当前位置: 仪器信息网 > 行业主题 > >

流量控制传感器

仪器信息网流量控制传感器专题为您提供2024年最新流量控制传感器价格报价、厂家品牌的相关信息, 包括流量控制传感器参数、型号等,不管是国产,还是进口品牌的流量控制传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流量控制传感器相关的耗材配件、试剂标物,还有流量控制传感器相关的最新资讯、资料,以及流量控制传感器相关的解决方案。

流量控制传感器相关的论坛

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 差压式流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 差压式流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 电子流量控制器中的流量传感器 —— 差压式流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][/font][font=宋体]电子[/font][font='Times New Roman'][font=宋体]流量控制[/font][/font][font=宋体]单元的[/font][font='Times New Roman'][font=宋体]流量测量[/font][/font][font=宋体]原理[/font][font='Times New Roman'][font=宋体]和[/font][/font][font=宋体]常见流量传感器[/font][font='Times New Roman'][font=宋体]的原理[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量计(节流式流量计)[/font][/align][font='Times New Roman'][font=宋体] 采用电子流量控制方式[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],[/font][/font][font=宋体]进样口、检测器或者其他辅助部件单元中,均安装有[/font][font='Times New Roman'][font=宋体]电子流量控制[/font][/font][font=宋体]单元[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]可以给进样口、色谱柱、检测器以及特殊部件提供准确和稳定的气体流量。[/font][font=宋体] 气体流量的大小可以由流量控制单元内置的流量计予以测定,流量计的具体形式较多,其中[/font][font='Times New Roman'][font=宋体]比较常见的为差压式流量计。[/font][/font][font='Times New Roman'][font=宋体] 差压式流量计是工业生产中[/font][/font][font=宋体]用以测定[/font][font='Times New Roman'][font=宋体]气体、液体和蒸汽流量的[/font][/font][font=宋体]较为常见[/font][font='Times New Roman'][font=宋体]的[/font][/font][font=宋体]一类[/font][font='Times New Roman'][font=宋体]流量计[/font][/font][font=宋体],包括节流式流量计、均速管流量计、弯管流量计等。其中使用最多的是节流装置和差压计组成的节流式流量计[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] 节流式流量计具有结构简单、工作可靠、成本低、易标准化的优点,在工业生产中应用较为广泛。其[/font][font='Times New Roman'][font=宋体]基本原理如图[/font]1[font=宋体]所示,管路中如果存在截面积小于管路的[/font][/font][font=宋体]节流装置[/font][font='Times New Roman']R[font=宋体],[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]流体通过[/font][/font][font=宋体]该节流装置[/font][font='Times New Roman'][font=宋体]时,在[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]的前后[/font][/font][font=宋体]两端[/font][font='Times New Roman'][font=宋体]将产生一定的压力差。[/font][/font][font='Times New Roman'][font=宋体] 在一定的流体参数条件之下([/font][/font][font=宋体]节流装置的[/font][font='Times New Roman'][font=宋体]尺寸、压力测量位置、[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的管路状况),[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的压力差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']p[/font][font=宋体]与流体[/font][font='Times New Roman'][font=宋体]流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]之间有[/font][/font][font=宋体]确[/font][font='Times New Roman'][font=宋体]定的函数关系。因此可以通过测量[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的差压来确定流体的流量。[/font][/font][align=center][img=,298,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911348571_4335_1604036_3.jpg!w684x403.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]差压式流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]节流装置两端[/font][font='Times New Roman'][font=宋体]压力差[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,170,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010913553235_7720_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [/font][font='Times New Roman']Α[/font][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]—— [/font][font='Times New Roman'][font=宋体]流体的流量系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']ε[/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]可膨胀性系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']A[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]管路截面积[/font][/font][font='Times New Roman'] ρ [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]流体密度[/font][/font][font='Times New Roman'] Δ[/font][font='Times New Roman']p[/font][font=宋体] [font=宋体]—— 节流装置两端的压力差[/font][/font][font=宋体][font=Times New Roman] F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体的体积流量[/font][font=宋体] 该公式中流量系数、可膨胀系数与流体的粘度、可压缩性、温度均有关。[/font][font=宋体] 差压式流量计适用于性质和状态均匀的牛顿流体的流量测量,一般不适用于流体脉动较大的场合。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量传感器[/font][/align][font=宋体][font=宋体] 随着微电子[/font][font=宋体]——微机械系统的发展,差压式流量计目前可以被制作成体积较小的单个电子元件——流量传感器,可以安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口流量控制单元或者系统辅助流量控制单元中,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体] 流量传感器内置有微气体阻尼器,代替经典差压式流量计的节流装置,阻尼器的两端集成两个微压力传感器,测定阻尼器两端的压力差。[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统根据实际工作过程中使用的气体种类(不同的气体粘度和可压缩系数)、环境温度等参数,对阻尼器压力差进行计算和修正,获得正确的气体流量。[/font][align=center][img=,389,98]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911232086_5053_1604036_3.jpg!w690x204.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体][font=宋体]流量传感器一般安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口电子流量控制单元或辅助流量控制单元内部,与微电磁阀等部件构成负反馈控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的指令协调下多个部件联合工作,用以提供流量准确、重现性良好的气体,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,526,177]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911470920_3574_1604036_3.jpg!w690x232.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]流量传感器在流量控制单元中的位置[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]差压式流量计的特点和使用注意事项[/font][/align][font=宋体][font=宋体] 与传统的机械阀方式调节流量控制器相比较,电子流量控制器有更高的精密度和重现性,在保留时间要求较高的分析应用场合下(例如复杂样品的[/font][font=Times New Roman]PONA[/font][font=宋体]分析,多阀多柱的复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析系统等),有更好的应用表现。[/font][/font][font=宋体][font=宋体] 差压式流量计组成元件较少,结构比较简单,长期运行的可靠性较高,装配差压式电子流量计的电子流量控制器的故障率较低。通过良好的电气[/font][font=Times New Roman]-[/font][font=宋体]气流控制设计,差压式流量计可以获得较好的惯性,压力[/font][font=Times New Roman]-[/font][font=宋体]流量调节速度较快。差压式流量计的流量测量范围较大,适用色谱分析方法的范围较广。[/font][/font][font=宋体] 使用带有电子流量传感器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],需要注意以下几个方面的问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型的配置信息必须准确[/font][/font][font=宋体][font=宋体] 由公式[/font][font=Times New Roman]1-1[/font][font=宋体]可知,气体流量与节流装置(阻尼器)两端的压力差与气体种类、环境温度等参数有关,使用不同种类的气体,流量——压力差的特性不同。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的硬件[/font][font=Times New Roman]/[/font][font=宋体]软件配置需要正确指定正确的气体类型,否则最终测定的气体流量数值不正确。[/font][/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]流量——压力需要进行校准[/font][/font][font=宋体][font=宋体] 色谱系统在长时间运行之后,有可能存在电子元件电气性能变化,从而造成流量传感器测定的阻尼两端的压力值的偏差,进而导致流量值测定发生错误,在必要的情况下需要运行压力[/font][font=宋体]——流量的校准。[/font][/font][font=宋体][font=Times New Roman] 3 [/font][font=宋体]气源的要求[/font][/font][font=宋体][font=宋体] 流量传感器要求气源洁净,操作时尽可能去除气体中的水分、[/font] [font=宋体]油污等有机物杂质和固体颗粒物,以避免损坏压力传感器和堵塞阻尼,造成流量测量产生一定误差。[/font][/font][font=宋体]避免气源或管路气流压力、流量的瞬间剧烈变化,可能对流量计造成较大的压力和流量冲击。[/font][font=宋体]气源压力不可超出色谱系统允许输入压力,避免损坏流量计中的压力传感器。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体]本文简单介绍压差式流量测量的原理,和压差式流量传感器的原理和使用注意事项。[/font][font='Times New Roman'] [/font]

  • 气相色谱仪流量控制原理与维护 —— 压力传感器

    气相色谱仪流量控制原理与维护 —— 压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力传感器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]压力传感器是电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或[/font][font=Times New Roman]EFC[/font][font=宋体])的重要组成元件,目前常见[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配备的压力传感器主要为压阻式传感器,其灵敏度高、分辨率高、体积小、工作频带宽、响应速度快。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]维修人员在检查或维修电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]过程中,当拆解或者检查电子流量控制器时[/font][font=宋体]——不论是进样口流量控制器或者检测器流量控制器,都可以观察到如图[/font][font=Times New Roman]1[/font][font=宋体]所示的元器件,尺度大约[/font][font=Times New Roman]10mm*10mm[/font][font=宋体]左右,此即为压力传感器,用来测定气体压力和协助控制气体流量。[/font][/font][align=center][img=,189,150]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231551479727_3572_1604036_3.jpg!w531x423.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]压力传感器外观[/font][/font][/align][font=宋体]目前常见[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配备的压力传感器主要为压阻式传感器,其灵敏度高、分辨率高、体积小、工作频带宽、响应速度快。压阻传感器的工作原理基于压阻效应,压力敏感元件是使用集成电路工艺在半导体材料的基片上制成的扩散电阻,当受到流体压力作用于敏感元件时,扩散电阻的阻值发生对应的变化。[/font][font=宋体][font=宋体]对于某个确定的导电材料,其电阻值的变化率可以由公式[/font][font=Times New Roman]1[/font][font=宋体]决定:[/font][/font][font=宋体] [/font][img=,240,76]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231551556750_971_1604036_3.jpg!w600x191.jpg[/img][font=宋体] [/font][font=宋体][font=宋体]公式[/font] [font=Calibri]1[/font][/font][font=宋体][font=宋体]公式中[/font][font=Times New Roman]R [/font][font=宋体]为电阻值、ρ为电阻率、[/font][font=Times New Roman]l[/font][font=宋体]为导电材料长度、[/font][font=Times New Roman]s[/font][font=宋体]为导电材料截面积。[/font][/font][font=宋体]对于金属电阻(常见于工业测量中使用的金属应变片),上式中的[/font][font=宋体]Δ[/font][font=宋体][font=宋体]ρ[/font][font=Times New Roman]/[/font][font=宋体]ρ项数值较小,即电阻率变化较小,而尺度的变化率([/font][/font][font=宋体]Δ[/font][font=宋体]l/l和[/font][font=宋体]Δ[/font][font=宋体]s/s[/font][font=宋体])较大,所以金属电阻阻值的变化主要由其尺寸变化率引起。而对于半导体电阻,受力时其尺寸变化率较小,而电阻率变化率([/font][font=宋体]Δ[/font][font=宋体][font=宋体]ρ[/font][font=Times New Roman]/[/font][font=宋体]ρ)较大,这就是压阻式传感器的基本工作原理。[/font][/font][font=宋体][font=宋体]当压力作用于半导体硅晶片时,硅晶体晶格发生变形,是载流子产生不同能谷之间的散射,载流子的迁移率发生变化,从而使硅晶片的电阻率发生变化。对于半导体电阻,其压阻系数较大,压阻传感器的灵敏度是金属应变片灵敏度的[/font][font=Times New Roman]50-100[/font][font=宋体]倍。[/font][/font][align=center][font=宋体]压阻式传感器的结构[/font][/align][align=center][font=宋体] [/font][/align][font=宋体]压阻传感器的压力敏感元件是采用集成电路工艺在半导体基片(硅晶片)上制成的扩散电阻,扩散电阻依附于弹性元件才能工作。单晶硅材料纯度高、功耗低、滞后和蠕变小、机械稳定性好,传感器的制造工艺和硅集成电路工艺有很好的兼容性,所以扩散硅压阻传感器作为检测元件的压力测试仪表在工业测量领域得到广泛应用。[/font][align=center][img=,221,213]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231552062434_3094_1604036_3.jpg!w332x320.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]压阻传感器的结构[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Times New Roman]2[/font][font=宋体]为压阻式传感器的机构示意图,在硅膜片上用离子注入和激光修正方法形成[/font][font=Times New Roman]4[/font][font=宋体]个阻值相等的扩散电阻,并连接成惠斯登电桥形式,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,215,194]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231552138775_83_1604036_3.jpg!w690x624.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]惠斯登电桥[/font][/font][/align][font=宋体][font=宋体]使用[/font][font=Times New Roman]MEMS[/font][font=宋体]技术在硅膜片上形成一个压力室,一测与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]连(或真空),一侧与取压口相连,此结构即为硅杯。当待测压力作用于膜片上,膜片发生部分拉伸和部分压缩,电桥失去平衡,产生输出电压,电压的大小反应了膜片受到的压力情况。该电路一般采用恒电流工作方式,可以抑制环境温度的变化对传感器带来的影响。[/font][/font][align=center][font=宋体]压阻传感器的使用注意事项[/font][/align][font=宋体][font=宋体]压阻传感器具有灵敏度高、分辨率高、体积小、工作频带宽、测量电路以及传感器一体化等优点。压阻传感器可以测量[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的微小压力变化,频率响应高,可以测量数十[/font][font=Times New Roman]kHz[/font][font=宋体]的脉动压力,其有效面积可以做的很小,可以做到[/font][font=Times New Roman]1[/font][font=宋体]平方毫米左右。对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]得到高精度高灵敏的气体流量和压力控制非常有益。[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]工作者使用电子流量方式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]时,需要注意避免气源压力过高或者过于剧烈的变化,造成传感器损坏;注意控制气源质量加强维护,避免水、油污或者细小的固体颗粒物进入色谱仪流量控制器内,造成传感器损坏。在使用电解水方式的气体发生器时,尤其需要注意仪器的维护,发生器故障或者维护不足导致气源中含有大量水,对于压力传感器而言是致命的。电子式的压力传感器,随着不断的使用,还存在零点漂移问题,造成压力显示不正确或者出现压力显示为负值等异常现象,需要色谱工作者进行零点校正。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]压阻式传感器的原理和使用注意事项。[/font]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 质量流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 质量流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]电子流量控制器中的流量传感器 [/font][font=Times New Roman]—— [/font][font=宋体]质量流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的电子流量控制单元的流量测量原理和常见流量传感器(质量流量计)的原理[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]质量流量计[/font][/font][/align][font='Times New Roman'][font=宋体]工业监控中常见的容积式、叶轮式、涡街式流量计都被用来直接测定流体的体积流量(压差式流量计可以通过流体参数的转化计算获得质量流量),质量流量计与其不同,可以用来直接测定流体的质量流量,而不受流体密度、温度或者压力的影响。[/font][/font][font='Times New Roman'][font=宋体]质量流量计的压力损失较低、流量测量范围较大。内部无可动部件,可靠性和精度较好,可以用于较低气体流量的测量和控制。[/font][/font][font='Times New Roman'][font=宋体]质量流量计可以分成科里奥利质量流量计和热式质量流量计两类,可以用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/font][/font][font=宋体]的电子流量控制器[/font][font='Times New Roman'][font=宋体]中气体流量测定的是热式流量计([/font]Thermal Mass Flowmeters[font=宋体],[/font][font=Times New Roman]TMF[/font][font=宋体])。[/font][/font][font='Times New Roman'][font=宋体]热式质量流量计利用流体流过外热源加热的管路时产生的温度场变化来测量流体的质量流量;或者利用加热流体时流体温度上升某一数值所需能量与流体质量之间的关系来测定流体质量流量。[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计利用[/font][/font][font='Times New Roman'][font=宋体]热[/font][/font][font='Times New Roman'][font=宋体]传导原理测定气体的质量流量,即气体的放热量或者吸热量与该气体的质量成正比[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]被测定[/font][/font][font='Times New Roman'][font=宋体]气体流过[/font][/font][font='Times New Roman'][font=宋体]对称排布的两个或者多个温度传感器[/font][/font][font='Times New Roman'][font=宋体]表面[/font][/font][font='Times New Roman'][font=宋体],[/font][/font][font='Times New Roman'][font=宋体]在不同的质量流速下,温度传感器表面温度会发生不同变化。在一定的流量范围之内,温度变化与气体质量流量存在确定的对应关系,可以利用此原理来进行流量测定,其基本结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,352,249]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513235212_6069_1604036_3.jpg!w624x442.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]质量流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体]如图[/font]1-a[font=宋体]所示,在气体流经的管路中安装有加热器[/font][font=Times New Roman]Heater[/font][font=宋体],在其前后对称的位置,各安装一个温度传感器[/font][font=Times New Roman]TS[/font][/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]和[/font]TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]当气体流速为[/font]0[font=宋体]时,由于温度场分布是对称于加热器[/font][font=Times New Roman]Heater[/font][font=宋体],那么两个传感器的[/font][/font][font=宋体]测定[/font][font='Times New Roman'][font=宋体]温度相同,均为[/font]T[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]气体质量流量[/font][/font][font=宋体]逐渐增加时[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]气体将逐渐[/font][font='Times New Roman'][font=宋体]携带[/font][/font][font=宋体][font=宋体]加热器[/font][font=Times New Roman]Heater[/font][font=宋体]表面的[/font][/font][font='Times New Roman'][font=宋体]部分热量,[/font][/font][font=宋体]流量计内部[/font][font='Times New Roman'][font=宋体]温度场[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]对称性被破坏,温度传感器[/font]TS[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体]表面温度下降[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变成[/font]T[/font][sub][font='Times New Roman']1[/font][/sub][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]温度传感器[/font][font='Times New Roman']TS[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]表面温度上升[/font][/font][font=宋体][font=宋体],由[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font='Times New Roman'][font=宋体]变为[/font]T[/font][sub][font='Times New Roman']2[/font][/sub][font='Times New Roman'][font=宋体]。[/font][/font][font='Times New Roman'][font=宋体]在一定的[/font][/font][font=宋体]气体[/font][font='Times New Roman'][font=宋体]流量范围内,两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]([/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [font=Times New Roman]= [/font][/font][font='Times New Roman']T2[/font][font=宋体] [/font][font='Times New Roman']-[/font][font=宋体] [/font][font='Times New Roman']T1[/font][font=宋体] [/font][font='Times New Roman'][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]与流体的质量流量有确定定量关系[/font][/font][font=宋体]。[/font][font=宋体]两个温度传感器温度差[/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]会随着质量流量的增加而增加,[/font][font='Times New Roman'][font=宋体]当气体的质量流量趋向于无穷大时,两个温度传感器接触到的几乎都是未被加热的气体,温差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font='Times New Roman'][font=宋体]也趋向于[/font]0[font=宋体],如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,372,166]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513338640_4809_1604036_3.jpg!w690x307.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]温差与质量流量的关系特性[/font][/font][/align][font=宋体][font=宋体]由温差[/font][font=宋体]——质量流量关系特性曲线可知,[/font][/font][font='Times New Roman'][font=宋体]热式[/font][/font][font='Times New Roman'][font=宋体]质量流量[/font][/font][font='Times New Roman'][font=宋体]计[/font][/font][font='Times New Roman'][font=宋体]不适合分析[/font][/font][font=宋体]过高[/font][font='Times New Roman'][font=宋体]的气体流速。[/font][/font][font=宋体]测量微小气体流量由于信号微弱,也存在测量精度较低的问题。[/font][font=宋体]质量流量计测定的[/font][font='Times New Roman'][font=宋体]气体的质量流量[/font]F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'][font=宋体]与两个温度传感器的温度差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]关系式为:[/font][/font][align=center][img=,143,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513409949_3356_1604036_3.jpg!w690x138.jpg[/img][font='Times New Roman'] [font=宋体]([/font]1-1[font=宋体])[/font][/font][/align][font='Times New Roman'] [font=宋体]公式[/font]1-1[font=宋体]中:[/font][/font][font='Times New Roman'] F[/font][sub][font='Times New Roman']m[/font][/sub][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]气体的质量流量[/font][/font][font='Times New Roman'] E —— [font=宋体]加热器的功率值[/font][/font][font='Times New Roman'] Cp —— [font=宋体]气体的比热容[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']T[/font][font=宋体] [/font][font='Times New Roman'] [font=Times New Roman]—— [/font][font=宋体]温度差[/font][/font][font=宋体][font=宋体]随着现代微电子[/font][font=Times New Roman]-[/font][font=宋体]微机械技术的发展,出现了微型热分布式质量流量计,外观尺寸可以缩小到[/font][font=Times New Roman]cm[/font][font=宋体]级别,可以作为一个单独的电子元件,方便的安装在色谱仪电子流量控制器的线路板上,并且可以成功解决测定微小气体流量的问题。[/font][/font][font=宋体][font=宋体]其基本原理与热式质量流量计相同,但是加热部件和温度传感器部件的排布方式有所不同,其结构原理如图[/font][font=Times New Roman]3[/font][font=宋体]所示[/font][/font][align=center][img=,338,104]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011513483717_5810_1604036_3.jpg!w690x213.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]热分布式质量流量计结构图[/font][/font][/align][font=宋体]流量计的温度传感器在内部电气线路设计方面被连接成电桥方式,可以感知极微弱的温度差异,并且由于总体部件尺寸的缩小,微型热分布式质量流量计可以测定微小的气体流量。与热式流量计相似,热分布式质量流量计不太适合直接测定过高的气体流量。当需要测定较大流量时,需要配备有分流部件,可以较大范围扩展其测量范围。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]质量流量计的特点和[/font][font='Times New Roman'][font=宋体]使用注意事项[/font][/font][/align][font=宋体]质量流量计具有较高的流量测定精度,比较适合测定微小的气体流量,测量灵敏度较高,使用性能稳定可靠。可以安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口载气电子流量控制器中。[/font][font=宋体][font=宋体]比较差压式流量计,质量流量计的惯性较大,不容易实现迅速的流量控制;[/font][font=宋体]’气体的温度和压力变化对流量计的测量准确性影响较小。[/font][/font][font=宋体]质量流量计的使用注意事项:[/font][font='Times New Roman']1 [font=宋体]气体[/font][/font][font=宋体]的类型设置[/font][font=宋体][font=宋体]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],不同的载气具有不同的比热容,会对流量计的温度[/font][font=宋体]——流量响应关系带来一定的影响[/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体]在设定[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析方法时,需要在色谱仪硬件和色谱数据工作站软件中设置正确的载气类型。[/font][font='Times New Roman'] [/font][font='Times New Roman']2 [/font][font=宋体]质量[/font][font='Times New Roman'][font=宋体]流量[/font][/font][font=宋体]——压力[/font][font='Times New Roman'][font=宋体]校准[/font][/font][font=宋体][font=宋体]与差压式流量计相同,配置有质量流量计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]随着运行时间的增长,电气部件性能会发生逐渐变化,流量计内的管路散热情况也会因为堵塞、污染等问题产生差异,都会影响流量计的温度[/font][font=宋体]——质量流量关系,从而影响流量测定的准确性。[/font][/font][font='Times New Roman']3 [font=宋体]气源的要求[/font][/font][font=宋体]气源要求洁净、不含有油污、水分或者固体颗粒物,尽量避免气源压力和流量的瞬间剧烈变化造成流量计的损坏。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体]介绍[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制器内置质量流量计的基本原理和使用[/font][font='Times New Roman'][font=宋体]注意事项。[/font][/font]

  • 【原创大赛】气相色谱仪电子流量控制原理与维护 (三-五) 流量传感器和测控注意事项

    【原创大赛】气相色谱仪电子流量控制原理与维护   (三-五)  流量传感器和测控注意事项

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](三)[/font] [font=宋体]压力和流量传感器的位置[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]如何测量进样口压力和流量[/font][font=宋体] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]与常见的工业测量场合不同,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口的压力(流量)传感器并不处于样品流路之中,或者说压力(流量)传感器可能会直接接触样品,如图[/font]1[font=宋体]所示:[/font][/font][align=center][img=,690,242]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023467318_8346_1604036_3.png!w690x242.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]常见工业测量场合[/font][/font][/align][font=宋体][font=宋体]不论进样口采用手工流量控制器或者自动流量控制器,不论进样口使用压力表、转子流量计或者电子传感器,含样品气体都不会直接接触传感器表面。如图[/font]2[font=宋体]所示:[/font][/font][align=center][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023590096_8789_1604036_3.png!w690x213.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]进样口压力(流量)传感器的位置[/font][/font][/align][font=宋体]手工流量控制器经常采用的的压力测量单元是压力表,流量测量单元是流量计。[/font][font=宋体]电子流量控制器的压力测定一般是基于压阻式压力传感器的。核心部件类似应变片,不耐有机污染物和水。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体]柱流量的测量:[/font][font=宋体]柱流量的控制一般通过进样口压力的控制来实现。[/font][font=宋体]柱流量一般数值比较小,较小的流量和不容易测量准确。如果在色谱柱后检测器之前放置流量传感器,那么传感器一般难以承受色谱柱的高温,样品导致的污染,腐蚀等问题。[/font][font=宋体]另外压力或流量传感器一般会存在较大的死体积,会对气流的控制带来不良的影响。[/font][font=宋体]隔垫吹扫流量的测量:[/font][font=宋体]隔垫吹扫流量面临与柱流量较为类似的问题。[/font][font=Calibri] [/font][font=宋体]分流流量的测量:[/font][font=宋体]分流出口往往存在较大量的样品,可能会严重污染传感器。日常使用中,一定要注意分流出口捕集阱的使用和维护,以保护控制器。[/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] (四) 进样口是否漏气的判定[/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2030系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为例,讲述进样口泄漏检查的方法。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的缺陷[/font][/align][font=宋体]目前越来越多的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装了电子流量控制器,可以比较智能的感知到进样口的“比较严重”的泄漏问题,一般会发出报警、强制停机以利于实验人员进行确认和解决。[/font][font=宋体]但是不可以过分依赖电子流量控制器。[/font][font=宋体]可能有两种情况:微漏和实际上不漏。[/font][font=宋体]如果进样口漏气的情况比较微弱,那么电子流量控制器是不能感知到的,此时[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统也不会报警,但是实验数据会发生保留时间和峰面积的重复性不良。[/font][font=宋体]如果分析方法不良,造成电子流量控制器误报警。[/font][font=宋体]我们还是回顾一下电子流量控制的结构原理,如图1[/font][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025211084_352_1604036_3.png!w690x419.jpg[/img][font=Calibri] [/font][font=宋体] [/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]电子流量控制器开启后,流量控制器向进样口供给确定的流量,如果进样口压力升高到设定值以上,那么分流控制打开,使得进样口压力稳定在设定值。[/font][font=宋体]如果进样口存在微漏,那么分流控制器仍然可以控制保持进样口压力,那么[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会认为不漏气。[/font][font=宋体]如果分析方法中给定的进样口总流量过低,进样口的压力长时间不能达到设定值,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会错误的认为进样口存在泄漏,而产生误报警。特别需要注意的,使用小口径色谱柱时,一定要避免使用太小的分流比。[/font][font=宋体] [/font][align=center][font=宋体]进样口漏气的确认[/font][/align][font=宋体]Shimadzu的[font=Calibri][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2010[/font]或[font=Calibri]2030[/font]系列的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可以利用不分流方式或者直接注入方式,来确认进样口是否漏气。[/font][font=宋体]在仪器面板或者工作站,将进样口工作方式修改为“不分流”或者“直接注入”,当系统流量状态达到就绪之后,由于分流关闭的原因,进样口的总流量应该等于柱流量和隔垫吹扫流量之和。[/font][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025289045_632_1604036_3.png!w690x368.jpg[/img][font=Calibri] [/font][align=center][font=宋体]图2 进样口进样模式[/font][/align][font=宋体]如果在仪器面板或者工作站的监视器中观察到总流量大于柱流量和隔垫吹扫之和,那么进样口应该存在泄漏。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]不要过分依赖电子流量控制器。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体](五) [/font][font=宋体]进样口压力流量不稳定的原因[/font][/align][align=center][font=宋体]概述[/font][/align][align=center][font=宋体]进样口电子流量控制器的控制原理,和进样口压力流量不稳定的可能原因。[/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]进样口压力流量的控制原理[/font][/align][font=宋体]进样口电子压力(流量)控制系统是一个比较典型的闭环控制系统,大致的原理如图1所示:[/font][align=center][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030026598217_4950_1604036_3.png!w690x215.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体]图1 进样口流量压力闭环控制原理[/font][/align][font=宋体]以流量为例讲述:[/font][font=宋体]流量控制器在工作的同时,会不断的测量输出流量反馈回比较器,当系统的输出流量由于某种原因产生增加,比较器将感知这一变化,输送给流量调节器“降低流量”的命令,最终使输出流量稳定下来。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的延迟[/font][/align][font=宋体]在这个控制过程中,存在一个时间延迟的问题,比较器可以迅速的感知输出流量的变化,但是命令发送给流量控制器后。流量控制器开始动作(降低输出流量)与实际流量恢复动作之间是存在时间延迟的。在延迟的期间内,系统仍旧检测到流量偏大的现象,就会发出流量再次降低的指令,就会造成调节过度。最终就会观察到流量震荡的现象。[/font][font=宋体]实际仪器设计的时候,流量的感知和控制器动作之间特意设计一段时间的延迟,以满足实际硬件系统的要求,达到流量稳定。[/font][font=宋体] [/font][align=center][font=宋体]流量压力震荡的原因[/font][/align][font=宋体]当仪器的硬件系统出现时间延迟的较大变化(或者说系统阻尼变化),就会破坏控制,产生流量震荡。[/font][font=宋体] [/font][font=宋体]常见的原因有[/font][font=宋体]1 气源压力流量不稳定。[/font][font=宋体]任何控制系统都会对输入量的稳定性有一定要求,如不满足,系统难以稳定。[/font][font=宋体]2 堵塞造成系统阻尼变化。[/font][font=宋体] 分流部分、隔垫吹扫部分的堵塞,都可能导致流量(压力)震荡。[/font][font=宋体]3 漏气会造成系统阻尼变化[/font][font=宋体]4 外设的引入会影响阻尼,例如顶空,热解析,吹扫捕集,进样阀等部件。[/font][font=宋体]5 进样口输入流量太小,会使阻尼变化[/font][font=宋体]6 进样口工作与分流和不分流状态下,阻尼不同,如果进样口压力可以恒定,就不影响进样。[/font][font=宋体] [/font][font=Calibri] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]流量控制器的阻尼变化,是压力流量震荡的主要原因。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 气相色谱仪流量控制原理与维护 —— 压力测量元件 压力表和压力传感器

    气相色谱仪流量控制原理与维护 —— 压力测量元件  压力表和压力传感器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]压力测量元件[/font][/font][/align][align=center][font='Times New Roman'][font=宋体]压力表和电子压力传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统中的载气或者辅助气体控制器,一般需要装备有精确、可靠的压力测量元件,用以正确的显示流路压力。此外压力测量元件也是流量控制器[/font][font=Times New Roman]——[/font][font=宋体]尤其是电子流量控制器[/font][font=Times New Roman]——[/font][font=宋体]的重要组成部分,压力测量元件与比例电磁阀接受色谱系统的控制并协同工作,实现流路气体流量(或压力)的精确控制。[/font][/font][font='Times New Roman'][font=宋体]一般情况下,机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用机械式压力表,电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用压力传感器作为压力测量元件。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的外围气源、和某些外接设备中也会有压力测量元件,实时显示和辅助实现准确的压力(或流量)控制。[/font][/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]一[/font] [font=宋体]机械[/font][/font][font=宋体]流量[/font][font='Times New Roman'][font=宋体]式[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][/font][font='Times New Roman'][font=宋体]色谱仪的压力测量元件[/font][font=Times New Roman]——[/font][font=宋体]压力表[/font][/font][/align][font='Times New Roman'][font=宋体]压力表是一种以弹簧管为测量元件的指针式测量仪表[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]因其结构坚固、生产成本较低、性能可靠等特点,在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气流量控制和检测器流量控制器中较为常见。[/font][/font][font=宋体]压力表的工作原理为:[/font][font='Times New Roman'][font=宋体]当[/font][/font][font=宋体]待测[/font][font='Times New Roman'][font=宋体]气体压力发生变化时,表内的敏感元件(波登管、膜盒、波纹管)将会发生弹性形变,再由表内机芯的转换机构将压力形变传导至指针,引起指针转动来显示压力。压力表的结构如图[/font]1[font=宋体]所示。[/font][/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709527102_9907_1604036_3.jpg!w616x435.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [font=宋体]压力表结构图[/font][/font][/align][font='Times New Roman'][font=宋体]压力表中的弹簧管(也称为波登管)的自由端是封闭,通过机械传动装置驱动压力表指针。其内部压力发生变化时,弹簧管发生形变,自由端产生位移,其位移量与被测压力的大小成正比。通过机械传动装置驱动指针偏转,在度盘上指示出压力值,如图[/font]2[font=宋体]所示。[/font][/font][img=,513,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151709596556_7465_1604036_3.jpg!w690x236.jpg[/img][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]图[/font]2 [font=宋体]不同压力下压力表状态图示[/font][/font][/align][font='Times New Roman'][font=宋体]如果表壳内通有大气,压力表测出的压力为相对压力,如果将表壳密封并抽真空,压力表测出的压力就是绝对压力。一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力表均指示相对压力数值。[/font][/font][font=宋体]压力表一般用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的载气控制器、检测器气体控制器和气源减压阀上,需要注意其响应速度一般极低,不适合测定极速变化的气体压力。[/font][font=宋体]使用时需要注意气源清洁、气源的压力范围符合要求、尽量避免较为剧烈的压力冲击,以避免弹性元件发生故障造成压力显示数值不正确,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]关机或者长时间不使用时,需要将气源的压力表泄压以保护弹性元件。[/font][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]二、电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力测量元件[/font][font=宋体]——压力传感器[/font][/font][/align][font=宋体]机械流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],流量控制系统较为复杂,较为笨重,使用较多的气流控制阀和压力表,调节效率较低,并且重现性较差。电子流量式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],体积小,调控方法简易,重现性良好,目前在各个行业的实验室中逐渐得到较为广泛的应用。[/font][font=宋体][font=宋体]电子流量控制器主要由比例电磁阀、流量传感器和压力传感器以及对应的控制系统组成,如图[/font][font=Times New Roman]3[/font][font=宋体]所示(以压力传感器为例):[/font][/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209151710067697_8338_1604036_3.jpg!w690x146.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子流量控制器组成结构图[/font][/font][/align][font=宋体]某些固体(常见的材质是单晶硅片)收到力的作用后,其电阻值(或电阻率)会发生相应变化,这种现象称为压阻效应。压阻式传感器是利用固体的压阻效应制成的一种测定装置。[/font][font=宋体][font=宋体]现代的压力传感器采用集成电路工艺制成,测量电路和半导体硅片扩散电阻可以集成到零点几毫米大小的尺寸,能够感知[/font][font=Times New Roman]0.01kPa[/font][font=宋体]左右的压力变化,可以显著减小电子流量控制器的尺寸。压阻式传感器体积小、灵敏度较高,分辨率高,响应速度快,广泛的应用于航空、航天、化工、生物医学等多个领域。[/font][/font][font=宋体]需要注意压力传感器测定的气体,不能含有水、固体颗粒等杂质,避免剧烈的压力变化,长时间使用后,可能会产生一定的偏差,需要注意进行压力校准。[/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体][font=宋体]简单叙述机械流量和电子流量控制方式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的压力测量元件[/font][font=宋体]——压力表和压力传感器的基本原理和使用注意事项。[/font][/font]

  • 电子流量控制装置的流量校准

    一般认为,电子流量控制装置通过压力传感器和流量传感器可以获得相应的压力值和流量值。但实际上,对于从供应商处购买的传感器,都需要进行校准——因为未经校准的传感器测得的数值和实际数值可能并不一致。压力传感器稍微好一些,流量传感器则可能偏差较大。[font=微软雅黑, sans-serif]校准[/font][font=微软雅黑, sans-serif]在计量上的定义是在规定条件下,为确定计量器具示值误差的一组操作。即是在规定条件下,为确定计量仪器或测量系统的示值,或实物量具或标准物质所代表的值,与相对应的被测量的已知值之间关系的一组操作。在本文中,只进行简单的示意和举例,[color=red]说明流量传感器如何使示值接近真实值[/color],可能并不严格的遵循相应的法律和法规,同时与计量上的检定和校准也略有区别。[/font][font=微软雅黑, sans-serif]简单举例,对于未经校准的流量传感器,其信号值对应的流量是30ml/min,但通过精度和准确度较高的流量计测量,其实际流量可能是40ml/min,也可能是25 ml/min。见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/40/7e/a407ea8c51458ec224ca27729516c8e8.png[/img][/align]依上图所示,初始的流量传感器可以依据流量值-信号值做一条曲线(上图右中的实线);实际中,流量传感器在某一确定的信号输出值处,其流量可能会在一定范围内有偏差(上图右中的虚线)。换句话说,对于某一确定的实际流量(如200ml/min,见图中红线),流量传感器的信号输出值可能是3,也可能是3.5 —— 那么,电子流量控制装置流量的校准,指的就是找到其组成部件流量传感器在某一流量时的真正的信号输出值。实际操作中,一般在一定的温度、压力等条件下,为电子流量控制装置/流量传感器设定一个信号值,通过精度和准确度更高的流量计测量其实际流量;通过测定一系列的点形成信号-实际流量曲线,并将其存入电子流量控制装置内部,从而完成电子流量控制装置的流量校准。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/f1/2aef1c833fcb9d04d71b14b1f3509ac3.png[/img][/align]简单来说,电子流量控制装置/流量传感器的校准就相当于色谱分析中的标准曲线法:信号值相当于峰面积,气体流量相当于样品浓度。完成校准以后,电子流量控制装置则可以正常工作。当在仪器上设定一定的流量值之后,电子流量控制装置的比例阀调节开度,使流量传感器的信号值达到曲线上设定流量对应的信号值,从而完成调节。以上是本节的全部内容,最后需要说明的是,压力传感器和流量传感器校准的方法类似。对于电子流量控制装置而言,其校准极为重要,保证准确度可以确保分析的重现性,同时也便于分析方法的比较、讨论和移植。

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 美国MKS公司上游流量控制阀及其控制器的国产化替代

    美国MKS公司上游流量控制阀及其控制器的国产化替代

    [color=#990000]摘要:对标美国MKS公司的148J、248A和154A 系列上游流量控制阀以及244、250、946和651系列控制器,介绍了相应的国产化替代产品电子针阀和多功能高精度控制器,并介绍了国产化替代产品的相应特点和技术指标 。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、MKS公司上游流量控制阀[/color][/size] MKS上游流量控制阀是一类真空型电磁比例阀,如图1所示,主要有以下三个系列产品: (1)148J全金属流量控制阀:金属密封,流量范围0.01~20L/mim。 (2)154B大流量控制阀:橡胶密封,流量范围20~200L/mim。 (3)248D通用型流量控制阀:橡胶密封,流量范围0.01~50L/mim。[align=center][color=#990000][img=MKS上游气体流量控制阀,690,259]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251024178_4191_3384_3.png!w690x259.jpg[/img][/color][/align][align=center][color=#990000]图1 MKS公司上游流量控制阀[/color][/align][size=18px][color=#990000]二、MKS公司流量/压力控制器[/color][/size] MKS公司的流量/压力控制器是一类PID控制器,如图2所示,主要有以下4个系列产品: (1)244系列:手动PID控制,单通道控制,适配多种传感器,0~10VDC输入信号,手动/自动/外部控制模式,精度为满量程的0.25%,多个设定点(3或4),控制偏差指针显示。此型号系列控制器现已停产。 (2)250系列:手动PID控制,单通道控制,适配多种真空传感器,0~10VDC输入信号 ,手动/自动/外部控制模式,精度为满量程的0.25%,最多4个设定点,外部编程设定,数码显示测量值和控制偏差值。此型号系列控制器现已停产。[align=center][color=#990000][img=MKS流量压力控制器,690,102]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012251398451_7424_3384_3.png!w690x102.jpg[/img][/color][/align][align=center][color=#990000]图2 MKS公司流量/压力控制器[/color][/align] (3)946系列:自动PID控制,16位A/D采集,6通道控制,适配多种真空传感器,最多可同时监测6路传感器信号,0~10VDC输入/输出信号 , 手动/自动/外部控制模式,内部编程设定,数字显示测量值和控制偏差值,12路继电器输出,RS232/485通讯。 (4)651系列:自调节快速PID控制,16位A/D采集,单通道控制,适配多种真空传感器,0~10VDC输入/ 输出信号 , 手动/自动/外部控制模式,重复性为满量程的±0.1%,外部编程设定,数字显示测量值, 多路I/O接口,RS232/485通讯。[size=18px][color=#990000]三、国产化电子针阀替代MKS电磁控制阀[/color][/size] MKS公司的上游流量控制阀是一种传统的电磁阀,电磁阀最大的问题是磁滞比较大,会明显的影响线性度和控制精度。这些控制阀的整体价格较高,也没有相应的国产品牌。 为了实现上游流量控制阀的国产化替代并提高性价比,我们在针阀技术上采用数控步进电机来代替电磁阀,开发了一些列不同流量的电子针阀,如图3和图4所示,完全实现了国产化替代。[align=center][color=#990000][img=电子针阀,500,428]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252026101_430_3384_3.gif!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][img=电子针型阀技术指标,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252322209_7636_3384_3.png!w690x452.jpg[/img][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术参数[/color][/align][align=left][size=18px][color=#990000]四、国产化高精度PID控制器替代MKS控制器[/color][/size][/align] MKS公司的气体流量/压力控制属于专用控制器,只能满足真空领域内的气体流量和压力控制,尽管功能十分强大,但价格较贵。国产化替代的PID控制器,采用了更高精度的24位A/D采集器,控制器更趋于通用性,可实现温度和真空压力的同时控制,如图5所示。[align=center][color=#990000][img=VPC-2021系列控制器,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112012252599268_5639_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图5 国产VPC-2021系列温度/压力控制器[/color][/align] 国产高精度多功能PID控制器主要特点如下: (1)高精度:±0.05%满量程,24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID,分组输出限幅功能。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:支持20条工艺曲线,每条50段,支持段内循环和曲线循环。[hr/]

  • FID气相色谱流路的EPC压力控制和EFC流量控制哪个更优

    首先说明 :EPC,内部使用压力传感器和电磁比例阀,实现稳定的电子压力控制EFC,内部使用MEMS流量传感器和比例阀,实现稳定的流量控制部分厂家采用EPC和通径来计算的流量控制不在此讨论中。曾经请教过色谱技术人员,对方说氢气和助燃空气采用EFC流量控制合适。色谱柱载气采用EPC控制。论坛里有网友说EFC流量控制精度不高,也有网友说EFC是更新一点的先进技术。我的个人看法是氢气、空气和色谱柱载气使用EFC更好,流量更直观,EPC并不能完全反应流量。但是填充柱和毛细柱的内径差很多,是否毛细柱用EPC压力控制更好?大家怎么看

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 流量控制阀的工作特点及其原理

    流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。

  • 净水器如何实现流量控制

    净水器如何实现流量控制

    [font=宋体]净水器是我们日常生活中常用的设备之一,它可以将自来水中的杂质和污染物过滤掉,提供干净的饮用水。在净水器中,流量控制是非常重要的一项功能,它可以确保水的流量适中,保证净水器的正常运行。[/font][font=宋体]净水器中常用的流量控制器有霍尔流量计和光电流量计。霍尔流量计是一种基于霍尔效应的流量传感器,它通过测量液体通过管道时产生的磁场变化来确定流量。当水流经过霍尔流量计时,流体中的磁场会引起霍尔元件的电压变化,从而测量出流量大小。净水器中的霍尔流量计可以根据设定的流量范围来控制水的流量,确保净水器的正常运行。[/font][align=center][img=小型流量计,639,367]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041755402808_6964_4008598_3.jpg!w639x367.jpg[/img][/align][font=宋体]净水器中的流量控制是确保设备正常运行的重要功能。[url=https://www.eptsz.com]霍尔流量计[/url]和光电流量计是常用的流量控制器,它们可以根据设定的流量范围来控制水的流量,保证净水器提供稳定的饮用水。通过合理选择和使用流量控制器,可以提高净水器的效率和使用寿命,为我们提供更加健康和安全的饮用水。[/font]

  • 毛细柱进样口的电子流量控制(上)

    1 毛细柱进样口的基本结构在毛细柱进样口中,需要控制的气体流量包括三部分:载气流量、分流流量和隔垫吹扫流量。载气的作用是以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离;分流的作用是将气化后的样品按照一定比例排出进样口;隔垫吹扫的作用主要是消除进样时可能带入的杂质和消除进样口密封垫在高温时释放出的杂质。一般而言,载气、分流和隔垫吹扫的相对位置为:隔垫吹扫在最上方,载气在中间,分流管路在最下方。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/49/f5/a49f545f9ca474fccb8ad0ef635dede4.jpeg[/img][/align]前文谈到,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。扩展而言,毛细柱进样口的电子流量控制装置,也是在机械阀控制系统上发展而来。2 稳流阀-背压阀控制模式多数厂家在毛细柱进样口上使用的是稳流阀-背压阀控制模式进行流量/压力控制,即:采用稳流阀控制进样口总流量,采用背压阀调节进样口压力(柱前压),同时使用针型阀控制隔垫吹扫流量。其简单示意图如下:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/cf/34/acf346823f8dd0b62af5a4968371b6eb.png[/img][/align]我们说[color=#ff4c00]毛细柱进样口的电子流量控制装置,是在机械阀控制系统上发展而来[/color]。因此,在进行电子流量控制装置的设计时候,也遵循该种控制方式的原理,并且可以和相应的稳流阀-背压阀装置进行互换。3 安捷伦的电子流量控制装置(EPC)目前国内安捷伦的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]用户较多,使用非常的广泛。安捷伦的电子流量控制装置称之为EPC,其控制原理与稳流阀-背压阀装置类似,以下以安捷伦的电子流量控制装置(EPC)为例进行说明。在毛细柱进样口分流模式下,其EPC的原理图示意如下:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/2c/93/32c93ce1d2a0e0b2e228829584145743.png[/img][/align]对上图Valve为比例阀,FS表示流量传感器,PS表示压力传感器,上图分解如下:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/a9/ce/7a9ced7dff5f6d31a89ac0456615344a.png[/img][/align][font=微软雅黑, sans-serif](1)总流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]根据仪器参数设置(包括柱流量、分流流量/分流比、隔垫吹扫流量),采用 比例阀-电路控制-流量传感器 控制进入毛细柱进样口的总流量,使之达到设定值要求,即 总流量=柱流量设定值+分流流量设定值+隔垫吹扫流量设定值;以上为电子流量控制装置的流量模式,类似于机械阀中的稳流阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](2)柱头压/柱流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当进样口中有气体进入后,采用 比例阀-电路控制-压力传感器-气阻 控制比例阀开度,使柱头压/柱流量达到设定值;以上为电子流量控制装置的背压模式,类似于机械法中的背压阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](3)隔垫吹扫流量控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当进样口中有气体进入后,采用 比例阀-电路控制-压力传感器 控制比例阀开度,使压力传感器处压力达到一定值,通过气阻之后可以达到设定的流量;以上为电子流量控制装置的压力模式,类似于机械法中的稳压阀+固定气阻。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在总流量、柱头压/柱流量和隔垫吹扫流量达到稳定状态之后,分流出口的流量不需要进行测量,根据 总流量=柱流量设定值+分流流量设定值+隔垫吹扫流量 公式,出口流量就是分流设定值。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]一般而言,因为以上模式的柱头压/柱流量的调节是通过分流出口出的比例阀调节的,调节位置在出口处而非进口处,有文献称之为下游调节模式。[/font]以上是在毛细柱进样口分流模式下,其EPC的原理图示意。当在毛细柱进样不分流模式下,进样后的一段时间内,分流阀关闭,其工作状态见下图示意:[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/76/27/d7627b5cb1d1bdf468c5a2a05cdc7838.png[/img][/align]此种状态下,分流阀关闭,流量传感器不使用;柱头压/柱流量通过 比例阀-电路控制-压力传感器 控制;隔垫吹扫流量采用 比例阀-电路控制-压力传感器-气阻 控制;以上为电子流量控制装置的压力模式。当柱头压/柱流量、隔垫吹扫流量稳定后,总流量不需要经过测定,为两者之和。在不分流进样模式后期,分流阀打开,控制原理则与分流进样相同。

  • 雾化器流量控制

    请大家发表一下自己的见解:是用压力传感器控制还是质量流量计控制好,为什么?

  • 软管夹管阀在流体介质高精度压力和流量控制中的应用

    软管夹管阀在流体介质高精度压力和流量控制中的应用

    [align=center][b][img=采用夹管阀实现无菌流体系统中的高精度压力和流量控制解决方案,690,450]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181658154269_9598_3221506_3.jpg!w690x450.jpg[/img][/b][/align][size=16px][b][color=#000066][/color][color=#339999]摘要:针对卫生和无菌流体系统中柔性管路内的压力和流量控制,本文介绍了采用电控夹管阀的高精度控制解决方案。解决方案基于反馈控制原理,采用压力传感器或流量传感器进行测量并反馈给程序控制器,控制器驱动夹管阀来改变柔性管路的内径从而实现高精度控制。尽管解决方案只介绍了最基本的夹管阀闭环控制回路,但这种简单控制可以进行多种组合以适用于多种流体介质的压力流量控制。本文同时也介绍了夹管阀应用的局限性和改进方法。[/color][/b][/size][align=center][size=16px][color=#339999][b]=======================[/b][/color][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 夹管阀是一种打开或关闭流体路径,而阀体不会与流动介质接触的阀门,也就是流体管路内径的控制依赖于弹性管路外部的挤压压力。夹管阀主体内部不会接触到流体,仅有管路内部会接触流经的液体或气体,可确保流体不会受到污染,且能保持夹管阀的清洁,因此适合做为生物加工、食品工业、饮料工业、剂量系统、自动贩卖机、血液处理/分析、实验室分析、冲洗程序需无菌的生物制药等设备的阀门。与其他闸阀或活塞阀相比,使用夹管阀的主要优点是让阀体不会与腐蚀性流动介质接触,因此无论在使用寿命或卫生方面都更持久、干净。[/size][size=16px] 在夹管阀的实际应用中,往往是通过改变夹管阀挤压压力来调节软管的开度,以控制管路内[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]介质的输送流量与流速,同时也相应的改变了软管内部的背压压力。夹管阀只是作为一个调节流量和压力的执行器件,还无法进行管路内部压力和流量的闭环自动控制。[/size][size=16px] 为了采用夹管阀实现无菌流体系统中的压力和流量控制,特别是实现高精度的自动控制,本文将介绍一种闭环控制解决方案及其一些具体应用案例。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了高精度的控制流体介质管路中的压力和流量,本解决方案提出的控制系统如图1所示。解决方案设计的控制系统是一种最基本的控制结构,可以根据实际应用情况进行各种组合。[/size][size=16px] 图1所示的控制系统主要由泵、压力传感器、流量传感器、夹管阀、程序控制器和柔性管材组成,其各组件的功能如下:[/size][size=16px] (1)泵:主要用来驱动流体在柔性管路内流动,相当于一个进液源。[/size][size=16px] (2)压力传感器:测量柔性管路内流动液体的压力,并输出相应的压力测量信号。[/size][size=16px] (3)流量传感器:测量柔性管路内流动液体的流量,并输出相应的流量测量信号。[/size][size=16px] (4)夹管阀:夹管阀采用的是电控式夹管阀,可灵活调节挤压压力,对应最大可夹软管外径7mm,软管壁厚范围0.5~2mm,夹紧留隙调节为0.5~2mm。夹管阀可方便地调节运动滑块的初始位置,灵活适用不同壁厚尺寸的软管。24V直流供电,控制信号为0~5V或0-20mA。[/size][size=16px] (5)程序控制器:程序控制器采用的是VPC2021系列多功能超高精度PID真空压力程序调节器,可接入真空、压力、流量、温度和张力等47种传感器信号,具有串级控制、分程控制、比值控制等高级控制功能,具有控制程序功能和外部设定点功能,具有24位AD、16位DA和0.01%最小输出百分比。控制器自动计算机软件,可由计算机进行远程参数设置和运行操作。[/size][align=center][size=16px][color=#339999][b][img=夹管阀流体压力和流量闭环控制系统结构示意图,600,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181700229428_1520_3221506_3.jpg!w690x341.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 夹管阀流体压力和流量精密控制系统结构示意图[/b][/color][/size][/align][size=16px] 解决方案中的压力和流量控制系统的工作过程是进液通过泵的驱动使流体介质在柔性管道内流动,压力或流量传感器采集相应的压力或流量信号并传输给程序控制器,控制器根据设定值进行比较后输出控制信号驱动夹管阀动作,使管路内的压力或流量准确达到设定值。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 尽管上述夹管阀具有高精度的压力和流量的控制能力和响应速度快的特点,但由于夹管阀会改变柔性管路的内径大小,使得管路内部的背压增大,而这种压力的增大必须要在软管的可承受范围之内,否则很容易造成软管的爆裂或接口爆开。因此,更安全可靠的压力和流量控制方式是不使用夹管阀,而是直接控制进液压力,通过改变进液压力来调节管路内的介质压力和流量。这种进液压力调节有以下三种控制方式:[/size][size=16px] (1)采用转速可调节式泵来改变进液压压力。[/size][size=16px] (2)采用注射泵来改变进液压力和流速。[/size][size=16px] (3)采用进液容器顶部气压控制方式的压力控制器,同时连接外部压力或流量传感器形成闭环控制回路,以改变液池顶部加载压力实现压力和流量的自动控制。[/size][size=16px] 上述的三种控制方式中,顶部气压控制方式的技术优势最为明显,同样可以实现高精度的压力和流量控制,特别是可以应用到微小流量的快速和超高精度控制。[/size][size=16px] 另外,对于微流控芯片技术中所用的微小流量控制,往往会使用到小于1mm的很细软管,这些微细软管内的压力和流量控制则可能不太适合采用夹管阀,这时更适合采用注射泵或压力控制器形式。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 设备如何实现流量控制和缺水检测

    设备如何实现流量控制和缺水检测

    [size=24px][font=宋体]一些需要水位检测的设备,不仅要实现水量控制,还要检测容器里水位的状态。例如咖啡机,因为咖啡制作需要加水调和,所以咖啡机上通常会安装流量计和液位传感器,用于控制水量比例和储水箱缺水提醒。[/font][font=宋体]将液位传感器安装在容器的底部或侧面的低液位处,即可实现缺水检测功能,能点科技的液位传感器采用的是光学原理检测,灵敏度高,体积小精度高,功耗低,输出的高低电平信号。[img=,690,404]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311747227250_3097_4008598_3.jpg!w690x404.jpg[/img][/font][font=宋体][url=https://www.eptsz.cn/Product/89457.html][b]流量计[/b][/url]则是安装在容器底部连接水管处,将流量计的进出水口用水管连接,则可以检测具体出水量。流量计有霍尔式和光电式两种,可根据实际应用环境选择。[img=,690,369]https://ng1.17img.cn/bbsfiles/images/2022/10/202210311747370462_867_4008598_3.jpg!w690x369.jpg[/img][/font][/size]

  • 步进电机驱动比例阀在气腹机精密压力和流量控制中的应用

    步进电机驱动比例阀在气腹机精密压力和流量控制中的应用

    [color=#ff0000]摘要:针对目前气腹机的气压和流量调节控制精度较差的问题,本文提出了精度更高的气压和流量控制方法,并详细介绍了控制方法的详细内容和关键部件步进电机驱动比例阀的详细技术指标。通过这种新型的技术手段结合PID控制器可将压力和流量控制精度提高到±2%以内,且能进行任意点设定控制和全程自动运行。[/color][align=center][/align][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][align=center][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]气腹机是内窥镜腹腔手术时的必备设备,其作用是建立人工气腹,向腹腔内充入一定压力的二氧化碳使腹壁与脏器分开,并保持腹腔内的压力为手术提供足够的操作空间,且可以避免穿剌套管刺人腹腔时损伤脏器。在手术期间,需要根据不同的手术部位、腔体大小、病人体质、成人儿童等情况对二氧化碳的充入量或腹腔压力进行精确和精细化控制。目前市场上各种气腹机的气压和流量调节控制技术指标为:(1)气压调节范围:0~4kPa(30mmHg)。(2)气压控制精度:±15%。(3)流量调节范围:0~30L/min。(4)流量调节精度:±20%。从上述技术指标可以看出,目前气腹机的气压和流量调节精度较差,二氧化碳的排放量也较高。本文将针对气腹机存在的测控精度差的问题,提出精度更高的气压和流量控制方法,并详细介绍了控制方法的详细内容和关键部件步进电机驱动比例阀的详细技术指标。通过这种新型的技术手段可将压力和流量控制精度提高到±2%以内,且能最大限度减少二氧化碳排放量和全程自动运行。[size=18px][color=#ff0000]二、当前气腹机压力和流量控制方法及其改进[/color][/size]目前气腹机的压力和流量调节控制原理基本都基于动态平衡的流量调节法,如图1所示,即在腹腔上插入两根气腹针用作进气和出气通道,通过调节阀改变进气和出气流量使得气体在腹腔内达到一种动态平衡。[align=center][img=气腹机压力控制,500,76]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291707134807_247_3384_3.png!w690x106.jpg[/img][/align][align=center]图1 气腹机压力和流量调节控制原理[/align]由于气腹机的充气压力是略大于一个标准大气压的正压,因此在气腹机控压过程中,只需进气保持固定的微小流量而单独调节出气流量就可将压力精确控制到设定值。如果在按照设定值进行压力控制的同时还需按照要求控制出气流量,则需同时对进气和出气流量进行调节,这在不采用PID控制时很难实现,这也是很多目前气腹机控制精度差的主要原因,因此要保证气腹机压力和流量的控制精度和稳定性,最好能采用PID控制方法对进气和出气流量进行调节。另外,气腹机的控制精度受PID控制算法的影响之外,还会受到进气和出气调节阀的精度和压力传感器测量精度的严重影响。目前压力传感器可以做到很高精度和很小体积的芯片形式,这不在本文讨论范围之内,以下主要讨论调节阀的改进以提高气腹机控制精度。从图1可以看出,在进气和排气端分别配置一个调节阀。目前的调节阀主要有两种形式,一种是开关阀,即通过使阀门高频率的开启和关闭来进行流量调节;另一种是开度阀,即通过改变阀门的开度大小来渐变型的进行流量调节。通过在进气和出气端分别配置高频开关阀确实也能实现腹腔压力精密控制的效果,但无法对出气流量进行准确控制。因此,本文提出的改进方法是采用步进电机驱动的开度阀同时实现压力和流量的精密控制,整个控制装置的结构如图2所示。[align=center][img=气腹机压力控制,600,314]https://ng1.17img.cn/bbsfiles/images/2022/06/202206291707359411_2708_3384_3.png!w690x362.jpg[/img][/align][align=center]图2 改进后的气腹机压力和流量控制装置结构示意图[/align]从图2可以看出,在进行压力控制的情况下,可以固定进气比例阀的开度,PID控制器会根据压力设定值和压力传感器测量值自动调节出气比例阀,使得腹腔压力快速达到设定压力并恒定,同时也会根据腹腔的漏气情况自动调节出气比例阀使得腹腔压力始终保持稳定。在压力和流量同时需要控制的情况下,可以固定出气比例阀的开度(此开度大小根据设定压力和流量计算得到),PID控制器会根据压力设定值和压力传感器测量值自动调节进气比例阀,使得腹腔压力快速达到设定压力并恒定,在压力稳定后相应的出气流量也达到稳定。从上述改进方案可以看出,要实现进气和出气比例阀的同时控制,配置了双通道PID控制器,每一通道都具有正反向控制功能,由此可实现任意设定点的压力和流量自动控制。此改进方案的核心部件是步进电机驱动的小流量比例阀,型号为NCNV-20,其阀芯节流内径为0.9mm、响应时间(全关到全开)为0.8s、耐压为7bar、最大流量为50L/min、流量分辨率为0.1L/min、线性度为±2%、步进电机位移分辨率(单步长)为12.7um、控制信号为模拟信号0~10VDC和工作电源电压24VDC(小于12W)。[size=18px][color=#ff0000]三、总结[/color][/size]本文提出的气腹机压力和流量精密控制改进方案采用了标准的动态平衡控制方法,通过采用进气和出气流量的自动调节、双通道PID控制器和步进电机驱动的小流量比例阀,可同时实现对气腹机压力和流量的精密控制,控制精度可达到±2%以内,且不受腹腔漏气等因素影响。[align=center]~~~~~~~~~~~~~~~~~~~[/align]

  • 电子流量控制下的压力和流量换算

    在之前两节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理;同时介绍了电子流量控制装置常用的三种控制模式:流量模式、压力模式和背压模式。对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的使用者来说,无论是流量模式、压力模式或者背压模式,在仪器面板和工作站软件上,能够呈现出来的直观量化参数和进行沟通交流时候使用的参数最常用的为流量和压力两种——即载气/空气/氢气的流量是多少,色谱柱的柱头压/柱前压是多少等等。我们在使用各种机械阀操作仪器时候,接触的更多的是以压力来描述仪器的各种气体参数,当使用电子流量控制装置进行仪器操作时候,多数情况下呈现的是流量的数值。因此,可以说,即可使用流量来描述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的气体参数,也可以使用压力来描述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的气体参数。那么,压力和流量之间如何互通,如何进行转换,本节将进行介绍。一 流量和压力的简单对应以单气路通道电子流量控制装置的结构为例(见下图),如果同时安装了流量传感器和压力传感器,当采用流量传感器-控制电路-比例阀 来进行流量调节和控制的时候,可以通过压力传感器得到此时出口处的压力值;当采用压力传感器-控制电路-比例阀 来进行压力调节和控制的时候,可以通过流量传感器得到此时出口处的流量值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/87/c5/287c5a18955685b833e8f30de0e03dbc.png[/img]需要说明的是,这种情况下的流量值和压力值是分别通过传感器获得的,只是简单地测量,彼此之间没有换算关系。二 流量-压力曲线方式进行换算对于检测器(如FID)而言,在使用机械阀的情况下,部分厂家采用稳压阀-气阻的形式进行流量控制。即保持气阻不变的情况下,调节气阻前面的压力(调节稳压阀的压力)来改变进入检测器中的气体的流量,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/cc/03/acc0314d55eb29ef8f5eaf3b4338c7ed.png[/img]此种情况下,新仪器出厂时候,厂家都会附带压力-流量曲线表,便于用户通过调节稳压阀压力来调节流量。对于使用电子流量装置的仪器而言(见下图示意),在出厂之前,也需要进行压力-流量的校准,建立压力-流量曲线,并将其存入电子流量装置内部——即仪器面板上所显示出来的的流量值,在仪器内部的需要通过压力-流量曲线换算成压力值,再通过电子流量装置的比例阀进行控制。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d0/12/dd012c065b476f67ec9c7b9d96d573b2.png[/img]三 毛细管柱流量压力的换算和泊肃叶方程在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,如果使用毛细柱进行分析,经常会听到流量模式或者压力模式——这里所指的毛细柱分析的流量、压力模式与上一篇文章中所介绍的电子流量控制装置控制模式中的流量模式和压力模式并不相同——详细而言,毛细柱进样口的电子流量控制中并不存在简单的流量控制。进样口涉及到的流量中,抛开分流流量和隔垫吹扫流量,毛细柱的流量实际上采用的压力控制模式(或是背压控制模式)——即控制柱前压使毛细柱的流量达到设定的数值。具体而言,日常所说的毛细柱分析的流量、压力模式实际上指的是电子流量控制装置采用压力控制模式(或是背压控制模式),使毛细柱的分析实现恒压(恒定柱前压)、恒流(恒定柱流量)、程序压力(脉冲压力)、程序流量等功能。那么,电子流量控制装置是如何将压力转化为流量以实现恒流(恒定柱流量)和程序流量等功能的呢?涉及到这个问题,则需要用到泊肃叶方程(Poiseuille’sEquation)和理想气态方程(PV=nRT)共同推导出来的压力流量计算公式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/38/9e/7389eccf2dabe650c1455ba397c404a1.png[/img]通过以上公式,可以对毛细柱分析时候的压力和流量进行换算。同时,根据以上公式,还可以对毛细柱程序升温分析中流量和压力的变化进行探讨。对于确定了毛细柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,毛细柱的长度(L)和内径(r)都是常量;色谱柱出口压力[font=微软雅黑, sans-serif](P[size=12px]0[/size])[/font]、标准温度[font=微软雅黑, sans-serif](T[size=12px]ref[/size])[/font]和标准压力[font=微软雅黑, sans-serif](P[size=12px]ref[/size])[/font]亦为常量;气体的粘滞系数(η)则随着温度升高而增长;因此可以得出以下结论:(1)毛细柱程序升温中,如果柱前压恒定,温度升高,色谱柱流量降低。其变化趋势可见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/e5/3a/ce53a11a75879a7f8a9b33283476bf4f.png[/img](2)毛细柱分析中,如果柱前压升高,温度恒定,色谱柱流量升高。其变化趋势可见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/50/89/650897bd81b17567c041915585cc9ce9.png[/img]因此而言,在毛细柱程序升温分析中,当升温引起柱流量下降时候,可以通过提高柱前压来实现流量保持不变。四 一点题外话:毛细管柱分析中的线速度在不同厂家的电子流量控制装置中,一般会提供恒压和恒流量控制模式两种,但是有的厂家也提供了恒线速度控制模式。一般我们认为线速度和柱流量是等效的,认为载气线速度等于流量除以色谱柱截面积。实际上,载气柱流量的计算公式和线速度的计算公式并不一样,分析结果也会略有差异。计算公式见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/8c/4b/e8c4bf57847588010e77b7703111fffb.png[/img]根据色谱动力学理论中的范第姆特(van Deemter)方程[img]https://img.antpedia.com/instrument-library/attachments/wxpic/a7/6f/5a76f6e79a4631f7b81422335740126e.png[/img]塔板高度(H)与线速度(u)相关的,因此保证线速度(平均线速度)不变,则可以保持恒定的柱效(塔板数n=色谱柱长度L/塔板高度H)。以下是采用恒定流量和恒定线速度进行的同一样品的分析,在后期出峰的样品的保留时间略有差异。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/00/d8/400d87c33a1121ad6261a631bf327c0a.png[/img]以上是本节的全部内容,尤其需要说明的是,对于毛细柱分析,我们可以选择恒定流量、恒定压力或者恒定线速度等方式进行分析。无论采用何种方式进行分析,其都是电子流量装置进行计算后的结果,了解其计算原理,有利于更好的使用仪器

  • 设备如何实现流量控制和缺水检测

    设备如何实现流量控制和缺水检测

    [font=&][color=#333333]咖啡机是我们日常生活中常见的家用电器之一,而流量控制和缺水检测是咖啡机正常运行的关键。在咖啡机中,霍尔流量计是一种常用的传感器,用于实现流量控制和缺水检测的功能。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]首先,让我们来了解一下霍尔流量计的工作原理。霍尔流量计是一种基于霍尔效应的传感器,它利用电磁场的变化来测量流体通过的体积或质量。当流体通过霍尔流量计时,流体中的导电粒子(如离子或电子)会改变磁场的分布,从而引起霍尔元件的输出电压变化。通过测量输出电压的变化,我们可以得到流体的流量信息。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]其次,咖啡机中的霍尔流量计主要用于流量控制。在制作咖啡的过程中,我们需要控制水的流量,以确保咖啡的浓度和口感。通过将霍尔流量计安装在咖啡机的水管中,可以实时监测水的流量,并根据设定的参数来控制水的流量大小。当流量达到设定值时,控制系统会自动停止水的供应,从而实现精确的流量控制。[/color][/font][align=center][img=流量计,633,195]https://ng1.17img.cn/bbsfiles/images/2023/07/202307061351561653_2952_4008598_3.jpg!w633x195.jpg[/img][/align][font=&][color=#333333]最后,[url=https://www.eptsz.com]霍尔流量计[/url]还可以用于缺水检测。在咖啡机中,缺水会导致咖啡机无法正常工作,甚至可能损坏设备。通过在水箱中安装一个霍尔流量计,可以实时监测水的流量情况。当水的流量低于设定的阈值时,控制系统会发出警报或停止咖啡机的运行,以提醒用户及时添加水。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333]综上所述,霍尔流量计在咖啡机中起着重要的作用,实现了流量控制和缺水检测的功能。通过准确测量流体的流量,咖啡机可以制作出口感良好的咖啡,并保护设备免受缺水带来的损坏。随着技术的不断进步,我们相信霍尔流量计在咖啡机中的应用将会越来越广泛,为我们带来更好的咖啡体验。[/color][/font][font=&][color=#333333][/color][/font]

  • 微流控芯片进样装置高精度压力和流量控制器的国产化替代

    微流控芯片进样装置高精度压力和流量控制器的国产化替代

    [size=16px][color=#339999][b]摘要:针对微流控芯片压力驱动进样系统中压力和流量的高精度控制,本文提出了国产化替代解决方案。解决方案采用了积木式结构,便于快速搭建起气压驱动进样系统。解决方案的核心是采用了串级控制模式,结合高精度的传感器、电气比例阀和PID控制器,通过压力和流量的双闭环PID控制回路可实现微流控芯片内液体流量的高精度控制。另外,解决方案具有强大的拓展功能,可进行手动、自动、程序和周期控制,同时也具备芯片的温度控制功能。[/b][/color][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][color=#339999][b][/b][/color][/size][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 微流控芯片是将成百上千的微流道集成于以平方厘米为单位的芯片上,以实现样本的制备、分离、筛选、检测等功能,其特点在于可以用极少量的检测样本有效地完成各类检测,可取代常规的生化实验平台。微流控芯片中的微流道内径非常细小,可以实现低至1微米的空间细胞操作精度,因此在向微流道中进样时,对于流量的控制要求非常高。[/size][size=16px] 目前的微流控进样系统,主要是一些国外进口产品,如法国FLUENT公司基于传统的压力控制元件生产的MFCS-EZ流体驱动-精密压力控制器性能比较优良,达到稳定的时间可低至100ms,压力稳定误差小于0.1%,但价格昂贵;美国ELVEFLOW公司基于压电效应设计的OB1 MK3压力控制器性能更加优异,达到稳定的时间可低至35ms,压力稳定误差小于0.01%,但其功耗较高,售价更为昂贵。[/size][size=16px] 为了实现对微流控芯片内微流体压力和流量的高精度自动控制,特别是为了实现国产化替代,本文提出了一种压力和流量的串级控制解决方案。[/size][size=18px][color=#339999][b]2. 压力驱动的微流量精密控制工作原理[/b][/color][/size][size=16px] 微流控芯片中气压驱动进样系统的工作原理非常简单,如图1所示,即采用可调气压作为驱动力,控制一个装有液体的封闭容器中的气体压力实现液体驱动,控制液体向微流控芯片进行充注。[/size][align=center][size=16px][color=#339999][b][img=01.微流控芯片压力驱动进样系统工作原理图,500,267]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542286750_971_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 压力驱动进样系统工作原理图[/b][/color][/size][/align][size=16px] 充液过程中随着流阻的变化,负载也在不断改变,为保证流经微流控芯片液体流量的恒定在设定值,对应的驱动压力也应随时进行调节。[/size][size=16px] 在微流控芯片气压驱动进样系统中,针对不同的应用场景和要求,目前国外产品普遍采用了两种控制技术,一种是对驱动压力进行控制的开环控制技术,另一种是同时对压力和流量进行控制的闭环控制技术。[/size][size=16px] 如图2所示,在仅对驱动气压进行控制的进样系统中,是在进气端口增加了一个压力调节器。此压力调节器中集成了压力传感器、阀门和PID控制器,通过对高压气源的减压控制,由此用来精密调节和控制密闭容器上部的气体压力。[/size][align=center][size=16px][color=#339999][b][img=02.微流控芯片进样系统纯压力控制工作原理图,600,248]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541131358_1798_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 微流控芯片进样系统纯压力控制工作原理图[/b][/color][/size][/align][size=16px] 从图2可以看出,这种纯压力控制方式尽管可以调节微流控芯片内液体的流量,但无法获知具体流量是多少,这样一种开环控制形式更无法对液体流量进行高精度控制。[/size][size=16px] 为实现对微流控芯片内液体流量的精密控制,在上述开环控制形式的基础上,通过增加液体流量计和PID控制器,与压力调节器组成一个闭环控制回路,如图3所示。在此闭环控制回路中,PID控制器检测流量传感器信号并与设定值进行比较,通过PID控制算法计算后向压力调节器输出控制信号,压力调节器对进气气压进行调节,最终使微流控芯片内的液体流量在设定值处恒定。[/size][align=center][size=16px][color=#339999][b][img=03.微流控芯片进样系统压力和流量串级控制工作原理图,600,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271541419942_6786_3221506_3.jpg!w690x333.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 微流控芯片进样系统压力和流量同时控制工作原理图[/b][/color][/size][/align][size=16px] 从图3可以看出,这种压力和流量同时控制的工作原理采用了一个非常典型的PID串级控制(级联控制)结构,即压力调节器作为压力控制的PID辅助控制回路,同时压力调节器作为执行器与流量传感器和PID控制器构成PID主控制回路。这种PID串级控制结构常用于高精度控制领域中,所以采用这种串级控制方法可以实现微流体压力驱动进样系统流量的高精度调节和控制。需要说明的是流量传感器可以布置在微流控芯片的进口端或出口端,具体可以根据微流控芯片的具体结构来进行选择。[/size][size=18px][color=#339999][b]3. 解决方案[/b][/color][/size][size=16px] 从上述微流控芯片压力驱动进样系统的串级控制工作原理可知,采用串级控制方式在理论上可实现流量的高精度控制,而要实现这种高精度控制,还需要相应的硬件配置提供保证。为此,本解决方案提出的硬件系统结构如图4所示。[/size][align=center][size=16px][color=#339999][b][img=04.微流控芯片进样系统压力和流量串级控制系统结构示意图,650,366]https://ng1.17img.cn/bbsfiles/images/2023/06/202306271542005587_5164_3221506_3.jpg!w690x389.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 微流控芯片进样系统压力和流量串级控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图4所示的系统中,为实现高精度的压力和流量控制,解决方案中的关键部件配置如下:[/size][size=16px] (1)流量传感器:需根据流量的范围和控制精度需要选择合适的流量传感器,目前市场上有多种国内外的液体流量传感器可供选择。同时要求传感器具有相应的模拟量信号输出。[/size][size=16px] (2)压力调节器:压力调节器可选择电气比例阀,同样需要根据压力调节范围选择相应的型号。另外尽可能采用高精度和高速电气比例阀,特别是更快速度的压电式电气比例阀。[/size][size=16px] (3)超高精度PID控制器:在测量精度和控制精度都满足要求的前提下,主回路PID控制器精度将最终决定流量控制精度,如果PID控制器精度不够,则无法发挥传感器和压力调节器的精度优势。为了,本解决方案选择了超高精度的PID控制器,其具有24位AD、16位DA和采用双精度浮点运行的0.01%最小输出百分比。另外,此控制器具有PID参数自整定功能,并带有标准MODBUS通讯协议的RS485接口,可方便与上位计算机连接。[/size][size=16px] 通过上述高精度器件的配置,可很方便的搭建起微流控气压驱动进样系统并实现高精度的压力和流量控制。另外,采用超高精度PID控制器的高级功能,还可实现以下拓展功能:[/size][size=16px] (1)采用自带的计算机软件,可通过上位计算机直接进行界面操作,无需再进行编程。[/size][size=16px] (2)采用远程设定点功能,可实现手动旋钮调节方式的压力和流量控制。[/size][size=16px] (3)同样采用远程设定点功能以及外置一个周期信号发生器,可对压力和流量按照设定周期和幅度进行周期性变化。[/size][size=16px] (4)采用正反向控制功能以及外置一个TEC半导体制冷模组,可实现对微流控芯片的加热和制冷控制。[/size][size=18px][color=#339999][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案模块式结构以及高精度器件的配置,可灵活和快速搭建起微流控芯片进样系统,并可在很高的精度上实现微流控芯片压力驱动进样系统中的压力和流量控制。[/size][size=16px] 另外,依此解决方案所搭建的压力和流量控制系统还具有强大的拓展功能,可满足各种微流控芯片气压驱动进样系统的使用,完全可以替代进口产品,同时也为后续多通道微流控压力驱动进样系统的国产化替代奠定的技术基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b][/b][/color][/size][/align]

  • 拖把机缺水检测新方案——光学流量控制器

    拖把机缺水检测新方案——光学流量控制器

    [font=&] [size=18px]现有拖把机水箱缺水检测的方案基本上分为2种:一种是使用老式的机械式浮球开关,一种是光电水位传感器。浮球开关通常采用的是常规结构浮球,光电式水位传感器的通常有2种,一种是非接触接触式的,一种是管道式。[/size][/font][align=center][img=,600,400]https://ng1.17img.cn/bbsfiles/images/2021/12/202112011656081643_710_4008598_3.jpg!w600x400.jpg[/img][/align][align=center][size=18px] [/size][/align][font=&][size=18px] 浮球式水位传感器因为其属于机械式运作的传感器,因此在使用一段时间后会容易受到水垢、浮球卡死等现象导致精度、功能不良。光电式水位传感器内部无机械运作部件,因为是采用光学原理,所以受到的外接因素干扰较少,且针对水垢、挂液、气泡等干扰都可以通过软件做规避处理,因此可靠性较高。[/size][/font][align=center][img=,660,405]https://ng1.17img.cn/bbsfiles/images/2021/12/202112011656277193_5314_4008598_3.jpg!w660x405.jpg[/img][/align][align=center][size=18px] [/size][/align][font=&][size=18px] 但光电式水位传感器只能检测水箱内的水位变化,而采用光学流量计除了可检测水箱是否缺水外,还可以实现流量控制。当拖把机运作时,水泵会将水箱内的水抽至喷洒与拖地转轮上,将一只每分钟流量30~150ml的光电流量计装在管道上,当水流进过流量计时,流量计会根据水流量输出对应的脉冲数据。设备可根据流量计输出的信号来控制出水量。当水箱无水时,则流量计也处于无水状态,此时流量计输出不同的信号,设备接收到信号后判断水箱此时无水,提醒用户加水。[/size][/font][align=center][img=,690,377]https://ng1.17img.cn/bbsfiles/images/2021/12/202112011656436825_2789_4008598_3.jpg!w690x377.jpg[/img][/align][align=center][size=18px] [/size][/align][font=&][size=18px] 光电式流量计与霍尔流量计不同,检测部分是在传感器外侧,不接触液体,因此更卫生安全。[/size][/font][size=18px] [/size][align=right][/align]

  • 在微流控系统中如何选择合适的流量控制装置

    在微流控系统中如何选择合适的流量控制装置

    [size=13px][b][color=#339999]摘要:针对微流控技术中的压力和流量控制,本文介绍了目前常用的两类装置:注射泵和压力泵,重点介绍了这两种装置的性能特点,并对这两种压力控制装置进行了简要的分析对比。分析结论是压力泵将逐渐替代注射泵的应用,特别是压力泵在结合各种传感器和切换阀等配件后,在实现超高的响应性、稳定性和可重复性等前提下,更能涵盖几乎所有的微流体应用,并拓展进入相关新兴领域。[/color][/b][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][b][size=18px][color=#339999]1. 引言[/color][/size][/b][size=13px] 微流控([/size][size=13px]Microfluidics[/size][size=13px])是一种精确控制和操控微尺度流体的技术,又称其为芯片实验室([/size][size=13px]Lab on a Chip[/size][size=13px])或微流控芯片技术。通过微流控技术可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块芯片上并自动完成分析的全过程。[/size][size=13px][size=13px] [/size]一个典型的微流控系统主要由流量控制装置和微流控芯片两部分组成,其中流量控制装置由多个部件组成,包括泵,阀门,传感器、储液管,管线等,用于气体、液体或液体混合物的微流量精密控制,流量一般低于[/size][size=13px]50ml/min[/size][size=13px]。[/size][size=13px][size=13px] [/size]微流体技术中微流量控制的基本原理是通过外力把所需要的气体或液体推入微流控芯片内,这些外力可由外部的驱动泵或压力控制装置提供。目前,研究人员主要使用的两种类型微流量控制装置分别是微量注射泵和高精度压力控制器,本文将针对这两种微流量控制装置进行分析比较,为微流控技术的实际应用提供有效的技术支持。[/size][b][size=18px][color=#339999]2. 微量注射泵[/color][/size][/b][size=13px][size=13px] [/size]微量注射泵是以往微量蠕动泵和循环泵的升级替代产品,是微流控领域经常使用的一种流量控制系统。微量注射泵可分为两类:价格便宜但会产生流量振荡的普通注射泵和价格偏贵但可以提供更高流量稳定性的无脉动注射泵。几种典型的微流量注射泵如图[/size][size=13px]1[/size][size=13px]所示。[/size][align=center][b][color=#339999][img=微流控压力泵和注射泵性能的详细分析和比较,690,138]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932237145_4550_3221506_3.jpg!w690x138.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]1 [/size][size=13px]几种典型的微流量注射泵[/size][/color][/b][/align][size=13px][size=13px] [/size]微量注射泵的主要优势是易于使用。无脉冲注射泵的主要弱点是时间响应性太慢,微流控芯片内的流量变化需要几秒到几个小时后才能达到稳定的流速,这种慢响应的弊端也是微量注射泵在数个应用领域如微液滴的制备内应用的主要限制因素。但随着采用能达到微米或纳米步长的步进电机技术,以及增加注射泵微机械部件接触的精密度,注射泵机械部件的生产质量,实验装置的流阻,实验用导管和芯片的弹性与高流阻特性等,可解决上述问题。注射泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])可以快速实现微流控实验装置的搭建。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])新型无脉冲的注射泵可产生低于[/size][size=13px]1%[/size][size=13px]的流动稳定性。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])注射液体量对于长时间的实验来讲是可知的。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵产生的最大压力可达几百个[/size][size=13px]bar[/size][size=13px]左右。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])器件内的平均流量不会因器件流阻的实际变化而发生变化(注射泵因高压而发生停止运动除外)。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])流量的响应时间在几秒到几小时内变化,这依赖于流体的阻力。响应时间的快慢可通过使用特定的微流体导管来进行调节。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])因没有流量计,在暂态过程(几秒到几个小时)中,用户不知道实际的液体流量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])如果器件的流阻增加(如因通道堵塞或灰尘产生),微量注射泵产生的压力会无限制的增加。产生的压力增加到一定程度便会反过来损坏器件。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵无法实现死端通道(类似集成微流控阀)内流体的流量控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])注射泵驱动的液体体积总量是有限制的,而不是无限的。[/size][size=13px][size=13px] [/size]([/size][size=13px]6[/size][size=13px])如果需要知道流体系统内部的压力,需要配备压力传感器。[/size][size=13px][size=13px] [/size]([/size][size=13px]7[/size][size=13px])即使是使用无脉冲的微量注射泵,也需要根据具体的实验条件来仔细的选择注射器的大小,以此来避免注射泵的步进电机造成的液体流量的周期性脉动。[/size][size=13px][size=13px] [/size]([/size][size=13px]8[/size][size=13px])流量的脉冲振荡效应可以通过使用一致性较好的微流体导管来进行降低。[/size][size=13px][size=13px] [/size]([/size][size=13px]9[/size][size=13px])环境的温度变化会对引起管路材料收缩并改变管路的内径,而内径的微小变化会导致流速发生四次方的巨大变化。同时温度改变也会引起流体内气泡的体积变化而产生不希望的流体位移,这些最终都会对微流体注射泵性能带来严重影响。[/size][b][size=18px][color=#339999]3. 微量压力泵(压力控制器)[/color][/size][/b][size=13px][size=13px] [/size]微量压力泵是一种控制容器中样品流量的新型装置,即通过在压力下将样品平稳注入微流体芯片。目前多数微流控研究都是通过使用压力控制器来完成的,因为它们可以在微流控芯片中以快速响应时间([/size][size=13px]80ms[/size][size=13px])建立无脉冲流。压力驱动的流动装置无延迟地传播流体中的压力变化,允许快速流动切换。由于没有移动的机械部件,压力驱动流的平稳运行得到进一步增强。[/size][size=13px][size=13px] [/size]目前市场上有许多不同类型的精密压力调节器,各有特点。压力调节器类型的选择取决于特定需求和应用,然而,所有压力调节器都需具备一个特点,那就是能够高精度的控制液体的流动。下图是几种典型的国外微流体压力调节器产品。[/size][align=center][b][color=#339999][img=02.几种典型的微流量压力泵,690,141]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932511670_1765_3221506_3.jpg!w690x141.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]2 [/size][size=13px]几种典型的国外微流量压力泵[/size][/color][/b][/align][size=13px][size=13px] [/size]压力和流量是一个对应关系,即通过控制施加在液体上的压力,也可以控制流体的流速,至于采用压力控制模式,还是采用流速控制模式,需要根据具体应用需要进行选择。下面是微流控装置中这两种控制模式的结构示意图。[/size][align=center][b][color=#339999][img=03.微流控装置中的压力和流量两种控制模式,690,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933358798_241_3221506_3.jpg!w690x289.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]3 [/size][size=13px]微流控装置中的压力和流量两种控制模式[/size][/color][/b][/align][size=13px][size=13px] [/size]如图[/size][size=13px]3[/size][size=13px]所示,在压力控制模式中,压力控制器通过调节样品储液容器上方的气体压力,将样品流体注入到微流控芯片中。为了解微流控芯片中所注入样品流体的流量,需要在微流控芯片的进口端或出口端增加一个流量传感器。如果此流量传感器作为压力控制器的测量信号,则会形成一个反馈闭环控制回路,可实现样品流体的精密流量控制。[/size][size=13px][size=13px] [/size]由此可见,与高精度注射泵相比,如图[/size][size=13px]4[/size][size=13px]和图[/size][size=13px]5[/size][size=13px]所示,通过将压力控制器与流量传感器相结合,可以实现超精确和快速响应的流量控制。[/size][align=center][b][color=#339999][img=04.注射泵和压力泵的微流控流量控制时间响应效果对比图,350,294]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933539524_3049_3221506_3.jpg!w400x337.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]4 [/size][size=13px]注射泵和压力泵的微流体流量控制时间响应性效果对比图[/size][/color][/b][/align][align=center][b][color=#339999][img=05.注射泵和压力泵的微流控流量控制稳定性效果对比图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250934166653_4218_3221506_3.jpg!w690x321.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]5 [/size][size=13px]注射泵和压力泵的微流体流量控制稳定性效果对比图[/size][/color][/b][/align][size=13px][size=13px] [/size]压力控制泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])压力源允许无脉冲的流量流动。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])驱动液体的体积量可达到几升的液体量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])响应时间最快可达到[/size][size=13px]9 ms[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])允许死端或者封闭通道内的液体控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])当使用流量计时,允许同时控制液体的流量和压力。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])最高压力会受到限制,目前常用的压力控制器的最高输出压力仅能达到[/size][size=13px]8bar[/size][size=13px],但采用新型的压力控制器,最高输出压力可达[/size][size=13px]50bar[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])当压力不平衡时,尤其是在多个输入口进行流量切换时,压力控制器可能会产生倒流(可使用开关阀门来解决这种倒流现象)。[/size][b][size=18px][color=#339999]4. 总结[/color][/size][/b][size=13px][size=13px] [/size]综上所述,每种微流体控制系统都有各自的缺点和优点。注射泵方便,并且已经使用了很长时间,然而当面临复杂或需要精细控制微流体时,性能会受到限制(响应时间,波动和温度等等),这在微流体实验中经常碰到这种情况。[/size][size=13px][size=13px] [/size]压力泵越来越多地被使用,因为它是为微流体开发的,它完全满足用户的期望(响应性、稳定性、可重复性等等)。压力控制技术几乎涵盖了所有的微流体应用([/size][size=13px]97%[/size][size=13px]以上),并开始进入其它相关领域,如生物学和化学。同时,配套压力控制器的可选配件如传感器和切换阀等非常广泛,可以针对实验的需求而加以选择,同时这些选配件的价格下降使得其应用领域更加广泛。[/size][align=center][size=13px]~~~~~~~~~~~~~~~~~[/size][/align]

  • 毛细柱进样口的电子流量控制(下)

    [font=微软雅黑, sans-serif]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器而言,如果需要了解其压力/流量控制系统,应当首先对其结构有一定的了解。毛细柱进样口的气体控制包括多路气流,首先回顾一下毛细柱进样口的基本结构。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif]毛细柱进样口的基本结构[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在毛细柱进样口中,需要控制的气体流量包括三部分:载气流量、分流流量和隔垫吹扫流量。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]载气的作用是以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离;分流的作用是将气化后的样品按照一定比例排出进样口;隔垫吹扫的作用主要是消除进样时可能带入的杂质和消除进样口密封垫在高温时释放出的杂质。一般而言,载气、分流和隔垫吹扫的相对位置为:隔垫吹扫在最上方,载气在中间,分流管路在最下方。[/font][align=center][/align][font=微软雅黑, sans-serif]前文谈到,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。扩展而言,[color=black]毛细柱进样口的电子流量控制装置,也是在机械阀控制系统上发展而来。[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]对于使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其进样口的流量/压力控制,有稳流阀-背压阀、稳流阀-针型阀、稳压阀-背压阀和稳压阀-针型阀等多种类型。其中稳流阀-背压阀、稳压阀-针型阀是使用最多的两种类型。上一节中介绍了稳流阀-背压阀控制类型,稳压阀-针型阀可以参见下图。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]稳压阀-针型阀控制模式[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]稳压阀-针型阀控制模式进行流量/压力控制,即:采用稳压阀控制进样口压力(柱前压),采用针型阀调节分流流量,同时使用针型阀控制隔垫吹扫流量。其简单示意图如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/0e/32a0e0397d7b172feeb573a08c8870fc.png[/img][/align][font=微软雅黑, sans-serif]我们说[color=red]毛细柱进样口的电子流量控制装置,是在机械阀控制系统上发展而来。[/color]因此,依据该种控制方式的原理发展出了相应的电子流量控制装置,并且可以和相应的稳压阀-针型阀装置进行互换。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]3 [/font][font=微软雅黑, sans-serif]电子流量装置的上游控制模式[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]由机械阀中的稳压阀-针型阀控制模式发展而来的电子流量控制装置,可以称之为电子流量装置的上游控制模式。对该种模式而言,柱头压/柱流量的调节是通过进样口气流入口端的比例阀(稳压阀)调节的,调节位置在入口处而非出口处,因此有文献称之为上游调节模式。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在毛细柱进样口分流模式下,该种模式电子流量控制装置的原理图示意如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/eb/35/1eb359198ec9de922f382f7870743106.png[/img][/align][font=微软雅黑, sans-serif]对其载气流量、分流流量和隔垫吹扫流量各控制流路分解如下:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b1/be/cb1bec9b024dae4eace4bd21be4e25e1.png[/img][/align][font=微软雅黑, sans-serif](1)柱头压/柱流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当进样口中有气体进入后,采用 比例阀-电路控制-压力传感器 控制比例阀开度,使柱头压/柱流量达到设定值;以上为电子流量控制装置的压力模式,类似于机械阀中的稳压阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](2)分流流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]根据仪器参数设置,采用 比例阀-电路控制-流量传感器 控制分流出口的流量,使之达到设定值要求;以上为电子流量控制装置的流量模式。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](3)隔垫吹扫流量的控制[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]当进样口中有气体进入后,采用 比例阀-电路控制-压力传感器 控制比例阀开度,使压力传感器处压力达到一定值,通过气阻之后可以达到设定的流量;以上为电子流量控制装置的压力模式,类似于机械法中的稳压阀+固定气阻。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif](4)总流量的测定[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]仪器并不直接测量进入进样口的总流量;根据仪器参数设置,柱流量/柱前压、分流流量/分流比、隔垫吹扫流量达到设定值要求之后,由 总流量=柱流量设定值+分流流量设定值+隔垫吹扫流量设定值 公式,计算出进入进样口的总流量。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]一般而言,因为以上模式的柱头压/柱流量的调节是通过进样口气流入口端的比例阀调节的,调节位置在入口处而非出口处,因此有文献称之为上游调节模式。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]以上是在毛细柱进样口分流模式下,该类型电子流量控制装置的原理图示意。当在毛细柱进样不分流模式下,进样后的一段时间内,分流阀关闭,其工作状态见下图示意:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ce/50/2ce50197fe8f66ce74b1f51c255145ab.png[/img][/align][font=微软雅黑, sans-serif]此种状态下,分流阀关闭,流量传感器不使用;柱头压/柱流量通过 比例阀-电路控制-压力传感器 控制;隔垫吹扫流量采用 比例阀-电路控制-压力传感器-气阻 控制;以上为电子流量控制装置的压力模式。当柱头压/柱流量、隔垫吹扫流量稳定后,总流量不需要经过测定,为两者之和。在不分流进样模式后期,分流阀打开,控制原理则与分流进样相同[/font]

  • 咖啡机如何实现精准流量控制

    实现咖啡机的精准流量控制,可以采用小型流量计这一关键装置。在咖啡机内部安装小型流量计,其中包括霍尔流量计和光学流量计两种主要类型。霍尔流量计利用霍尔效应原理,将带有磁铁的叶轮放置在磁场中,当叶轮转动时,由于磁场的影响产生GS值,最终转换为脉冲信号输出。这种流量计具有内部铁氧体磁铁,保证了其精度和稳定性,可靠性高。通过对脉冲信号的监测和计算,可以准确测量流量,实现精准的流量控制。另外一种流量计是光学流量计,其原理是利用叶轮切割光线通路产生脉冲信号,通过计算叶轮的转动次数来测量水流量的多少。这种流量计通过光学传感器实现流量测量,具有较高的灵敏度和精准度,能够实现对流量的准确控制,从而确保咖啡机制作出口味一致的咖啡。[align=center][img=咖啡机,690,479]https://ng1.17img.cn/bbsfiles/images/2024/03/202403071427066009_9798_4008598_3.png!w690x479.jpg[/img][/align]通过在咖啡机内部安装小型流量计,无论是[url=http://www.eptsz.com]霍尔流量计[/url]还是光学流量计,都可以实现精准的流量控制。这些流量计具有各自的优势,如稳定性、可靠性和精准度,能够有效帮助咖啡机实现对水流量的准确监测和控制,提升咖啡制作的品质和稳定性,满足用户对口感要求的需求。具体使用哪一种流量计,还是要根据实际应用情况来选择合适的流量计。

  • 家电水位控制传感器的介绍

    [color=#000000]在家用行业,电器需要传感器提供必要的信息,以正确执行相关的操作。光电液位传感器是家用电器常用的一种传感器。例如净水器、饮水机、洗衣机、空气净化器、电蒸锅、热水器等。液位传感器可以更精准、更快速的检测到液位的变化,比人工查看更便捷,可更快速的实现[url=http://www.eptsz.com][color=#000000]缺水保护[/color][/url]、防水满溢出等功能。[/color][color=#000000]与其他液位传感器相比,光电式液位传感器检测精度高、可靠性更高。光电式液位传感器内部是由发光二极管和光敏接收器组合而成。是通过光学折射原理来进行液位的检测,因此对被测介质影响小。[/color][color=#000000] [/color][color=#000000]不同的厂家、不同的家电都会有所差异,这就注定了不同的机器中会有不同的水箱。且每个产品的功能、需检测的液位不一样,有的液位传感器会受到产品水箱等结构的限制,而光电式液位传感器可多方位安装,上置、下置、斜置、侧置安装。[/color][img=光电液位开关安装,758,289]http://www.eptsz.com/Upload/20181102/2018110211243510.jpg[/img][color=#000000]灵敏度高也是判断光电液位传感器良好品质的标准之一,如电蒸锅,如果当水箱没有水的时候,灵敏度低的液位传感器仍然判断为有水状态,电蒸锅根据接收到的信号继续工作,有可能会导致电蒸锅干烧导致电器损坏等现象。而光电式液位传感器性能稳定,灵敏度高。[/color][color=#000000] [/color][color=#000000]与浮球式液位传感器相比,光电式液位传感器出现得较晚一些。浮球式液位传感器采集方法、工作原理都是较为落后的,所以其可靠性低、液位控制精度低。而光电式液位传感器则是采用红外线折射原理来进行液位的检测。通过光学检测的原理更为可靠,例如水中含有杂物、沉淀物等都不会影响光电液位传感器检测。而换为浮球式液位传感器就极有可能会遇到浮球被液体的杂物卡死无法检测的情况。[/color][color=#000000] [/color][color=#000000]光电式液位传感器可多方位安装的特点满足了家用电器的各类形状的水箱的安装需求。且光电式液位传感器分离式液位传感器只需在水箱中添加一个棱镜后便可实现非接触式检测。例如咖啡机、加湿器、冲奶机等各类水箱需要移动清洗、加水等的电器。[/color][color=#000000][img=分离式液位开关]http://www.eptsz.com/Upload/20181102/2018110217165451.jpg[/img][/color][color=#000000]作为一种新型接触式点液位测控装置的光电[color=#000000][url=http://www.eptsz.com/Products.aspx]水位传感器[/url] [/color]。光电液位传感器具有结构简单、定位精度高,没有机械部件,不需调试,灵敏度高及耐腐蚀、耗电少、体积小等诸多优点,还具有耐高温、耐高压、耐强腐蚀,化学性质稳定,对被测介质影响小等特征。相对于浮球式液位传感器、电容式液位传感器液位测量精度更高,且可靠性高,寿命长。[/color]深圳市能点科技有限公司成立于2003年,是一家专注于研发,生产,销售各类液位传感器,流量控制传感器,光电位置传感器,光电倾倒传感器等产品的高科技公司。 官方网站:www.eptsz.com [color=#000000][/color]

  • 咖啡机如何实现流量控制和缺水检测

    咖啡机如何实现流量控制和缺水检测

    [align=left][font=宋体]液位传感器安装在咖啡机容器的底部或侧面的低液位处。这种传感器采用光学原理进行检测,具有高灵敏度、小体积、高精度和低功耗的特点。当咖啡机的水位低于设定的安全水位时,液位传感器会输出一个低电平信号,表示缺水状态。[/font][/align][align=left][font=宋体]流量计被安装在咖啡机容器底部连接水管的位置。流量计的进出水口通过水管连接,可以准确地检测出水量。流量计有霍尔式和光电式两种类型,可以根据实际应用环境选择合适的类型。[/font][/align][align=center][img=咖啡机流量计,625,400]https://ng1.17img.cn/bbsfiles/images/2023/08/202308241510529580_5606_4008598_3.jpg!w625x400.jpg[/img][/align][align=left][font=宋体]当咖啡机开始工作时,液位传感器会不断监测水位,如果水位低于安全水位,传感器会发出缺水信号。同时,流量计会实时监测出水量,确保咖啡机按照设定的流量进行工作。[/font][/align][align=left][font=宋体]通过[url=https://www.eptsz.com]液位传感器[/url]和流量计的配合,咖啡机可以实现流量控制和缺水检测功能。这样,用户可以及时了解咖啡机的水位情况,并根据需要补充水,保证咖啡机正常工作。这种功能的存在,可以避免因为缺水而导致咖啡机无法正常运行或者制作出的咖啡质量下降的情况发生。[/font][/align]

  • 净水器流量控制流量计

    净水器流量控制流量计

    [font=&][size=18px]家用型独立式的净水器,通常有内外2个水箱。在净水器内部管路上增加一个霍尔流量计,除了可以计算出水量外,还可以检测水箱是否缺水,防止水泵空抽。[/size][/font][size=18px] [/size][font=&][size=18px] 霍尔流量计是一段为进水口,一端为出水口,2端分别连接水管。内部含有一个可以旋转的叶轮,当进水口进入到流量计内部时,会带动叶轮旋转,流量计顶盖处有霍尔感应元件,叶轮每旋转一圈,霍尔感应元件根据叶轮旋转次数输出对应的脉冲信号。[/size][/font][align=center][size=18px][img=,633,195]https://ng1.17img.cn/bbsfiles/images/2021/12/202112181059347714_7150_4008598_3.jpg!w633x195.jpg[/img][/size][/align][size=18px] [/size][font=&][size=18px] 设备可根据流量计输出的脉冲信号判断此时流量计的出水量,由此控制出水量。如内水箱满水状态为300ml,则当流量计输出的脉冲信号对应为300ml的出水量时,设备判断此时内水箱水满,停止抽水。若是用来控制饮用水水量,如设备设定按一次按钮,则出水量100ml,那么当流量计输出的脉冲信号达到对应100ml毫升时,停止抽水。[/size][/font][size=18px] [/size][font=&][size=18px] 除了控制出水量外,还可以实现水箱缺水检测,在水箱底部连接管道,将霍尔流量计装在管道上,当水箱无水时,水泵空抽,流量计位置也处于无水状态,由此输出信号,净水器接收到信号后判断水箱处于缺水状态,从而控制电路提醒用户加水。[/size][/font][size=18px] [/size][font=&][size=18px] 不过考虑到体积结构等问题,一般流量计用来控制出水量的较多,检测水箱缺液通常是采用管道液位传感器、非接触式光电液位传感器等来实现。[/size][/font][align=center][size=18px][img=,600,492]https://ng1.17img.cn/bbsfiles/images/2021/12/202112181100119750_3730_4008598_3.jpg!w600x492.jpg[/img][/size][/align]

  • 岛津气相柱口压力传感器怎么控制ESC

    岛津[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]柱口压力传感器是怎么控制ESC的,如果分流捕集阱没有完全堵死柱流量会发生什么样的变化?谢谢,还望不吝赐教!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制