与入射到像素表面上的光子数之比。不同结构的CCD其量子效率差异很大。比如100光子中积累到像素势阱中的电荷数是50个,则量子效率为50%(100 photons = 50 electrons means 50% efficiency)。值得注意的是CCD 的量子效率与入射光的波长有关。对显微数码成像系统的参数有了整体认识后,在实际应用中选择合适型号的产品就比较容易了。高分辨率显微数码成像技术在国外已有二十来年的发展历史,产品目前已比较成熟。国外的专业数码产品有多个品牌,比较著名的有德国的ProgRes,美国Roper Scientific的系列产品,另外OLYMPUS、NIKON、LEICA、ZEISS等显微镜厂家也有一些配套的专业数码成像系统 。其中CCD成像系统主要采用SONY及KODRA公司的芯片,因此相关产品性能差别不是很大。国内专业数码成像产品的设计制造时间还不长,但随着配套技术的成熟,100万像素以上的CCD/CMOS专业数码成像产品开始陆续推出,主要的专业厂家有北京的大恒、微视、杭州欧普林,广州明美等企业。北京大恒早期主要研发生产图像采集卡,目前可以量产140万像素的CCD摄像头,130万/200万/320万/500万像素CMOS摄像头,主要用到工业领域。

  • 生物显微镜的成像原理分析

    显微镜(microscope)简称光镜,是一种将肉眼无法看清楚的微生物体进行光学放大成像的常用仪器。在生命科学、材料科学、基础科学及众多的微观领域中都离不开显微镜。1590年.荷兰的Han,父子始创放大10倍显微镜。175.8年,Dollond制成消色差透镜,提高了显微镜放大倍数。1873年,德国科学家Abbe设计成近代显微镜。1953年.上海江南光学仪器厂国产显微镜诞生,并陆续生产了荧光、相衬、偏光等专用显微镜。生物及医用显微镜可分为光学放大及电子放大两大类。前者按用途可分为普通型、特种型、高级型显微镜和手术显微镜。普通型生物显微镜仅供一般用途使用,通常的农用与医用显微镜、倒税显微镜均属这一类。特种型生物显微镜可作某些专用的观察和研究。暗场生物显微镜、荧光显微镜、偏光显微镜、相衬和干涉相衬显微镜等均属于这一类。高级型生物显微镜系指大型多用途的生物显微镜.研究用生物显微镜和万能研究用生物显微镜等属于这一类。一、显微镜放大成像系统显微镜光学系统由物镜和目镜两部分组成。因为被观测的物体本身不发光,而要借助于外界照明,故显微镜需要有一个照明系统,这些部分都是由较复杂的透镜组成,尤其物镜更为复杂。下图是显微镜成像的光路原理图,图中的物镜和目镜均用薄透镜表示。http://www.yi7.com/file/upload/201201/07/14-00-33-93-1.jpg显微镜成像原理显微镜的物体AB处于物镜的2倍焦距之内一倍焦距之外,它首先通过物镜成一放大的倒立实像A'B',且使之位于目镜的物方焦平面上或焦平面以内很靠近的地方,然后目镜将这一实像再次成一个正立虚像A"B"于无限远或人眼明视距离之外,以供眼睛观察。显微镜对物体进行2次放大,因此与放大镜相比,具有更高的放大倍率,能观察到肉眼所不能直接观察的微小物体,分辨更细小的细节。在这里目镜相当于放大镜,只不过这时放大镜的物是物镜所成的像而已。由于物镜所成的像是实像.因而可在实像处(即目镜的物方焦平面处)安放各种用途分划板.供对准或测量用。二、显徽镜的放大率与分辨本领1.显微镜的分辨本领 分辨本领主要指接物镜分辨被检查物体细微结构的能力,也就是说在显微镜下判别的最小微粒的大小或两点之间最短距离及某物点最小直径的限度,便叫做显微镜的分辨本领.或称为鉴别率。通常用d表示:http://www.yi7.com/file/upload/201201/07/14-00-33-14-1.jpg式中.A表示波长;n sins (NA)表示数值孔径。 从式中可知,显微镜的分辨率主要取决于光的波长和数值孔径这两个因素。d值越小,分辨本领也就越强,越能看清物体的细微结构。鉴别率计算单位是Um. 显微镜的鉴别率的提高只有两个办法: (1)增大物镜的数值孔径(镜口率)。从图可以看出,影响数值孔径(n sina)的因素有两个:其一为物体上某点射人物镜光锥角(镜口角)的一半(sina);其二为检品与物镜间媒质的折射率n。即数值孔径为NA = n sine镜口角半数最大能到900,故si na的最大值为1.00,这时物镜的焦距最短而曲度也很大,制造上是极为困难的。即使能办到,在干燥系中的镜口率只有1 x sin90“(控气n二1)。若再增大镜口率便只有从媒质着手,所以便有水、甘油,石蜡油和香柏油等浸润均匀媒质的应用,确实改进了镜口率不少.它最高可到1.40。如果用澳萘液可达1.67左右,更接近盖片和透镜的折射率。http://www.yi7.com/file/upload/201201/07/14-00-33-51-1.jpghttp://www.yi7.com/file/upload/201201/07/14-00-33-44-1.jpg (2)缩短光源的波长:采用紫外线作光源,波长可到0.1Um,这样放大倍数比自然光放大的倍数大3-4倍,普通紫外线光波在0.2 Um左右,即使能产生出0.1 Um波长的紫外线.一般透镜也将把它吸收干净.无法利用。显微镜的最大数位孔径可达1.5 Um左右,在这种情形下: http://www.yi7.com/file/upload/201201/07/14-00-33-33-1.jpg即在这种显微镜里,仍可分辨的两点间最短距离差不多等于所用光波波长的1/30假定绿光的光波的波长http://www.yi7.com/file/upload/201201/07/14-00-33-23-1.jpg那么显微镜能分辨的最短距离为:http://www.yi7.com/file/upload/201201/07/14-00-33-89-1.jpg 则这台显微镜的最高分辨距离也超不过。.182 Um。肉眼在明视距离(250 mm)能分辨的两点之间最短距离为0.1 mm,约为上述d值的560倍.因此I台光学显徽镜的放大率有100()倍也就足够了。这是因为光的本性及光的绕射现象就限制了显徽镜的放大极限。凡是光波超过微粒直径的2倍时,光线就很方便地绕过微粒而继续前进,所以普通干燥系显微镜的最大鉴别率只能达到光源波长的1/2,直径小到0.2 5m的微粒就无法被光学显微镜发觉。虽然后来应用浸润系方法,如油镜,提高了折射率,其鉴别率也只不过能提高到光源波长的1/3而已。而且还要用最好的透镜才能达到。

  • 用超微距成像测量分析仪测量面膜的透光率

    用超微距成像测量分析仪测量面膜的透光率

    1.打开一张面膜均匀地铺在一块300*200*3mm的透明玻璃板上,在上面盖一块同样的透明玻璃板,把面膜压平排除气泡和水分。2.打开超微距成像测量分析仪侧盖,把两块玻璃夹得面膜平整地放入测量池中,操作电脑上的软件,根据需求的分辨率拍出高质量的灰度图片,一般在10MB左右还可以到1G左右(属计算机大数据范畴)。3用Image Pro Plus软件或ImageJ软件计算出光密度的平均值或积分光密度值。点击打开链接点击打开链接http://ng1.17img.cn/bbsfiles/images/2015/08/201508280906_563273_3024149_3.jpg

显微成像分析仪相关的耗材

  • 荧光显微成像系统配件
    荧光显微成像系统配件和欧洲进口的显微成像系统,可用于研究细胞形态、荧光探针检测(GFP)、荧光共振能量转移(FRET)和快速分子过程。荧光显微成像系统配件集成方案 使用的现代荧光成像技术极大得帮助科研人员研究细胞形态、荧光探针检测 量转移和快速分子过程。 提供实验所需的曝光时间,根据相机的设置 有效集成并优化同步各种部件 显微成像系统集成方案 已经成为研究活细胞和分子结构比不可少的科研工具 能够以相机的最大速度连续采集一系列图像 可以产生每秒幅的比率图像 在更短的时间内获得更好的实验数据 荧光显微成像系统配件 可编程控制的光源 时成像控制单元 显微成像系统科研型相机 显微镜适配器 成像软件和工作站 价值尽量减少光毒性 显微成像系统特点 时序控制准确: 满幅图像帧频最高可达图像分析灵活: 非常适合单个细胞或一组活细胞的动态过程的研究 荧光显微成像系统配件特点 图像采集和传输的控制达到微秒精度图像采集快速: 软件具有多维图像分析功能和各种应用模块 三维成像要求在轴上能够快速成像,才能获得重建数据 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于显微成像系统价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 显微岩相分析仪配件
    显微岩相分析仪配件特别为岩相学和地球化学分析而设计,非常适合岩相学分析检测,特别是煤炭质量分析检测,显微岩相分析仪配件在全球的石化,地球化学和岩相学实验室广泛使用。显微岩相分析仪配件应用煤续排列 - 使用反射光方法, 观察其镜质体和丝质体含沥青煤的特性 — 利用落射荧光技术进行分析油母岩的分析 — 以透射光和落射紫外荧光方法百分比含量测定 — 用显微图像设备对样品进行相成分,得知其成分比例无定形材料的评估 — 显微镜下观察其古生物样品,研究其藻类和其植物部分煤岩组份族组成的判断 — 分析含沥青的煤和无烟煤显微岩相分析仪配件介绍在研究和分析煤的起源,形成和使用领域过程中,岩相分析被公认为 是非常重要的。在分析和测试单一煤样品过程中, 我们很容易得知煤的等级,煤岩组分,微石类型组成和矿物分布的重要信息。但对于一个混合煤的样品进行分析和测试, 则离不开对样品进行反射率分析和测试此一有力的方法,此一分析方法不仅可以得到煤样的化学性质,还可以区分不同混合类型的壳质组,丝质组和微惰性煤各部分 所占的比例。国际煤岩相学委员会(ICCP)已制定了相关的命名法和分析方法。在ISO/DIN标准第7404项中,比较了显微分光光度计测试和分析后得到的数据和标准样品的数据, 确认此分析方法的准确性。另一方面, 可同时结合热变指数(TAI)或孢色值(SPI)的测试方法, 可补充其它方面的实验数据。依据DIN/ISO标准进行数据采集处理的分析模式, 使用直方图表达被测量组分的含量和其它组分的相对含量。显微岩相分析仪对煤炭质量分析图样
  • 显微毛发分析仪配件
    显微毛发分析仪配件能够快速获取毛发和纤维的光谱数据,为司法鉴定和物证分析以及纤维材料研发提供有力帮助。显微毛发分析仪配件特点能够测量到毛发和纤维丝的透射光谱和明场和暗场反射光谱,在250-980nm 范围给出任意毛发位置的光谱,可以有效区分毛发的光谱,从而快速有效进行物证分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制