当前位置: 仪器信息网 > 行业主题 > >

芯片裂缝测试仪

仪器信息网芯片裂缝测试仪专题为您提供2024年最新芯片裂缝测试仪价格报价、厂家品牌的相关信息, 包括芯片裂缝测试仪参数、型号等,不管是国产,还是进口品牌的芯片裂缝测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芯片裂缝测试仪相关的耗材配件、试剂标物,还有芯片裂缝测试仪相关的最新资讯、资料,以及芯片裂缝测试仪相关的解决方案。

芯片裂缝测试仪相关的论坛

  • pcb IC焊接质量测试手段-芯片推拉力测试仪

    pcb IC焊接质量测试手段-芯片推拉力测试仪

    芯片推拉力测试仪 IC焊接强度测试仪 IC推拉力测试仪 功能推拉力测试机: 采用了AUTO-RANGE技术和VPM垂直定位技术,测试传感器采用自动量程设计,分辨率高达0.0001克 推拉力测试机(多功能剪切力测试仪)是用于微电子封装和PCBA电子组装制造及其失效分析领域的专用动态测试仪器,是填补国内空白的微电子和电子制造领域的重要仪器设备。该设备测试迅速、准确、适用面广、测试精度高,适用于半导体IC封装测试、LED封装测试、光电子器件封装测试、PCBA电子组装测试、汽车电子、航空航天、军工等等。亦可用于各种电子分析及研究单位失效分析领域以及各类院校教学和研究。该设备无论测试精度、重复可靠性、操控性和外观设计,均达到世界一流的水平。应用包括:wire pull, ball shear, tweezer pul,cold bump pull 和更专业的stud pull 等等。推拉力测试系统适用于半导体各种封装形式测试金铝线黏合力;及COB封装、光电,LED,SMT组装 , 原件与基板黏合测试;推拉力测试机特点: 1、重量:65公斤 2、外观:宽620毫米×长520毫米×高700毫米 3、工作台X方向和Y方向最大行程60毫米;解析度0.25微米;运动时速度2.5毫米/秒;;可承受最大力200公斤;Z方向最大行程70毫米; 解析度1微米;运动时速度10毫米/秒;可承受最大力100公斤 4、测量范围:100克/5000克/10公斤/100公斤 5、测量精度:0.1% 6、测量标准:国家鉴定 标准推拉力测试机功能: 1、可实现多功能推拉力测试;2、任意组合可实现多种功能测试; 3、满足单一测试模组; 4、创新的机械设计模式; 5、强大的数据处理功能; 6、简易的操作模式,方便、有效。推拉力试验机应用: 1、可进行各种推拉力测试: 金球、锡球、芯片、导线、焊接点等 2、最大测试负载力达500kg 3、独立模组可自由添加任意测试模组: 4、强大分析软件进行统计、破断分析、QC报表等功能 5、 X 和 Z 轴可同时移动使拉力角度保持一致 6、程式化自动测试功能拉力测试 ·金/铝线拉力测试 ·非破坏性拉力测试(无损拉克) ·铝带拉力测试 ·非垂直(任何角度)拉力测试 ·夹金/铝线拉力测试 ·夹元件拉力测试 ·薄膜/镀膜/芯片/[color=black

  • 裂缝宽度检测设备:英铼铂裂缝测宽仪功能有哪些?

    裂缝宽度检测设备:英铼铂裂缝测宽仪功能有哪些?

    裂缝测宽仪,是裂缝宽度现场检测设备,提供裂缝位置及宽度值的自动化检测、无人状态下长期监测等功能,转变以往传统的裂缝宽度人工测读方式为便捷的仪器自动测量方式,并提供丰富的缝宽数据处理手段。[align=center][img=,400,286]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191636416773_1128_5568994_3.png!w687x492.jpg[/img][/align][b]裂缝测宽仪具备如下特点:[/b][font=Wingdings]?[/font]国内首创同时具有裂缝宽度的检测和监测功能:其检测功能可以完成现场快速自动判读裂缝宽度,监测功能可以对变化开裂中的裂缝宽度进行长时的连续定时自动监测;[font=Wingdings]?[/font]实时自动判读裂缝宽度值:判读1条裂缝宽度仅需150毫秒;[font=Wingdings]?[/font]智能判读斜向裂缝:自动判读时不要求屏幕中裂缝必须呈竖直走向,对斜向裂缝可以自动识别走向并正确判读出垂直于倾斜方向的真实缝宽,提高了测试速度和测试精度;[font=Wingdings]?[/font]支持人工判读裂缝宽度值:人工移动游标界定裂缝边界完成人工判读,屏幕上还显示有刻度标尺,可核对读数,根据不同缝宽,裂缝图像和刻度标尺还可以适度放大缩小;[font=Wingdings]?[/font]数据与图像同时存储,并具有查看、删除功能;[font=Wingdings]?[/font]U盘导出数据和图像,标配4G容量U盘,并可以扩充;[font=Wingdings]?[/font]进行裂缝监测时,设置监测的总时长和测试时间间隔,并实时显示计时,监测过程中在节电方式下自动休眠,并可随时唤醒。【英徕铂】英徕铂ENLAB,物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务

  • 谈谈芯片设计公司为什么要做芯片测试?

    谈谈芯片设计公司为什么要做芯片测试?

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311221551418573_4784_6253876_3.jpg!w690x690.jpg[/img]对于芯片设计公司来说,测试至关重要,不亚于电路设计本身。设计公司主要目标是根据市场需求来进行芯片研发,在整个设计过程中,需要-直考虑测试相关的问题,主要有下面几个原因:1)随着芯片的复杂度原来越高, 芯片内部的模块越来越多,制造工艺也是越来越先进,对应的失效模式越来越多,而如何能完整有效地测试整个芯片,在设计过程中需要被考虑的比重越来越多。2)设计、 制造、甚至测试本身,都会带来-定的失效, 如何保证设计处理的芯片达到设计目标,如何保证制造出来的芯片达到要求的良率,如何确保测试本身的质量和有效,从而提供给客户符合产品规范的、质量合格的产品,这些都要求必须在设计开始的第一时间就要考虑测试方案。3)成本的考量。 越早发现失效,越能减少无谓的浪费 设计和制造的冗余度越高,越能提供最终产品的良率 同时,如果能得到更多的有意义的测试数据,也能反过来提供给设计和制造端有用的信息,从而使得后者有效地分析失效模式,改善设计和制造良率。芯片的测试离不开可靠的测试工具-1C测试座,凯力迪公司致力服务于各大芯片设计、封测公司,为其提供性能可靠,极具性价比的IC测试座产品,封装种类齐全,产品线覆盖范围广,对于非标的新型芯片,更可提供测试座的一件起定制服务。

  • 裂缝测宽仪怎么操作?具体步骤有哪些?

    裂缝测宽仪怎么操作?具体步骤有哪些?

    裂缝测宽仪测量裂缝宽度:连接显示器和测量探头到电缆上,接通电源开关,把测量探头的两只脚放在裂缝上。扩大裂痕后,稍加旋转照相机,使裂缝图像与直尺垂直。基于裂缝图像占标度长度,读取裂缝宽度值。校准表格上的刻度线,将摄像机测头支脚置于不同宽度的尺度上,屏幕读出相应的尺度宽度。在误差小于0.02mm的情况下,仪器可正常使用具体缝宽监测操作步骤如下:主功能界面下点击触摸屏[color=black][back=#D9D9D9]缝宽监测[/back][/color]按钮进入缝宽监测操作流程,裂缝监测功能的设置主要是针对需要对同一位置进行长期缝宽监测的特殊场合。[b][b][font=宋体]1 [/font][font=宋体]、监测设置[/font][/b][/b]进入监测模块后,仪器自动建立新构件、连接探头、自动采集,如下图所示。[align=center][img=,320,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304261651033751_3435_5568994_3.png!w320x240.jpg[/img][/align] 该界面操作如下:[font=Wingdings]l [/font]新构件 进入监测模块后若仪器内已保存有空的监测构件则自动调出,否则自动建立新的监测构件,构件号可以直接点击进行编辑。[font=Wingdings]l [/font]设置时长和间隔 在此界面下需要作一些监测的准备工作,除安装固定探头外还需要设置监测的总时长和监测时间间隔,操作方式都是用触摸笔点击相应编辑框利用弹出的软键盘进行设置。[b][b][font=宋体]2[/font][font=宋体]、动态监测[/font][/b][/b]监测状态下仪器后台计时并在各计时间隔自动采集保存、刷新,界面左下方显示状态信息,计时超过总时长时自动结束监测过程并转到下一状态(完成监测);监测过程中若1分钟无按键和触摸屏操作则仪器自动关闭背光以进入省电工作模式,省电模式下点击屏幕或按动任一按键背光点亮。[b][b][font=宋体]3[/font][font=宋体]、完成监测[/font][/b][/b]监测过程完成,所有测点保存到构件中。该界面操作如下:[font=Wingdings]l [/font]查看测点 如果该构件内测点数大于1个则按↑、↓键可浏览查看测点。【英徕铂】英徕铂ENLAB,物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务

  • 微阵列芯片扫描仪优势特点

    [b]孚光精仪:[url]http://www.f-lab.cn/[/url]微阵列芯片扫描仪:[url]http://www.f-lab.cn/microarray-manufacturing/innoscan.html[/url]微阵列芯片扫描仪[/b],[b]innoscan[/b]专业为[b]扫描基因芯片[/b],[b]扫描蛋白质芯片[/b]等[b]微阵列芯片扫描[/b]而设计,是功能强大的高分辨率[b]荧光扫描仪[/b],适合所有[b]微阵列芯片扫描,[/b]如DNA芯片,蛋白质芯片和细胞和组织。[b]微阵列芯片扫描仪[/b]是完全开放的系统,兼容任何标准的显微镜载玻片25x75mm(玻璃基板,塑料,透明和不透明),适用于各类型的应用研究,如基因表达,基因分型,aCGH,芯片分析片内,微RNA检测的SNP,蛋白质组学和微阵列的方式。[img=微阵列芯片扫描仪]http://www.f-lab.cn/Upload/innoscan-scanner.jpg[/img][b]微阵列芯片扫描仪[/b]可以扫描生物芯片,有3 1.mu.m/像素的分辨率,同时保持高图像质量。能够同时扫描两个检测通道3.5分钟(10.mu.m/像素,最大扫描区域),InnoScan900是市场上最快的扫描器,扫描速率可调节,达10到35行每秒。

  • 芯片老化测试解决方案

    芯片老化测试解决方案

    芯片又称集成电路,或称微电路、微芯片、晶片/芯片在电子学中是一种把电路小型化的方式,并时常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜集成电路。另有一种厚膜集成电路是由独立半导体设备和被动组件,集成到衬底或线路板所构成的小型化电路。  芯片老化测试对于芯片测试至关重要,但是需要注意哪些要点?对其测试又是可以做为什么试验项目呢?[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206211700528596_4941_1385_3.jpg!w600x600.jpg[/img][/align]  芯片的温湿度试验方法如下:  高温高湿耐候性:  a.芯片测试环境:温度方面,一般室温,70℃,125℃,155℃,175℃甚至更高,根据不同级别的测试要求来安排;湿度方面,80/85%的相对湿度,其他的湿度要求根据测试要求来定。  b.芯片测试时长,一般分为24H,168H,1000H等。  c.将芯片置于老化架上,然后连同老化架放入[b][url=http://www.instrument.com.cn/netshow/C27540.htm]恒温恒湿试验箱[/url][/b]中。条件设置为45℃(2h),70℃(2h)、-20℃(2h),45℃(2h)(五个循环,对于普通型)和60℃(2h),80℃(2h),-40℃(2h),60℃(2h)(五个循环,对于中耐久型)环境中老化。  一般来说,贴合实际使用的测试是比较符合要求的,但是由于需要在短时间内搞定测试要求,所以需要测试要求和环境条件超级加倍。  芯片行业的老化数据会对行业的发展产生特别积极的影响,会不断的推动这个行业朝着好的方向发展。

  • 裂缝测宽仪使用时需要注意哪些事项?

    裂缝测宽仪使用时需要注意哪些事项?

    裂缝测宽仪是一款裂缝宽度现场检测设备,提供裂缝位置及宽度值的自动化检测、无人状态下长期监测等功能,转变以往传统的裂缝宽度人工测读方式为便捷的仪器自动测量方式,并提供丰富的缝宽数据处理手段,主要应用于桥梁、隧道、墙体、混凝土路面、金属表面等裂缝宽度的定量检测。[align=center][img=,450,553]https://ng1.17img.cn/bbsfiles/images/2023/04/202304191646260127_742_5568994_3.png!w647x796.jpg[/img][/align]在使用中应注意如下事项:1、触摸屏的点击力应适中,以免造成触摸屏损坏;2、当主机指示灯显示电量不足时应及时充电以免影响正常工作;3、仪器的正常工作温度在-10℃~50℃之间,超出此范围可能会造成仪器工作异常;4、探头内部为光学器件,使用中避免磕碰以防止其损坏;5、探头宜在开机之前连接。6、裂缝宽度观测仪用完后,应及时放入包装套或仪器盒内,以防止灰尘进入仪器内部。7、仪器不得随意拆卸和乱弹试, 以免影响使用寿命和损失精度。8、仪器要进行定期保养, 使用一段时间以后, 要进行擦拭净化, 但不应改变仪器各零部件和整机的装配关系【英徕铂】英徕铂ENLAB,物性检测仪器品牌,为国内市场提供数百种物性检测仪器,为科研工作者提供检测仪器解决方案与服务

  • 恒温恒湿试验箱对芯片测试的耐受性怎样?

    恒温恒湿试验箱对芯片测试的耐受性怎样?

    [url=http://www.instrument.com.cn/netshow/C27540.htm]恒温恒湿试验箱[/url]按标准CJB548B方法1010.1.测试条件:(-65°C~150°C)的要求进行进行。  该芯片电路共进行了温度循环试验100次,每100次温度循环试验后对电路进行X射线检查,其中10只电路完成了全部的1000次温循试验,其他电路由于要进行破坏性的键合拉力和芯片剪切力试验,温循次数依次递减。X射线检测按照GJB548B的相关要求进行,由于该电路采用平行封焊I艺,因此在X射线检测中仅针对芯片的空洞缺陷进行检查。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/05/202205061559293316_885_1385_3.jpg!w600x600.jpg[/img][/align]  温度循环试验造成了芯片粘接可靠性的退化,并且具备累计效应,在温度剧烈变化时,会加快芯片粘接性能退化速度。但该结构电路的芯片、管壳粘接材料间的热匹配较好,抗温度变化的性能较高,在1000次温度循环试验后,没有出现剪切强度不合格的情况,粘接强度的退化比较轻微,在正常使用情况下可以保证长期的粘接可靠性。  恒温恒湿试验箱过程中由于封装材料间的热膨胀系数不样,在温度变化过程中材料间的接触面可以因热膨胀系数的差异产“生剪切应力,当剪切应力作用试验足够长、应力足够大时,可以对产品的结构产“生影响温度循环试验可能造成芯片粘接空洞的扩大,造成产品芯片粘接强度的降低,影响产品的使用可靠性。从试验前后X射线检测图片对比可以看到,该电路在1000次温度循环试验前后的空洞缺陷没有出现扩大恶化的情况,试验前后的空洞面积基本致参考芯片剪切强度测试结果,芯剪切强度未出现明显的退化。说明在经过1000次温度循环后,产品的结构和可靠性没有出现异变,测试结果均满足标准的要求。  恒温恒湿试验箱对引线拉力强度有一定的影响,温度循环试验次数少的电路引线拉力强度优于温度循环试验次数多的电路。在1000次温度循环试验中引线拉力强度至少出现了一次拉力强度退化的过程,这个结果与GJB548B中试验前合格拉力判别值高于试验后合格拉力判别值的规定值相符合的。但随着温度循环试验的持续进行,引线拉力强度是否会出现,二次退化,由于试验次数的限制,不能进行进一步的验证。

  • 压片样侧面出现裂缝,咋回事呢?

    压片样侧面出现裂缝,咋回事呢?

    一切都是正规操作。土壤标样压片后出裂缝,纯硼酸压片无裂缝,以前未出现此情况~~与以前相比,更换啦一瓶新的硼酸。最右侧的为就着裂缝掰开的压片。http://ng1.17img.cn/bbsfiles/images/2017/10/2015012711065272_01_1699201_3.jpg

  • 【求助】焊接裂缝问题

    各位专家好,最近工作中遇到些焊接方面的问题,想向各位专家请教!我的问题是:现采用手动铅焊将一紫铜排气管与Q235热轧板焊接在一起,Q235母材焊接部位温度不超过1000度,大约600-700度。但焊完后发现排气管正下方Q235母材出现笔直的裂缝,缝中可以清晰观察到焊料的渗入。请各位专家指点迷津!先谢谢了![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=27529]焊接裂缝[/url]

  • 半导体芯片高低温测试机中真空泵的使用说明

    半导体芯片高低温测试机在运行的过程中,每个配件的性能都是很关键的,无锡冠亚的半导体芯片高低温测试机中真空泵一旦发生故障的话,就需要及时维修以及保养,这些都是不可少的。  半导体芯片高低温测试机真空泵完好标准是机体整洁,零部件完整齐全,质量符合要求。真空表、电流表等仪表齐全、灵敏、准确,并有定期检验标志。基础稳固可靠,地脚螺栓和各部螺栓连接紧固、齐整,丝扣外露长度符合规定。管线、阀门等安装合理,标志分明,符合要求。各零部件的安装间隙应达到规定要求。半导体芯片高低温测试机真空泵运行性能要求要注意半导体芯片高低温测试机的润滑良好,油质符合要求,实行“五定”,设备运转平稳无杂音,其振动和噪声不应超过有关规定,设备负荷运转时,温度、压力、流量、电流等参数应符合相关标准。  半导体芯片高低温测试机真空泵设备及环境要求需要注意泵体清洁,外表无尘灰、油垢。基础底座表面及周围无积水、废液及其他杂物等。阀门及管件接头等处不得有泄漏。填料密封处泄漏不超过规定。  半导体芯片高低温测试机真空泵日常维护需要注意半导体芯片高低温测试机周围环境应保持清洁、干燥,通风良好,检查冷却水路是否畅通,检查各润滑部位的润滑油是否符合规定。每班必须检查各部紧固螺栓,不得有松动现象,经常检查真空罐中的液位是否正常有效,并进行必要紧固。随时检查真空表、电流表的读数是否正常。随时注意观察半导体芯片高低温测试机运转有无异常声响或振动,必要时可报告有关部门进行状态。操作人员必须严格按《操作规程》进行操作,巡回检查发现问题必须及时处理。  半导体芯片高低温测试机中真空泵的故障解决也是影响整个半导体芯片高低温测试机运行的效果的,以及后期真空泵的保养也是很重要的,这些都是不可忽视的,望悉知。

  • 生物芯片入门:生物芯片及应用简介

    一、简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因组计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。二、应用领域1、基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。2、基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3、药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。4、个体化医疗临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3~12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。5、测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。据未经证实的报道,近年有一种不成熟的生物芯片在15分钟内完成了1.6万个碱基对的测定,96个这样的生物芯片的平行工作,就相当于每天1.47亿个碱基对的分析能力!

  • 请教:微阵列电极用在生物芯片的研究中

    如题,微阵列电极在生物芯片的研究中作用大不大?据我所知,目前国内还没有人能够生产微阵列电极(也许我孤陋寡闻,愿意讨教:各位有知道国内哪家有生产微阵列电极的吗?)前段时间和南京某大学的老师请教了一下微阵列电极的应用,好像在生物芯片的研究中用到还挺多的。据说国内不能生产是因为涉及到精密的微加工技术不过关。愿意和大家讨论!

  • 生物芯片入门:应用

    基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。本文主要讨论基因芯片技术,它为“后基因组计划”时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物筛选、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。1、基本概念基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采用原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了计算机芯片的制备技术,所以称之为基因芯片技术。2、技术基本过程2.1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。2.2 样品DNA或mRNA的准备从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。2.3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。2.4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏、快速,有取代荧光法的趋势。3、应用3.1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。3.2 基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。3.3 基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3.4 药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再用mRNA 构建cDNA表达文库,然后用得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。或者,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。[/

  • 芯片高低温测试机运行原理说明

    芯片高低温测试机运行是具有制冷和加热的仪器设备,无锡冠亚芯片高低温测试机采用专门的制冷加热控温技术,温度范围比较广,可以直接进行制冷加热,那么除了加热系统,制冷系统运行原理如何呢?  压缩空气制冷循环:由于空气定温加热和定温排热不易实现,故不能按逆向循环运行。在压缩空气制冷循环中,用两个定压过程来代替逆向循环的两个定温过程,故可视为逆向循环。工程应用中,压缩机可以是活塞式的或是叶轮式的。  压缩蒸汽制冷循环:压缩蒸汽的逆向制冷循环理论上可以实现,但是会出现干度过低的状态,不利于两相物质压缩。为了避免不利因素、增大制冷效率及简化设备,在实际应用中常采用节流阀(或称膨胀阀)替代膨胀机。  压缩蒸汽制冷循环采用低沸点物质作制冷剂,利用在湿蒸汽区定压即定温的特性,在低温下定压气化吸热制冷,可以克服上述压缩空气、回热压缩空气循环的部分缺点。  芯片高低温测试机吸收式制冷循环:吸收式制冷循环利用制冷剂在溶液中不同温度下具有不同溶解度的特性,使制冷剂在较低的温度和压力下被吸收剂吸收,同时又使它在较高的温度和压力下从溶液中蒸发,完成循环实现制冷目的。  芯片高低温测试机是可供各种行业使用,比如:制药、化工、工业、研究所、高校等行业中使用,当然,无锡冠亚的其他制冷加热控温设备使用的范围也比较广。

  • 不同材质的微流控芯片封合工艺

    在微流控芯片制作过程中, 封装是一个重要步骤。优良的封装技术可以提高芯片的寿命,可靠性和降低环境对产品性能的影响。在微流控芯片封装工艺中,常见的问题是芯片粘接中的空隙, 引线键合中较低的键合强度, 塑料封装后的界面剥离等等。所有这些问题均与材料的表面特性有关。等离子封合(键合)硅片+PDMS、玻璃+PDMS、PDMS+PDMS热压封合(键合)PMMA+PMMA、PC+PC胶粘封合(键合)玻璃+PMMA、PMMA+PMMA阳极封合(键合)硅片+玻璃、硅片+硅片化学处理封合(键合)PDMS+PMMA、PMMA+PMMA其他非常材质封合(键合)铌酸锂基底和PDMS芯片封合

  • 蛋白质微阵列芯片制作打印机优势

    [b][url=http://www.f-lab.cn/microarray-manufacturing/nanoprint.html]蛋白质微阵列芯片制作打印机[/url]特色[/b]具有高精度湿度和温度控制系统,具有方便用户操作的软件,可以全面和高效地打印微阵列和用于分子生物学研究和诊断应用的各种芯片具有除湿功能可供用户选择配备,除湿功能可让用户在潮湿环境下操作。可打印高达384个微孔的微孔板,最多可以打印60个标准玻璃芯片底片。可以打印各种微孔板,1“X3”的芯片和其他任何微流体生物芯片。纳米打印机系统提供先进的微孔板,位于微孔板下的 Peltier将其进行冷却。[img=蛋白质微阵列芯片制作打印机]http://www.f-lab.cn/Upload/nanoprint-arrayit.jpg[/img][b][/b]蛋白质微阵列芯片制作打印机:[url]http://www.f-lab.cn/microarray-manufacturing/nanoprint.html[/url][b][/b]

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

  • 科学家研制“芯片上的器官”测试药物疗效

    2013年06月20日 来源: 腾讯科学 腾讯科学讯(悠悠/编译) 据国外媒体报道,人们可以不再对小白鼠进行实验了,目前,科学家采用一种硅芯片进行医学测试,这将提供一个更好的方法理解药物的治疗效果。http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130620/00241dd2ff15132c901e46.jpg美国科学家工程设计一种芯片能够模拟人体肺器官 科学家们正在研制“芯片上的器官”,在一个硅芯片上“缠绕”重要的细胞,例如肺细胞,之后模拟该器官的关键性功能。之后研究人员测试分析哪种药物将对肺器官具有显著的疗效,这种“芯片上的器官”并不大,仅有几厘米长。 美国默克公司研究人员在实验室使用微芯片模拟设计成一个功能不健全的肺器官,进行一系列药物实验寻求新型哮喘治疗方法。该公司呼吸药物研究部负责人唐-尼科尔森(Don Nicholson)称,公司的科学家们希望“芯片上的器官”帮助他们更好地理解哮喘疾病的生物特征,鉴别发现疗效最好的药物。 如果默克公司的这项医学实验效果显著,药物制造商将拥有一个新的工具,能够节省数百万美元。美国国家推进转化科学中心主管克里斯多夫-奥斯汀(Christopher Austin)称,芯片上的肺器官证实这个概念的可行性。据悉,奥斯汀所在机构致力于复制多样化人体组织和器官。 美国康奈尔大学生物工程系主任迈克尔-舒勒(Michael Shuler)说:“最终我们将建立一个‘10个芯片上的器官’。” 目前为止,这项技术仍在研究之中,药物监管部门尚未准备完全废止动物实验,或者采用当前的方法对临床患者进行药物安全性和有效性测试。 多家药物制造商仍在审核这项技术的可行性,期间多个实验室开始芯片模拟肾脏、肝脏和其它器官的功能。

  • 芯片植入给药:一个不再遥远的神话

    http://img.dxycdn.com/cms/upload/userfiles/image/2012/02/19/1329475333_small.jpg将微芯片植入皮下控制释放药物似乎是属于未来时代的异想天开,而新近发表在科学转化医学杂志(Science Translational Medicine)上的一个研究告诉我们,芯片植入給药时代正离我们的生活越来越近。芯片药物核心技术已有15年的研发历史,而该研究是首次在人体内进行无线控制释放给药系统的测试。研究人员为罹患骨质疏松症的女性腰部植入芯片,药物释放经远程控制激活。研究结果表明,芯片药可控制释放正确的药量,而且没有副作用。该创新项目曾在美国科学促进协会(AAAS)年会中进行交流讨论。美国麻省理工学院(MIT)Robert Langer教授为设计人员之一,他认为药物芯片的可编程性将为人类医学的发展开辟新纪元。本研究芯片药物被用于治疗骨质疏松症,但其应用远不止于此,还可用于改善其他诸多疾病的治疗,比如多发性硬化症,疫苗给药,以及用于肿瘤治疗和疼痛管理等。程序化给药系统合作著作人Robert Farra博士介绍称,芯片药采用了生物相容性材料,内部包括电子元件及载药芯片,总体积大约为5cm*3cm*1cm,与一台心脏起搏器的大小相仿。指甲盖大小的芯片与一系列微小的、被单独密封的药物“小井”相连,小井中所盛的药物为甲状旁腺激素制剂特立帕肽(一种对抗骨质疏松的药物)。药物小井的顶端由一层铂钛合金所制的薄膜覆盖,在一股小电流作用下,薄膜破裂,一次用药所需药量便释放出来。因具有可编程性,给药时间可以控制,剂量亦可提前设定,给药及相应剂量亦可由无线电信号远程触发。Michael Cima教授说,当芯片药中的微处理器发出发射电流的指令,被电流击中的薄膜会在25微秒内分解,然后药物可选择性进入其周围的毛细血管最后入血。该芯片药在丹麦7名65-70岁妇女中进行测试。研究结果表明,芯片药释放特立帕肽同现行通用的注射笔给药方式一样有效,虽然没有正式评估药物疗效,但使用者已有骨形成改善的迹象。同时,没有发现相关的副作用。该研究起始于麻省理工学院,目前由一家独立出的公司Microchips Inc负责开发。公司正致力于扩大系统容量以便装载更多的药物。本研究中每个芯片药中仅有20个药物小井,公司认为未来药物小井装载量可达数百个,但产品上市至少还需要五年时间。应用前景看好加州大学圣迭戈分校生物工程系的John Watson教授对此研究发表评论并指出了设备需要改进之处。他说,本研究中有一例患者体内的芯片药发生了故障,该患者为第8名患者,未纳入研究分析中,其芯片仅释放出20个药物井中的一个。好在其他7名患者体内的芯片药全部释放。但芯片药通过美国国家食品药品监督管理局(FDA)的批准并达到本研究所提到的临床应用前景可能还需要多年时间。英国国立骨质疏松症学会的护士Julia Thomson认为,虽然这个研究很小,但成果却非常令人兴奋,甲状旁腺激素治疗方法的缺陷在于患者需要每天自己注射用药,依从性差,很多患者会因为繁琐的每日注射用药而放弃,这种植入设备开创了一种全新的甲状旁腺激素的给药方法,无疑会改善患者的用药依从性。目前自我管理式日注射设备深受欢迎,相信未来自动给药系统也会大行其道。马萨诸塞州的研究人员称,最终的设想是,开发一种将装载多种不同药物的芯片与敏感元器件结合的设备,可感知机体状况的变化并给于相应的药物治疗。

  • 2013年全球生物芯片市场达38亿美元

    BCC研究公司发表的生物芯片市场调查报告称,微阵列(芯片)和Lab-on-a-Chip是生物芯片产品家族的主要成员;2007年,全球生物芯片市场大约为19.379亿美元,2008年将达到21.156美元,2013年这一市场是38亿美元,年增长率高达12.7%。生物芯片有多种,包括DNA芯片(微阵列)、蛋白质微阵列、新型微阵列产品和芯片化验室(Lab-on-a-Chip,LOACs)等。其中,DNA芯片占据的市场份额最大,2007年9.473亿,2008将达9.99亿,2013年升至16.44亿,年增长率10.8%。由于基因表达产品(也属于DNA 芯片)市场的不断成熟,DNA芯片市场的增长率正在放缓,但是,受到DNA芯片的应用不断有新的领域冒出,包括SNP基因分型等,则对该市场产生了推动作用。LOACs是生物芯片市场第二大产品,2008年全球市场有望达6.913亿美元,2013年升至12.454亿美元,年增长率12.5%。今后5年里,DNA芯片和LOACs仍然是生物芯片市场的龙头产品。随着蛋白质组学对基因功能的理解和疾病认识上所具有的促进性影响,蛋白质芯片将成为生物芯片市场上的新生力量。组织芯片也是需要注意的一类新兴产品。

  • 基因芯片技术知识概要

    生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP(human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学),涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术。一、什么是基因芯片生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交的芯片。基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization,SBH)。即任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8nt亚序列:  (1) CTCATATG  (2) GCTCATAT  (3) AGCTCATA  (4) TAGCTCAT  (5) TTAGCTCA这5个亚序列依次错开一个碱基而重叠7个碱基。亚序列中A、T、C、G4个碱基自由组合而形成的所有可能的序列共有65536种。假如只考虑完全互补的杂交,那么48个8nt亚序列探针中,仅有上述5个能同靶DNA杂交。可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂交荧光信号检测,检出所有能与靶DNA杂交的寡核苷酸,从而推出靶DNA中的所有8nt亚序列,最后由计算机对大量荧光信号的谱型(pattern)数据进行分析,重构靶DNA 的互补寡核苷酸序列。二、芯片类型一般基因芯片按其材质和功能,基本可分为以下几类:(一)元件型微阵列芯片1 .生物电子芯片2 .凝胶元件微阵列芯片3 .药物控释芯片(二) 通道型微阵列芯片1.毛细管电泳芯片2 .PCR扩增芯片3 .集成DNA分析芯片4 .毛细管电层析芯片(三)生物传感芯片1 .光学纤维阵列芯片2 .白光干涉谱传感芯片小鼠基因表达谱芯片(MGEC)附:目前国内基因芯片常见品种(上海博星公司)http://www.biomart.cn/upload/asset/2008/08/01/1217591301.gifhttp://www.biomart.cn/upload/asset/2008/08/01/1217591302.gifhttp://www.biomart.cn/upload/asset/2008/08/01/1217591303.gif

  • 【热分析仪】【金鉴出品】为什么有的芯片是正电极更热,有的芯片是负电极更热?

    【热分析仪】【金鉴出品】为什么有的芯片是正电极更热,有的芯片是负电极更热?

    [align=left]案例分析(一):有的芯片是正电极更热,有的芯片是负电极更热。[/align]以下为两个厂家22mil*35mil尺寸大小芯片光热分布的对比。对于该尺寸大功率正装芯片,电流在芯片中横向扩展的路径较长,导致电流聚集效应更加明显,因此必须具备合理的电极图形设计以及较好的欧姆接触特性,才能使注入电流在LED芯片的有源层中均匀分布。目前许多与大功率 LED 芯片制造相关的关键技术问题还有待解决,各芯片厂家对于问题的解决能力有高有低,使得不同家芯片的性能存在巨大差异![b]从以下两家同尺寸芯片的光热分布对比中可以看出:[/b][align=left][b][/b]1. 对比11*30mil芯片,该大尺寸大功率芯片电流密度均匀性相对较差,这也是目前大功率水平结构LED芯片发展的技术瓶颈之一。[/align][align=left]2. 金鉴通过大量测试发现,不同款的芯片,正负电极热度不同,有的芯片是正电极更热,有的芯片是负电极更热,如下图该两款芯片。电极过热会导致电极金属出现熔融,欧姆接触特性变差,降低芯片性能和可靠性。关于电极热度,大家关注的并不多,也许芯片厂也没做过那么细的研究。[/align][align=left]3. 本案例芯片A出现比较奇怪的现象:负电极更热,但发光不强,而正极区域更亮,但温度又不高。这表明此款芯片负电极附近量子效率低,电能在该处过多的转化为了热能,负电极欧姆接触可靠性弱。[/align][align=left]目前大家大多关注的是LED芯片的整体性能,如亮度、结温、电压,对于芯片光热分布、电流密度分布等方面关注过少,而失效往往是从局部薄弱处开始的,强烈建议LED芯片规格书里添加不同使用温度下的光热分布数据![b]做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。[/b][/align][align=center][img=,143,112]https://ng1.17img.cn/bbsfiles/images/2019/06/201906161539559916_956_3158333_3.jpg!w143x112.jpg[/img] [/align][b] 案例分析(二):不同家小尺寸芯片电流密度均匀性差异大[/b][align=left][b][/b]以下为不同厂家11mil*30mil尺寸大小芯片光热分布的对比。对于该小尺寸芯片,电流在芯片中横向扩展的路径较短,理论上电流聚集效应较轻微。但是,不同厂家的工艺技术存在差别,芯片电流密度均匀性仍存在较大差异,甚至出现不同厂家芯片高低温度相差数十度![b]从以下三家同尺寸芯片的光热分布对比中可以看出:[/b][/align][align=left][b][/b]1. 芯片A发光最强,发热量最小,光热分布最均匀,说明该芯片电流密度均匀性好,量子效率高,应用在高端LED中,该款芯片是首选。[/align][align=left]2. 芯片B和芯片C均为正极区域发光发热弱,负极区域发光发热强,推断该两款芯片为电流扩展不良导致的光热分布不均。该两款芯片量子效率低,存在局部高温现象,性能和可靠性都不如芯片A。[/align][align=left]3. 不同厂家芯片微观区域高低温度可以相差数十度![/align][align=left]通过对来料芯片进行光热分布检验,可以清楚判断芯片电流密度是否均匀,是否存在局部过热,亮度和温度孰高孰低,产品性能和可靠性孰优孰劣,从而对芯片进行全面的评估,帮助客户选择最合适的芯片提供有力的数据支撑。[/align][align=left][/align][align=center][img=,690,301]https://ng1.17img.cn/bbsfiles/images/2019/06/201906161540136121_4915_3158333_3.jpg!w690x301.jpg[/img][/align][align=left]LED灯具无非解决两个问题,一个是光,另外一个是热,你看那庞大的研发部门无非就是研究怎样提高LED的亮度和均匀度,并降低散热成本。因此了解LED芯片的光热分布情况对提高LED灯具质量性能至关重要![/align][align=left]然而由于缺乏相应的检测经验和设备,无论是芯片厂还是封装灯具厂,都未对芯片光热分布性能做相关的检测,导致市场上出现大量光热分布不均的芯片,而这些产品有相当大的亮度提高和发热量降低等性能提高的潜力。[b]那如何采购亮度又高,热量又低的LED芯片呢?金鉴给出以下几个建议:[/b][/align][align=left][b][/b]1. LED芯片光热分布一定要均匀,不存在微观区域过暗过热的现象。[/align][align=left]用金鉴显微光热分布系统观察到芯片微观区域过暗过热,很有可能此处电流拥挤,电能过多转化为热能而不是光能,量子效率低,表明此芯片的设计还存在改进的空间。[/align][align=left]2. 用金鉴显微光热分布系统比较在灯具使用温度下芯片的亮度值和热度值。LED光源的光热性能受温度的影响较大,温度升高,芯片亮度降低发热量增加,因此脱离实际工作温度所测试的结果准确性较差,甚至毫无意义。[/align][align=left]3. 建议芯片厂LED规格书里添加不同使用温度下的光热分布数据!从源头上管控质量,做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。[/align][align=left][b]为什么来料LED芯片一定要做金鉴光热分布测试?[/b][/align][align=left][b][/b]1. 目前市场上使用最多的水平结构芯片,欧姆接触电极在芯片的同一侧,电流不可避免的要横向传输,电流密度会随着电极距离的远近而发生变化,即正负电极靠近的地方,电流密度会较大,使得电流密度不均匀已成为水平结构LED固有的技术瓶颈。[/align][align=left]2. 许多与LED芯片制造相关的关键技术问题尚未完全解决,特别是大功率LED芯片的设计、制造工艺中材料的选择以及工艺参数等问题,使得电流密度均匀性存在较大的可优化空间,各家芯片(无论是水平结构还是垂直结构)在电流密度均匀性方面会存在较大的差异。[/align][align=left]3. 芯片内部产生电流聚集效应,会导致LED芯片电注入效率下降、发光不均匀、局部热量集中等不良现象,从而影响 LED芯片的性能及可靠性。[/align][align=left][b]通过金鉴光热分布测试,能清晰观察到芯片电流密度均匀性问题,更加全面的评估芯片质量,有效辨别各家芯片质量好坏。[/b][/align]

  • 生物芯片及应用简介

    生物芯片及应用简介一、简介 生物芯片(biochip)是指采用逛到原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(比如玻璃、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与标记的待检测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分心,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有原件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片、如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量的探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将及其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给要个性等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制