当前位置: 仪器信息网 > 行业主题 > >

旋转角度传感器

仪器信息网旋转角度传感器专题为您提供2024年最新旋转角度传感器价格报价、厂家品牌的相关信息, 包括旋转角度传感器参数、型号等,不管是国产,还是进口品牌的旋转角度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合旋转角度传感器相关的耗材配件、试剂标物,还有旋转角度传感器相关的最新资讯、资料,以及旋转角度传感器相关的解决方案。

旋转角度传感器相关的资讯

  • 应用案例 | 基于环形阵列永磁体的法拉第旋转光谱NO2传感器
    近日,来自中国科学院安徽光学精密机械研究所、中国科学院沈阳应用生态研究所、中国科学技术大学、法国蓝海岸大学法国滨海大学的联合研究团队发表了一种基于法拉第旋转光谱的、采用环形阵列永磁体NO2传感器。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Institute of Applied Ecology, Chinese Academy of Sciences, University of Science and Technology of China, and Université du Littoral Cô te d’Opale published a NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets.法拉第旋转光谱(FRS)通过检测沉浸在外部纵向磁场中的气体介质所引起的线偏振光偏振状态的变化,从而实现对顺磁分子的高选择性和高灵敏度检测。该光谱检测方法对水汽、CO2等抗磁性分子具有天然的免疫力,这使得其表现出高度的样品特异性。同时,由于采用了一对相互接近正交的偏振器极大抑制了激光噪声,因此法拉第旋转光谱具有非常高的检测灵敏度。Farraday Rotational Spectroscopy (FRS) achieves highly selective and sensitive detection of paramagnetic molecules by detecting the changes in polarization state of linearly polarized light induced by the gas medium immersed in an external longitudinal magnetic field. This spectroscopic detection method exhibits inherent immunity to diamagnetic molecules such as water vapor and CO2, which results in a high degree of sample specificity. Additionally, the implementation of a pair of closely spaced orthogonal polarizers effectively suppresses laser noise, thus providing FRS with a very high detection sensitivity.通常情况下,使用螺线管提供纵向磁场来产生磁光效应。然而,这种方法存在功耗过大和易受电磁干扰的缺点。研究团队提出了一种基于钕铁硼永磁体环形阵列和Herriott多次通过吸收池相结合的新型FRS方法。根据磁场的空间分布特性,使用14个相同的钕铁硼永磁体环以非等距形式组合,产生纵向磁场。在长度为380毫米的范围内,平均磁场强度为346高斯。宁波海尔欣光电科技有限公司为该项目提供了前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K),项目团队使用量子级联激光器以40毫瓦的光功率,针对最佳的441 ← 440 Q支氮氧化物跃迁(1613.25 cm–1,6.2 μm)。与Herriott多次通过吸收池耦合,积分时间为70秒,实现了0.4 ppb的最低检测限。实验结果也表明,低功耗FRS二氧化氮传感器有望发展成为一个稳健的现场可部署的环境监测系统。Usually, a solenoid coil is used to provide a longitudinal magnetic field to produce the magneto-optical effect. However, such a method has the disadvantages of excessive power consumption and susceptibility to electromagnetic interference. The research team proposed a novel FRS approach based on a combination of a neodymium iron boron permanent magnet ring arrayand a Herriott multipass absorption cell is proposed. A longitudinal magnetic field was generated by using 14 identical neodymium iron boron permanent magnet rings combined in a non-equidistant form according to their magnetic field’s spatial distribution characteristics. The average magnetic field strength within a length of 380 mm was 346 gauss. HealthyPhoton Co.,Ltd provided an integrated TE-cooled mercury cadmium telluride (MCT) infrared detector with front-end amplification(HPPD-B-08-10-150 K) for this project. A quantum cascade laser was used to target the optimum 441 ← 440 Q-branch nitrogen dioxide transition at 1613.25 cm–1 (6.2 μm) with an optical power of 40 mW. Coupling to a Herriott multipass absorption cell, a minimum detection limit of 0.4 ppb was achieved with an integration time of 70 s. The low-power FRS nitrogen dioxide sensor proposed in this work is expected to be developed into a robust field-deployable environment monitoring system.静态磁场法拉第旋转光谱传感装置Static magnetic field Faraday rotation spectral sensing device海尔欣前置放大制冷一体型碲镉汞红外探测器(HPPD-B-08-10-150 K)Integrated preamplifier and cryocooler type mercury cadmium telluride (MCT) infrared detector环形阵列永磁体及其纵向磁场分布特征Circular array permanent magnets and their longitudinal magnetic field distribution characteristics(a) 对于等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况。(b) 对于非等距离的NdFeB永磁环阵列,模拟得到了中央纵向磁场的分布情况(黑线),并进行了实测(红线)。(c) 示意图显示了Herriott腔和非等距离的NdFeB永磁环阵列的配置。(a) Simulated distribution of the central longitudinalmagnetic field for an equidistant NdFeB permanent magnet ring array (b) simulated (black line) and measured (red line) distributions of the central longitudinal magnetic field for a non-equidistant NdFeB permanent magnet ring array (c) schematic configuration of the Herriott cell and the non-equidistant NdFeB permanent magnet ring array.法拉第旋转光谱信号及其信噪比与检偏器偏转角度的变化关系The Relationship between FRS signal and its SNR and the Deflection Angle of the Polarizer(a) 法拉第旋转光谱信号幅度(b) SNR作为分析器角度α的函数(a) FRS signal amplitude and (b) SNR as a function of the analyzer angle α.Reference:Yuan Cao, Kun Liu, Ruifeng Wang, Xiaoming Gao, Ronghua Kang, Yunting Fang, Weidong Chen,NO2 Sensor Based on Faraday Rotation Spectroscopy Using Ring Array Permanent Magnets, Anal. Chem. 2023, 95, 2, 1680–1685https://doi.org/10.1021/acs.analchem.2c04821Copyright © 2023 American Chemical Society
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 科学岛团队在静态磁场法拉第旋转光谱研究方面取得新进展
    近日,中科研合肥研究院安光所高晓明研究员团队在静态磁场法拉第旋转光谱研究方面取得新进展,相关研究成果以《基于环形阵列永磁体的法拉第旋转光谱NO2传感器》为题发表在国际TOP期刊Analytical Chemistry上。法拉第旋转光谱(FRS)通过检测沉浸在外部纵向磁场中的气体介质所引起的线偏振光偏振状态的变化,从而实现对基态或上电子态具有磁偶极矩的顺磁性分子的高灵敏度检测。该光谱检测方法对水汽、CO2等抗磁性分子具有天然的免疫力,这使得其表现出高度的样品特异性。同时,由于采用了一对相互接近正交的偏振器极大抑制了激光噪声,法拉第旋转光谱具有非常高的检测灵敏度。目前法拉第旋转光谱信号主要由螺线管线圈产生的交流磁场调制样品吸收线的塞曼分裂而产生。针对正弦电磁场在激发磁光效应时所存在的高功耗、电磁干扰、产生大量焦耳热等缺陷,团队刘锟研究员,博士后曹渊等人提出了一种基于稀土永磁体的静态磁场法拉第旋转光谱传感装置。研究团队将十四个完全相同的环形钕铁硼(NdFeB)永磁体按照非等间距的形式同轴组合,从而在380 毫米长度范围内产生了一个平均磁场强度为346 高斯的外部纵向静态磁场。通过将赫里奥特(Herriott)池与非等间距永磁体阵列同轴配合,极大地增强了线偏振光与样品之间的相互作用。实验以NO2为检测对象,探测了1613.25 cm-1处NO2的ν3基带的Q支光谱特征,在23.7 米的光程范围实现了0.4 ppb的检测极限。本研究工作得到了中国科学院科研装备研制项目、国家自然科学基金、先进激光技术安徽省实验室开放基金、合肥研究院院长基金以及中国博士后面上基金等项目的资助。  静态磁场法拉第旋转光谱传感装置  环形阵列永磁体及其纵向磁场分布特性  法拉第旋转光谱信号及其信噪比与检偏器偏转角度的变化关系
  • 安光所在法拉第旋转光谱NOx双组分同步探测方面取得新进展
    近日,中科院合肥物质院安光所高晓明研究员团队在静磁场法拉第旋转光谱NOx双组分同步探测方面取得新进展,相关研究成果以《基于钕铁硼环磁阵列的双中红外波长法拉第旋转光谱NOx传感器》为题发表在国际TOP期刊Sensors and Actuators: B. Chemical上(SCI一区,IF:9.221)。   氮氧化物(NOx=NO+NO2)处于大气化学反应的中心,影响着臭氧、羟基和过氧自由基的浓度,是形成光化学烟雾、酸雨和灰霾污染的重要前体物。同时农田、湿地等生态系统释放的NOx在全球氮循环中发挥着重要的作用。   针对传统化学发光法在检测NOx时存在的测量速率慢,对NO和NO2缺乏选择性等问题,团队刘锟研究员,曹渊特任副研究员等人提出了一种基于钕铁硼环磁阵列的静磁场法拉第旋转光谱NOx双组分同步探测装置。通过设计单腔双光路的气体吸收池并将其与钕铁硼环磁阵列同轴耦合,从而促进两束不同波段的线偏振光与NOx分子在静磁场下的相互作用。   同时,针对钕铁硼环磁阵列左右两侧与内部轴向磁场方向相反,导致部分抵消内部轴向磁场所激发的磁光信号的问题,提出吸收池的长度应小于或等于永磁体阵列的长度。通过将波长调制光谱与静磁场相结合产生了检测到的激光偏振状态的调制,在23.7m光程、100s的积分时间下实现了0.58ppb NO2和0.95ppb NO检测灵敏度。这项工作为研究团队进一步基于涡度相关法开展生态系统土壤-植物-大气NOx界面通量的研究奠定了基础。   本研究工作得到了中国科学院科研装备研制项目(No. YJKYYQ20190054),国家自然科学基金(No.42205133),先进激光技术安徽省实验室开放基金(No. AHL2021KF06),合肥研究院院长基金(No.YZJJ2022QN10),以及中国博士后面上基金(No. 2022M713185)等项目的资助。单腔双光路气体池与钕铁硼环磁阵列空间磁场强度分布法拉第旋转光谱NOx双组分同步探测装置法拉第旋转光谱信号、噪声及信噪比与分析仪偏转角度的关系
  • 应用案例 | 基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器
    近日,来自中国科学院安徽光学精密机械研究所、先进激光技术安徽省实验室、中国科学技术大学、法国滨海大学大气物理化学实验室联合研究团队发表了《基于钕铁硼环形磁体阵列的双中红外波长法拉第旋转光谱NOx传感器》论文。Recently, the joint research team from Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Advanced Laser Technology Laboratory of Anhui Province, University of Science and Technology of China, Laboratoire de Physicochimie de l′ Atmosph`ere, Universit´ e du Littoral C&circ ote d′ Opale, published an academic papers Dual mid-infrared wavelength Faraday rotation spectroscopy NOx sensor based on NdFeB ring magnet array.氮氧化物(NOx,包括二氧化氮(NO2)和一氧化氮(NO))是对流层臭氧的重要前体,同时也影响羟基和过氧基自由基的浓度。大多数气态化合物在被氧化和从空气中去除或转化成其他化学物质时,都会直接或间接接触到NOx。在典型的羟基自由基水平下,NOx的寿命取决于季节和光化学反应速率,通常为几小时。根据IPCC第六次评估报告,NOx的排放导致净正向变暖,因为它既形成短期臭氧(变暖),又破坏环境甲烷(冷却)。此外,NOx还导致酸沉降以及化学烟雾和气溶胶的形成。NO和NO2在大气光化学反应中起着核心作用,针对它们的检测有助于理解这两种气体的来源和去向,以及研究陆地生态系统与大气之间的NOx交换通量。Nitrogen oxides (NOx, the sum of nitrogen dioxide (NO2) and nitric oxide (NO)) are important precursors of tropospheric ozone, and they also influence the concentration of hydroxyl and peroxyl radicals. Most ofthe compounds that are oxidized and removed from the air or converted to other chemical species are in direct or indirect contact with NOx. At typical hydroxyl radical levels, the life time of NOx depends on the season and the photochemical reaction rate, which is typically a few hours. According to the IPCC sixth assessment report, the emissions of NOx result in net-positive warming from the formation of short-term ozone (warming) and the destruction of ambient methane (cooling). Additionally, NOx contributes to acid deposition and the formation of chemical smog and aerosols. Since NO and NO2 play a central role in atmospheric photochemical reactions, their simultaneous detection helps to understand the sources and sinks of these two gases, in addition to studying the NOx exchange fluxes between terrestrial ecosystems and the atmosphere.化学发光检测(NO + O3 → NO2 + O2 + hν)是测量NOx的传统方法。在通过化学发光反应(Mo + 3NO2 → MoO3 + 3NO)测量之前,NO2首先需要在高温(~325°C)下转化为NO。虽然这种方法被广泛使用,但其他氧化氮化合物,如过乙酰亚硝酸酯(PAN)和硝酸(HNO3),可能会在测量NOx浓度时引起交叉干扰。同时,这种方法不能区分NO和NO2。红外吸收法也可用于测量NO和NO2。在这种方法中,通常需要通过转化器将NO2还原为NO。由于NO和NO2是顺磁分子,法拉第旋转光谱(FRS)可以用作实现其高度敏感和选择性检测的潜在方法。FRS通过检测气态介质在纵向磁场中引起的光偏振状态的变化,实现对物种浓度的高灵敏度检测。该方法通过测量光学色散实现气体浓度的检测,因此其动态测量范围比基于比尔-兰伯定律的吸收光谱(动态范围上限≤10%)更大。FRS的另一个重要优势是它对于抗磁性分子(如水和二氧化碳)具有较强的抗干扰能力,从而使其具有高样品特异性。Chemiluminescence detection (NO+O3→NO2+O2+hν) is the conventional method for measuring NOx. NO2 first needs to be converted to NO at high temperature (~325 ◦ C) before it can be measured by chemiluminescence reaction (Mo+3NO2→MoO3+3NO). Although this method is more widely used, other oxidized nitrogen compounds, such as peroxyacetyl nitrate (PAN) and nitric acid (HNO3), can cause cross-interference in the measurement of NOx concentrations. Simultaneously, this method is non-selective in discriminating between NO and NO2. The infrared absorption method can also be used for NO and NO2 measurements. In this method, NO2 usually needs to be reduced to NO by the converter. As NO and NO2 are paramagnetic molecules, Faraday rotation spectroscopy (FRS) can be used as a potential method to achieve their highly sensitive and selective detection. FRS enables highly sensitive detection of species concentrations by detecting changes in the polarization state of light induced by a gaseous medium immersed in a longitudinal magnetic field. This method realizes the detection of gas concentration by measuring optical dispersion, so it has a higher dynamic measurement range than absorption spectroscopy (dynamic range upper limit ≤10%) based on Beer-Lambert law. Another significant advantage of FRS is that it is reasonably immune to diamagnetic species (e.g., water and carbon dioxide), which allows it to exhibit high sample specificity. 大多数这些报道的FRS传感器使用螺线管提供外部纵向磁场,从而导致能耗高和产生过多焦耳热。同时产生目标磁场所需的高电流交流电路会产生不受控制的电磁干扰(EMI),通常会降低FRS传感器的长期稳定性。此外,当前报道的FRS传感器只能在吸收池中进行单组分测量,不能满足复杂环境中同时进行多组分测量的需求。Most of these reported FRS sensors use solenoid coils to provide an external longitudinal magnetic field, which makes them suffer from high power consumption and excessive Joule heat generation. The high-current alternating current circuit required to generate the target magnetic field produces uncontrolled electromagnetic interference (EMI), which usually deteriorates the long-term stability of the FRS sensors. In addition, the currently reported FRS sensors are only capable of single-component measurements in the absorption cell and cannot meet the demand for simultaneous multi-component measurements in complex environments.在本研究中,提出了一种新型的低能耗FRS传感器,基于钕铁硼(NdFeB)环形磁体阵列,实现在单个吸收池中同时检测NO和NO2。分析了同轴双波长赫里奥特池(DWHC)的环形磁体阵列的磁场分布特性。使用两台室温连续波中红外量子级联激光器(QCL),波长分别为5.33 µ m(1875.81 cm&minus 1)和6.2 µ m(1613.25 cm&minus 1),同时探测DWHC内的磁光效应。通过对激光波长进行高频调制,有效抑制了1/f噪声。优化了双波长FRS NOx传感器的性能,包括调制幅度、调制频率、样品气压和分析器偏置角。本研究提出的FRS传感器为现场可部署的微量气体检测设备提供了理想解决方案。宁波海尔欣光电科技有限公司为此研究提供了HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器,用以分别检测2个激光束。In the present work, a novel low-power FRS sensor based on a neodymium-iron-boron (NdFeB) ring magnet array was proposed to achieve simultaneous detection of NO and NO2 in a single absorption cell. The magnetic field distribution characteristics of a ring magnet array coaxial to a dual-wavelength Herriott cell (DWHC) were analyzed. Two room-temperature continuous wave mid-infrared quantum cascade lasers (QCL) with wavelengths of 5.33 µ m (1875.81 cm&minus 1) and 6.2 µ m (1613.25 cm&minus 1), respectively, were used simultaneously to probe magneto-optical effects within the DWHC. The 1/f noise was effectively suppressed by high-frequency modulation of the laser wavelength. The performance of the dual-wavelength FRS NOx sensor was optimized with respect to modulation amplitude, modulation frequency, sample gas pressure, and analyzer offset angle. The FRS sensor proposed in this work provides a preferable solution for field deployable trace gas detection equipment. The laser detected by two TEC-cooled mid-infrared thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K).(a) Schematic diagram of the dual mid-infrared wavelength FRS NOx sensor based on a NdFeB ring magnet array (b) Optical layout of the FRS NOx sensor.thermoelectrically cooled mercury-cadmium- telluride (MCT) photodetectors (Healthy Photon, model HPPD-B- 10–150 K),结论本研究开发了一种基于NdFeB环形磁铁阵列的双中红外波长FRS传感器,用于同时检测NO2和NO。在光学路径长度为23.7米,积分时间为100秒的条件下,NO2和NO的检测限分别为0.58 ppb和0.95 ppb。高频激光波长调制与外部静态磁场相结合,最大程度地减小了低频噪声对FRS信号的影响。基于有限元方法分析了使用的永磁体阵列的磁场分布特性,帮助确定与其耦合的吸收池长度。采用双波长赫里奥特池放大两种不同偏振光波长与氮氧化物分子之间的相互作用,从而实现了在单个吸收池内对两种顺磁分子的高灵敏度检测。本文提出的FRS NOx传感器在大气环境监测或生态系统NOx通量观测等领域,具有进一步发展成为便携式、可在实地使用的仪器的巨大潜力。Conclusion In this work, a dual mid-infrared wavelength FRS sensor based on a NdFeB ring magnet array was developed for the simultaneous detection of NO2 and NO. The detection limits for NO2 and NOwere 0.58 ppb and 0.95 ppb, respectively, at an optical path length of 23.7 m and an integration time of 100 s. High frequency laser wavelength modulation was combined with an external static magnetic field to minimize the effect of low frequency noise on the FRS signal. The magnetic field distribution characteristics of the used permanent magnet array were analyzed based on the finite element method, which helped to determine the length of the absorption cell coupled to it. A dual-wavelength Herriott cell was used to amplify the interaction between two different wavelengths of linearly polarized light and nitrogen oxide molecules, thus achieving highly sensitive detection of two paramagnetic molecules within a single absorption cell. The FRS NOx sensor presented in this work shows great potential for further development into a portable, field-deployable instrument with applications in atmospheric environmental monitoring or ecosystem NOx flux observation. (a) Schematic diagram of a dual-wavelength Herriott cell (DWHC) with a NdFeB ring magnet array (b) Characteristics of the magnetic inductance line distribution around a NdFeB ring magnet array (c) Ray tracing results in a DWHC (d) Spot distribution on a concave mirror.Optimization of laser modulation frequency for the dual mid-infrared wavelength FRS NOx sensor.Optimization of laser modulation amplitude for the dual mid-infrared wavelength FRS NOx sensor.(a), (b) Measured FRS NOx signal as a function of analyzer angle (c), (d) Calculated FRS NOx noise as a function of analyzer angle (e), (f) Calculated SNR as a function of analyzer angle.
  • 传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕
    传感器行业盛事——2022深圳国际传感器展暨高峰论坛6月于深圳国际会展中心启幕传感器行业盛事深圳国际传感器技术与应用展览会暨高峰论坛(SENSOR EXPO)确定于2022年8月23-25日在全球最大会展中心深圳国际会展中心(宝安新馆)举行展会概况随着5G技术以及人工智能、物联网及其他智慧领域等高新技术产业的迅速崛起和高速发展,人类社会进入了一个万物互联的新时代,传感器作为感知与传导信息的核心组件,也成为了当下炙手可热的焦点。为推动新一代传感器技术在应用领域的创新实践和产业上下游之间的贸易交流,由广东智展展览有限公司牵头,联合国内外多家行业协会、机构、高校及媒体,于2022年8月23-25日在深圳国际会展中心举办2022深圳国际传感器技术与应用展览会暨高峰论坛(以下简称:SENSOR EXPO 2022)。展会重点展示各类传感器产品、原材料及元器件、设计与制造设备、传感系统集成模块、仪器仪表、终端应用等,进行产业链的融合展出,以“专业展览+主题论坛”的形式,为行业呈现一场精彩的传感器盛宴。2021深圳国际传感器展览会已于2021年9月27-29日在深圳会展中心成功举办,组委会广东智展展览有限公司联合深圳市传感器与智能化仪器仪表行业协会打造,展出面积达15,000平方米,汇集众多国内外知名企业,展会吸引了来自比利时、日本、韩国、美国,俄罗斯、德国等多个国家和台湾、香港等地区的专业观众累计15,000余人次参观采购, 60多个采购团。高起点立足大湾区,Sensor Expo2022将成为推动行业交流与技术应用的前沿阵地2020年,大湾区国家级高新技术企业总数突破两万家,位居全国之首。作为大湾区创新驱动的引擎,深圳前瞻布局5G、人工智能、集成电路、智能制造、无人机、生物医药等未来科技领域,并取得卓越成果,直接带动了传感器技术的研究与发展,并孕育了广阔的市场。SENSOR EXPO 2022聚焦传感器设计、制造与应用所涉及的材料、装备与技术,突出产品与技术应用,将成为推动中国传感器行业进行产品与技术展示、深入应用市场的前沿阵地。高规格SENSOR EXPO 2022将在全球最大的展馆举行SENSOR EXPO 2022选择在全球最大的会展中心-深圳国际会展中心(宝安新馆)举行,良好的硬件设施及服务,将为展会的品质提供更好的保证。作为全球超大型的会展中心,深圳国际会展中心地处粤港澳大湾区湾顶,地理位置优越,硬件设施先进,全馆5G覆盖,交通便利、配套完善,集海陆空铁轨五大交通优势。通往会展中心的地铁已正式开通,地铁口分别位于南、北登录大厅,为参展参观的人士带来了极大的便利。展馆同期将有汽车、新能源、智慧出行等多场下游展会举行,共享40多万平方米超大展会带来的蓬勃商机。高水平专业组展机构精心打造,凸显SENSOR EXPO2022专业品质展会主办方——智展展览为国际展览业协会UFI成员单位,荣膺2015年“中国十佳品牌组展商”、2018年“中国展览产业百强展览主办机构”殊荣,在工业类及科技类展会的品质管理和长远培育上经验丰富。主办方将整合传感器行业权威机构、科研院所、活跃媒体、重点企业,共同塑造SENSOR EXPO2022的专业品质。此外,主办方将充分深耕物联网、消费电子、智能汽车、自动化、仪器仪表、国防电子、航空航天、交通运输、农业水利、环境监测等多个应用领域,为供需双方挖掘潜在客户,创造商业机会。高质量SENSOR EXPO 2022聚焦传感器制造与应用,五大专题融合展出SENSOR EXPO 2022展会规划面积达20,000平方米,共分为五大专题展区。通过上下游产业链及关联模块的融合展出,能够全方位展示传感器行业各细分领域的技术与产品,让SENSOR EXPO2022真正成为传感器行业人士必须参加的交流盛宴。各类传感器展区压力传感器、光敏传感器、声音传感器、图像传感器、视觉传感器、温度传感器、称重传感器、重力传感器、生物传感器、无线传感器、变频功率传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、电导传感器、激光传感器、霍尔传感器、加速度传感器、无线温度传感器、位移传感器;超声波测距传感器、雷达传感器、液位传感 器、真空度传感器、电容式物位传感器、锑电极酸度传感器、酸、碱、盐浓度传感器等;陶瓷传感器、薄膜传感器、厚膜传感器、集成传感器等;MEMS传感器、智能传感器等;传感器设计与制造设备、原材料及元器件展区封装与测试设备:传感器集成设备、各类封装设备、机械测试设备、电气测试设备、热力学测试设备、实验室设备等;原材料:半导体材料、金属材料、陶瓷材料、有机材料及其他材料等;元器件及配件:敏感元件、转换元件、连接器、陶瓷部件、 保护膜、光学元件、特种玻璃、变换电路和辅助电源;传感器ASIC、传感器IC接口、混合电路、LCD、密封壳体、 编码器、PCB电路板、精制螺栓、拉头材质、声波部件、温度计保护管、特种胶等配件等;传感器设计:传感器设计企业、科研院所、实验室等;传感器芯片、嵌入式系统及相关集成模块展区传感系统供应商和集成商、嵌入式软件和硬件企业、传感器芯片制造商、各类算法、通讯模块及云计算服务商、传感器AI技术服务商等;仪表仪器展区各类标准计量(量值传递)仪器、科学实验仪器、教学仪器、航空航天仪表、汽车仪表、矿用仪表、工业仪表、测试测量、变送器、流量计等;终端应用展区智慧城市、智慧医疗、物联网、机器人、消费电子(可穿戴、移动智能终端等)、智慧环境、智慧能源、智慧农业、汽车电子、智能家居、智能制造、人工智能、大数据、云计算、航空航天、工业自动化、电力等。高体验同期举办多场行业峰会及交流活动更好的商业体验,呈现更好的展出效果由中国电子元件行业协会敏感元器件与传感器分会、中国仪器仪表学会传感器分会指导,广东智展展览有限公司联合湖南省传感器产业促进会、广州市半导体协会、深圳市半导体行业协会、深圳市物联网智能技术应用协会、珠海市物联网行业协会、浙江省半导体行业协会、深圳市集成电路产业协会、《仪表技术与传感器》等国内行业权威组织、专家学者、重点企业,在展会同期重点打造主题论坛——2022深圳国际传感器技术与应用高峰论坛,围绕传感器研发领域“卡脖子”技术、未来发展趋势、应用场景等进行技术分享和观点交流。同时举办MEMS及智能传感器技术研讨会,境外采购商洽谈会,传感器新产品、新技术推广会,工程师沙龙活动,一对一供需对接会等30多场多层次的商业活动,进一步提升观展体验和参展效果。同时,SENSOR EXPO同期还有第20届深圳国际小电机及电机工业、磁性材料展览会,2022深圳国际线圈工业、电子变压器及绕线设备展览会,2022深圳国际粉末冶金、硬质合金及先进陶瓷展览会等相关工业类展会举行。参展费用标准展位光地(36㎡起租)外资企业RMB14800/12㎡RMB1200/㎡USD2600/12㎡注:双开口展位在原展位费基础上加收10%费用。展位配置说明每个标准展位提供如下基本设施:三面围板(转角位2面或1面)、一桌两椅、地毯满铺、两支射灯、220V电源插座,中英文公司楣板制作。(注:租用光地展位不含以上设施。)组委会联络处电话:020-29193588,020-29193589手机:18520254916(微信同号)传真:020-29193591E- mail:ex36035@126.com 官网网址:http://www.sensor-expo.com.cn/ 微信公众号:sensorexpoandsummit
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 中测院力学所完成对1MN力值基准装置大转角油路压力的测量工作
    国家计量基准战略备份项目是我院“十四五”规划重点项目,目前已进入筹备实施阶段,我院力学研究所力值传感器实验室负责实施中小力值基准相关的技改项目。   中国测试技术研究院(以下简称中测院)建立保存的1MN力值基准装置作为统一国家1MN及以下力值量的主要基准装置,其力值不确定度至今保持着国际领先的地位。5月9日,力值传感器实验室项目主要成员完成了对1MN力值基准装置大转角油路压力的测量,压力值的测量结果为子项目“大转角机械推进系统”伺服电机的选型奠定了基础。中测院是四川省人民政府直属公益二类科研事业单位,是集法定计量技术机构、第三方检测与校准机构、测试技术与标准研究机构三位一体的国家级综合性研究院。除开展计量科学及应用技术研究外,中测院面向全社会企事业单位开展计量检定校准、产品检验检测、工程测试与评价等,为企业保障和提升产品质量以及技术创新提供技术服务;受政府委托承担计量检定、计量比对、产品抽检、型式评价等法制计量工作,为政府履行监督职能,依法科学行政提供技术支撑。
  • 【2023世界传感器大会】中欧传感器产业合作交流会在郑州顺利召开
    11月6日,2023世界传感器大会——中欧传感器产业合作交流会在郑州顺利召开。此论坛由河南省人民政府、中国科学技术协会主办,中国仪器仪表学会、郑州市人民政府、德中友好协会联合会承办,来自高校、科研院所、企业等代表150余人参会。论坛由清华大学苏州汽车研究院(相城)协同控制所副所长刘玉敏主持。中国仪器仪表学会副秘书长张莉、郑州市人民政府副秘书长王凤霞为论坛致开幕辞。中国仪器仪表学会副秘书长张莉致辞郑州市人民政府副秘书长王凤霞致辞清华大学苏州汽车研究院(相城)协同控制所副所长刘玉敏主持论坛欧洲科学院院士亨利H拉达姆森以线上报告的形式介绍了红外器件的发展现状和中国在该领域的新机遇,他展示的采用了短波红外(SWIR)技术的照片,相比传统光学照片和热成像照片有更多成像细节和成本上的优势。“这项突破性技术可以广泛应用在汽车制造、肿瘤检测等领域。”亨利院士兴奋地表示,相关的设备和芯片都已在中国生产,这项技术拥有着光明的未来。葡萄牙使馆商务处中国区投资主管玛丽安娜威尔逊介绍了葡萄牙半导体产业发展现状和合作机遇,分享了葡萄牙在半导体、传感器、信息技术、AMKOR技术等领域的发展,在传感器相关领域的人才培养,以及葡萄牙的营商环境等。“大多数人工智能的动作以及应用场景都是通过传感器来进行表达和传达的。”剑桥大学制造研究院工业顾问刘铠文博士介绍了AI人工智能领域前沿应用—通过AI多模态测评技术革新教育评价体系。他举例,“剑桥大学老师每年要花600个小时去给学生做评价,我们研发的打分评价系统,可以直接帮老师减少80%的繁重工作量。”着重分享了AI多模态测评技术在教育评价体系中的优势与应用。IMAP大中华区管理合伙人王俊雄介绍了欧洲传感器行业的并购市场情况。“欧洲市场现在由于技术创新,汽车、医疗、航空航天、消费电子等领域都处在爆发式的增长期。”王俊雄认为,国内很多厂商的资质和能力、产品、质量,已经完全够得上抢占海外市场先机。中国以色列商务发展经理刘思嘉介绍了以色列创新传感器产业、商业环境与中国合作机遇。Newsight(中国)董事长李利凯做《投资传感器产业—打造中国世界级行业领袖》主题报告,分享了投资传感器产业的心得经验。海德堡印刷电子有限公司及创新实验室总经理迈克尔克罗格尔介绍了柔性传感器带来无限机遇,分析了不同场景的柔性传感器使用方案。海德堡创新实验室业务发展主管佛罗里安乌尔里希通过汽车安全带提醒技术的实际案例,分享了柔性印刷传感器在汽车领域的应用。本次论坛围绕中欧传感器产业,通过不同的角度进行了精彩的分享,来自俄罗斯联邦驻华商务代表处、德国驻华大使馆经济处、上海阿根廷总商会的专家、企业家们也参与其中,共同研讨中欧智能传感器产业的新发展、新理念。论坛的成功举办促进了中欧文化和科技的交流,让参会代表对传感器产业有了更多新的认识与理解。
  • 必创科技手把手教您配置智能传感器
    传感器安装配置难倒众多用户,真的那么难吗?8分钟即可轻松玩转智能传感器,快来挑战吧!无需排队咨询安装配置跟着视频即可操作完成节约时间 提升效率 保障产能必创科技为您准备了无线温振传感器VA530安装操作视频,分别对开关机、电池更换、现场安装、小程序及云平台进行演示,您可以点击以下视频深入了解怎么样?是不是超级简单大脑和眼睛学会的同时……手是不是也完全没有问题啦 恭喜你,8分钟成功玩转智能传感器必创科技多年深耕感知技术领域,研发多款运行稳定、指标优异并符合旋转机械设备智能化升级应用场景的无线温振系列产品,长期为客户提供专业的设备健康状态监测技术。
  • 快讯!MOTUS波浪传感器成功整合到大型浮标平台
    背景在恶劣环境中的设施将大大增加对气象海洋学参数信息的需求。处于这些环境中的操作员们希望能减少安装的传感器平台数量以提升效率。欧洲大型传感器平台的一家主要制造商选择与我们合作,结合利用 Aanderaa MOTUS 波浪传感器与 Aanderaa 多普勒流速剖面仪,以监控海浪和洋流。通过联合激光雷达与其他传感器,我们致力于为最终用户提供完整的解决方案以实现高质量的气象海洋学监控。MOTUS 波浪传感器MOTUS 波向传感器的产品经理 Stig B. Øen 为我们介绍了更多有关 MOTUS 传感器的最新动态:针对来自 MOTUS 传感器用户和 MOTUS 浮标用户的反馈,我们始终用心倾听并积极响应,为此我们专门对传感器进行了升级:添加了一些基于竖向时间序列位移的波浪参数,并新增了 NMEA AIS 模式。MOTUS 传感器中的新增参数包括:平均波周期 T1/3;有效波高 H1/10;平均波周期 T1/10波;高 H1/1;平均波周期 T1/1;参考东向和北向水平时间序列,可配置为 2Hz 或 4Hz 采样。有关 MOTUS 波浪传感器的参数,请查阅数据表。MOTUS 适用于不同尺寸的浮标为了测量海浪特征,在理想情况下,传感器平台应完美地跟随水面运动。如果未应用补偿,则 MOTUS 传感器会根据安装位置的竖向平台位移计算波高。波向则基于水平浮标位移的方向。为了在众多不同类型的浮标中脱颖而出,MOTUS 传感器提供以下补偿功能。偏心补偿:在不同形状的大型浮标的旋转原点处安装传感器通常难度较大。通过向传感器提供其安装位置相对于旋转原点的信息并激活传感器偏心补偿功能,可以补偿误差。浮标响应/传递函数:如果浮标无法满足在所有频率下均理想地跟随水面,则可以通过激活和修改浮标传递函数来补偿限制。Anderaa 开发了一款简单工具,以帮助您了解不同尺寸形状浮标的期望阻尼因子。磁性:如果传感器受到电磁干扰,则可以将外部罗盘直接连接到 MOTUS 传感器。MOTUS 适用于海上风力/海上设施结合使用 Aanderaa 提供的海浪和洋流传感器与其他传感器(例如环境传感器和激光雷达),可为您提供完整的预研究平台和全面投产的海上风电场。MOTUS 传感器可在其内部完成对波浪参数的所有处理,通过实时/近实时输出基于频率和时间的参数,提供风浪和涌浪的全波频谱。对于海上风电场的运营来说,监控该区域的海浪将有助于确定是否将船只或技术人员派往现场、缩短停运时间,以及对健康、安全和环境保持高度关注。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • 中科院光电所在旋转双棱镜光束控制技术研究中取得进展
    p   旋转双棱镜(Risley棱镜)可实现光束的大角度、精确偏转控制,具有结构紧凑、响应快、环境适应性好的特点,其难点在于同时达到高精度和大的动态范围。国际上很多研究机构对其进行研究。NASA在下一代卫星激光测距系统(Next Generation Satellite Laser Ranging,NGSLR)中,利用旋转双棱镜作为超前瞄准装置,实现了高精度的超前瞄准角,在几十角秒的偏转范围内实现1.5″的指向精度 鲍尔航天技术公司在无人机等小型航空器上的红外侦查与瞄准设备中采用旋转双棱镜,实现了偏转角度70° 、精度优于200″、偏转角度动态范围34dB。 /p p   中国科学院光电技术研究所光束控制重点实验室任戈、陈科研究团队采用强泛化能力物理模型辨识技术和矢量光学迭代优化技术,从理论上解决了旋转双棱镜光束偏转的强耦合、非线性和多解问题,并解决了工程应用中加工、安装和测量误差的影响,在旋转双棱镜的偏转精度和动态范围等方面得到突破,实现了大角度、高精度的光束偏转技术指标:3° 偏转角范围内光束偏转精度优于1″,动态范围大于43dB,优于目前公开文献中的最高水平。 /p p   相关研究成果发表在Applied Optics上,并已申请/授权国家发明专利多项,该技术在空间激光通信、目标跟踪等方面具有广泛的应用前景。研究工作获得了中科院重点实验室基金、西部之光等的支持。 /p p style=" text-align: center " img width=" 300" height=" 167" title=" 001.png" style=" width: 300px height: 167px " src=" http://img1.17img.cn/17img/images/201712/insimg/60cf6bda-c2a2-41ac-98ad-cbe811ef1cd6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 示意图 /strong /p p & nbsp /p
  • 一篇文章看懂:什么是SENIS集成3轴磁传感器?
    一篇文章看懂:什么是SENIS集成3轴磁传感器?为了测量电磁铁和永 jiu磁铁产生的从 10-6 到 102 T 的非均匀磁通密度,通常使用带霍尔探头的特斯拉计。为了同时测量磁通密度的三个正交分量,需要使用三轴霍尔探头。根据目前传统的的技术水平,三轴霍尔探头由三个霍尔板组成,这三个霍尔板分别位于一个小立方体的三个相互正交的面上。单个霍尔板的尺寸及其定位公差严重限制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。 为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“集成3轴磁传感器",使之成为可能。这就是“集成的三轴磁传感器"。 该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1. 传统的霍尔片3轴探头(左)和SENIS集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS集成3轴磁传感器磁化位置3个位置一个位置(单点)磁感应位置的错位量取决于传感器位置(约0.5mm~10mm)无错位传感器的相对角度误差通常不标注(过大)±0.1°以内温度传感器无安装在传感器芯片中探头形状约1~2种8种类型+定制自由一、 专li技术的SENIS集成3轴磁传感器二、 SENIS集成三轴磁传感器的功能除了磁传感器外,集成的3轴磁传感器还集成了偏置电路和放大器,以提高频率特性和抗噪性,甚至在宽度仅为 0.64 m 的单个芯片上集成了温度传感器,用于因温度变化而进行灵敏度校正。1.敏感区域仅为0.15mm × 0.1mm × 0.15mm2.3个方向相对角度误差在±0.1以内3.频率响应:高达25Khz(-3db)4.温度特性±100ppm/°C三、 SENIS集成三轴磁传感器放大图四.SENIS集成三轴磁传感器详细信息图2. 磁性传感器内部有5个感磁区域。通过取BZ1和BZ2的平均值,虚拟地求出By传感器位置的Bz磁场。同样地,通过取Bx1和Bx2平均值来求出By传感器位置的Bx磁场,可在同一点上收集Bx、By、Bz。五.搭配SENIS集成三轴磁传感器的霍尔探头类型:六.搭配SENIS集成三轴磁传感器的高斯计/特斯拉计汇总类型: SENIS数字特斯拉计/高斯计基于SENIS® 的模拟磁场传感器电子设备,其顶部添加了数字模块,具有显示器,通信端口,数字数据校正等。SENTIS提供不同类型的特斯拉计,具有不同的磁性分辨率,精度,f带宽,噪声水平和功能和处理选项(手持式,台式,机架式)3MH3特斯拉计,适用于工业和实验室应用,具有良好的精度,分辨率和f带宽3MH6台式特斯拉计,用于实验室应用,具有非常高的分辨率和精度以及良好的f带宽3MTS 手持式特斯拉计,探头支架坚固,精度高1 轴、2 轴或 3 轴 Nanoteslameter 3NTA1,用于极低磁场SENIS® 已通过ISO 9001和ISO 22301(业务连续性管理)认证。我们的校准实验室已通过ISO17025:2017认证。上海昊量光电作为SENIS公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。   基本工作原理及应用领域   光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。   光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:   1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。   2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。   在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。   光纤传感器助力物联网发展市场容量将近万亿   自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。   我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。   传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。   光纤传感技术在物联网中的应用   通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。   目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 科学家研制出黑磷光纤传感器
    p   近日,中国科学院深圳先进技术研究院研究员吕建成、喻学锋与英国班戈大学教授陈险峰等合作,成功研制出首个基于黑磷的光纤化学传感器,实现对重金属离子的超灵敏检测。 br/ /p p   倾斜光纤光栅是一种新型的光纤器件,大角度倾斜光栅结构能够将纤芯光学基模前向耦合到光纤包层,在特定的波长形成一系列离散的谐振峰,光的耦合将随着外界媒质折射率等的变化而变化。因此,倾斜光纤光栅是非常适合作为传感应用的光子器件。黑磷是近年来广受关注的一种具有直接带隙二维半导体材料,具有独特的二维平面结构、超高的比表面积、众多的活性位点,以及从可见到红外广阔的光谱响应范围,在光学检测方面展现出巨大的应用前景。 br/   该研究中,研究团队首次将黑磷和倾斜光纤光栅相结合,揭示了黑磷纳米层独特的光学调制作用,借助于倾斜光栅这种独特的光学结构,构建成新型的超灵敏化学传感器。本研究发展了一种原位层叠的修饰技术,将黑磷纳米片高效地附着在光纤器件表面,不同厚度的黑磷纳米层展现出对光信号独特的调制性。利用这一特性,该黑磷光纤传感器能够在亚ppb浓度水平检测到重金属铅离子,具有超高的灵敏度、超低的检测限,以及广阔的浓度检测范围。黑磷新型光纤传感器的成功研发,将为化学和生物传感提供一个优越的光学检测平台,从而推动黑磷化学生物传感器的应用研究进程。 br/   相关研究成果发表于Sensors and Actuators B: Chemical。该研究得到了国家自然科学基金、欧盟“第七框架计划”等的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/4ba34206-8377-4380-a6fe-692cf085a316.jpg" title=" 1.jpg" style=" width: 600px height: 326px " width=" 600" vspace=" 0" hspace=" 0" height=" 326" border=" 0" / /p p strong 图.a):黑磷倾斜光纤光栅器件及其光学调制示意图,b):重金属离子检测的实验步骤,c):不同重金属离子浓度下TM模式共振的光谱图,d):不同重金属离子浓度下光谱的共振强度图。 /strong /p
  • “三个百万”订单,中国电科产业基础研究院MEMS传感器加速应用“上车”
    近日,中国电科产业基础研究院美泰科技微机电系统(MEMS)传感器市场拓展再获突破,自主研发的MEMS惯性器件与系统累计实现百万级装车,并获得多家重点新能源车企50多款新能源车型定点,MEMS压力传感器与芯片获得两百万只订单,安全气囊加速度传感器完成量产定型,正在国内主流车厂开展应用验证。万物互联时代,只要需要感知的领域,都需要传感器。MEMS惯性传感器应用到汽车上,就化身成汽车“五官”,实时检测和测量加速度、倾斜、旋转和多自由度运动,精确完成“全天候”定位定向。以MEMS惯性传感器为核心打造的惯性导航系统,能在GPS、北斗、5G等信号不佳时“挺身而出”,利用感知的道路信息和对汽车航迹的推演,提供即时定位和导航功能。作为国内MEMS惯性器件的先行者,美泰科技抢抓MEMS惯性器件在汽车领域的发展机遇,不断加大研发投入、持续提升产能、加强供应链建设,实现MEMS惯性器件与系统在自动驾驶市场的全覆盖,加快MEMS传感器产业化的全速发展,成功入围第四批国家级“专精特新”小巨人企业,并连续多年荣获中国半导体MEMS十强企业。面向未来,美泰科技将聚焦核心竞争力,借助感知力量,打造极致产品,持续提高自动化、智能化和可靠性水平,不断推动中国MEMS技术高质量发展。
  • 传感器国家工程研究中心常务副主任刘沁:工业基础传感器需破解核心器件产业化难题
    为适应国家工业发展需要,特别是能源、化工、交通、航空航天等特殊领域针对传感器的需求,从上世纪50年代起,国家先后组织一批国家级研究机构、专业生产企业及部分重点高校共同针对工业传感器进行攻关和生产。在经历了几代人、近半个多世纪的努力后,至今为止基本建成了具有中国特色的覆盖全工业领域的工业传感器体系。很多传感器从无到有,相当程度满足了国家工业发展的需求。传感器行业进入快速发展阶段“十二五”以来,密集的传感器相关政策推动了我国传感器行业飞跃发展。“十三五”期间,政府支持力度进一步加大,2017年工信部出台《智能传感器产业三年(2017—2019)行动指南》及《促进新一代人工智能产业发展三年(2018——2020)行动计划》,从而直接催生了重大科学仪器及设备开发、制造基础技术与关键部件研究两大专项。2020年8月国务院发布《新时期促进集成电路产业和软件产业高质量发展的若干政策》,针对我国集成电路产业发展从财税政策、投融资政策、研究开发政策、进出口政策、人才政策、知识产权政策、市场应用政策、国际合作政策等全方位多方面提出部署,直接将当前新时期新阶段的集成电路产业和软件产业发展推进到一个全新的发展阶段,为其他相关基础产业发展起到了引领示范作用。在一系列政策持续出台的背景下,我国传感器行业进入快速发展阶段,形成了基本全覆盖的产业布局,工业需求传感器从自主到引进全产业链覆盖。中低档产品在满足自给自足的前提下实现出口,设计、研发、应用一条龙配套建设和水平普遍提升。在快速发展的中国工业市场,针对传感器的需求已经从原始的配套变成刚性需求,巨大的中国制造转型升级带来的市场吸引力不仅对国内企业,对国外工业传感器龙头企业也是巨大的吸引,美国艾默生、德国E+H、日本横河等工业传感器巨头在中国市场的份额已经成为其公司业务重要组成部分。在政府支持和行业需求的双层推动下,我国工业传感器已形成由材料、器件、系统、网络等全方面构成的产业链模式,产业链规模、质量也不断得到完善和提高。据统计,国内具有一定规模的应用于工业制造业的各类传感器生产厂家约2000余家,产品基本覆盖工业制造各领域。生产的各类工业用传感器品种、规格约1.6万种。已经显现出有区域特点的传感器产业集群,重点集中在长三角,并逐渐形成以北京、上海、南京、深圳、沈阳和西安等中心城市为辐射的区域布局。这些集群各有侧重优势,形成了我国较为完备的传感器产业链。诸多瓶颈亟待突破尽管取得不俗成绩,但我国工业基础传感器仍存在许多问题需要破解,主要表现在:一是顶层设计仍缺乏统筹设计,规范引导。工业传感器在仪表行业是小行业,在中国制造中更是小小行业,但工业传感器在制造强国战略中却有举足轻重的地位。由于传感器具有的专业分散和行业分属的特点,长期以来传感器行业始终缺乏统一的行业认知。虽然国家投资逐年加大、政策力度逐年增强,但传感器产业需要长期不断地培育养成的特点在地方政府、企业急于求成的作用下,想取得传感器产业化的标志性成果,往往事与愿违。二是产业规模小,盈利能力低,核心技术缺乏。以压力传感器行业为例,国内具有一定规模的生产厂商大约有千余家,其中民企数量约占企业总数的90%,已经成为了中国工业压力传感器、变送器行业的与国外厂商争夺国内工业用压力传感器、变送器市场的主力军。但这些企业年销售额大于2000万元的企业不足三成,七成以上的传感器生产厂商为中小微企业,产业规模很小,自身盈利能力也不强。因此企业核心技术、企业研发能力、企业核心竞争力严重不足或缺乏。统计国内主要传感器厂商的产品分析也可以发现,目前国内厂商生产的压力传感器,70%以上是常规应变式、溅射薄膜式等传感器产品,30%左右为陶瓷材料为主的低端产品,产品结构相对单一。三是共性化问题多,产业化问题多。共性关键技术,如可靠性技术研究尚待突破。国外典型流程工业高端典型传感器在上世纪末已实现五年免调校,但国内相关产品免调校功能还在推广验证中。工业传感器共性技术如材料、设备、方法、可靠性验证分析等基础理论的研究与发展同国外发达国家的差距仍然巨大。四是工业传感器核心敏感技术产业化缺“芯”严重。尽管传统的工业传感器如应变、电感、电容、光栅、称重、位移量、位置量、金属弹性器件等年产量居世界领先地位,有些甚至已经实现出口。但是对于高端工业传感器,尤其是高端制造的重点领域、重点行业、重大工程用配套工业传感器基本上100%依靠进口。即使国内生产,也仅仅停留在研究、样机、小批量中试阶段,相关传感器核心技术(器件)的产业化仍然“路漫漫”,严重制约我国工业的快速发展及工业制造的“自主可控”。如:国内硅基MEMS压力传感器全产业基本处于封装代工阶段,从普通硅基压力传感器、OEM硅基压力传感器到流程工业高端设备控制用变送器,核心硅基敏感芯片基本上全部进口,国内自主配套不足1%;高端智能制造、CNC数控机床、大型工程机械等配套需求的位置、压力、图像、惯性器件等传感器以欧美日或欧美日在国内的合资企业垄断;国内工业基础气体传感器主要集中在中低端的催化燃烧式、电化学式、红外式,以及MOS气体传感器阶段,仅有少量高端的激光红外气体传感器及光离子化PID气体传感器在工业制造领域使用。新产品、新技术的工业气体传感器产业化落后国际先进水平至少五年左右。MEMS硅基压力传感器核心敏感元器件、高端气体传感器敏感芯片等虽然完成技术攻关,但产业化配套基本为零,国内产业化生产敏感核心器件及传感器高端市场基本上全部依赖进口。国内工业传感器主要集中在中低端制造业市场。高端应用的产业化发展空“芯”化问题已经成为制约中国制造由大到强的关键阻碍。努力完善工业基础传感器生态第一,以德国X-Fab的精、专、特标准化核心器件产业基地为对标,建成力、热、磁、气核心器件专业定点产线,实现国内工业基础传感器基础核心器件成果产业化转移,配套快速发展的中国制造业对传感器的需求特别是核心器件的需求。工业基础传感器是制造工业的基础,首先解决当前产业急需的核心器件产业化问题,完善从材料、制造、销售、使用的一条龙产业生态,彻底解决国内工业基础传感器有“器”无“芯”的尴尬局面,真正实现工业基础传感器对国家工业基础的基石和支撑作用,形成分工明确、配套清晰的产业化发展链条。建成中国的X-Fab专业产线。标准化定点专业产线不仅要求有良好洁净的工作环境,更需要清晰的产品(不可唯利是图)、清晰的工艺管控、素质技能稳定的管理管控团队。做到环境、产品、工艺、管控四“净”。第二,集中开展传感器跨学科培养,在人才评价、人才团队建设中树立领军人物,培养高端扛旗帜的企业;在标准、可靠性、专利等多方面加大奖励制度,推动人才队伍快速成长。第三,从材料、制造、销售龙头抓起,建成工业传感器“一条龙”生态。健全分工清晰明确的工业传感器生态链,实现传感器工业“基石”的支撑作用。加大流程工业用力、热、磁、流量、环境气体安全检测传感器和离散传感器产业基地建设,形成流程工业、离散工业传感器精、专、特、新的产业布局,培养一批各自产业领域的隐形冠军。针对隐形冠军培养在市场、技术、团队方面从不同角度给予政策支持,设立专项资金对技术创新型企业进行扶持,在功能工业传感器生态链上培养领军企业。第四,加大对传感器中、小微企业知识成果及科研成果保护,鼓励企业技术创新,积极开展共性关键技术、基础工艺技术的研究,降低企业科研成果转化风险,开展新型一体化智能工业传感器研究,提倡建设工业传感器小微企业的技术隐形冠军。加大国家对于传感器产业化的投入,鼓励建设产业集聚园区和公共创新平台,加速新设计、新工艺导入。加强对共性关键技术、基础工艺技术研究的投入,在政策、制度、资金等方面给予倾斜,缩短技术向产品转化的周期。强化市场应用对产业的需求牵引作用,鼓励应用厂商通过商业合作、投资入股等方式参与智能传感器的研发与制造,整合产业链上下游。支持科研院所和高等院校开展智能传感器关键技术和基础理论研究、关键芯片开发,提升产品的集成化、智能化水平,加强知识产权保护,鼓励科研成果转化。鼓励开展新型工业传感器一体化及技术及应用研究,在感知、控制、通信、算法、智能化、网络化应用方面开展工作,满足新一代工业传感器需求。第五,以市场需求为引领,产品质量为准入门槛,企业对自身产品的质量责任保障为前提,从政策面给予工业传感器在国家重点行业、重点领域、重大工程中的配套使用力度,给予国货配套更优惠条件,在工业传感器应用领域落实并加大力度实施国家“政府采购法”和“国货优先”政策。保障工业传感器在中国制造的发展过程中同步快速成长。
  • 基于抗体和分子印迹构建HAS检测生物传感器
    该研究首次提出了一种聚合物多模波导,其特征在于开创性的匙形几何形状,用于设计表面等离子体共振(SPR)生化传感器。通过在匙形波导上层叠约60nm的金纳米膜来实现等离子体元激发。由于波导的特殊几何结构,确定了两个不同的传感区域:一个位于勺子颈部的平面传感区域和一个位于碗上具有倾斜表面的凹面传感区域。体感度(Sn)与传感器发射/收集光的方式(平行或垂直于波导的主轴)和被询问的感测区域(平面颈部或角碗)相关,表明传感器的性能可以根据所选的测量配置方便地调整。SPR传感器的特性表明,颈部的Sn为750nm/RIU,碗部的Sn为950nm/RIU。为了进一步检查特殊的传感特征并评估应用环境,这两种受体都对人血清白蛋白(HSA)具有特异性:碗区的抗体(高Sn);颈部区域(低Sn)上的分子印迹纳米颗粒(纳米MIP)。实验结果表明,免疫传感器的检测限(LOD)为280 pm,纳米MIP传感器的检测极限(LOD),为4.16fm。HSA多传感器的总体响应包含八个数量级,表明匙形波导提供多尺度检测,并具有设计多分析物传感平台的潜力。图1(A)匙形光波导的几何形状(B)碗面角度的细节(C)等离子体传感平台的设置(D)光导效应的变化可以在未涂覆波导上被理解为光散射的变化。图2基于匙形聚合物波导的实验SPR传感器配置。图3(A)共振波长变化。图4是(A)纳米MIP的功能化感测区域的表面形貌的原子力显微镜3D视图;(B)抗体功能化传感区。图5(A )具有抗体受体的等离子体光谱,获得的HSA浓度范围为0.53-5300nm。(B)相对于空白的共振波长变化的绝对值,绘制为HSA浓度的函数(半对数标度);(C)具有纳米MIPS受体的等离子体光谱,HSA浓度范围为0.53–530 fM。(D)相对于空白的共振波长变化的绝对值。原文题目:Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude.原文链接:https://doi.org/10.1016/j.bios.2022.114707
  • 智能传感器创新联盟成立,清华副校长尤政任理事长
    p   日前,“智能传感器创新联盟”成立大会在北京举行。大会审议通过了理事单位及理事、理事长,联盟理事长为尤政、常务副理事长为吴幼华,大会颁发了理事长、副理事长及理事代表证书,同时审议通过了聘任指导委员会委员名单,专家委员会主任委员为西安交通大学教授蒋庄德,审议通过了聘任中国仪器仪表学会常务副秘书长张彤为联盟秘书长。 /p p   工信部科技司毕开春巡视员、清华大学副校长尤政院士、西安交通大学蒋庄德院士、中国仪器仪表学会吴幼华常务副理事长共同为智能传感器创新联盟揭牌。 /p p   记者在采访中获悉,本联盟从提升我国智能传感器产业的技术创新能力与核心竞争力出发,以“促进企业、高等院校和科研院所在战略层面有效结合,突破相关产业发展的技术瓶颈和体制约束”为宗旨,以大学、研究所、企业及各类非盈利组织等差异化发展的创新主体,整合创新资源,聚焦产业发展存在的突出问题和薄弱环节,促进学术界与企业界进行有效的深度合作,加强各方面的交流合作,协同研发竞争前关键共性技术,共同培养各层次人才,推进基础研究的成果转化,以建立并完善我国传感器领域的创新体系。将以发起单位为纽带,通过各成员单位的优势互补和协同创新形成一种长效、稳定的利益共同体。联盟由指导委员会、专家委员会、理事会、秘书处等机构组成。 /p p   “传感器行业要充分认识智能传感器的关键基础作用,一定要下力气攻克核心技术。智能传感器创新联盟成立是传感器行业的一件大事。”毕开春在发言中指出,传感器是发展工业互联网、物物联网、车联网和工业大数据的关键器件,更是人工智能产业的核心产品,实施《中国制造2025》,尤其是智能制造工程是紧密扣合数字化、网络化、智能化发展,智能传感器是信息感知和数据采集的源头,其重要性不言而喻。智能传感器产业技术创新对于加快建设制造强国和网络强国,具有强基固本的作用,组建创新联盟十分必要。 /p p   他希望,智能传感器创新联盟的成立,让市场在产业技术创新中起决定性作用,在更好地发挥政府作用中,担负起政府和企业之间的桥梁和纽带功能。 /p p   会上,尤政在“智能传感器与中国制造”的主旨报告中称,要实现我国从“制造大国”向“制造强国”的跨越式发展,必须加强传感器的整体布局,把智能传感器列为“国家目标”,成为“国家战略”项目。传感器产业的技术进步不能一蹴而就,根本需要传感器在自身的产业链上整体提升。各企业在制定自身发展战略时,要注重企业优势,充分立足国内的产业基础,在良好基础上实现创新和突破。 /p p   紧扣智能传感与智能制造这条主线,联盟规划了今年重大活动的路线图。中国仪器仪表学会常务副理事长吴幼华对11月12日-14日在郑州举办的 “2018年首届世界传感器大会”的筹备情况作了详细介绍。据了解,大会将发展多层次、多角度、多领域全球传感器科技交流、产业推广和示范应用的最新成果展示。 /p p   据了解,为了促进协同创新、跨界融合、联合互补、合作共赢,面向我国国民经济、国家安全和社会发展等领域的重大战略需求,统筹我国传感器领域的创新资源,智能传感器创新联盟是在工业和信息化部、中国工程院的指导下,由清华大学、西安交通大学、中国仪器仪表学会、重庆大学、苏州工业园纳米产业技术研究院有限公司、香港城市大学等单位共同发起成立,广泛联合了智能传感器领域的生产制造企业、科研院所、高等院校、用户等单位。 /p
  • 量子导航新突破!全新3D量子传感器将精度提升50倍
    在最近发布在arXiv上的一篇预印本论文中[1],法国国家科学研究中心的一个团队描述了一个量子加速度计,它使用激光和超冷铷原子;相较经典器件,可以以50倍的精度优越性测量三维运动。这项工作将量子加速计扩展到了第三维度,可以在没有GPS的情况下带来精确的导航。013D模式的原子干涉仪,测量物质的波状属性我们已经每天都在依赖加速度计。拿起一部手机,显示屏就会亮起来;把它转过来,正在阅读的页面就会转换方向。一个微小(基本上是一个连接在类似弹簧的机制上的质量)的机械加速度计与其他传感器,如陀螺仪一起使这些动作成为可能。每当手机在空间中移动时,它的加速计就会跟踪这一运动:甚至包括GPS掉线时的短暂时间,如在隧道或手机信号死角。尽管它们很有用,但机械加速度计往往会漂移失调。意思是,放置足够长的时间,它们就会积累成千米级的误差。这对与GPS短暂失联的手机来说并不重要,但当设备长期在GPS范围之外旅行时,这就成为了一个问题。对于工业和军事应用来说,精确的位置跟踪在潜艇上是非常有用的,因为潜艇在水下无法使用GPS;或者,在船舶失去GPS时作为备用导航。研究人员长期以来一直在开发量子加速度计,以提高位置跟踪的准确性:量子加速度计不是测量压缩弹簧的质量,而是测量物质的波状属性。这些设备使用激光来减缓和冷却原子云;在这种状态下,原子的行为就像光波一样,在它们移动时产生干扰模式。更多的激光器诱导并测量这些模式如何变化,以跟踪设备在空间中的位置。早期,这些被称为原子干涉仪的设备,是由遍布实验室长椅的电线和仪器组成的一团“乱麻”,只能测量一个维度。但随着激光和专业技术的进步,它们变得更小、更坚固:现在它们已经变成了3D模式。02首个3D量子加速度计:精度提升50倍由法国团队开发的新的三维量子加速度计,看起来像一个金属盒子,长度与一台笔记本电脑差不多。它使用激光沿着所有三个空间轴来操纵和测量被困在一个小玻璃盒中的铷原子云,并将其冷却到绝对零度。像早期的量子加速度计一样,这些激光器在原子云中引起涟漪,并通过解释由此产生的干扰模式来测量运动。这是首个量子加速度计三元组(Quantum Accelerometer Triad, QuAT),它沿三个互为正交的方向测量加速度。(a)量子加速度计三元组(QuAT)的设计概念和几何形状。加速度分量是沿垂直于波段kx、ky和kz的波段测量的。(b)安装在旋转平台上的传感器头的三维模型。为了提高稳定性和带宽,以适应在实验室外使用的要求,新设备在一个利用两种技术优势的反馈回路中结合了经典和量子加速度计的读数。由于该团队可以极其精确地控制原子,他们可以进行类似的精确测量。为了测试加速度计,他们将其连接到一个摇晃和旋转的桌子上,并发现该系统比经典的导航级传感器要精确50倍。在几个小时的时间里,由经典加速度计测量的设备的位置偏离了一公里;而量子加速度计将误差“钉”在了20米以内。量子和经典加速度计之间的混合方案。左边的开环方案描述了过滤后的经典加速度计如何用于修正量子加速度计的振动。静态时,量子加速度计提供了由于重力引起的投影g的离散测量。右边的闭环方案显示了经典加速度计是如何通过比较其输出和量子加速度计的输出而定期进行偏置校正的。这里,混合加速度计的输出是连续的,在静态和动态情况下都能发挥作用:提供重力和运动引起的加速度a的投影之和。033D传感器是工程化的进步尽管取得了重大成果,加速计仍然比较大、重,不会很快步入实用。但如果做得更小、更坚固,该团队说它可以被安装在船舶或潜艇上,用于精确导航;或者,它可以通过测量重力的细微变化,进入寻找矿藏的野外地质学家的手中。更多的量子传感器,如陀螺仪,可能会加入这个行列。尽管它们在离开实验室之前还需要进行几轮的收缩和加固。就目前而言,3D化是一个进步。澳大利亚国立大学的John Close对这一成果这样评价[2]:“三维测量是一件大事,是实现量子加速度计任何实际用途的一个必要和出色的工程步骤。”参考链接:[1] Tracking the Vector Acceleration with a Hybrid Quantum Accelerometer Triad[2] New 3D Quantum Accelerometer Is50 Times More Accurate Than Classical Sensors
  • 把握网络化新机遇,推动怀柔科学仪器及传感器新发展——“网络化传感测试技术论坛”成功举办!
    把握工业互联网发展机遇,推动科学仪器及传感器发展迈向新台阶!7月22日,由中关村论坛组委会办公室指导,中国仪器仪表学会、北京怀柔仪器和传感器有限公司主办,北京怀柔硬科技创新服务有限公司承办,清华大学、北京理工大学、哈尔滨工业大学、北京信息科技大学等单位支持的2021雁栖湖科学仪器和传感器论坛(SISF 2021)同期网络化传感测试技术论坛在北京雁栖湖国际会展中心成功举办!2021雁栖湖科学仪器和传感器论坛(SISF 2021)同期网络化传感测试技术论坛现场5G时代已然来临,网络成为产业要素重置和生态重构的基础架构,随之而来的测试、安全、存储、传输、数据处理等环节技术难题层出不穷。这是重点领域的必解题,也是产业协同发展的契机,只有领先一步才能把握时代机遇,推动怀柔科学仪器及传感器新发展。中国电子科技集团公司测试仪器首席科学家年夫顺主持本次论坛由中国电子科技集团公司测试仪器首席科学家年夫顺主持。论坛上,清华大学教授王雪,意大利米兰理工大学教授Alessandro Ferrero,西安电子科技大学教授马建峰及中国科学院信息工程研究所芦翔副研究员,中国科学院电子学研究所研究员、博士生导师夏善红,英国利兹大学教授Robert Richardson,北京卓立汉光分析仪器有限公司市场销售总监张永强现场作主题报告,就网络化传感测试产业政策、行业现状和产业趋势角度展开全方位交流,一起探讨传感技术新趋势、推动科学仪器关键技术新发展。清华大学教授王雪清华大学教授王雪现场为我们分享了《智能感知与智能制造》主题报告,提到创新是引领智能制造发展的第一动力,实现智能制造是以创新和新一代的信息技术为主线,传感器在推动制造业发展中起到非常关键的作用。智能制造与传感器、信息技术三者相互融合将实现制造业的跨越式发展。新一代的人工智能发展的过程将是,人、机、物三者有机结合的过程。 意大利米兰理工大学教授Alessandro Ferrero意大利米兰理工大学教授Alessandro Ferrero通过视频会议的形式现场为我们分享了《The role of metrology in the future human activities》主题报告,他指出,我们生活在大数据时代,可用的数据将会越来越多的用于决策制定。然而,评估数据可靠性是我们需要面对并解决的最大挑战。通过可向所有自主设备提供现场数据的传感设备,有助于帮助我们做出合理的决策。同时,传感器的测量结果也将会越来越多的影响人类的行为。中国科学院信息工程研究所芦翔副研究员西安电子科技大学教授马建峰和中国科学院信息工程研究所芦翔副研究员为我们分享了《物联网安全技术的综合化趋势与安全性评估的挑战》主题报告,马建峰教授通过网络连接安全、网络数据安全和端系统安全3个角度剖析了无线网络安全的具体技术要点。援引习近平总书记的话“没有网络安全就没有国家安全”,指出无线网络安全是最薄弱的环节,但它又是国家信息安全、数据保护、个人隐私等安全防护的关键。最后通过网络安全技术能够使网络通信基础设施变得更加安全,是实现我们无线网络安全的最终技术基础。中国科学院电子学研究所研究员、博士生导师夏善红中国科学院电子学研究所研究员、博士生导师夏善红现场为我们分享了《传感器研究与应用》主题报告,通过“电学量的电场传感器”、“水环境监测的传感器系统”这两项实例研究介绍了传感器的研制与工作原理,并指出传感技术是一个多学科交叉的研究领域,基础科学与应用技术并存。未来传感器技术发展要以应用为目标,实现科学技术从原理研究和应用研究到产业化的过渡发展。英国利兹大学教授Robert Richardson来自英国利兹大学“真实机器人”实验室的罗伯特理查森(Robert Richardson)教授的通过视频会议的形式现场为我们分享《面向弹性基础设施的机器人技术探索》(《Exploration robots towards resilient city infrastructure》)主题报告。罗伯特理查森教授通过举例展示“基础设施机器人”项目、“自愈城市”项目、“管道机器人”项目等研究成果,介绍了在使用视觉传感器的情况下,机器人在不同环境中对城市的贡献以及对人类获得帮助。北京卓立汉光分析仪器有限公司市场销售总监张永强北京卓立汉光分析仪器有限公司市场销售总监张永强现场为我们分享了《高光谱实时水环境监测预警系统》主题报告,介绍了高光谱成像系统的一般原理,指出水质监测高光谱设备在地面监控系统以及无人机监控系统中的应用,并向大家展示了高光谱监测水质指标的应用案例。2021雁栖湖科学仪器和传感器论坛(SISF 2021)同期网络化传感测试技术论坛积极推动科学仪器及传感器产业创新、工艺创新、机制创新,旨在促进科学仪器及传感器新技术在企业中的实施和应用,为企业赋能、推产业转型、促行业升级的思想,加快科学仪器及传感器的前进步伐,增强市场竞争力,为促进地方经济和社会发展,推动科学仪器及传感器建设做出更大贡献!怀柔概况怀柔区位于北京市东北部,北依燕山山脉,南偎华北平原,全区总面积2122.8平方公里,距中心城区50公里,距北京首都国际机场32公里。截至2019年底,怀柔区有12个镇、2个乡、2个街道办事处,常住人口42.2万人。《北京城市总体规划(2016年-2035年)》确定怀柔区的功能定位是:首都北部重点生态保育和区域生态治理协作区;服务国家对外交往的生态发展示范区;绿色创新引领的科技文化发展区。怀柔科学城怀柔科学城位于北京市东北部,规划范围100.9平方公里,以怀柔区为主,并拓展到密云区部分地区,是北京建设国际科技创新中心“三城一区”主平台之一,是国家发展改革委、科技部联合批复的北京怀柔综合性国家科学中心的核心承载区,是我国建设创新型国家和世界科技强国的重要支撑。
  • 国内外机器人关节测试技术现状及展望
    国内外机器人关节测试技术现状及展望石照耀,程慧明引言2021年中国机器人行业市场规模为1306.8亿元,预计2022年行业市场规模将达1712.4亿元,同比增长31.0%,增速全球领先。关节是机器人执行姿态控制的执行部件,其性能对机器人的整机性能和可靠性起决定性作用。按动力来源可以分为液压、气动和电机驱动三大类,本文主要介绍电驱动关节。关节主要由传动、控制和传感部分组成,其中传动部分由电机、减速器和结构件组成,控制部分由驱动模块及通信模块组成,传感器部分使用了位置、力矩、电流和温度等。随着机器人应用领域与规模的快速扩张,关节种类不断增加、性能也不断优化。与此相适应,对关节性能的表征、测试和评价也成为了当前的研究热点。全面考察机器人关节测试技术现状,发现整体上呈现出四个特点:(1)测试技术多来源于减速器和电机测试技术,缺乏完全适用于关节的整机测试技术。(2)国内外研发的测试设备主要针对大中型关节,而针对小型或微小型关节的测试技术和设备较少。(3)对关节的测试多集中在减速器和电机上,而不是将关节作为一个整体进行测试。(4)测试参数不全面,多集中于关节的定位精度、速度响应能力上,缺少对其传动精度参数、电参数及其与机械参数的测试和融合分析。机器人关节的结构不简单,同时蕴含着复杂的能量转化、能量传递以及运动控制等问题。应用场景的多样化对机器人主机装备的运动性能精度、负载控制、能耗效率、振动噪声、服役寿命等性能提出了更高的目标,这对关节的综合性能提出了进一步的要求。因此对机器人关节进行综合性能测试,获取关键性能指标,并为设计提供指导具有重要意义。1 关节分类1.1 类型机器人关节的种类众多,可大致划分为刚性关节和弹性关节两类。刚性关节主要由电机、高传动比减速器、编码器、力矩传感器和控制器等组成。Albu-Schaffer等为德国宇航局的轻量机器人设计的机器人关节,包括无刷电机、谐波减速器、绝对编码器、增量编码器、刹车和力矩传感器等,如图1所示。Samuel Rader等设计的机器人关节装有陀螺仪,可以实现更加精准的姿态控制。由于材料和设计上的限制,刚性关节存在功率密度值不高和机器人受冲击情况下关节强度不够的问题,因此刚性关节在使用上存在一定的局限性。图1 刚性关节弹性关节分为串联弹性关节与并联弹性关节两种。弹性关节的设计原理来自于Hill肌肉三元素力学模型,以求更好的模拟人体肌肉功能。Pratt首先提出了串联弹性关节的概念,串联弹性关节在减速器和电机之间增加弹性连杆,用于降低外部冲击载荷和储存能量。Vanderborght等设计了可平衡位置的关节,Negrello等设计了新型关节,并进行了负载能力和抗冲击能力实验,如图2所示。并联弹性关节是在机器人整机上增加并联弹性连杆,通过和关节共同配合,来达到释放冲击和储能的功能。图2 弹性关节1.2 技术要求机器人应用场景的多样化对关节的技术提出了不同的需求,以刚性关节为例,大致可以分为两类,如表1所示。表1 关节技术要求第一种类型关节被广泛应用于教育机器人、玩具机器人和餐饮机器人等,对关节的传动精度要求相对较低,通常对整机的回差要求小于60′。减速器的齿轮模数在0.2mm-0.5mm之间,材料以金属和塑料为主,种类有平行轴齿轮减速器、行星齿轮减速器、面齿轮减速器,其中平行轴齿轮减速器较为常见,部分减速器内部会增加离合机构,当机器人跌倒减速器受到冲击时,用于保护内部结构,该类型关节通常没有力矩传感器。第二种类型的关节广泛应用于大型双足服务机器人、工业机器人和航空航天领域的空间机械臂等,此类关节对传动精度要求较高,通常对整机的回差精度要求是小于3′。其减速器的传动形式主要有行星减速器、摆线针轮减速器、谐波减速器,其中谐波减速器最为普遍。电机多使用直流无刷电机和永磁同步电机,在安装上多采用无框形式。位置检测传感器有光栅编码器、磁编码器,力矩传感器有应变扭力计。2 关节测试方法现状机器人关节的性能主要反映在传动精度、机械参数、响应参数和电参数等指标上。减速器和电机作为关节的重要部件,两者测试技术的发展为关节测试技术提供了借鉴,但减速器和电机的质量不能反映关节整机的质量,因此对关节的测试应面向整机。2.1 传动精度传动误差和回差是评价关节运动输出精度的主要指标。传动误差既反映了传动部分制造误差和安装误差,又反映了其抵抗外界环境(如温度、负载等)的能力。回差则反映了关节传动系统中的间隙,其主要由空程回差、弹性回差、温度回差等组成。2.1.1 传动误差(1)测试方法对精密减速器等传动链的传动误差测试技术研究可以追溯至上世纪50年代,K.Stepanek研制出基于磁栅式传感器测试齿轮机床动态误差的设备。C.Timmc基于光栅式传感器,通过将旋转角位移转换成相应电信号输出以得到传动误差的一种测量方法。黄潼年先生提出了“单面啮合间齿测量法”,发明了齿轮整体误差测量技术。彭东林提出一种时栅传感器,用于对传动误差进行测量。国标GB/T 35089-2018对机器人用谐波齿轮减速器、行星摆线减速器、摆线针轮减速器等精密传动装置的试验设备、传动误差试验方法及其数据处理方法做出规定。机器人关节的传动误差测试技术来源于上述方法,关节的传动误差是指:对应伺服电机任意转角,关节的实际输出转角与理论转角之间的差值,传动误差曲线如图3所示。图3 机器人关节传动误差示意图文献[3]基于光栅法对关节的传动误差进行测试。文献[4]利用高精度光栅测量关节的输出角度,关节电机编码器测量输入端角度,实现了对关节整机传动误差的测试。(2)测试难点关节是一种复杂的机电一体化产品,由于在工作原理、机械结构、传感器配置和控制方式等方面不同于其他的齿轮传动机构,使得对关节传动误差的测试也存在不同,因此在测试方法上带来了一系列的不确定和难点问题。根据GB/T 35089-2018对精密减速器传动误差测试设备的规定,在减速器的输入端和输出端分别利用高精度角度编码器采集角度数据。对关节传动误差的测试,是以关节整机为测试对象,关节输入端角度数据的采集依赖于关节电机编码器。部分关节编码器精度较低或者没有安装电机编码器,因此在此类关节传动误差的测试中如何保证输入角度的有效性是一个难点问题。目前的解决方案有两种,一是文献[4]中所利用的等时间间隔采样方式,该方法可以在一定程度解决编码器精度不足的影响,但该方法可能存在时间滞后和关节本身不支持该模式的问题;二是以控制器发出的指令角度为输入端角度,即以理论转角为输入端角度,该方法符合关节传动误差的定义。综上所述,关节的传动误差测试方法多来源于精密减速器等传动装置,但由于关节本身的特点,使得其传动误差的测试方法具有一定的特殊性。2.1.1 回差(1)测试方法机器人关节的回差是指:关节的输入端伺服电机运动方向改变后到输出端运动方向跟随改变时,输出端在转角上的滞后量。按照测试原理的不同,对关节回差的测试可以分为静态测试和动态测试两种。静态测试:是指将关节的输入端固定,通过输出端加载、卸载,获取滞回曲线而完成的回差测试,滞回曲线如图4所示。输入端固定,给输出端逐渐加载至额定转矩后卸载,再反向逐渐加载至额定转矩后卸载,记录多组输出端转矩、转角值,绘制完成的封闭的转矩-转角曲线。图4 滞回曲线示意图在关节输出端不同位置进行回差测试,获得各个位置的回差,由此获得静态测试的回差曲线,如图5所示。图5 静态测试的回差曲线 动态测试法:通过测试关节的双向传动误差曲线,获取回差曲线而完成的回差测试。首先测出关节正向传动误差曲线,使输入端正向多转一定的角度后反向旋转,然后在相同条件下测出关节反向传动误差曲线,如图6所示。图6中反向传动误差曲线与正向传动误差曲线对应点的代数差即构成回差曲线,如图7所示。文献[5]采用动态测试方法对小型关节进行了回差的动态测试实验,并和静态测试进了对比,发现结果大体一致,可以在一定程度上进行相互印证。图6 双向传动误差曲线图7 回差曲线(2)测试难点同传动误差测试类似,关节回差的测试也不同于精密减速器等传动装置,对测试方法的研究也需要从关节本身的特点来考虑。(1)关节带电状态是影响关节回差测试的一个重要因素,按照关节回差静态测试方法的定义,需要将关节的输入端固定,即电机轴抱死。关节上电后电机轴抱死,在静态测试过程由于电机反向电动势的阻碍,会对测试结果产生影响。(2)角度编码器精度和有无问题同样影响关节的回差动态测试,按照定义需要获得双向传动误差曲线,进而获得回差曲线。在实际测试过程中,若采用等时间间隔采样的方式,则会存在采集点无法对齐的问题。若采用理论角度为输入端角度的方法,则存在测试不连续的问题。(3)联轴器变形会影响关节回差测试结果,在加载测试中需要对联轴器变形进行补偿。2.2 机械参数2.2.1 启动转矩与反启动转矩测试机器人关节的启动转矩测试是指关节的输出端在无负载情况下,关节内部的电机缓慢进行转动,至关节的输出端转动,期间利用关节内部的力矩传感器采集转矩变换情况,利用测试设备的高精度角度传感器来实时判断关节输出端的转动情况,取转矩的最大值为启动转矩,测试曲线如图8所示。需要注意的是若关节内部没有力矩传感器则无法进行启动转矩和反启动转矩测试。机器人关节的反启动转矩测试是指关节的输入端在无负载情况下,测试设备的加载电机缓慢进行转动,直至关节的输入端转动,期间利用测试设备的力矩传感器采集转矩变化情况,利用关节内部的输入端角度传感器实时判断关节输入端的转动情况,取转矩的最大值为反启动转矩,测试曲线如图8所示。需要注意的是对关节的反启动转矩测试要在不带电下进行测试,因为电机在带电状态下反向转动会存在反向电动势,对关节转动存在阻碍。图8 启动(反启动)转矩曲线2.2.2 工作区工作区用转速和转矩组成的二维平面坐标区域表示,如图9所示。关节运行时温度不超过关节允许最高温度,能长期工作的区域为连续工作区。图中连续工作区域是由关节的发热、机械强度、以及关节内驱动器的极限工作条件限制的范围。超出连续工作区,允许关节短时过载运行的区域为断续工作区。图9 工作区2.3 响应参数2.3.1 位置响应频带宽度根据JB-T 10184-2000的规定,对关节位置响应频带宽度的测试应按照如下方式。在给定某一恒定负载的情况下,关节输入正弦波信号,随着正弦波信号频率逐渐升高,对应关节位置输出量的幅值逐渐减小同时相位滞后逐渐增大,当相位滞后增大至90°时或幅值减小至输入幅值的1/根号2时的频率即为系统位置响应频带宽度。2.3.2 正/负阶跃输入的位置响应时间关节在空载条件下或按照试验要求加载某一恒定负载(根据需求确定转动惯量和扭矩大小)。外部控制器发送由0到1的正阶跃信号给关节,并同步读取角度传感器的数据,记录关节从阶跃信号发出至位置达到0.9的时间;重复上述试验,取多次试验的平均值即为关节的正阶跃输入的位置响应时间,测试曲线如图10。图10 正阶跃输入的位置响应时间同理,外部控制器发送由1到0的负阶跃信号给关节,并同步读取角度传感器的数据,记录关节从阶跃信号发出至位置达到0.1的时间;重复上述试验,取多次试验的平均值即为关节的负阶跃输入的位置响应时间,测试曲线如图11。图11 负阶跃输入的位置响应时间2.4 电参数电参数测试用于反映关节在工作状态下电流、转速、功率、效率与转矩之间的关系。电参数测试分为恒定加载测试与梯度加载测试。恒定加载测试是指关节输出端施加某一恒定负载的情况下,测试关节的电流、转速及转矩变化情况;梯度加载测试是指关节输出端梯度加载的情况下,测试关节转矩与电流、转速、效率、输出功率之间的关系,获得相应的特性曲线。2.4.1 恒定加载测试恒定加载测试的目的是为检测关节在空载或稳定负载情况下,其瞬时电流、瞬时转速及瞬时转矩的波动情况,上述参数测试原理及测试曲线示意图如表2所示。表2 恒定加载测试2.4.2 梯度加载测试梯度加载测试的目的是为检测关节在最高转速下,关节输出端负载从0Nm开始等时间梯度加载至堵转力矩为止的过程中,关节的电流、转速、效率、输出功率之间的关系,获得转矩—电流曲线、转矩—转速曲线、转矩—输出功率曲线、转矩—效率曲线以及关节最佳工作区域综合曲线,上述参数测试原理及测试曲线示意图如表3所示。表3 梯度加载测试3 关节测试设备现状3.1 大中型关节测试设备在工业领域内成熟的商用大中型关节测试设备不多,本文列举多型大中型关节测试设备,从测试范围、测试功能、测试精度、测试原理以及测试数据运用五个方面进行对比,如表4所示。表4 大中型关节测试设备由上表可知,大中型关节测试设备基本以单一类型性能参数测试为主,涉及定位精度、响应参数和机械参数,测试技术主要借鉴电机测试技术,少量来源于精密减速器测试技术,存在测试项单一,功能不完善等不足。在测试数据运用方面,主要目的为验证关节机械设计和运动控制算法的可靠性和有效性。目前面向大中型关节的测试设备正朝着综合性能测试和云端测试的方向发展,作者团队所研制的新型机器人关节综合性能测试机可以实现对关节传动精度、机械参数、响应参数、电参数和抗干扰等性能参数的综合测试,测试机的性能指标如表5所示,测试机如图12所示。表5 新型机器人关节综合性能测试机图12 服务机器人小型关节综合性能测试机利用该测试机实现了对关节性能全面测试,相关测试结果如图13所示,分别为传动误差、抗干扰性能和阶跃响应测试。图13 关节测试测试机还具备云测试与数据云交互的功能,相关架构如图14所示,将关节测试中涉及的测试设备、传感器、控制软件、分析方法、测试方法、测试数据和辅助设备虚拟化为服务资源,通过通用的硬件设备接口和软件接口,依托云平台,实现了各测量资源统一的、集中的信息化和智能化组织管理和运用,最终面向用户提供个性化的测试服务和体验。图14 关节云测试架构3.2 小型关节测试设备小型关节测试的难点主要表现在:(1)传感器精度问题,小型关节内部的传感器精度较低,影响测试结果的准确性;(2)传感器缺乏问题图15 服务机器人小型关节综合性能测试机图16 能测试机小型关节测试综上所述,在机器人关节测试设备研发领域存在测试项单一,测试数据运用不足等的问题,考虑到关节对于机器人市场的重要性和特殊性,对其测试技术的研究和测试设备的开发越发的迫切。
  • 石墨烯生物传感器:中国SCI发文量全球第一
    石墨烯,是当前世界上最薄、最轻、最硬、导电性最好而且拥有强大灵活性的纳米材料。它的强大能力常常令人咋舌。一块1厘米厚的石墨烯板,能够让一头5吨重的成年大象稳稳站在上面 用石墨烯做的手机电池,一秒内就能把电充满 以石墨烯为材料的平板电脑,可以随意折叠成手机大小放在口袋里。在电子、航天军工、新能源新材料等领域也有着广泛应用。  11月25日,在中科院文献情报中心产业情报研究中心主办的第20期《产业技术情报》发布会上,研究人员详细梳理了石墨烯在超级电容器和生物传感器方面的应用情况,首次将两个发布主题聚焦于同一领域,并基于权威数据库分析,对两者未来的发展趋势作出研判。  石墨烯超级电容器技术:中国处于快速增长期  当今能源及环境问题日趋严重,以新能源电动汽车为代表的绿色交通工具的发展需求越来越大。而解决其制动能量回收系统的问题是产业发展的关键之一,因此产业对兼顾高能量密度与高功率密度的电化学储能器件的需求越来越迫切。与此同时,超级电容器因具备使用寿命长、充电时间短等优点,被赋予较大期待。石墨烯超级电容器主要研究领域包括:用于电极材料的过渡金属氧化物、活化煤以及氮掺杂石墨烯、集电器表面等方面,涉及技术包括氧化石墨烯单体、过度金属氧化物、氮掺杂、煤活化等。  随着2004年英国曼彻斯特大学物理学家发现石墨烯的分离制备方法,石墨烯在超级电容器中的应用也逐渐开始迅速发展,专利年发表数量快速增长,于 2012年达到峰值每年280项。目前相关技术专利平均在每年250项左右。中国的石墨烯超级电容器领域技术的发展2009年起迅猛增长,年申请量迅速超过每年100项,于2012年达到峰值,此后基本保持在每年120项以上,处于快速增长期。  记者发现,在石墨烯超级电容器技术专利权人排名中,前25名专利权人中数量最多的是来自中国的机构(17家)。排名前5位的依次是:海洋王照明科技股份有限公司、中国科学院、韩国三星公司、美国Nanotek仪器公司和浙江大学。  “从产业技术情报发布的内容来看,我们国家在石墨烯领域的论文和专利的数量还是比较可观的,这些数据充分反映了我们国家的科技活力。”清华大学化工系教授骞伟中说。  他介绍,目前石墨烯的主要制造市场和应用市场均在中国,国内的众多机构在该领域进行了专利布局。北京和江苏已分别成为国家石墨烯发展和研发较为集中的地区,未来5年到10年这些地区还将在石墨烯领域进行大力布局。  “从产业化角度来看,目前石墨烯电容器领域技术更多地集中在高校实验室,离产业化还有一段路要走。我们国家应推动高校和企业的衔接,大力推动石墨烯电容器的产业化发展。”骞伟中建议。  石墨烯生物传感器:中国SCI发文量位列第一  石墨烯因其特殊的纳米结构,优良的光学、电学等特性以及良好的生物相容性,迅速成为生物传感器研究中的热点材料,并成功检测多种生物小分子、DNA、酶、蛋白质以及细胞等。  “生物传感器是生命分析化学及生物医学领域中的重要研究方向,已广泛应用于临床疾病诊断和治疗研究。但石墨烯生物传感器目前处于实验室阶段,还未实现产业化。”国家纳米科学中心博士研究生史济东说。  据中科院文献情报中心研究人员介绍,石墨烯用于生物传感器领域研究的重点集中在以下两个方面:一是石墨烯电化学生物传感器,包括安倍型传感器、电化学发光型和场效应晶体管型等,涉及酶传感器(用于检测过氧化氢、葡萄糖、抗坏血酸、多巴胺、尿酸等)、免疫传感器(用于检测病毒、细菌、癌症标志物等)、DNA传感器、蛋白质传感器等 二是石墨烯光学生物传感器,包括荧光传感器和基于共振能量转移传感器。  石墨烯用于生物传感器领域的SCI论文发文年代分布呈现出如下特征:2005 年至2009年发文量相对较少,年发文量不超过100篇,主要来自美国和中国,研究进展相对缓慢,处于技术孕育期 随着2010年英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫因在石墨烯材料方面的研究获得诺贝尔物理学奖,全球石墨烯用于生物传感器领域的SCI发文量增长趋势逐渐明显,其中 2015 年SCI发文量突破了2300篇,相关技术进入快速成长阶段。  统计数据显示,全球共有85个国家和地区开展了石墨烯用于生物传感器的相关研究,其中中国、美国、印度等10个国家和地区在石墨烯用于生物传感器领域的SCI发文量占总量的81.61%。其中中国在该研究中占有明显优势,发文量占全部论文的47.76% 位居第2位的是美国,发文量占全部论文的 9.39%。  在高被引论文方面,石墨烯用于生物传感器领域的SCI论文属于ESI高被引论文有345篇,来自35个国家和地区。其中ESI高被引论文主要来自中国(176篇)、美国(86篇)、新加坡(39篇)、韩国(23篇)和印度(15篇)。  值得一提的是,前10位ESI高被引SCI论文中,有6篇发文来自中国福州大学、中科院长春应用化学研究所、清华大学和中科院上海应用物理研究所4家机构,可以看出中国在该技术领域拥有一定的技术优势。
  • 重磅!填补我国空白,这个传感器仪器获重大突破
    近日,据中国科学院合肥物质科学研究院智能机械研究所中科院合肥研究院智能所官方公众号公布,该所研制出了国内首台深海质谱仪,并在南海某海域成功完成多次海试,该工作填补了国内在深海质谱仪研制领域的空白:质谱仪是一种分离和检测不同同位素的仪器。利用质谱仪,可以对相关物质进行化学分析,为确定化合物的分子式和分子结构等提供可靠的依据。深海质谱仪的研制,可以为寻找海底油气及矿产资源,探究生命起源和早期演化以及研究全球气候变化等奠定了原位质谱探测基础。▲国内首台深海质谱仪(来源:中科院合肥研究院智能所)中科院合肥物质院智能所陈池来研究团队,长期致力于新型MEMS质谱关键技术及应用研究。作为深海智能感知技术联合实验室共建单位成员,团队先后突破质谱小型化设计集成、质谱关键器件MEMS制造、水下膜进样快速定量标定等关键技术。经过多年攻关,该团队成功研制出国内首套深海质谱仪,可在原位实现深海中N2、O2、Ar、CO2、CH4等小分子溶解气以及烷烃、芳香烃等挥发性有机物溶解气的定性及定量检测。深海极端环境塑造了特殊的生命过程,蕴藏着极大的矿产资源,对其探测是国际地球科学研究的前沿问题。深海原位探测技术可以在时间和空间维度上连续获取深海样品的组分、含量及其变化信息,因此被越来越广泛地应用于深海极端环境的研究工作中。▲深海质谱仪搭乘原位实验室完成深海探测任务后出水瞬时(来源:中科院合肥研究院智能所)2022年至今,该团队成员王晗、邵磊等携带深海质谱仪参加了多次专项海试,验证了其工作原理及工程应用的可行性,完成了设备功能性验证实验、海底定点在线检测实验及深度扫描试验。不仅如此,通过海试,该仪器还实现了深海冷泉区域溶解气的长时间(25.8h)原位检测及海平面至海底(-1388m-0m)溶解气的在线检测,获取了深海海底小分子溶解气浓度随时间的变化曲线及纵向浓度分布轮廓线等关键科学数据。相关研究成果以《用于深海气体原位检测的水下质谱仪的研制与应用》为题发表在《中国分析化学》上。▲深海溶解气在线检测深度-峰高关系曲线(来源:中科院合肥研究院智能所)海洋探测中常用的各种传感器仪器及分类海洋仪器设备的一个最大特点是,生产批量小、应用范围窄、使用寿命短,而稳定、可靠性和一致性,以及测量分辨率和精度等要求又特别高,需要在不断应用中改进制造工艺和提高技术性能。传感器技术是海洋仪器设备的基础,其各方面性能是衡量仪器设备好坏的关键,同时也是调查数据质量的保证,各种数据订正方案应运而生,但是在长期的观测中,传感器的稳定性、漂移、准确度等指标依然是最重要的部分。海洋中使用了各种各样的传感器仪器,包括声学多普勒电流剖面仪,底流流量计,底部压力和倾斜仪,电导率-温度深度(CTD),溶解氧传感器,数码相机,高清摄像机,水听器,质谱仪,光学衰减传感器,pH和二氧化碳传感器,压力传感器,远程访问液体和DNA采样器,电阻率探头,地震仪,声纳,热敏电阻阵列和湍流电流计等等。海洋传感器根据检测参数类别可大致划分为水质类、水文类、地质地震类、声学探测类、光学探测类等,每一类检测参数大则包含上百项检测目标,少则数十项检测目标,且根据应用领域和应用环境的不同,每一项检测参数的工作原理和技术实现手段各有不同。▲海洋传感器机器分类(来源:高科技与产业化)日益重视,近年我国海洋传感器仪器的研究现状,与取得的突破近年来,我国日益重视海洋传感器及仪器设备等相关海洋科学技术的研究。在2013年,科技部正式批复,组建青岛海洋科学与技术试点国家实验室;2015年6月,实验室正式投入运行,成为所有试点国家实验室中唯一转为正式国家实验室的研究机构。此外,国内有多所大学和科研机构从事海洋传感器方面的研究:山东省科学院海洋仪器仪表研究所侧重在化学/物理测量、温度/热量测量、非特定变量测量、力的测量以及控制系统方面进行技术布局;中国海洋大学侧重在非特定变量、距离/摄影测量、化学/物理测量、重力测量和控制系统方面进行技术布局;国家海洋技术中心侧重在距离测量、化学/物理测量、温度测量、流量测量和船用设备方面进行技术布局;天津大学的专利技术主要布局在化学/物理测量、平衡测量、距离测量、船用设备和非特定变量测量等领域;浙江大学的专利技术主要布局在化学/物理测量、平衡测量、信号控制传输、液力机械和船用设备等领域;浙江海洋大学的专利技术主要布局在船用设备、化学/物理测量、控制系统、平衡测量、电场分离等领域;大连科技学院的专利技术主要布局在非特定变量测量、化学/物理测量、长度/角度等测量、液力机械和距离/摄影测量等领域。在产业化方面,我国90%的传感器依赖进口,只有通过国产化来降低成本,国内海工装备才用得起传感器。国外的海洋传感器已经近二十年没有更新换代了,但是在过去二十年,材料技术、信息技术、集成电路技术等都取得了很大的进步,当这些新技术渗透到海洋传感器领域的时候,就会有大的突破,也是国内海洋传感器领域的机遇所在。海洋化学传感器、海洋微生物传感器也都存在不能与时俱进的问题,我国目前尚不具备全面、完整的微生物数据库,适合长期海洋监测的便携、低功耗、原位、实时、快速、精确的海洋微生物传感器也未有相关产品。目前,进口CTD温盐深剖面仪、ADCP等海洋仪器设备在我国还有占有很大的市场份额。但令人欣喜的看到,通过近些年来国内相关科技企业的共同努力,在部分海洋传感器领域已经做到了国产代替,其实验室测量精度已与国外同类产品不相上下,与世界先进水平也已相差无几,只是其稳定、可靠性还需要进一步提升。结语要解决海洋领域核心关键技术受制于人的问题,关键是增强科技攻关能力,强化自主创新成果的源头供给。在全球范围内传感器有超过2万亿的市场规模,我国传感器相关企业应抓住机遇,加强技术团队的学科交叉与协同攻关,强化新原理、新方法创新与已有技术的完善,多项并举才能掌握海洋科技发展主动权,合力解决海洋传感器领域的“卡脖子”问题。未来,我国将基于创新的光电集成芯片和光学传感原理,基于光电集成芯片技术,依靠发展成熟的集成电路的制造设备与工艺水平和在中国国产化的集成电路芯片制造水平,结合我国已搭建起的芯片产业链,通过国内外的密切合作,开发具有自主知识产权的芯片级海洋物理、化学和微生物传感器,并且实现微型化与国产化,应用到高端智能装备的制造领域。
  • 北京怀柔着力发展高端仪器装备和传感器产业
    记者5月25日从北京市怀柔区获悉,北京怀柔将着力发展高端仪器装备和传感器产业,打造高端科学仪器装备产业集聚区和科技成果转化示范区。  在近日举行的怀柔区高端仪器装备和传感器产业推介会暨重点企业新品发布会上,怀柔区重点企业北京卓立汉光仪器有限公司、中科艾科米(北京)科技有限公司、北京中科长剑环境治理技术有限公司等6家公司现场发布新品。  中科艾科米(北京)科技有限公司发布闭循环无液氦扫描探针显微镜系统等10余款新产品。该公司创始人郇庆介绍说:“闭循环无液氦扫描探针显微镜系统可完美替代湿式的杜瓦系统,具有减震效果好、温度稳定性高、任意角度安装、扩展性强等优势,可以长时间维持稳定的低温环境,保证连续实验。氦气循环系统也解决了氦气来源的问题,仅需要极少量的氦气即可实现液氦制冷的效果。其关键性能指标超越了国外同类型产品。”  高能脉冲紫外线消毒机器人是北京中科长剑环境治理技术有限公司发布的新一代消毒机器人产品。该机器人采用可升降紫外消毒灯,可满足人机共存下空气循环消毒,无人情况下环境物表消毒。“高能脉冲紫外线消毒系统专利技术,解决了传统紫外线消毒设备能耗高、强度低、消毒耗时长效率低且产生臭氧的缺点,具有高能、高效、快速、无臭氧、无污染的消毒特点,同时兼有去除挥发性有机化合物和除味儿功能,应用场景广泛,填补了国内空白,达到国际先进水平。”公司总经理朱金才表示。  北京市怀柔区经信局局长杨惠芬透露,目前,《北京怀柔国家高端科学仪器装备产业示范区建设方案》编制完成,并已启动申报建设工作。怀柔区以怀柔科学城建设为重要契机,把科学城建设过程作为科技创新成果转化的过程,通过实施龙头企业领航工程、“专精特新”企业锻造工程、“苗圃”企业培育工程,形成企业梯次化发展格局。
  • 遥感卫星大型传感器测试用大孔径积分球均匀光源
    背景图1 卫星遥感在制造用于卫星和望远镜的传感器的过程中,最重要的步骤之一是表征传感器的辐射性能,并建立到达传感器的光与传感器的数值输出之间的关系。 某国家航天局需要一套积分球均匀光源系统,用于在大型传感器的开发中进行校准测试。 开口尺寸需要1.5 米才能使发光面完全覆盖整个设备。另外还要求控制外部温度,确保可靠的长期使用。图2 成像传感器Labsphere(蓝菲光学)解决方案图3 蓝菲光学研发的大孔径积分球均匀光源图4 最大的辐亮度为此开发的系统需要大的积分球,获得超大开口端和总共 37 个灯以实现测试所需的均匀性和光谱辐射。Labsphere(蓝菲光学) 善于定制产品的开发,该系统具有以下独特功能:通过两个侧面安装的电动活塞自动调节高度;稳定性好,具有调平千斤顶工业脚轮;包含软件和硬件的完全集成的计算机系统;可控制灯产生的热量:开口周围的定制散热器,用于吸收大部分热量开口处的手动百叶窗,用于保护用户和设备免受测试后过热的影响后半球隔热罩,防止意外伤害三个温度探头来监测积分球内部的热量三个外部鼓风机连接到积分球周围的通风口具有带宽和 FOV 滤光片的可拆卸硅探测器;具有热电冷却功能的可拆卸 InGaAs 探测器;更新了具有附加功能的 HELIOSense 软件。特点先进的热重定向系统,可防止组件和材料损坏并保护用户免受意外伤害;高度可调和开口端缩孔器,可以灵活地对各种不同的传感器系统进行测试;具有针对客户应用程序优化的软件,最大限度地提高效率和可用性;可控制和获得宽光谱,通过 Labsphere(蓝菲光学) 的 HELIOSense 软件微调光谱辐射、色温和波长分布;满足所有光谱要求, 97% 以上的均匀性提供覆盖可见光和红外带内辐射度;照度 (lux)176,737光谱辐射度(W/m2-sr)1,605面均匀性 (100% Power)97.32%面均匀性(10% Power)95.08%角度均匀性 (±10°)99.5%角度均匀性 (±45°)99.2%短期(5s) 稳定性99.995%长期(30s) 稳定性99.994%硅探测器非线性度0.42%InGaAs 探测器非线性度0.37%最高外部温度39.5°C总灯功率17,680W
  • 易科泰受邀参展农业传感器暨2021年智能农业国际学术会议
    2021年5月20日-22日“国际工程科技战略高端论坛--农业传感器 暨2021年智能农业国际学术会议”在天津召开,参会的国内外专家围绕农业传感器、农业人工智能、农业机器人、精准农业与智慧农场等主题做精彩汇报,易科泰(西安)遥感技术研发中心受邀参展此次会议,并与参会专家就光谱成像和遥感技术在智慧农业领域的应用做深入交流。西安易科泰光谱成像与无人机遥感技术研究中心,基于自主研发平台技术(包括专业遥感无人机、PTS(Plant-To-Sensor)技术、STP(Sensor-To-Plant)技术)和国际先进光谱成像传感器技术,为智慧农业、作物表型成像分析、作物生理生态、遗传育种、生态环境监测等领域提供全面解决方案。Ecodrone® 高通量无人机遥感平台-Ecodrone® UAS-4轻便型无人机遥感平台,可搭载多光谱成像、Thermo-RGB成像传感器-Ecodrone® UAS-8无人机遥感平台,可搭载一体式高光谱成像-红外热成像等-Ecodrone® UAS-8 Pro,高负载、长续航,可搭载AisaKestrel高分辨率大视野高光谱成像等PhenoTron® 实验室/温室表型成像与种质资源检测分析平台PhenoTron-HT作物表型分析与种质资源检测平台,高通量高光谱成像与红外热成像分析PhenoTron-HF作物表型分析与种质资源检测平台,一站式、高通量高光谱成像、叶绿素荧光成像与多光谱荧光成像分析PhenoTron-RS作物表型成像分析平台,Plant phenotyping from shoots to roots,客户定制作物根系-植株表型分析PhenoPlot® 温室/大田作物表型分析平台-PhenoPlot轻便型表型分析系统,ready-to-go,具备俯视和侧式旋转两种平台-PhenoPlot移动式、固定式表型分析平台,适配多场景温室或大田智慧农业应用-PhenoPlot-XYZ双轨悬浮轨道式表型分析平台,可选配SoilTron© 小型蒸渗仪、自动浇灌系统等-Thermo-RGB红外热成像与RGB成像融合分析技术,可精准分析冠层阳光照射叶片、阴影叶片及土壤温度信息、覆盖度、绿度指数等信息
  • 美研制出生物体与电子设备相结合的湿度传感器
    研究人员将真菌孢子与石墨烯量子点结合在一起,制造出了一种极其微小的生物机器人。   &ldquo 这是一个令人着迷的设备,你可以说它是一个传感器,也可以说它是一个类似于机械战警般的生物机器人。&rdquo 美国伊利诺伊大学芝加哥分校的科研人员日前将真菌所产生的孢子与石墨烯量子点结合在了一起,制造出了一种极其微小的生物机器人。该装置有望用于环境监测、食品安全等领域。相关论文发表在自然出版集团旗下的《科学报告》期刊上。   随着纳米技术的发展,制造出肉眼不可见的微型机器人已经成为一件可能的事情,将生物体与无生命的机器相结合也成为解决问题的一个备选方案。新研制出的这种装置主要由孢子和石墨烯量子点组成,研究人员首先从细菌中提取孢子,再将石墨烯量子点放置在孢子的表面,而后在孢子两侧各贴上一个电极。这样,当孢子周围的湿度下降时,孢子就会收缩,其中的水分会被压出。由于孢子缩小后体积变小,两侧的量子点会紧靠在一起,电极的导电性也会立即发生变化,从而达到了监测湿度的目的。研究人员将这个设备称为&ldquo 纳米电子机器人设备(NERD)&rdquo 。   该研究论文第一作者、伊利诺伊大学芝加哥分校副教授维卡斯· 贝瑞说:&ldquo 在湿度发生改变的那一刻,我们就能立即得到一个清晰准确的反馈。这个反应速度比目前最先进的人造吸水聚合物制成的传感器快10倍以上。而且与人造传感器相比,这种生物传感器在极端低压以及极低湿度下具有更加出色的灵敏度。&rdquo   物理学家组织网近日报道称,目前常见的湿度传感器的灵敏度随着湿度的增加而逐渐增强,而NERD的灵敏度在低湿度情况下反而更加灵敏。这种传感器能够适应各种环境,甚至是真空,这在防腐或食品质量监测领域有重要应用前景。对于运行在太空中的设备而言,这些传感器同样非常重要,因为在这些地方湿度的变化是预示泄漏的一个重要信号。   贝瑞说:&ldquo 这种传感器具有广泛的应用前景,此类研究为人们探索生物体与电子及机械设备的结合提供了一个新的角度。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制