当前位置: 仪器信息网 > 行业主题 > >

细胞活力计

仪器信息网细胞活力计专题为您提供2024年最新细胞活力计价格报价、厂家品牌的相关信息, 包括细胞活力计参数、型号等,不管是国产,还是进口品牌的细胞活力计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞活力计相关的耗材配件、试剂标物,还有细胞活力计相关的最新资讯、资料,以及细胞活力计相关的解决方案。

细胞活力计相关的论坛

  • 【求助】谁有细胞活力分析仪Beckman VI-CELL卡驱动?

    各位大虾,请问有谁在用Beckman的细胞活力分析仪的,型号是VI-CELL?我司现有一台,由于太久没用,现在要装到电脑上的数据采据卡驱动已不见,上网又找不到(由于太旧了02年的),现正着急等用啊,也已求助了代理商,但还没消息,如有哪位大侠公司也有用此设备的请麻烦帮找一下,小弟在此万分感谢!

  • 悬浮细胞的分离方法

    组织材料若来自血液、羊水、胸水或腹水的悬液材料,最简单的方法是采用1000r/min的低速离心10分钟,若悬液量大,可适当延长离心时间,但速度不能太高,延时也不能太长,以避免挤压或机械损伤细胞,离心沉淀用无钙、镁PBS洗两次,用培养基洗一次后,调整适当细胞浓度后再分瓶培养,若选用悬液中某些细胞,常采用离心后的细胞分层液,因为,经离心后由于各种细胞的比重不同可在分层液中形成不同层,这样可根据需要收获目的细胞。不同比重的分层液的配制和具体分离方法详见淋巴细胞分离培养的章节。    实体组织材料的细胞分离方法    对于实体组织材料,由于细胞间结合紧密,为了使组织中的细胞充分分散,形成细胞悬液,可采用机械分散法(物理裂解)和消化分离法。    (一)机械分散法    所取材料若纤维成分很少,如脑组织,部分胚胎组织可采用剪刀剪切、用吸管吹打分散组织细胞或将已充分剪碎分散的组织放在注射器内(用九号针),使细胞通过针头压出,或在不锈钢纱网内用钝物压挤(常用注射器钝端)使细胞从网孔中压挤出。此法分离细胞虽然简便、快速,但对组织机械损伤大,而且细胞分散效果差。此法仅适用于处理纤维成分少的实验室试剂软组织。    (二)消化分离法    组织消化法是把组织剪切成较小团块(或糊状),应用酶的生化作用和非酶的化学作用进一步使细胞间的桥连结构松动,使团块膨松,由块状变成絮状,此时再采用机械法,用吸管吹打分散或电磁搅拌或在摇珠瓶中振荡,使细胞团块得以较充分的分散,制成少量细胞群团和大量单个细胞的细胞悬液,接种培养后,细胞容易贴壁生长。    1、酶消化分离法    酶消化分离法常采用胰蛋白酶和胶原酶,其分离方法如下:    (1)胰蛋白酶分散技术    胰蛋白酶(简称胰酶)是广泛应用的消化剂。胰蛋白酶是一种胰脏制品,对蛋白质有水介作用,主要作用于赖氨酸或精氨酸相连接的肽键,使细胞间质中的蛋白质水介而使细胞分散开,在常用人血清 AB的蛋白酶中由于产品的活力和纯度不同,对细胞的消化能力也不同,胰蛋白酶对细胞的作用,取决于细胞类型、酶的活力、配制的浓度、消化的温度、无机盐离子、pH以及消化时间的长短等。    ①细胞类型胰蛋白酶适于消化细胞间质较少的软组织,能有效地分离肝、肾、甲状腺、羊膜、胚胎组织、上皮组织等。而对含结缔组织较丰富的组织,如乳腺、滑膜、子宫、纤维肉瘤、肿瘤组织等就无效,但若与胶原酶合用,就能增加其对组织的分离作用。    ②酶的活力市售的胰蛋白酶,其活力都经过测定而有效,但配制时必须新鲜,需保存在低温冰箱中,消化时的pH和温度都要适宜,否则会影响活力,细胞的分散直接与酶的活力有关,最终使用活力为1:200或1:250,56℃pH8.0时活力最强。    该酶为粉剂,保藏时要防潮,室内温度不宜过高,保存时间不能太长,若粉剂结团块,说明该部分受潮或失效。    ③酶的浓度胰蛋白酶一般采用的浓度为0.1%-0.25%(活力1:200或1:250),但遇到难消化的组织时,浓度可适当提高,消化时间适当延长。浓度高对细胞有毒性,而较低浓度的胰蛋白酶在培养液中可促进细胞的增殖,若培养液中加入血清,其少量胰蛋白酶可被血清中抗胰蛋白酶因子所清除。    ④温度一般认为胰蛋白酶在56℃时活性最强,但由于对细胞有损害而不能被采用,常使用的温度为37℃,通常在37℃进行消化比室温作用快。    ⑤pHpH8~pH9是胰蛋白酶活力适宜范围,但随碱性的增加其活力也随之减少,活性强分散快,细胞也容易被消化下来,消化分离细胞时PH只能选用7.6~8.0之间,否则对细胞有损伤。    ⑥无机盐离子若用含有钙和镁的盐类溶液来配制胰蛋白酶时,可以发生抑制胰蛋白的消化作用。因此,在配制时应采用无钙镁离子的PBS配制。    ⑦消化时间如果细胞消化时间过长,可以损害细胞的呼吸酶,从而影响细胞的代谢,一般消化时间为20分钟为宜,冷消化时使用低浓度消化液,于4℃过夜也可。    分离方法如下:    ①过夜冷消化将取得的组织用Hanks液洗三次,剪成碎块大小为4毫米左右,用Hanks液洗2~3次以除去血球和脂肪组织,再加入0.25%的胰蛋白酶,摇匀后放4℃过夜,次日再用Hanks液洗涤,弃去上清,共洗2~3次,然后,加入少量营养液吹打分散,细胞计数,按适当的浓度分瓶培养。    ②多次提取消化法多次提取消化法有以下三种:    热消化多次提取将剪碎的细胞块加入0.25%胰蛋白酶37℃水浴中消化15~20分钟,然后经洗涤后用营养液分散制成细胞悬液,按合适的浓度分瓶培养,然后将留下的未彻底消化的组织按上述方法操作,再消化提取细胞。    冷消化多次提取方法同上,只是消化温度为4℃。    先热消化后冷消化将组织块先用胰蛋白酶于37℃下消化20分钟经洗涤后用营养液分散,制成悬液,剩余未消化的小组织块经洗涤后用胰酶于4℃下过夜,次日再提取细胞,分散成悬液,分瓶培养。    (2)胶原酶(Collagenase)消化法    胶原酶是一种从细菌中提取出来的酶,对胶原有很强的消化作用。适于消化纤维性组织、上皮组织以及癌组织,它对细胞间质有较好的消化作用,对细胞本身影响不大,可使细胞与胶原成分脱离而不受伤害。该酶分离效果好,即使有钙、镁离子存在仍有活性,故可用PBS和含血清的培养液配制,即操作简便又可提高细胞成活率,最终浓度200u/mL或0.1~0.3mg/mL。细胞培养此酶消化作用缓和,无需机械振荡,但胶原酶价格较高,大量使用将增加实验成本。    经过胶原酶消化后的上皮组织,由于上皮细胞对酶有耐受性,可能有一些上皮细胞团块尚未被完全消化开。成小团块的上皮细胞比分散的单个上皮细胞更易生长,因此不必要再进一步消化处理。    鉴于胰蛋白酶和胶原酶的生物学活性和在不同浓度下消化各种组织小块所需的时间(小时)有差异,以及两者价格不等,有人采用胶原酶与胰蛋白酶并用,同时还可加透明质酸酶(对细胞表面糖基有作用),采用两者的联合消化作用,对分散大鼠和兔肝、癌组织非常有效。    除上述两种最常用的消化酶外,还有链霉蛋白酶、粘蛋白酶、蜗牛酶、弹性蛋白酶、木瓜蛋白酶,近年来,还有一种从灰霉菌中提取的Pronase新酶分散细胞更佳。    2、非酶消化法(EDTA消化法)    EDTA是一种非酶消化物,又称螯合剂或Versene,全名为乙烯二胺四乙酸。常用不含钙、镁离子的PBS配成0.02%的工作液,对一些组织,尤其是上皮组织分散效果好,该化学物质能与细胞上的钙、镁离子结合形成螯合物,利用结合后的机械力使细胞变圆而分散细胞或使贴壁细胞从瓶壁上脱离,缺点是细胞易裂解或贴壁细胞从瓶壁上脱离时呈片状,有团块,常不单独使用,但可与胰蛋白酶混合使用(1:1或2:1),不仅利于细胞脱壁又利于细胞分散,可降低胰酶的用量和毒性作用。    消化分离法的操作步骤:    (1)剪切把组织块剪碎,呈1~5mm3大小的组织块。    (2)加液漂洗将碎组织块在平皿(或三角烧瓶)中用无钙镁PBS洗2-3次(采用倾斜,自然沉降法)。    (3)消化加入消化液(胰蛋白酶或胶原酶或EDTA)于37℃水浴中作用适当时间(中间可轻摇1~2次),若组织块膨松呈絮状可终止,若变化不大可更换一次消化液,继续消化直至膨松絮状为止。胰蛋白酶消化时间不宜过长。    (4)弃去消化液采用倾斜自然沉降或低速离心法尽量弃去消化液。    (5)漂洗将含有钙、镁离子的培养基沿瓶壁缓缓加入,中止消化反应,采用漂洗法洗2-3次后,加入完全培养基。    (6)机械分散采用吸管吹打或振荡法,使细胞充分散开后用纱网或3~4层无菌纱布过滤后分瓶培养,若要求不高可采用倾斜自然沉降5~10分钟,吸上层细胞悬液进行分瓶培养。

  • 细胞培养完整手册(3)

    二、仪器、用品与试剂0.4 % w/v 台盼兰trypan blue (GibcoBRL 15250-061) Erythosin bluish stain 取0.1 gram Erythrosin bluish (Sigma E-9259) 及0.05 gram preservative methyl paraben (Sigma H-3647) 溶于100 ml Ca++/Mg++ free saline 血球计数盘及盖玻片(Hem℃ytometer and coverslip) 计数器(counter) 低倍倒立显微镜 粒子计数器(Coulter counter, Coulter Electronics) 三、操作步骤(一)细胞计数3.1. 取50ml 细胞悬浮液与50ml trypan blue (or Erythrosin bluish) 等体积混合均匀于1.5ml 小离心管中。 3.2. 取少许混合液(约15ml) 自血球计数盘chamber 上方凹槽加入,盖上盖玻片,于100 倍倒立显微镜下观察,活细胞不染色,死细胞则为蓝色 ( 或红色- Erythrosin bluish) 。3.3. 计数四个大方格之细胞总数,再除4,乘以稀释倍数(至少乘以2,因与trypan blue等体积混合),最后乘以104 ,即为每ml 中细胞悬浮液之细胞数。若细胞位于线 上,只计上线与右线之细胞(或计下线与左线之细胞)。 3.4. 若不用血球计数盘,可用Coulter counter 作自动计数,惟无法辨别死细胞或活细 胞。然后按下式计算:细胞数/ml=4大格细胞总数x 2/ 4×10000注意:镜下偶见由两个以上细胞组成的细胞团,应按单个细胞计算,若细胞团占 10%以上,说明分散不好,需重新制备细胞悬液。(二)细胞活力1、将细胞悬液以 0.5ml加入试管中。2、加入 0.5ml 0.4%台盼兰染液,染色 2一 3分钟。3、吸取少许悬液涂于载玻片上,加上盖片。4、镜下取几个任意视野分别计死细胞和活细胞数,计细胞活力。死细胞能被台盼兰染上色,镜下可见深兰色的细胞,活细胞不被染色,镜下呈无色透明状。活力测定可以和细胞计数合起来进行,但要考虑到染液对原细胞悬液的加倍稀释作用 。

  • 【转帖】干细胞使与衰老有关的肌无力的速度放缓

    干细胞使与衰老有关的肌无力的速度放缓 在小鼠中的一则新的研究报告指出,用干细胞来增加年轻的肌肉可减缓与年龄老化相关的肌无力的进程。 这些发现可能会导致再生性肌肉疗法的出现,这种疗法也许会对罹患肌营养不良症的病人或是那些虚弱的老年人有帮助。 文章的作者提出,如果科学家们能够发现可刺激肌肉中干细胞的小分子或分子组合(这可能会比将干细胞移植到人体内要更容易些),那么这些分子可被用于增进肌肉修复或减少肌肉丧失。 在成年期,损伤后或疾病后肌肉再生主要是靠卫星细胞,这是一种会分裂并参与修复、重新恢复活力和控制骨骼肌组织的干细胞,它可通过发育成为肌肉细胞而令肌肉生长。 Bradley Olwin及其同事在这里利用了干细胞的能力并防止了在幼小的小鼠中某一单一肌肉的与年龄老化有关的消瘦。 在该研究中,研究人员将少数的干细胞移植到肌肉受伤的幼小小鼠体内。 该研究小组在两年后对这些小鼠进行检查时发现,这种手术永久性地改变了移植的细胞,使得它们能够抵抗肌肉中的老化过程。 明确地说,这些移植的细胞能够控制它们所在的肌肉并与肌肉融合以形成新的肌肉纤维。 尽管人们对这一过程的机制还不了解,但这些发现提示,通过模仿这些移植的干细胞的功效,科学家们也许能够防止肌肉功能和重量的丧失,而这些通常是在人类老化时出现的情况。

  • 细胞CCK-8增殖分析(反映群体细胞的生长)

    细胞CCK-8增殖分析(反映群体细胞的生长) (一)原理 https://ng1.17img.cn/bbsfiles/images/2024/10/202410082231070587_3898_6698225_3.jpg a在电子耦合试剂环境中,WST-8可被活细胞线粒体内的一些脱氢酶还原成橙黄色的甲臜(formazan),橙黄色的深浅与细胞的增殖成正比 b用酶标仪在450mm波长处测定OD值,可计算细胞群体的细胞活力,间接反映活细胞的数量 c以活力值为纵坐标,测定时间为横坐标,绘制生长曲线,可计算细胞的倍增时间(即在生长曲线上细胞数量增加1倍的时间 ,细胞倍增的时间区间即为对数生长期,细胞传代,实验多在此区间进行) (二) 材料 LLC-ASD细胞 CCK-8 kit 96孔板 含5%FBS的DMEM培养液(含抗生素)酶标仪 超净台 培养箱 (三)操作步骤 1 画板: 建议96孔板最外一圈的孔加入100ul/孔的PBS,中间接种 6day x 5个100μL/孔的含1000个细胞的细胞悬液并设置仅含5 个100ul/孔培养基的副孔作为空白对照。[/font] 2接种与预培养: 收集细胞,计数后用含5%FBS的DMEM培养液极限梯度稀释得5ml 1×104个/ml,剩余的细胞重新收集,以便以后做RT-PCR验证实验。 按实验设计接种细胞,注意接种时不可产生气泡,然后在培养箱中预培养30min 3 加CCK-8与培养: day0的5个孔和空白对照每孔加入10 ulCCK-8溶液,摇匀后在培养箱内孵育1.5h 4 测定当天加入CCK-8各孔在450mm波长处OD值,记录 5 每隔24h向day1~day5相应各孔加入10 ulCCK-8溶液,摇匀后在培养箱内孵育1.5h测定当天加入CCK-8各孔在450mm波长处OD值,记录 (四)细胞的倍增时间的计算: 1计算空白对照组的OD[font=宋体]值的均值A 2 day0~day5各孔OD值均减去A,记为当如该孔的细胞活力值 3以细胞活力值为纵坐标,测定时间为横坐标,绘制生长曲线,根据生长曲线确定细胞生长的对数期 4计算倍增时间 其公式为: Td=Δt×Lg2/(LgNt-LgN0)定义Td为倍增时间,Δt为计数间隔时间,Nt为对数生长期任一点在生长曲线上的理论观察值,N0为对数生长期在生长曲线上的理论初始值 注意: 1.当使用标准96孔板时,贴壁细胞的最小接种量至少为1,000 个/孔 (100 μl 培养基)。检测白细胞时的灵敏度相对较低,因此推荐接种量不低于2,500 个/孔 (100 μl 培养基)。如果要使用24孔板或6孔板实验,请先计算每孔相应的接种量,并按照每孔培养基总体积的10%加入CCK-8溶液。 2.在实验中吸光度值太高,如果不能减少细胞数量,可以缩短加入CCK8后的培养时间。例如:可以把加入CCK8试剂后的培养时间由2小时缩短为1小时。 3.在CCK-8显色过程中,如何终止反应? 有以下几种方法(96孔板): 在显色反应后,将培养板放置4℃冰箱内。 每孔加10 μl 0.1 M HCL溶液。 每孔加10 μl 1%(w/v)的SDS(十二烷基硫酸钠)溶液。注意:反应停止后,应在24小时之内测定。 4.必须预培养细胞吗? 不一定。如果要向保持细胞的最好状态,建议预培养细胞。如果不做细胞预培养,细胞内的脱氢酶可能会不稳定。也有人不做细胞预培养,但在做标准曲线和检测时需要统一检测条件。 5.CCK-8对于不同的细胞,灵敏度是否一样? 不一样,悬浮细胞与贴壁细胞相比较难染色。对于贴壁细胞,一般加入CCK-8培养1-4小时吸光度已经很高,但对于悬浮细胞则可能吸光度较低,可以通过延长CCK-8的加入时间或增加细胞数量来解决。 6.悬浮细胞和贴壁细胞在数量上有何区别? 悬浮细胞由于染色比较困那,一般需要增加细胞数量和延长培养时间。贴壁细胞染色比较容易,若细胞数量过大,有时吸光度会超过酶标仪的读数。 7.实验之前,是否需要先检测一下培养基和CCK-8是否会反应? 在避光条件下CCK-8试剂在4℃可保存一年。如果需要保存较长时间的话,推荐在-20℃下保存。但是CCK-8若反复解冻和冰冻将会增加空白吸收,从而影响检测结果,若经常使用可将试剂存放在4℃冰箱内保存。 建议使用一个孔作一下检测,因为有培养基中可能含有氧化还原反应的物质,在正式实验之前有必要先确认培养基和CCK-8是否反应。一般正常在的OD值应该在0.4以下。

  • 【整理总结】李晶教授细胞冻存、解冻方法与细胞计数

    液氮槽vaporphase长期储存。-20℃不可超过1小时,以防止胞内冰晶过大,造成细胞大量死亡,亦可跳过此步骤直接放入-80℃冰箱中,惟存活率稍微降低一些。(2)程序降温:利用已设定程序的等速降温机以-1~-3℃/分钟之速度由室温降至(-80℃以下)-120℃,再放在液氮槽vaporphase长期储存。适用于悬浮型细胞与hybridoma之保存。3、步骤:(1)冷冻前24-48小时更换半量或全量培养基,使细胞处于指数生长期。(2)配制冷冻保存溶液(使用前配制):另取一离心管,加入培养基、血清,逐滴加入二甲基亚砜(DMSO)至20%浓度,即制成双倍的冻存液,置于室温下待用。(3)离心收集培养之细胞,用加血清的培养基重悬起细胞,取少量细胞悬浮液(约0.1ml)计数细胞浓度及冻前存活率。(4)取与细胞悬液等量的冻存液,缓慢逐滴加入细胞悬液,并晃动试管,制成细胞冻存悬液(DMSO最后浓度为5~10%),使细胞浓度为1~5×106cells/ml,混合均匀,分装于已标示完全之冷冻保存管中,1~2ml/vial,并取少量细胞悬浮液作污染检测。严密封口后,注明细胞名称、代数、日期。然后进行冻存。4、注意事项:(1)欲冷冻保存之细胞应在生长良好(logphase)且存活率高之状态,约为80~90%致密度。冷冻前检测细胞是否仍保有其特有性质,例如hybridoma应在冷冻保存前一至二日测试是否有抗体之产生。(2)细胞在液氮中可长期冻存无限时间,而不会影响细胞活力;在-70度可保存数月。(3)注意冷冻保护剂之品质。DMSO应为试剂级等级,无菌且无色(以0.22micron FGLP Telflon过滤或是直接购买无菌产品,如Sigma D-2650),以5~10ml小体积分装,4℃避光保存,勿作多次解冻。Glycerol亦应为试剂级等级,以高压蒸汽灭菌后避光保存。在开启后一年内使用,因长期储存后对细胞会有毒性。本方法中先制备双倍冻存液,可避免DMSO直接加入时释放的热量对细胞的损伤。缓慢逐滴加入细胞悬液是使细胞逐步适应高渗,可降低细胞受损。DMSO可能引起部分白血病细胞株的分化,可换用10%甘油冻存。(4)冷冻保存之细胞浓度:①normal human fibroblast:1~3×106cells/ml②hybridoma:1~3×106cells/ml,细胞浓度不要太高,某些hybridoma会因冷冻浓度太高而在解冻24小时后死去。③adherent tumor lines:5~7×106,依细胞种类而异。Adenocarcinoma解冻后须较高之浓度,而HeLa只需1~3×106cells/ml④other suspensions:5~10×106cells/ml,human lymphocyte须至少5×106cells/ml。(5)冷冻保护剂浓度为5或10%DMSO,若是不确定细胞之冷冻条件,在做冷冻保存之同时,亦应作一个backup culture,以防止冷冻失败。(6)冻存可用10%~90%的血清,一般高浓度血清有助于维护细胞活力,此处介绍20%终浓度有利于细胞悬浮而少沉积(4度时),复苏存活率在80%~90%以上,对原代培养细胞,以90%血清冻存更为有效。二、冷冻细胞活化1、冷冻细胞之活化原则为快速解冻,以避免冰晶重新结晶而对细胞造成伤害,导致细胞之死亡。2、细胞活化后,约需数日,或继代一至二代,其细胞生长或特性表现才会恢复正常(例如产生单株抗体或是其它蛋白质)。3、材料37℃恒温水槽、新鲜培养基、无菌吸管/离心管/培养瓶、液氮或干冰容器4、步骤:(1)操作人员应戴防护面罩及手套,防止冷冻管可能爆裂之伤害。(2)自液氮或干冰容器中取出冷冻管,检查盖子是否旋紧,由于热胀冷缩过程,此时盖子易松掉。(3)将新鲜培养基置于37℃水槽中回温,回温后喷以70%酒精并擦拭之,移入无菌操作台内。(4)取出冷冻管,立即放入37℃水槽中快速解冻,轻摇冷冻管使其在1分钟内全部融化,以70%酒精擦拭保存管外部,移入无菌操作台内。(5)取出解冻之细胞悬浮液,缓缓加入有培养基之培养容器内(稀释比例为1:10~1:15),混合均匀,放入CO2培养箱培养。取0.1ml解冻细胞悬浮液作存活测试。(6)解冻后是否立即去除冷冻保护剂(例如DMSO或glycerol),依细胞种类而异,一般而言,大都不需要立即去除冷冻保护剂。惟若要立即去除,则将解冻之细胞悬浮液加入含有5-10ml培养基之离心管内,离心1000rpm,5分钟,移去上清液,加入新鲜培养基,混合均匀,放入CO2培养箱培养。(7)若不需立即去除冷冻保存剂,则在解冻培养后隔日更换培养基。三、细胞计数与存活测试1、原理:(1)计算细胞数目可用血球计数盘或是Coultercounter粒子计数器自动计数。(2)血球计数盘一般有二个chambers,每个chamber中细刻9个1mm2大正方形,其中4个角落之正方形再细刻16个小格,深度均为0.1mm。当chamber上方盖上盖玻片后,每个大正方形之体积为1mm2×0.1mm=1.0x10-4ml。使用时,计数每个大正方形内之细胞数目,乘以稀释倍数,再乘以104,即为每ml中之细胞数目。(3)存活测试之步骤为dyeexclusion,利用染料会渗入死细胞中而呈色,而活细胞因细胞膜完整,染料无法渗入而不会呈色。一般使用蓝色之trypan blue染料,如果细胞不易吸收trypan blue,则用红色之Erythrosin bluish。计算细胞活率:活细胞数/(活细胞数+死细胞数)×100%。计数应在台盼兰染色后数分钟内完成,随时间延长,部分活细胞也开始摄取染料;因为台盼兰对蛋白质有很强的亲和力,用不含血清的稀释液,可以使染色计数更为准确。2、材料:0.4%w/v trypan blue(GibcoBRL15250-061);Erythosin bluish stain;取0.1gram Erythrosin bluish(SigmaE-9259)及0.05gram preservative methyl paraben(SigmaH-3647)溶于100mlCa++/Mg++freesaline;血球计数盘及盖玻片(Hemocytometerandcoverslip);计数器(counter);低倍倒立显微镜;粒子计数器(Coultercounter,CoulterElectronics)。白细胞稀释液(4%乙酸溶液)。3、步骤:(1)取50μl细胞悬浮液与50μl trypan blue(orErythrosinbluish)等体积混合均匀于1.5ml小离心管中。(2)取少许混合液(约15μl)自血球计数盘chamber上方凹槽加入,盖上盖玻片,于100倍倒立显微镜下观察,活细胞不染色,死细胞则为蓝色(或红色-Erythrosin bluish)。(3)计数四个大方格之细胞总数,再除4,乘以稀释倍数(至少乘以2,因与trypanblue等体积混合),最后乘以104,即为每ml中细胞悬浮液之细胞数。若细胞位于线上,只计上线与右线之细胞(或计下线与左线之细胞)。注:4大格细胞总数×稀释倍数×104/4=细胞数/ml;每一大格的体积=0.1cm×0.1cm×0.01cm=10-4ml计数板计数时,最适浓度为5~10×105细胞/ml,此范围外计数误差偏大。高浓度细胞悬液,可取出部分作稀释或连续稀释后计数。5、范例:T75 monolayer culture制成10ml细胞悬浮液,取0.1ml溶液与0.1ml trypan blue混合均匀于试管中,取少许混合液加入血球计数盘,计数四大方格内之细胞数目。活细胞数/方格:55,62,49,59;死细胞数/方格:5,3,4,6;细胞总数=243平均细胞数/方格=60.75;稀释倍数=2;细胞数/ml:60.75×104×2(稀释倍数)=1.22×106;细胞数/flask(10ml):1.22×106×10ml=12.2×106存活率:225/243﹦92.6%

  • 【分享】细胞生长受什么因素影响?影响细胞生长的因素

    细胞在体外进行培养,失去了机体的调节和控制。因此,除满足营养的要求外,还必须使细胞生存环境尽量接近活体的环境。外环境的培养条件如温度、渗透压、酸碱度等均能影响细胞的生长。 一、温度 一般哺乳类及禽类细胞体外培养的适宜温度是37~38℃。温度过高或过低都会影响到细胞的生长。细胞耐受低温的能力比抗热的能力强,在低温下,细胞的代谢活力及核分裂降低。温度不低于0℃时,虽影响细胞代谢,但并无伤害作用;把细胞置于25~35℃时,细胞仍能生存和生长,但速度减缓;放在40℃数小时后,再置回37℃培养细胞仍能继续生长。但如果在40℃下暴露时间太长,对细胞生长不利,甚至变圆脱落于瓶壁。若温度过低,在降到冰点以下时,细胞因胞外水和胞质结冰而受损死亡。但若向培养液中加入甘油或二甲亚砜等保护剂,封入安瓿中后,置于液氮中,可起保护作用,此时细胞可耐受-70℃以下温度,能长期储存,解冻后细胞复苏,仍能继续生长增殖,细胞生物性状不受任何影响。此为保存细胞的主要手段。 高温对细胞培养不利。细胞在39~40℃培养1小时,能受到一定损伤,但仍有可能恢复,但不能忍受温度再升高2℃,持续数小时,即在41~42℃中培养1小时,细胞损伤严重,温度至43℃以上时细胞多数被杀死。高温主要引起酶的灭活、类脂质破坏,核分裂的破坏,产生凝固酶使细胞发生凝固,另外使蛋白质变性。因此,体外培养细胞时一定要避免高温。 二、渗透压 细胞在高渗溶液或低渗溶液中,可以立即发生皱缩或肿胀、破裂。所以,渗透压是体外培养细胞的重要条件之一。哺乳动物和其他动物组织细胞体外培养的渗透压的维持主要与NaCl有关,但不能忽视其他电介质渗透压的关系。渗透压与单位体积溶媒内溶质的分子数和离子数成正比。为此,按一定比例控制培养液中离子平衡,维持正常渗透压是很重要的。这不仅是为了维持细胞张力,而且是为了调节细胞的代谢。因为细胞外离子输送和离子浓度改变着其他营养物质的输送(如氨基酸、蔗糖等),直接影响细胞基本合成系统。 理想的渗透压因细胞的类型及种族而异,人血浆渗透压为290mmol/L,被视为是体外培养人类细胞的理想渗透压。哺乳类动物细胞的渗透压一般为290~300mmol/L。人胚肺成纤维细胞为250~325mmol/L,鼠则为310mmol/L左右。在实际应用中,260~320mmol/L的渗透压可适于大多数细胞。

  • 【分享】免疫细胞的分离和保存技术

    用体外方法对机体各种具有免疫反应的细胞分别作鉴定、计数和功能测定,是观察机体免疫状态的一种重要手段。为此,须将各种参与免疫反应的细胞从血液或脏器中分离出来。参与免疫反应的细胞主要包括淋巴细胞、巨噬细胞、中性粒细胞等。由于检测的目的和方法有同,分离细胞的需求和技术也异。有的仅需分离白细胞,有的则需分离单个核细胞(mononuclearcell),其中含淋巴细胞和单核细胞(monocyte),有的则需分离T细胞和B细胞以及其亚群。分离细胞选用的方法应力求简便可行,并能获得高纯度、高获得率、高活力的细胞。现用分离细胞群的原则,一是根据各类细胞的大小、沉降率、粘附和吞噬能力加以组分,另一则按照各类细胞的表面标志,包括细胞表面的抗原和受体加以选择性分离。 一、白细胞的分离 (一)血液中红细胞与白细胞比例约600~1000:1,两者的比重不同其沉降速度亦异,通常用两种方法加以分离。 本法是利用血细胞自然沉降率的分离法,采集血液后应及时抗凝,通常选用肝素抗凝法。肝素能阻止凝血酶原转化为凝血酶,从而抑制纤维蛋白原形成纤维蛋白而防止血液凝固。操作原则是将含抗凝血的试管直立静置室温30~60min后,血液分成明显三层,上层为淡黄色血浆,底层为红细胞,紧贴红细胞层上面的灰白层为白细胞,轻轻吸取即得富含白细胞的细胞群,离心洗涤后加入少量蒸馏水或含氯化铵的Gey溶液,经短时间的低渗处理,使红细胞裂解,经过反复洗涤可得纯度较高的白细胞悬液。 (二)聚合物加速沉淀法 本法是利用高分子量的聚合物如明胶、右旋糖酐、聚乙烯吡喀烷酮(polyvinylpyrolidone,PVP)等使红细胞凝集成串,加速红细胞沉降,使之与白细胞分离。本法的细胞获得率比自然沉降法高。

  • 细胞破碎方法

    1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度http://www.39kf.com/Txt2Img/ju.png此法适用于动物内脏组织、植物肉质http://www.39kf.com/Txt2Img/named.png子等。  2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机http://www.39kf.com/Txt2Img/iuy87612.png高,适用于量少和动物脏器组织。  3、超声波处理法:用http://www.39kf.com/Txt2Img/2008-9-13.png定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法http://www.39kf.com/Txt2Img/kmmn675.png适用于微生物材料,用http://www.39kf.com/Txt2Img/datu.png肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。  4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。  5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果http://www.39kf.com/Txt2Img/877667jkdkk.png好。    无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使http://www.39kf.com/Txt2Img/jsdh766289sdmkxu.png些条件都要适合于目的物质的提取。

  • 平板细胞克隆形成试验

    概念:细胞克隆形成率即细胞接种存活率,表示接种细胞后贴壁的细胞成活并形成克隆的数量。贴壁后的细胞不一定每个都能增殖和形成克隆,而形成克隆的细胞必为贴壁和有增殖活力的细胞。克隆形成率反映细胞群体依赖性和增殖能力两个重要性状。基本步骤:1、取对数生长期的各组细胞,分别用0.25%胰蛋白酶消化并吹打成单个细胞,并把细胞悬浮在10%胎牛血清的DMEM培养液中备用。2、将细胞悬液作梯度倍数稀释,每组细胞分别以每皿50、100、200个细胞的梯度密度分别接种含10mL 37℃预温培养液的皿中,并轻轻转动,使细胞分散均匀。置37℃ 5% CO2及饱和湿度的细胞培养箱中培养2~3周。3、经常观察,当培养皿中出现肉眼可见的克隆时,终止培养。弃去上清液,用PBS小心浸洗2次。加4%多聚甲醛固定细胞5mL固定15分钟。然后去固定液,加适量GIMSA应用染色液染10~30分钟,然后用流水缓慢洗去染色液,空气干燥。4、将平皿倒置并叠加一张带网格的透明胶片,用肉眼直接计数克隆,或在显微镜(低倍镜)计数大于10个细胞的克隆数。最后计算克隆形成率。克隆形成率 =(克隆数/接种细胞数)×100%平板克隆形成试验方法简单,适用于贴壁生长的细胞。适宜底物为玻璃的、塑料瓶皿。试验成功的关键是细胞悬液的制备和接种密度。细胞一定要分散得好,不能有细胞团,接种密度不能过大。

  • 【转】药物MTT实验步骤(贴壁细胞)

    药物MTT实验步骤(贴壁细胞)----个人改进版by sssholy (2012-10-22) 1. 边缘孔用无菌PBS充填。收集对数期细胞,调整细胞悬液浓度为50000个/ml,每孔加入100ul细胞悬液(每孔5000个细胞)。注:⑴每次加入细胞都使枪头贴着孔底边缘(最好相同位置),缓慢加入100ul细胞悬液。孔加入顺序:可从上到下,从左到右依次加入。⑵为了保证细胞密度均匀,最好每加3-5列细胞混匀一下细胞悬液,避免因重力沉降导致细胞密度不均。⑶每块96孔板加完细胞后,应拿起板子前后左右水平摇晃几下(勿旋转摇晃),使细胞均匀分散。⑷一般设6个复孔(B-G行),对照孔非常重要,且变异大,故设2列(2,3列为对照孔),4-10或4-11列为给药孔。⑸边缘孔用无菌PBS充填, 2-11列均可加入细胞。因为要设置调零孔(即不加细胞孔),所以可将第11列设为调零孔,也可将第12列的无菌PBS孔在第2天加药时改为调零孔。2. 细胞放入培养箱培养,待贴壁后第二天给药(通常前一天下午或晚上铺板,第2天上午给药)。给药方法:先配好药(用EP管配好药),再拿出96孔板,弃去原有培养液(可不用PBS洗,太麻烦了),加入药物。注:⑴MTT加药时都是先配药再弃去原培养液,最后加入药物。切勿先弃去原有培养液再配药,因为配药一般要花较长时间,若先弃去培养液再配药会导致细胞无营养液体而死亡。⑵药物是用母液溶于无血清培养基配成工作液,事先算好对照孔,药物孔,调零孔如何配制,如何设置加药顺序。一般越靠中央的孔变异越小,故最重要的给药孔一般放在最中间,次要孔放边缘,调零孔可用第11或12列。⑶如果某个给药孔需加入2种药物,一般需要一种药物先预处理1-2h(预处理药物可用Ep管配好后再分别加入各孔),1-2h再加入另一种药物(直接加入各孔)。3.细胞放入培养箱培养24h(或其他指定时间)。4. 药物作用结束后,每孔加入20ul---MTT(5mg/ml),培养3-4h。若药物能与MTT反应,可先弃去原培养液,再加入含MTT的培养液(无血清培养液:MTT=5:1配制)。注:MTT使用前预先解冻。MTT对光敏感,故一般保存于负20℃,配好5mg/mlMTT后我习惯分装于EP管中。5.终止培养,小心吸去孔内培养液。每孔加入150ul---DMSO(DMSO可预先算好所需体积加入15ml离心管中),37℃温箱孵育10分钟或摇床低速振荡10分钟。之后用酶标仪检测OD—490nm(也有测570nm的)各孔的吸光度(A)值。6.同时设置调零孔(无血清培养基, MTT, DMSO),对照孔(细胞,最大浓度的药物溶解介质,无血清培养基, MTT, DMSO)。7.细胞活力(cell viability):细胞活力(cell viability of control)=(药物组A值-调零孔A值)/(对照孔A值-调零孔A值)*100%0 http://img.dxycdn.com/upload/2012/10/22/48/88256443.snap.jpg药物MTT实验步骤----原版:0 http://img.dxycdn.com/upload/2012/10/22/45/66035574.snap.jpg

  • 细胞培养完整手册(2)

    注意事项: 1.配制溶液时必须用新鲜的蒸馏水。2.安装蔡式滤器时通常使用孔径 0.45 微米 和 0.22 微米滤膜各一张,放置位置为 0.45 的位于 0.22 微米的滤膜上方,并且要特别注意滤膜光面朝上。 3.配制 RPMI1640 培养基时因为还要加入小牛血清,而小牛血清略偏酸性,为了保证培养液 PH 值最终为 7.2 ,可在配制时调 PH 至 7.4 。 细胞培养的一般过程 一、准备工作准备工作对开展细胞培养异常重要,工作量也较大,应给予足够的重视,推备工作中某一环节的疏忽可导致实验失败或无法进行。准备工作的内容包括器皿的清洗、干燥与消毒,培养基与其他试剂的配制、分装及灭菌,无菌室或超净台的清洁与消毒,培养箱及其他仪器的检查与调试,具体内容可参阅有关文献。二、取材在无菌环境下从机体取出某种组织细胞(视实验目的而定),经过一定的处理(如消化分散细胞、分离等)后接入培养器血中,这一过程称为取材。如是细胞株的扩大培养则无取材这一过程。机体取出的组织细胞的首次培养称为原代培养。R 理论上讲各种动物和人体内的所有组织都可以用于培养,实际上幼体组织(尤其是胚胎组织)比成年个体的组织容易培养,分化程度低的组织比分化高的容易培养,肿瘤组织比正常组织容易培养。取材后应立即处理,尽快培养,因故不能马上培养时,可将组织块切成黄豆般大的小块,置 4℃的培养液中保存。取组织时应严格保持无菌,同时也要避免接触其他的有害物质。取病理组织和皮肤及消化道上皮细胞时容易带菌,为减少污染可用抗菌素处理。由组织并分离分散细胞的方法可参阅有关文献。 三、培养将取得的组织细胞接入培养瓶或培养板中的过程称为培养。如系组织块培养,则直接将组织块接入培养器皿底部,几个小时后组织块可贴牢在底部,再加入培养基。如系细胞培养,一般应在接入培养器皿之前进行细胞计数,按要求以一定的量(以每毫升细胞数表示)接入培养器皿并直接加入培养基。细胞进入培养器皿后,立即放入培养箱中,使细胞尽早进入生长状态。正在培养中的细胞应每隔一定时间观察一次,观察的内容包括细胞是否生长良好,形态是否正常,有无污染,培养基的 PH是否太酸或太碱(由酚红指示剂指示),此外对培养温度和 CO2浓度也要定时检查。一般原代培养进入培养后有一段潜伏期(数小时到数十天不等),在潜伏期细胞一般不分裂,但可贴壁和游走。过了潜伏期后细胞进入旺盛的分裂生长期。细胞长满瓶底后要进行传代培养,将一瓶中的细胞消化悬浮后分至两到三瓶继续培养。每传代一次称为“一代”。二倍体细胞一般只能传几十代,而转化细胞系或细胞株则可无限地传代下去。转化细胞可能具有恶性性质,也可能仅有不死性(Immortality)而无恶性。培养正在生长中的细胞是进行各种生物医学实验的良好材料。四、冻存及复苏为了保存细胞,特别是不易获得的突变型细胞或细胞株,要将细胞冻存。冻存的温度一般用液氮的温度?-196℃,将细胞收集至冻存管中加入含保护剂(一般为二甲亚砜或甘油)的培养基,以一定的冷却速度冻存,最终保存于液氮中。在极低的温度下,细胞保存的时间几乎是无限的。复苏一般采用快融方法,即从液氮中取出冻存管后,立即放入 37℃水中,使之在一分钟内迅速融解。然后将细胞转入培养器皿中进行培养。冻存过程中保护剂的选用、细胞密度、降温速度及复苏时温度、融化速度等都对细胞活力有影响。

  • 流式细胞术可以检测什么?

    [font=宋体]流式细胞术,作为一种先进的生物技术,已经在生物医学研究中占据了举足轻重的地位。这种技术以其高精度、高速度以及多参数同时检测的能力,广泛应用于细胞生物学、免疫学、肿瘤学等多个领域。流式细胞术不仅可以对单个细胞进行多参数定量分析和分选,还能够对细胞内部的蛋白质、核酸、细胞受体以及细胞表面抗原等进行检测。因此,它在疾病诊断、药物筛选、细胞功能研究等方面具有广泛的应用前景。本文将对流式细胞术的检测原理、应用领域以及发展前景进行详细介绍,旨在为读者提供对这一技术全面而深入的了解。流式细胞术可以检测什么?下面是具体检测信息及应用:[/font][font=宋体] [/font][b][font=宋体][font=Calibri]1.[/font][font=宋体]细胞表型检测[/font][/font][/b][font=宋体]免疫细胞表型是流式细胞术最突出应用。[/font][font=宋体][font=宋体]通过检测免疫细胞群的表面或细胞内标志物,对其进行鉴定和表征。流式细胞术能够精确鉴定和分类免疫细胞群,例如[/font] [font=Calibri]T [/font][font=宋体]细胞、[/font][font=Calibri]B [/font][font=宋体]细胞、[/font][font=Calibri]NK [/font][font=宋体]细胞、树突状细胞、单核细胞、巨噬细胞、血小板和粒细胞等。[/font][/font][font=宋体] [/font][font=宋体]研究人员可以识别和量化异质群体中的各种免疫细胞亚群。[/font][font=宋体] [/font][font=宋体][font=宋体]临床医生可以诊断和监测各种血液系统疾病、进行免疫免疫评估([/font][font=Calibri]8[/font][font=宋体]大类免疫细胞构成与肿瘤预后)。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]2.[/font][font=宋体]细胞活力检测[/font][/font][/b][font=宋体] [/font][font=宋体]流式细胞术能够定量测量群体内和体外培养的活细胞和非活细胞。[/font][font=宋体] [/font][font=宋体]通过使用选择性标记活细胞或死细胞的荧光染料,流式细胞术可以提供精确可靠的活力测定,有助于确定细胞活力百分比。[/font][font=宋体] [/font][font=宋体]流式细胞术可以根据特定的标志物或染料区分活细胞、凋亡细胞和坏死细胞,从而更详细地了解细胞的健康和状态。通过将活力染料与细胞表面抗原、细胞内蛋白或功能测定的标记物相结合,研究人员可以在特定细胞类型或实验条件下获得有关细胞活力及其发生机制的全面信息。[/font][font=宋体] [/font][font=宋体]最常用的活性检测染料[/font][font=宋体] [/font][font=宋体][font=宋体]死细胞:碘化丙啶([/font] [font=Calibri]propidium iodide[/font][font=宋体],[/font][font=Calibri]PI[/font][font=宋体])和[/font][font=Calibri]7-AAD[/font][font=宋体],与[/font][font=Calibri]DNA[/font][font=宋体]结合,但只能进入膜受损的细胞,使死细胞发出荧光。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]凋亡细胞:[/font][font=Calibri]annexin V[/font][font=宋体]:对磷脂酰丝氨酸具有强结合亲和力的蛋白质,在细胞凋亡的早期阶段暴露在质膜的外表面[/font][font=Calibri]annexin V+PI[/font][font=宋体]是常用区分凋亡细胞和坏死细胞的组合。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]活细胞:[/font][font=Calibri]calcein AM[/font][font=宋体]、[/font][font=Calibri]CFDA[/font][font=宋体]([/font][font=Calibri]carboxyfluorescein diacetate[/font][font=宋体])、[/font][font=Calibri]FDA [/font][font=宋体]([/font][font=Calibri]fluorescein diacetate[/font][font=宋体]) :进入活细胞,但只有在与细胞内酶相互作用时才会发出荧光[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞体内增殖:[/font][font=Calibri]CFSE(CFDA-SE)[/font][font=宋体]穿透细胞膜,在活细胞内与胞内蛋白共价结合,水解后释放出绿色荧光。在细胞分裂增殖过程中,它的荧光强度会随着细胞的分裂而逐级递减,标记荧光可平均分配至两个子代细胞中,因此其荧光强度是亲代细胞的一半,根据这一特性,它可被用于检测细胞增殖,细胞周期的估算及细胞分裂等方面。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]3.[/font][font=宋体]细胞周期分析[/font][/font][/b][font=宋体] [/font][font=宋体]从流式细胞术的早期开始,细胞周期分析就成为有价值的应用。[/font][font=宋体] [/font][font=宋体]原理是基于荧光和核酸的量之间的关系。[/font][font=宋体] [/font][font=宋体][font=宋体]常用核酸结合染料:碘化丙啶([/font][font=Calibri]PI[/font][font=宋体]),[/font][font=Calibri]Hoechst[/font][font=宋体],[/font][font=Calibri]DAPI[/font][font=宋体],[/font][font=Calibri]7-AAD[/font][font=宋体],溴化乙锭等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞术细胞周期分可以有很多方面的应用,例如,[/font][font=Calibri]DNA/Ki67[/font][font=宋体]测定可以将表型选择与细胞周期分析相结合,用于监测[/font][font=Calibri]p53[/font][font=宋体]细胞周期停滞,评估抗癌活,多药耐药性等。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]4.[/font][font=宋体]离子通道测定[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]钙作为关键的第二信使,在许多细胞信号通路中起着至关重要的作用。它在免疫细胞活化中尤为重要,包括[/font][font=Calibri]T[/font][font=宋体]细胞、[/font][font=Calibri]B[/font][font=宋体]细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞。[/font][/font][font=宋体]此外,钙信号传导还参与肥大细胞脱颗粒、神经元兴奋性、突触传递和神经递质释放至关重要。[/font][font=宋体] [/font][font=宋体][font=宋体]细胞脱颗粒的早期测量值是通过使用钙离子载体[/font][font=Calibri]A23187[/font][font=宋体]的流式细胞术确定的。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]常用荧光染料:[/font][font=Calibri]fluo-3 [/font][font=宋体]和[/font][font=Calibri]indo-1[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]虽然[/font][font=Calibri]Ca2+[/font][font=宋体]通道测量是最常见的应用之一,但其他离子如镁、钾、钠和氢也可以使用流式细胞术进行监测。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]5.[/font][font=宋体]细胞功能检测[/font][/font][/b][font=宋体]最早的检测是细胞酯酶。[/font][font=宋体] [/font][font=宋体][font=宋体]使用响应氧化态变化的活性染料检测粒细胞的氧化电位。例如,氢乙啶([/font][font=Calibri]hydroethidine[/font][font=宋体])用于中性粒细胞呼吸爆发。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]二乙酸二氯荧光素([/font][font=Calibri]dichlorofluorescein diacetate[/font][font=宋体]),已被用于吞噬细胞功能研究。[/font][/font][font=宋体] [/font][font=宋体]效应细胞杀伤功能,是流式细胞术的另外一个重要应用。[/font][font=宋体] [/font][font=宋体]细胞因子是免疫细胞功能的重要执行分子,对科学研究,免疫细胞治疗,临床诊疗都及其关键。基于流式细胞术开发的多重细胞因子检测,已经有广泛应用。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]6.[/font][font=宋体]蛋白质工程[/font][/font][/b][font=宋体] [/font][font=宋体]流式细胞术和分选传统上不是蛋白质工程中最常用的技术之一。然而,近年来,在该领域的应用越来越多。[/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞术被用于酶学蛋白质研究,包括细胞色素[/font][font=Calibri]P450[/font][font=宋体]、葡萄糖氧化酶、几丁质酶、纤维素酶、过氧化物酶、酯酶、转移酶、β半乳糖苷酶、硫代内酯酶等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白质工程,包括在基因水平上引入突变(随机或特异性),以创建由数千到数百万个单个蛋白质变体组成的文库(如上图),使用流式细胞术[/font] [font=宋体]每天能够分析多达[/font] [font=Calibri]10^8[/font][font=宋体]–[/font][font=Calibri]10^9 [/font][font=宋体]个克隆,并对具有所需特性的克隆进行分类。[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]哺乳动物细胞和细菌细胞分选[/font][/font][/b][font=宋体] [/font][font=宋体]细胞分选是流式细胞的重要应用之一,哺乳动物细胞相对成熟,不做赘述。细菌细胞方面的应用,也逐渐开始建立。[/font][font=宋体] [/font][font=宋体]与耗时的传统琼脂铺板检测方法相比,流式分选可以快速检测和分选悬浮液中的单个细菌细胞。[/font][font=宋体] [/font][font=宋体]尽管细胞分选仪具有高性能,但它们在微生物学中的应用一直受到限制。[/font][font=宋体] [/font][font=宋体]这主要是由于微生物体积小,因此很难将它们与培养基中的细胞碎片或背景颗粒区分开来。另一个潜在的问题是,通常没有细菌菌株特有的抗体。[/font][font=宋体] [/font][font=宋体][font=宋体]限制细胞分选仪在细菌检测和分选中的适用性的其他因素主要与分选仪硬件功能本身有关,在流式细胞术仪器的早期,数量有限的激光器和检测器,限制一次只能使用一种或两种荧光染料。随着最新仪器的发展,多激光器和检测起的仪器被开发:包括赛默飞世尔的[/font][font=Calibri]Bigfoot[/font][font=宋体]光谱细胞分选仪,[/font][font=Calibri]BD FACSAria III[/font][font=宋体]分选仪,索尼[/font][font=Calibri]MA900[/font][font=宋体]细胞分选仪和贝克曼库尔特的[/font][font=Calibri]MoFlo Astrios EQ[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]此外,部分致病性细菌,需要在[/font][font=Calibri]BSL2[/font][font=宋体]以上的实验环境下进行,现在部分流式细胞术带有[/font][font=Calibri]BSL 2 hood[/font][font=宋体]。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]8.[/font][font=宋体]液滴微流体[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]液滴微流体是一个相对较新的领域,专注于皮升体积中含有细胞或[/font][font=Calibri]DNA[/font][font=宋体]的离散液滴的形成,操作和分析,应用于生物学、化学、材料科学和医学。[/font][/font][font=宋体] [/font][font=宋体]在生物学中,液滴微流体可实现单细胞分析、生物分子的高通量筛选、细胞异质性研究和药物发现。[/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞术分析是研究单细胞的强大技术,可提供有关各种参数的宝贵信息。然而,它的测量仅限于直接连接到细胞的分子,例如表面或细胞内标记物,限制研究由细胞分泌或由[/font][font=Calibri]DNA[/font][font=宋体]分子产生但不物理附的分子。液滴微流体提供了一种克服这一限制的新方法。将细胞或[/font][font=Calibri]DNA[/font][font=宋体]封装在单个液滴中会产生离散的区室,从而能够分析由封装实体释放或产生的化合物。[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]9.[/font][font=宋体]下一代生物制剂[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]生物制药已经占据了药物市场的重要份额,包括治疗性蛋白质([/font][font=Calibri]65%[/font][font=宋体]),疫苗([/font][font=Calibri]20%[/font][font=宋体])等。通过测序([/font][font=Calibri]NGS[/font][font=宋体])进行单[/font][font=Calibri]B[/font][font=宋体]细胞库分析和克隆扩增鉴定,直接从人类幸存者克隆免疫球蛋白基因,分离出高亲和力中和抗体,加快了单克隆抗体药物的研发,然而,这种方法比较昂贵,且依旧需要后续的功能验证等。新策略可使用流式细胞术、[/font][font=Calibri]MACS[/font][font=宋体]或微流体将单细胞分离与功能筛选相结合,降低开发成本并消除失败的候选药物,是流式细胞术新的应用开发方向。[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测技术服务[/b][/url],拥有[/font][font=宋体][font=宋体]①具有 [/font][font=Calibri]20,000 [/font][font=宋体]次以上流式抗体筛选鉴定经验及多年流式诊断抗体研发经验,在实验方案设计、样品制备、数据分析等方面确保科学性、准确性和可靠性[/font][font=Calibri] [/font][/font][font=宋体][font=宋体]②拥有 [/font][font=Calibri]1,000 [/font][font=宋体]余株自产精品流式抗体,覆盖细胞膜、胞内、核内及分泌抗原;[/font][/font][font=宋体][font=宋体]③自产 [/font][font=Calibri]Annexin V/7-AAD [/font][font=宋体]凋亡检测试剂盒,并储备多种流式检测常用试剂,大大节约购买试剂的等待时间和实际费用;[/font][/font][font=宋体][font=宋体]④可以提供近 [/font][font=Calibri]200 [/font][font=宋体]种细胞系选择,省去细胞样本寄送过程中的风险,并可以免费提供健康人外周血细胞对照品。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font][font=Calibri] [/font]

  • CA 对 细胞状态的影响

    CA 对  细胞状态的影响

    [b][font='Times New Roman',serif]CA[/font]对[font='Times New Roman',serif]A549[/font]细胞状态的影响[/b][font=宋体]首先探究了 [/font]CA [font=宋体]对细胞生长状态的影响。以 [/font]A549 [font=宋体]细胞为例,设置了终浓度为[/font]0[font=宋体]、[/font]300 μM [font=宋体]的 [/font]CA [font=宋体]浓度梯度,并观察其在不同时间([/font]3[font=宋体]、[/font]9[font=宋体]、[/font]18 h[font=宋体])的细胞状态。如图 [/font]3-1 [font=宋体]所示,加入 [/font]CA [font=宋体]后细胞的状态发生了显著的变化,在 [/font]3 h [font=宋体]时就已经出现细胞形态的改变;当 [/font]18 h [font=宋体]时,细胞已经有死亡的迹象。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center] [/align][font='Times New Roman',serif][/font][img=,523,261]https://ng1.17img.cn/bbsfiles/images/2022/11/202211171003382232_7794_3237657_3.png!w690x311.jpg[/img][font=宋体]图 [/font] CA [font=宋体]刺激 [/font]A549 [font=宋体]细胞,终浓度为 [/font]0 μM[font=宋体]、[/font]300 μM[font=宋体],不同时间细胞状态图[/font][b][font='Times New Roman',serif]CA[/font]对 [font='Times New Roman',serif]A549[/font]细胞活力的影响[/b][font=宋体]本文设置了终浓度为 [/font]0[font=宋体]、[/font]50[font=宋体]、[/font]100[font=宋体]、[/font]300[font=宋体]、[/font]500[font=宋体]、[/font]1000[font=宋体]、[/font]1500[font=宋体]、[/font]2000[font=宋体]、[/font]3000 μM [font=宋体]的 [/font]CA [font=宋体]浓度梯度,细胞在 [/font]5% CO[sub]2[/sub][font=宋体]、[/font]37 ℃[font=宋体]的培养箱中无血清培养[/font]6 h[font=宋体],最终得出了浓度依赖型[/font][font=宋体]的曲线。如图 [/font]3-2 [font=宋体]所示,加入 [/font]600 μM [font=宋体]的 [/font]CA [font=宋体]对细胞的抑制率可达到 [/font]50%[font=宋体]左右;当 [/font]CA [font=宋体]加入浓度为 [/font]2.5 mM [font=宋体]时,细胞的存活率只有 [/font]20%[font=宋体];当 [/font]CA [font=宋体]的加入浓度为 [/font]3 mM [font=宋体]时,细胞[/font][font=宋体]已经死亡。[/font] [table][tr][td][img=文本框:,475,307]https://ng1.17img.cn/bbsfiles/images/2022/11/202211171003523300_7297_3237657_3.png!w690x370.jpg[/img][/td][/tr][/table][font=宋体] [/font][align=center]32[/align][font='Times New Roman',serif][/font][font=宋体]图 [/font] [font=宋体]不同浓度梯度([/font]0[font=宋体]、[/font]50[font=宋体]、[/font]100[font=宋体]、[/font]300[font=宋体]、[/font]500[font=宋体]、[/font]1000[font=宋体]、[/font]1500[font=宋体]、[/font]2000[font=宋体]、[/font]3000 μM[font=宋体])[/font]CA [font=宋体]刺激 [/font]A549[align=center][font=宋体]细胞测的细胞活力曲线图[/font][/align])[b]蛋白免疫印迹分析[/b] [table][tr][td] [table=100%][tr][td][img=,553,349]https://ng1.17img.cn/bbsfiles/images/2022/11/202211171004059904_8264_3237657_3.png!w690x378.jpg[/img] [/td][/tr][/table] [/td][/tr][/table][font=宋体]以 [/font]A549 [font=宋体]为例,本文选用不同浓度([/font]0[font=宋体]、[/font]20[font=宋体]、[/font]50[font=宋体]、[/font]100[font=宋体]、[/font]300[font=宋体]、[/font]500 μM[font=宋体])的 [/font]CA [font=宋体]处理[/font]1 h [font=宋体]后的细胞裂解液与生物素孵育,进一步进行免疫印迹分析。如图 [/font] [font=宋体]所示, [/font]Westerningblotting [font=宋体]分析表明,随着 [/font]CA [font=宋体]浓度增加,曝光后的条带逐渐加深,这进一步证明了 [/font]CA [font=宋体]已成功结合到蛋白上,从而在蛋白上引入可被酰肼生物素标记的醛基,同时也可进一步证明酰肼化学法能够实现[/font]CA [font=宋体]靶蛋白的标记。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]图 [/font] [font=宋体]一定浓度梯度([/font]0[font=宋体]、[/font]20[font=宋体]、[/font]50[font=宋体]、[/font]100[font=宋体]、[/font]300[font=宋体]、[/font]500 μM[font=宋体])[/font]CA [font=宋体]刺激 [/font]A549 [font=宋体]细胞的免疫印迹结果和[/font][align=center][font=宋体]考马斯染色结果[/font][/align][font='Times New Roman',serif][/font][b][font='Times New Roman',serif]CA[/font]修饰肽段分析[/b][font=宋体]选用 [/font]50[font=宋体]、[/font]100[font=宋体]、[/font]300μM[font=宋体]的 [/font]CA[font=宋体]处理 [/font]A549[font=宋体]、[/font]K562[font=宋体]细胞,每个样品各做三次生物学重复并进行分析。如图 [/font]3-4[font=宋体]所示,在浓度 [/font]50μM[font=宋体]的 [/font]CA[font=宋体]刺激下,可从 [/font]A549[font=宋体]细胞鉴定到 [/font]16[font=宋体]个高可信度的 [/font]CA[font=宋体]修饰位点,从 [/font]K562[font=宋体]细胞鉴定到了[/font]32 [font=宋体]个高可信度的 [/font]CA [font=宋体]修饰位点;在 [/font]100 μM [font=宋体]的 [/font]CA [font=宋体]刺激下,可从 [/font]A549 [font=宋体]细胞中鉴定到 [/font]43 [font=宋体]个高可信度的 [/font]CA [font=宋体]修饰位点,从 [/font]K562 [font=宋体]细胞中鉴定到了 [/font]100 [font=宋体]个高可信度的 [/font]CA [font=宋体]修饰位点;在 [/font]300 μM [font=宋体]的 [/font]CA [font=宋体]刺激下,可从 [/font]A549 [font=宋体]细胞中鉴定到 [/font]264 [font=宋体]个高可信度的 [/font]CA [font=宋体]修饰位点,从 [/font]K562 [font=宋体]细胞中鉴定到了 [/font]355 [font=宋体]个高可信度的 [/font]CA [font=宋体]修饰位点。[/font][font=宋体] [/font] [table][tr][td][img=,551,179]https://ng1.17img.cn/bbsfiles/images/2022/11/202211171004226161_3885_3237657_3.png!w690x461.jpg[/img][/td][/tr][/table][font=宋体] [/font][font=宋体]图 [/font]CA [font=宋体]刺激 [/font]A549 [font=宋体]和 [/font]K562 [font=宋体]细胞,终浓度为 [/font]50 μM[font=宋体]、[/font]100 μM [font=宋体]和 [/font]300 μM [font=宋体]三次生物学重复鉴定[/font][font=宋体]到的 [/font]CA [font=宋体]修饰位点的韦恩图[/font]

  • 细胞培养箱和储存条件

    培养箱 培养箱的作用是为细胞生长提供合适的环境。培养箱大小应足够满足实验室需要,具有强制空气循环,并且具有温度控制系统,可将温度波动控制在 +0.2℃范围内。不锈钢培养箱易于清洁,耐腐蚀,尤其适合使用湿化空气进行培养的情况。虽然细胞培养箱的无菌性要求不如细胞培养通风橱严格,但是必须经常对其进行清洁,以免培养的细胞受到污染。 培养箱种类 目前培养箱有两种基本类型,即:干式培养箱和湿式二氧化碳培养箱。干式培养箱较为经济,但是需要将细胞在密封的培养瓶中培养,以防止培养基蒸发。在干式培养箱中放置一只水盘可以增加一定的湿度,但是无法精确控制培养箱内的空气条件。湿式二氧化碳培养箱较为昂贵,但是能够准确控制培养条件。这种培养箱可用于培养皿或多孔板中细胞的培养,这种培养方式需要将空气控制在高湿度、高二氧化碳压力的状态。 储存 细胞培养实验室应设置多个储存区,分别用于存放液体(如培养基和试剂)、化学品(如药物和抗生素)、耗材(如一次性吸管、培养瓶和手套)、玻璃器皿(如培养基瓶和玻璃吸管)、特殊设备以及组织和细胞。 玻璃器皿、塑料制品和特殊设备可置于架子上或抽屉中于室温下存放:但是,所有培养基、试剂和化学品均应按照标签说明存放。 一些培养基、试剂和化学品对光线敏感,尽管其可耐受光照状态下正常的实验室使用但是不使用时必须将其存放在暗处或者用铝箔包裹起来。 冰箱 对于小型细胞培养实验室,家用冰箱(最好是不含自动除霜冷冻室的冰箱)即可供试剂和培养基于 2-8℃下存放之用,而且价格低廉。大型实验室,采用专供细胞培养的冷藏室较为合适。应确保定期打扫冰箱或冷藏室,以防污染。 冰柜 大多数细胞培养试剂可于-5℃ 至-20℃ 下储存:因此,可以采用超低温冰柜(即:-80℃冰柜)存放多数试剂。与实验室冰柜相比,家用冰柜是一种较为便宜的选择。尽管大多数试剂可耐受自动除霜(即:自动解冻) 冰柜内的温度波动,但是有些试剂(例如抗生素和酶)则应储存在无自动除霜功能的冰柜中。 低温储存 随着传代次数的增加,连续培养的细胞系可能发生遗传不稳定:因此,必须准备工作细胞储备并将其存放于低温状态下(更多信息,请参阅第 37 页的“细胞冻存”部分)。不得将细胞存放于 -20℃或 -80℃冰柜中,因为细胞存放于上述温度条件下活力会迅速降低。 目前主要有两种液氮储存系统,即:蒸汽相和液相储存系统,分别采用广口和细口储存容器。蒸汽相系统可降低冻存管爆炸危险,储存生物危害性物质时应使用该系统,液相系统通常具有更长的静态保温时间,因而更为经济。 细口容器中液氮蒸发速度较慢,更为经济,而广口容器存取方便,储存容量较大。 细胞计数器 细胞计数器是定量监测细胞增殖动力学的必备工具,实验室内同时培养 2-3 种以上细胞时,细胞计数器能够提供巨大的便利。 Countess”自动细胞计数器是一款台式设备,它采用标准台盼蓝摄入技术,可准确测定细胞数量和活性(活细胞、死细胞和总细胞),测定每个样品只需不到1分钟的时间。Countess"自动细胞计数仪计数所需的样本量与您目前使用的血球计数器所需量相同,且不到一分钟即可完成一个样本的典型细胞计数,适用于各种真核细胞。

  • 厂商活动:智能触控细胞状态分析仪首次试用体验之真心英雄第二关

    厂商活动:智能触控细胞状态分析仪首次试用体验之真心英雄第二关

    传统流式细胞仪繁琐的实验步骤是否一直困扰着您?它结果输出的不方便是否也影响着您的实验效率?大量用于流式细胞仪上机样本的得到是否也让您很烦躁?现在这些都将成为过去式……MuseTM智能触控细胞状态分析仪——一款新型基础型流式细胞仪可以成功的解决您的这些问题。以细胞活力分析为例,MuseTM只需三步即可搞定:细胞悬液内加入Muse检测试剂,室温孵育5分钟,上机检测——内置的Pad触控式操作系统让您只需动动手指就可以直接读数。采用的独特微毛细管液流系统,样本需要量只有传统流式细胞仪的1/10,为您节省大量宝贵的实验样本。另外,MuseTM智能触控细胞状态分析仪创新的微毛细管液流设计摒弃了传统流式细胞仪必须依赖鞘液的流体动力学聚焦原理,最大程度的保护细胞不受到高速鞘液流冲击的影响,保持上机前的细胞状态。精湛的紧凑型光路设计可以为您分析直径范围在2-60μm的广泛样本,让您的细胞状态分析实验与众不同。预置的多套实验方案以及高品质的预包装试剂盒,让您无需为复杂的试验参数设定头痛不已,获取与分析变得能够轻松掌握。在快速细胞计数,细胞活力分析,细胞凋亡分析,细胞周期等分析领域,MuseTM智能触控细胞状态分析仪定会为各位老师带来不同凡响全新的实验体验。想切身感受这炎热的夏天里MuseTM智能触控细胞状态分析仪为您实验带来的小清新吗?赶快报名,免费的试用在等着您哦•••活动期间,凡是参与试用的用户均可获得昊诺斯8GU盘或瑞士军刀背包一个(奖品以实物为准)。http://ng1.17img.cn/bbsfiles/images/2013/07/201307231142_453122_1622715_3.jpg真心英雄活动第二关试用报名网址:http://www.instrument.com.cn/custom/SH100700/20130522/free.shtml另外,您也可以致电北京昊诺斯科技有限公司市场部产品负责人孙健13710746995 sunjian@herosbio.com(因为区域划分,活动仅限北京区域、山西及内蒙古,具体问题欢迎来电垂询)。

  • 细胞破碎的四种方法

    [b][font=微软雅黑][size=10.5pt]一、机械破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt][font=微软雅黑]是指利用捣碎机、研磨器或匀浆器[/font] [font=微软雅黑]等将细胞破碎开来[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5pt]1. 高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。[/size][/font][font=微软雅黑][size=10.5pt]2. 玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。[/size][/font][b][font=微软雅黑][size=10.5pt]二、物理破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt]指利用温度差、压力差或超声波等将细胞破碎开来。[/size][/font][font=微软雅黑][size=10.5pt]1.用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂(借助超声的震动力破碎细胞壁和细胞器)。[/size][/font][font=微软雅黑][size=10.5pt]机制:可能与强声波作用溶液时,气泡产生、长大和破碎的空化现象有关,空化现象引起的冲击波和剪刀力使细胞裂解。[/size][/font][font=微软雅黑][size=10.5pt]超声波破碎的效率取决于声频、声能、处理时间、细胞浓度和细胞类型等。(使用时注意降温,防止过热)。[/size][/font][font=微软雅黑][size=10.5pt]2. 高压破碎:细胞悬浮液从高压室的环状隙喷射到静止的撞击环上,被迫改变方向经出口管流出。此过程中细胞经历了高速造成的剪切的碰撞及高压到常压的变化,从而破碎释放内含物。[/size][/font][font=微软雅黑][size=10.5pt]这是一种温和的、彻底破碎细胞的较理想的方法。[/size][/font][font=微软雅黑][size=10.5pt]3. 反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。[/size][/font][b][font=微软雅黑][size=10.5pt]三、化学破碎法:[/size][/font][/b][font=微软雅黑][size=10.5pt][font=微软雅黑]指利用甲醛、丙酮等有机溶剂或表面活性剂作用于细胞膜,使细胞膜的结构遭到破坏或透性发生改变[/font] [font=微软雅黑]。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠([/font]SDS)、去氧胆酸钠等细胞膜破坏。浓度一般为1mg/ml。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]四、酶学破碎法[/font] [font=微软雅黑]:[/font][/size][/font][font=微软雅黑][size=10.5pt]选用合适的酶,使细胞壁遭到破坏,进而在低渗溶液中将原生质体破碎开来。[/size][/font][font=微软雅黑][size=10.5pt]细菌细胞壁较厚,可采用溶菌酶处理效果更好。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]裂解液标准配方[/font]: :50mM Tris-HCl(pH8.5~9.0), 2mM EDTA, 100mM NaCl, 0.5% Triton X-100, 1mg/ml溶菌酶。(溶菌酶在这个pH范围内比较好发挥作用) 。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]综合叙述:无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸([/font]DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入PMSF也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。[/size][/font]

  • 何首乌主要活性成分靶向AMPK改善造血干细胞衰老

    [size=14px] [/size] [size=14px]造血干细胞(HSC)是维持血液和免疫系统健康的重要基础。在机体衰老过程中,HSC功能随之退化,表现出重建造血能力下降以及谱系分化异常,是衰老的十二大特征之一。寻找能有效改善HSC衰老的药物,对于延缓衰老助力健康老龄化具有极其重要的意义。何首乌是传统补益精血、延缓衰老的著名中药,王伽伯团队前期研究表明其所含主要成分反式二苯乙烯苷(TSG)安全性良好,不会引起肝损伤,且根据文献可知TSG可通过清除自由基、调节脂质代谢紊乱及保护神经等方式发挥良好的抗衰老作用,但其在改善HSC衰老及增强衰老机体造血免疫功能方面的活性及机制尚未有报道。[/size] [size=14px] [/size] [size=14px]著名抗衰老中药何首乌的主要成分反式二苯乙烯苷(TSG)具有最显著的改善造血干/祖细胞衰老的作用。机制上,TSG通过直接结合并激活能量感受器AMPK增强衰老造血干/祖细胞再生功能,并通过AMPK介导的Tet2表观遗传调控促进HSC向淋系细胞分化,部分改善HSC的髓系分化偏移。这项研究开辟了一条通过激活AMPK来减缓 HSC 衰老的途径,并肯定TSG是一种非常有前途的候选者,可以作为天然AMPK激活剂,用于开发抗衰老药物。[/size] [size=14px] [/size] [size=14px]Highlights[/size] [size=14px]1)首先测试了9种选定的药物对全身辐射(TBI)小鼠造血系统过早衰老的影响;[/size] [size=14px]2)何首乌主要活性成分TSG被成功鉴定为衰老HSC的有效再生剂;[/size] [size=14px]3)TSG治疗增加2种衰老小鼠中共同淋巴祖细胞CLP及其B淋巴细胞的数量;[/size] [size=14px]4)TSG 治疗增强衰老小鼠的HSC/CLP增殖潜力,且无明显副作用;[/size] [size=14px]5)TSG可通过AMPK-Tet2轴恢复再生能力的丧失和淋巴细胞生成的下降。[/size] [size=14px]研究结果[/size] [size=14px]1、筛选能够使衰老的HSC恢复活力的化合物[/size] [size=14px]作者首先基于文献及临床试验调研,确定9种源自抗衰老中药的天然产物,这9种天然产物是经过精心挑选的来自9个不同中药配方的化合物,已知对人类造血具有高度有益的作用。随后利用辐射诱导(TBI)的早衰小鼠模型筛选,结果发现何首乌TSG不仅展现出最显著的改善HSC衰老作用,并诱导骨髓淋系祖细胞(CLP)以及下游的各发育阶段B细胞和不同类型T细胞数目显著增加,恢复到接近正常对照组的水平。[/size] [size=14px] [/size] [size=14px]2、TSG 恢复自然衰老的 HSC活力且无任何明显副作用[/size] [size=14px]进一步作者评估TSG是否也可以使自然衰老小鼠中老化的HSC恢复活力。结果证实TSG能够显著提高骨髓中CLP和B细胞、胸腺T细胞各发育阶段绝对数目及外周血中淋系细胞比例,将老龄小鼠恢复到接近年轻小鼠的水平,TSG 治疗并没有以任何显著的方式改变体重、外周血细胞、血液化学和肝脏的组织学特征。[/size] [size=14px] [/size] [size=14px]3、TSG可以增强衰老HSC的再生潜力[/size] [size=14px]老化的HSC 会显著降低再生潜力,作者随后检查了TSG是否可以增强衰老小鼠中HSC的增殖能力,通过HSC和CLP移植实验结果的两组实验数据表明,显示用TSG治疗衰老小鼠可显著增强造血干/祖细胞造血的增殖能力。[/size] [size=14px] [/size] [size=14px]4、TSG诱导显著的转录变化并促进静止特征[/size] [size=14px]作者接着研究了TSG治疗对衰老HSC影响的潜在机制,发现TSG 治疗对CLP增殖和凋亡以及ROS无显著影响,进一步对年轻小鼠、衰老小鼠和TSG治疗的小鼠的HSC进行转录组分析,发现与未治疗的衰老小鼠相比,经TSG治疗的衰老小鼠的HSC转录组表现出与“年轻”HSC类似的转录组特征,转录组分析的结果还表明,TSG处理导致氧化磷酸化(OXPHOS)基因的表达显著减少,但静止相关基因的表达水平增加,这些结果表明TSG 治疗可以通过将衰老的转录组逆转到与年轻 HSC 相似的状态来促进衰老 HSC 的年轻化。此外,TSG可以抑制衰老 HSC的代谢,促进AMPK通路的激活以及向静止状态的转变。[/size] [size=14px] [/size] [size=14px]5、TSG使衰老 HSC恢复活力的作用依赖于AMPK通路[/size][size=14px]为了进一步验证TSG中AMPK对HSC衰老的再生作用,作者利用特异性AMPK抑制剂(Com C)和AMPK 激活剂(AICAR)来抑制或激活AMPK,探讨TSG对小鼠HSC衰老的影响,发现Com C显著阻断了 TSG 对骨髓中CLP和下游B细胞数量以及衰老小鼠外周血中 B 细胞比例的保护作用,AICAR治疗可以增加骨髓中CLP的数量和/或B细胞和前B细胞的总数,并通过增加 B细胞百分比来纠正外周血的不平衡。这些结果表明TSG主要通过激活AMPK来有效增强HSC功能和淋巴分化。[/size] [size=14px] [/size] [size=14px]6、TSG可以在体外与 AMPK 发生直接互作[/size] [size=14px]为了进一步研究TSG通过激活AMPK导致HSC衰老的分子机制,作者采用分子对接发现TSG 可以与 AMPKα1β1γ1 和 AMPKα2β1γ1 蛋白的激酶结构域结合,通过SPR实验发现TSG能够以比AMPKα2β1γ1更高的亲和力与AMPKα1β1γ1结合。ADPGlo? 激酶测定发现TSG可激活AMPKα1β1γ1和AMPKα2β1γ1活性。结果表明TSG可以通过与AMPK直接互作来促进AMPK激活。[/size] [size=14px] [/size] [size=14px]7、TSG可以通过AMPK-Tet2轴逆转衰老 HSC的甲基化谱[/size] [size=14px]表观遗传改变与HSC的表型和功能变化密切相关,Tet2被认为是重要的表观遗传调节因子,在HSC的稳态和分化中发挥着重要作用,而AMPK激活对于维持Tet2稳定性至关重要。因此,作者分析了TSG对AMPK激活和Tet2表达的影响,亚硫酸氢盐测序评估全基因组 DNA 甲基化状态发现衰老小鼠的 LT 整体 DNA 甲基化水平显著增加,TSG治疗衰老小鼠的DNA甲基化水平显著下降,降至与年轻小鼠非常相似的水平。此外,这种效果随着Com C的共同处理而减弱。TSG治疗并没有导致Tet2突变小鼠中CLP和B细胞绝对数量的显著增加,TSG治疗导致8周龄小鼠骨髓LSK的淋巴细胞生成潜力显著增加,并且这种效应被Tet2抑制剂Bobcat339减弱。这些结果表明Tet2作为AMPK激活的下游效应子,促进HSC的淋巴细胞生成潜力,而TSG可以通过影响该AMPK-Tet2轴来促进淋巴细胞生成。[/size] [size=14px] [/size] [size=14px]该研究筛选了一组源自几种著名中药配方的假定天然抗衰老化合物,并鉴定出TSG作为老化HSC的强效再生剂。TSG是中药何首乌中多酚的天然衍生物,具有多种功效,包括抗氧化、抗炎、抗高脂血症和神经保护以及抗衰老。作者发现TSG治疗不仅大大提高了CLP及其下游B淋巴细胞的绝对数量,而且还通过衰老供体嵌合的快速扩张增强了HSC/CLP的再增殖能力。此外,TSG可以恢复衰老HSC的静止状态,促进表观遗传重编程,通过激活AMPK及其底物Tet2,改变 DNA 甲基化谱,从而控制HSC的命运决定。这项研究开辟了一条通过激活AMPK来减缓 HSC 衰老的途径,并确定TSG是一种非常有前途的候选者,可以作为天然AMPK激活剂用于开发抗衰老药物。[/size]

  • 植物细胞原生质体制制备与融合

    植物细胞原生质体制制备与融合2006-11-20 17:14植物细胞原生质体制制备与融合1、原生质体常现的杂交育种由于物种间难以逾越的天然屏障而举步维艰。科学家们受细胞全能性理论及组织培养成功的启示,逐渐将眼光转向细胞融合,试图用这种崭 图3-2新的手段冲破自然界的禁钢。1937年michel率先实施植物细胞融合的试验。如何去除坚韧的细胞'接成了牛物学工作者必须解决的首要难题。196O年该领域终于出现了重大突破。由英国诺丁汉大学Cocking教授领导的小组率先利用真菌纤维素酶,成功地制备出了大量具有高度活性可再生的番茄幼根细胞原生质体,开辟了原生质体融合研究的新阶段。植物细胞原生质体是指那些已去除全部细胞壁的细胞。2、原生质体制备(1)取材与除菌 为了让制得的原生质体一般都生活力较强,再生与分生比例较高。常用的外植体包括:种子根。子叶、下胚轴、胚细胞、花粉母细胞、悬浮培养细胞和嫩叶。对外植体的除菌要因材而异。悬浮培养细胞一般无需除菌。对较脏的外植体往往要先用肥皂水清洗再以清水洗2~3次,然后浸人 70%酒精消毒后,再放进 3%次氯酸钠处理。最后用无菌水漂洗数次,并用无菌滤纸吸干。(2)酶解 现以叶片为例说明如何制备植物原生质体。①配制酶解反应液:反应液应是一种PH值在5·5~5·8的缓冲液,内合纤维素酶0.3%~3.0%以及渗透压稳定剂、细胞膜保护剂和表面活性剂等,②酶解:除菌后的叶片 撕去下表皮 切块放人反应液 不时轻摇 (条件25℃~30℃,2~4h)反应液转绿。反应液转绿是酶解成功的一项重要指标,说明已有不少原生质体游离在反应液中。经镜检确认后应及时终止反应,避免脆弱的原生质体受到更多的损害。(3) 分离 在反应液中除了大量的原生质体外,尚有一些残留的组织块和破碎的细胞。为了取得高纯度的原生质体就必需进行原生质体的分离。可选取200~400目的不锈钢网或尼龙布j叭i过滤除渣,也可采用低速离心法或比重漂浮法直接获取原生质体。(4) 洗涤刚分离得到的原生质体往往还含有酶及其他不利于原生质体培养。再生的试剂,应以新的渗透压稳定剂或原生质体培养液离心洗涤2~4次。 (5) 鉴定 只有经过鉴定确认已获得原生质体后才能进行下阶段的细胞融合工作。由于已去除全部或大部分细胞壁,此时植物细胞呈圆形。如果把它放人低渗溶液中,则很容易胀破。也。'厂月荧光增白剂染色后置紫外显微镜下观察,残留的细胞壁呈现明显荧光。通过以上观测,基本上可判别是否原生质体及其百分中 此外,尚可借助台盼蓝活细胞染色、胞质环流观察以及测定人、作用、呼吸作用等参数定量检测原生质体的活力。4、 原生质体的融合(1)化学法诱导融合 化学法诱导融合无需贵重仪器,试剂易于得到,因此一直是细胞融合的主要方法。尤其是聚乙二醇(PEG)纳合成钙高pH诱导融合法已成为化学法诱导细胞融合的主流。以下简介此方法(在无菌条件下进行):按比例混合双亲原生质体-----滴加 PEG溶液,摇匀,静置----滴加高钙高pH值溶液,摇匀,静置-----滴加原生质体培养液洗涤数次-----离心获得原生质体细胞团一筛选、再生杂合细胞。(2)物理法诱导融合 1979年Senda等发明了微电极法诱导细胞融合。1981年Zi。。mann等提出了改进的平行电极法,现简介如下:将双亲本原生质体以适当的溶液悬浮混合后,插入微电极,接通一定的交变电场。原生质体极化后顺着电场排列成紧密接触的珍珠串状。此时瞬间施以适当强度的电脉冲,则使原生质体质膜被击穿而发生融合。电激融合不使用有毒害作用的试剂,作用条件比较温和,而且基本上是同步发生融合。只要条件摸索适当,亦可获得较高的融合率。上述操作实际上是供体与受体原生质体对等融合的方法。由于双方各具几万对基因,要筛选得到符合需要且能稳定传代的杂合细胞是相当困难的。最近,有人提出以X射线、伽玛射线。纺锤体毒素或染色体浓缩剂等对供体原生质体进行前处理。轻剂量处理可造成染色体不同程度的丢失、失活、断裂和损伤,融合后实现仅有少数染色体甚至是DNA片段的转移;致死量处理后合u可能产生没再仅体万染色体w划她旋余种。利用这种价值不对称融合方法,大大提高了融合体的生存率和可利用率。经过上述融合处理后再生的细胞株将可能出现以下几种类型.2) 亲本双方的细胞核和细胞质能融洽地合为一体,发育成为完全的杂合植株。这种例子不多。3) 融合细胞由一方细胞核与另一方细胞质构成,可能发育为核质异源的植株。亲缘关系越远的物种,某个亲本的染色体被丢失的现象就越严重。 4) 融合细胞由双方胞质及一方核或再附加少量他方染色体或DNA片段构成。④原生质体融合后两个细胞核尚未融合时就过早地被新出现的细胞壁分开。以后它们各自分生长成嵌合植株。5、 杂合体的鉴别与筛选双亲本原生质体经融合处理后产生的杂合细胞,一般要经含有渗透压稳定剂的原生质体培养基培养(液体或固体),再生出细胞壁后转移到合适的培养基中。待长出愈伤组织后按常规方法诱导其长芽、生根、成苗。在此过程中可对是否杂合细胞或植株进行鉴别与筛选。 (1) 杂合细胞的显微镜鉴别 根据以下特征可以在显微镜下直接识别杂合细胞:若一方细胞大,另一方细胞小,则大。小细胞融合的就是杂合细胞;若~方细胞基本无色,另一方为绿色,则自绿色结合的细胞是杂合细胞;如果双方原生质体在特殊显微镜下或双方经不同染料着色后可见不同的特征,则可作为识别杂合的标志;发现h述杂合细胞后可借助显微操作仪在显微镜下直接取出,移置再牛培养基培养。(2)以互补法筛选杂合细胞 显微鉴别法虽然比较可信,但实验者有时会受到仪器的限制,工作进度慢且未知其能否存活与个长 遗传互补法则可弥补以上不足。 遗传互补法的前提是获得各种遗传突变细胞株系。白化互补:不同基山叨的白化突变株出aBxAh,可互补为绿色细胞株AaBb。生长互补:甲细胞株缺外源激素A不能生长,乙细胞株需要提供外源激素B才能生长,则甲株与乙株融合,杂合细胞在不含激素A、B的选择培养基上可能生长。抗性互补筛选:假如某个细胞株具某种抗性(抗青霉素)另一个细胞株具另一种抗性(如抗卡那霉素),则它们的杂合株将可在含上述两种抗生素的培养基上再生与分裂。这种筛选方式即所谓的抗性互补筛选。代谢互补筛选:根据碘代乙酚胺能抑制细胞代谢的特点,用它处理受体原生质体,只有融合后的供体细胞质才能使细胞活性得到恢复,等等。 (3)采用细胞与分子生物学的方法鉴别杂合体 经细胞融合后长出的愈伤组织或植株,可进行染色体核型分析、染色体显带分析、同功酶分析以及更为精细的核酸分子杂交、限制性内切酶片段长度多态性(RFLP,见8.2.2.2)和随机扩增多态性DNA(RAPD)分析,以确定其是否结合了双亲本的遗传素质。(4)根据融合处理后再生长出的植株的形态特征进行鉴别质。

  • 植物细胞原生质体制制备与融合

    植物细胞原生质体制制备与融合1、原生质体常现的杂交育种由于物种间难以逾越的天然屏障而举步维艰。科学家们受细胞全能性理论及组织培养成功的启示,逐渐将眼光转向细胞融合,试图用这种崭 图3-2新的手段冲破自然界的禁钢。1937年michel率先实施植物细胞融合的试验。如何去除坚韧的细胞'接成了牛物学工作者必须解决的首要难题。196O年该领域终于出现了重大突破。由英国诺丁汉大学Cocking教授领导的小组率先利用真菌纤维素酶,成功地制备出了大量具有高度活性可再生的番茄幼根细胞原生质体,开辟了原生质体融合研究的新阶段。植物细胞原生质体是指那些已去除全部细胞壁的细胞。2、原生质体制备(1)取材与除菌 为了让制得的原生质体一般都生活力较强,再生与分生比例较高。常用的外植体包括:种子根。子叶、下胚轴、胚细胞、花粉母细胞、悬浮培养细胞和嫩叶。对外植体的除菌要因材而异。悬浮培养细胞一般无需除菌。对较脏的外植体往往要先用肥皂水清洗再以清水洗2~3次,然后浸人 70%酒精消毒后,再放进 3%次氯酸钠处理。最后用无菌水漂洗数次,并用无菌滤纸吸干。(2)酶解 现以叶片为例说明如何制备植物原生质体。①配制酶解反应液:反应液应是一种PH值在5·5~5·8的缓冲液,内合纤维素酶0.3%~3.0%以及渗透压稳定剂、细胞膜保护剂和表面活性剂等,②酶解:除菌后的叶片 撕去下表皮 切块放人反应液 不时轻摇 (条件25℃~30℃,2~4h)反应液转绿。反应液转绿是酶解成功的一项重要指标,说明已有不少原生质体游离在反应液中。经镜检确认后应及时终止反应,避免脆弱的原生质体受到更多的损害。(3) 分离 在反应液中除了大量的原生质体外,尚有一些残留的组织块和破碎的细胞。为了取得高纯度的原生质体就必需进行原生质体的分离。可选取200~400目的不锈钢网或尼龙布j叭i过滤除渣,也可采用低速离心法或比重漂浮法直接获取原生质体。(4) 洗涤刚分离得到的原生质体往往还含有酶及其他不利于原生质体培养。再生的试剂,应以新的渗透压稳定剂或原生质体培养液离心洗涤2~4次。 (5) 鉴定 只有经过鉴定确认已获得原生质体后才能进行下阶段的细胞融合工作。由于已去除全部或大部分细胞壁,此时植物细胞呈圆形。如果把它放人低渗溶液中,则很容易胀破。也。'厂月荧光增白剂染色后置紫外显微镜下观察,残留的细胞壁呈现明显荧光。通过以上观测,基本上可判别是否原生质体及其百分中 此外,尚可借助台盼蓝活细胞染色、胞质环流观察以及测定人、作用、呼吸作用等参数定量检测原生质体的活力。4、 原生质体的融合(1)化学法诱导融合 化学法诱导融合无需贵重仪器,试剂易于得到,因此一直是细胞融合的主要方法。尤其是聚乙二醇(PEG)纳合成钙高pH诱导融合法已成为化学法诱导细胞融合的主流。以下简介此方法(在无菌条件下进行):按比例混合双亲原生质体-----滴加 PEG溶液,摇匀,静置----滴加高钙高pH值溶液,摇匀,静置-----滴加原生质体培养液洗涤数次-----离心获得原生质体细胞团一筛选、再生杂合细胞。(2)物理法诱导融合 1979年Senda等发明了微电极法诱导细胞融合。1981年Zi。。mann等提出了改进的平行电极法,现简介如下:将双亲本原生质体以适当的溶液悬浮混合后,插入微电极,接通一定的交变电场。原生质体极化后顺着电场排列成紧密接触的珍珠串状。此时瞬间施以适当强度的电脉冲,则使原生质体质膜被击穿而发生融合。电激融合不使用有毒害作用的试剂,作用条件比较温和,而且基本上是同步发生融合。只要条件摸索适当,亦可获得较高的融合率。上述操作实际上是供体与受体原生质体对等融合的方法。由于双方各具几万对基因,要筛选得到符合需要且能稳定传代的杂合细胞是相当困难的。最近,有人提出以X射线、伽玛射线。纺锤体毒素或染色体浓缩剂等对供体原生质体进行前处理。轻剂量处理可造成染色体不同程度的丢失、失活、断裂和损伤,融合后实现仅有少数染色体甚至是DNA片段的转移;致死量处理后合u可能产生没再仅体万染色体w划她旋余种。利用这种价值不对称融合方法,大大提高了融合体的生存率和可利用率。经过上述融合处理后再生的细胞株将可能出现以下几种类型.2) 亲本双方的细胞核和细胞质能融洽地合为一体,发育成为完全的杂合植株。这种例子不多。3) 融合细胞由一方细胞核与另一方细胞质构成,可能发育为核质异源的植株。亲缘关系越远的物种,某个亲本的染色体被丢失的现象就越严重。 4) 融合细胞由双方胞质及一方核或再附加少量他方染色体或DNA片段构成。④原生质体融合后两个细胞核尚未融合时就过早地被新出现的细胞壁分开。以后它们各自分生长成嵌合植株。5、 杂合体的鉴别与筛选双亲本原生质体经融合处理后产生的杂合细胞,一般要经含有渗透压稳定剂的原生质体培养基培养(液体或固体),再生出细胞壁后转移到合适的培养基中。待长出愈伤组织后按常规方法诱导其长芽、生根、成苗。在此过程中可对是否杂合细胞或植株进行鉴别与筛选。 (1) 杂合细胞的显微镜鉴别 根据以下特征可以在显微镜下直接识别杂合细胞:若一方细胞大,另一方细胞小,则大。小细胞融合的就是杂合细胞;若~方细胞基本无色,另一方为绿色,则自绿色结合的细胞是杂合细胞;如果双方原生质体在特殊显微镜下或双方经不同染料着色后可见不同的特征,则可作为识别杂合的标志;发现h述杂合细胞后可借助显微操作仪在显微镜下直接取出,移置再牛培养基培养。(2)以互补法筛选杂合细胞 显微鉴别法虽然比较可信,但实验者有时会受到仪器的限制,工作进度慢且未知其能否存活与个长 遗传互补法则可弥补以上不足。 遗传互补法的前提是获得各种遗传突变细胞株系。白化互补:不同基山叨的白化突变株出aBxAh,可互补为绿色细胞株AaBb。生长互补:甲细胞株缺外源激素A不能生长,乙细胞株需要提供外源激素B才能生长,则甲株与乙株融合,杂合细胞在不含激素A、B的选择培养基上可能生长。抗性互补筛选:假如某个细胞株具某种抗性(抗青霉素)另一个细胞株具另一种抗性(如抗卡那霉素),则它们的杂合株将可在含上述两种抗生素的培养基上再生与分裂。这种筛选方式即所谓的抗性互补筛选。代谢互补筛选:根据碘代乙酚胺能抑制细胞代谢的特点,用它处理受体原生质体,只有融合后的供体细胞质才能使细胞活性得到恢复,等等。 (3)采用细胞与分子生物学的方法鉴别杂合体 经细胞融合后长出的愈伤组织或植株,可进行染色体核型分析、染色体显带分析、同功酶分析以及更为精细的核酸分子杂交、限制性内切酶片段长度多态性(RFLP,见8.2.2.2)和随机扩增多态性DNA(RAPD)分析,以确定其是否结合了双亲本的遗传素质。(4)根据融合处理后再生长出的植株的形态特征进行鉴别质。

  • 基于阻抗方法实时无标记、长时间细胞分析系统

    基于阻抗方法实时无标记、长时间细胞分析系统

    [align=center][font='Segoe UI', sans-serif] -[/font]基于阻抗方法实时、无标记、长期监测细胞表型[/align][align=center]([color=#333333]可用于[/color][b][font=宋体][color=#F76464]细胞增殖、肿瘤免疫、细胞毒性及活力检测、药物筛选、信号通路[/color][/font][font='Segoe UI',sans-serif][color=#F76464](GPCR/CFTR)[/color][/font][font=宋体][color=#F76464]、细胞间相互作用[/color][/font][font='Segoe UI',sans-serif][color=#F76464] ([/color][/font][font=宋体][color=#F76464]屏障功能[/color][/font][font='Segoe UI',sans-serif][color=#F76464])[/color][/font][font=宋体][color=#F76464]、病毒学研究及细胞迁移[/color][/font][/b][color=#333333]等细胞表型研究。[/color])[/align][font=等线][size=16px]细胞表型是涉及基因和蛋白表达的多个细胞过程的集合体,这些过程导致细胞特定的形态和功能。细胞表型检测主要类型有:[b]细胞的增殖、凋亡、迁移、侵袭、活力、信号通路及屏障功能[/b]等。[/size][/font][font=等线][/font][align=left][b][font=宋体][color=#333333]基本原理:[/color][/font][/b][font='Segoe UI',sans-serif][color=black] [/color][/font][font=宋体][color=black]将细胞样本置于[/color][/font][font='Segoe UI',sans-serif][color=black]CytoView-Z[/color][/font][font=宋体][color=black]阻抗板中(底部埋入电极的[/color][/font][font='Segoe UI',sans-serif][color=black]96[/color][/font][font=宋体][color=black]孔培养板)进行培养,当细胞贴附于电极并伸展开后,将微小的电信号施加于电极上,细胞间形成的联接将阻挡这些电信号的通过,导致阻抗值的读数增加,而细胞结构形态上的细微改变(比如源于受体介导的信号传递或细胞形态学变化)也会影响阻抗值。也就是说,细胞的贴壁、黏附、增殖及形变等过程都会引起阻抗的变化,细胞的增殖数量与阻抗呈现一个正相关的关系。[/color][/font][/align][align=left][font=宋体][color=black][img=,553,180]https://ng1.17img.cn/bbsfiles/images/2021/12/202112291044022777_5012_4146479_3.jpg!w553x180.jpg[/img][/color][/font][/align][align=left][font=宋体][color=black]阻抗检测会计算有多少电信号(上图中青色箭头所示)被电极-细胞的界面所阻挡。当电极未被覆盖时,电信号能轻松穿过,这时阻抗值比较低。当细胞盖住电极时,能够通过的电信号就变少了,相应的阻抗值就会增大。当细胞死亡或者脱离电极时,阻抗值就会恢复到基线水平。[/color][/font][/align][font=等线][/font][align=left][font=宋体][color=black]阻抗方法相比于传统的标记方法,具有[/color][/font][/align][align=left][b][font='Segoe UI',sans-serif][color=#F76464]1.[/color][/font][font=宋体][color=#F76464]灵敏度高[/color][/font][/b][/align][align=left][font=宋体][color=black]能够检测出成像技术难以捕捉的、微小的细胞形态、构象变化;[/color][/font][/align][align=left][b][font='Segoe UI',sans-serif][color=#F76464]2.[/color][/font][font=宋体][color=#F76464]长时间持续监测[/color][/font][/b][/align][align=left][font=宋体][color=black]不会错过药物反应时间框,在给药前可通过增殖曲线判断细胞状态;[/color][/font][/align][align=left][b][font='Segoe UI',sans-serif][color=#F76464]3.[/color][/font][font=宋体][color=#F76464]无标记、原位[/color][/font][/b][/align][align=left][font=宋体][color=black]测量过程完全不会影响细胞生物学特性,无需优化抗体用量、染料浓度;[/color][/font][/align][align=left][b][font='Segoe UI',sans-serif][color=#F76464]4.[/color][/font][font=宋体][color=#F76464]孵育时间等参数[/color][/font][/b][/align][align=left][font=宋体][color=black]自动采集数据,中间无需手动操作。[/color][/font][/align][align=left][font=宋体][color=black]目前阻抗平台可用于[/color][/font][b][font=宋体][color=#F76464]细胞增殖、肿瘤免疫、细胞毒性及活力检测、药物筛选、信号通路[/color][/font][font='Segoe UI',sans-serif][color=#F76464](GPCR/CFTR)[/color][/font][font=宋体][color=#F76464]、细胞间相互作用[/color][/font][font='Segoe UI',sans-serif][color=#F76464] ([/color][/font][font=宋体][color=#F76464]屏障功能[/color][/font][font='Segoe UI',sans-serif][color=#F76464])[/color][/font][font=宋体][color=#F76464]、病毒学研究及细胞迁移[/color][/font][/b][font=宋体][color=black]等细胞表型研究。[/color][/font][/align]

  • 【求购】液基细胞保存液

    【求购】液基细胞保存液

    产品简介:保存液快速对脱落上皮细胞、腺细胞、白细胞等进行很好的保存和固定,保持标本采集时的原始细胞形态,防止细胞在保存过程中发生变形、自溶等。并通过制片使细胞均匀涂布在载玻片上制成薄层细胞涂片。染色后细胞结构在显徵镜下清晰易辨,同时把血液、粘液和炎症细胞减少到最底程度,从而易发现和确认异常细胞。更有利于从细胞的形态变化判定细胞的病变程度,使判定结果更加准确可靠,提高异常细胞的检出率,大大提高宫颈癌筛查方法的特异性和诊断的准确率。·产品性能特点::红细胞处理能力强:无需另加裂解液,既可将全部红细胞彻底清除,同时完美保存有诊断价值的各种有核细胞形态,从而对于临床上重度宫颈糜烂病人(或大量血细胞标本)能轻松一次性处理干净·消化分解黏液能力强:充分消化粘黏液,去除标本中普遍存在的黏液等干扰成份,释放具有诊断价值的细胞,保留有价值的诊断背景,有效提高检出率,检测结果准确。·细胞形态:核结构完整,其中核膜、核仁、核染色质颗粒及分布清晰可见,胞浆的嗜染性正常,有利于鉴别细胞的类别及来源。 细胞萃取:采用梯度离心分离萃取及红细胞处理专利技术和黏液消化技术多合一去除液基细胞学标本中的血液、黏液等干扰成份,富集提取细胞及诊断成份。 ·兼容性强:保存的细胞同时可做免疫细胞化学、HPV-DNA和衣原体等病原微生物的分子生物学检测,无需多次采样的烦恼。·应用广泛:细胞保存液临床运用非常广泛,除了运用宫颈细胞学检查外,还有胸腹积液、尿液、滑膜液、支气管冲洗液、脑脊液、针吸穿刺细胞及痰液标本细胞检测。·保存时间长:细胞在保存液中保存30天形态不变,真正保持细胞原始形态,更接近本身的组织学结构,更有利于恶性病变与良性反应性改变的鉴别诊断。·保存液细胞包裹技术,可以使细胞均匀悬浮,保证操作者在涂片标本时的随机性,任意取样涂片都具有代表性。http://ng1.17img.cn/bbsfiles/images/2011/06/201106231241_301155_2324710_3.jpg

  • 如何选择合适的细胞分离试剂盒

    现如今市场上的ELISA试剂盒种类繁多,但是要如何找到适合你的那款呢?一款合适的细胞分离试剂盒可以说是实验成功的保障,因为只有获得正确的细胞,下游的分析结果才可能准确。目前,市面上有多种多样的分离试剂盒可供选择,它们的主要区别在于分离方法和筛选标志。正向选择VS负向选择细胞分离试剂盒的工作原理主要有两种,正向选择和负向选择。正向选择的试剂盒,使用与目标细胞直接结合的抗体来进行捕获。这种抗体通常与磁珠相连,可以利用磁铁将悬液中的抗体-磁珠-细胞复合物提取出来,再通过二抗将磁珠与目标细胞分开。负向选择的试剂盒也采用类似的抗体包被磁珠,不过这种试剂盒是通过去除样品中的非目的细胞,来间接捕获目的细胞。这两种细胞分离试剂盒如何取舍,主要取决于目标细胞的表面是否具有特异性强的筛选标志。这样的筛选标志能够实现特异性的捕获,避免所获得的细胞被非目标细胞污染。如果你的目标细胞刚好具有这样的筛选标志,那么正向选择的细胞分离试剂盒就是最佳选择。但如果目标细胞并不具有特异性强的筛选标志,那我们最好还是选用负向选择的细胞分离试剂盒。

  • 高压细胞破碎机应用

    目前国内对细胞破碎机的研究局限于实验研究,仅对某种结构均质阀的均质效果进行验证与分析,或是选择结构参数。实验研究的局限性使这种分析不够全面。高压细胞破碎机是目前生物工程领域广泛使用的一种细胞破碎机。作者结合近期国外对高压细胞破碎机的理论研究工作,应用半经验半理论的方法,分析探讨了高压细胞破碎机的均质理论。高压细胞破碎机的结构及工作原理: 高压细胞破碎机由高压泵和破碎阀两部分组成,高压泵通常采用柱塞往复泵,其结构与一般柱塞泵相同。破碎阀安装在柱塞泵的排出管路上,一般由阀芯和阀座构成,阀芯和阀座的结构形式对破碎效果、能耗以及阀的磨损影响极大。国外对破碎阀的结构进行了大量研究,设计出许多不同结构的破碎阀,研究主要围绕下列问题进行:1,在较低操作压力下提高破碎效果2,提高阀的使用寿命。意大利Niro Soavi公司为此,开发出R型细胞破碎阀,经过多年的实际使用,获得用户的认可。高压细胞破碎机工作原理: 高压细胞破碎机有一个或数个往复运动的柱塞,物料在柱塞作用下进入可调节压力大小的阀组中,经过特定宽度的限流缝隙(工作区)后,瞬间失压的物料以极高的流速(1000米/秒,最高可达1500米/秒)喷出,碰撞在阀组件之一的碰撞环上,产生三种效应: 空穴效应:被柱塞压缩的物料内积聚了极高的能量,通过限流缝隙时瞬间失压,造成高能释放引起空穴爆炸,致使物料强烈粉碎细化。(主要应用于均质) 撞击效应:物料通过可调节限流缝隙的以上述极高的线速度,喷射到用特殊材料制成的碰撞环上,造成物料粉碎。(主要应用于细胞破碎) 剪切效应:高速物料通过泵腔内通道和阀口狭缝时会产生剪切效应。(主要应用于乳化)经过这三种效应处理过的物料可均匀细化到0.1μm-2μm粒径。

  • 敲低 MSI1 对小细胞肺癌细胞生长增殖的影响

    敲低 MSI1 对小细胞肺癌细胞生长增殖的影响

    [align=center][size=18px]敲低[/size][size=18px] MSI1 对小细胞肺癌细胞生长增殖的影响[/size][/align][size=16px]检测 MSI1 对人小细胞肺癌细胞生长增殖的影响[/size][size=16px]收集[/size][size=16px] H69、H82、H526、SW1271 的对照组和实验组[/size][size=16px]细胞细胞[/size][size=16px]离心,并用完全培养基调整细胞浓度,H69-NC、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、[/size][size=16px] [/size][size=16px]H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2 以每孔 1×104 [/size][size=16px]个[/size][size=16px]细胞平铺于 96 孔板中,SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2,以每孔 1.3×[/size][size=16px]104 [/size][size=16px]个[/size][size=16px]细胞平铺于 96 孔板中,37℃ 恒温培养箱中培养。铺板后,分别于 24 h、48 h、72 h、96 h、120h 在每孔加入 10 [/size][size=16px]μL[/size][size=16px] CCK-8 溶液,37℃ 恒温培养箱中孵育 4h。并用酶标仪测定波长 450 nm 处 OD 值,利用 [/size][size=16px]Graphpad[/size][size=16px] prism5 计算增殖情况。[/size][size=16px]检测 MSI1 对人小细胞肺癌细胞药物敏感性的影响[/size][size=16px]收集[/size][size=16px] H69 、H82 、H526 、SW1271 的对照组和实验组细胞, 其中 H69-NC 、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、[/size][size=16px]H526-shMSI1-1、H526-shMSI1-2 细胞系以 1×104 [/size][size=16px]个[/size][size=16px]细胞/孔的细胞密度接种于 96 孔板中,SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 以 1.3×104 [/size][size=16px]个[/size][size=16px]细胞/孔的细[/size][size=16px]胞[/size][size=16px]密度接种于[/size][size=16px] 96 孔板中。待细胞融合率约 80%,加入不同浓度顺[/size][size=16px]铂[/size][size=16px]。每组均设置对照组及空白组(仅有同体积培养基)。H69、H82、H526 的对照组和实验组[/size][size=16px]加药浓度梯度为 0、1、2、4、8、16、32、64 nmol/mL,SW1271 对照组和实验组细胞加药浓度梯度为 0、2、4、8、16、32、64、128、256 nmol/mL,(加药浓度梯度根据细胞类型、前期预实验结果及细胞对药物的敏感程度而定)。每种浓度设 6 [/size][size=16px]个[/size][size=16px]复孔,每孔总体积为 100 [/size][size=16px]μL[/size][size=16px],培养 24、48、72、96、120 h 后[/size][size=16px]分别检测细胞活力。每孔加入[/size][size=16px] 10 [/size][size=16px]μL[/size][size=16px] 的 CCK-8[/size][size=16px](避光),培养箱中孵育[/size][size=16px] 4 h 后取出,使用酶标仪测定波长为 450 nm 的吸光度(OD 值)。利用公式:抑制率=(加药组-空白组)/(对照组-空白组)计算增殖抑制率。实验重复 3 次,取平均值。以药物浓度为横坐标,细胞增殖抑制率为纵坐标,利用[/size][size=16px]Graphpad[/size][size=16px] prism5 绘图。[/size] [size=16px]敲低[/size][size=16px] MSI1 对人小细胞肺癌细胞增殖能力的影响[/size][size=16px]CCK-8 是一种基于 WST-8 而广泛应用于细胞增殖和细胞毒性的快速、高灵敏度、无放射性的比色检测试剂盒。WST-8 在电子耦合试剂存在的情况下,可以被线粒体内的一些脱氢酶还原生成橙黄色的甲[/size][size=16px]瓒[/size][size=16px],生成的甲[/size][size=16px]瓒[/size][size=16px]物的数量与活细胞的数量呈正比,因此可以直接进行细胞增殖和毒性分析。[/size][size=16px]CCK-8 法 测 生 长 曲 线 实 验 结 果 如 图[/size] [size=16px]3-1 显 示 , 实 验 组 H69-shMSI1-1 、[/size][size=16px]H69-shMSI1-2 、 H82-shMSI1-1 、 H82-shMSI1-2 、 H526-shMSI1-1 、 H526-shMSI1-2 、[/size][size=16px]SW1271-shMSI1-1、SW1271-shMSI1-2 细胞的 OD [/size][size=16px]值明显[/size][size=16px]低于对照组。[/size][size=16px]表明敲低[/size][size=16px] MSI1[/size][size=16px]抑制了[/size][size=16px] SCLC 细胞的生长增殖。[/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302321138249_2126_5887180_3.png[/img][size=16px] [/size][size=16px]图[/size][size=16px] [/size] [size=16px]MSI1 低表达对 H69、H82、H526、SW1271 对照组和实验组细胞增殖的抑制情况。应用 [/size][size=16px]Graphpad[/size][size=16px] prism5 作图所示(*P0.05,**P0.01,***P0.001,表示与对照组相比,[/size][size=16px]敲低组[/size][size=16px] OD 值减小[/size][size=16px]具有统计学意义)。[/size] [size=16px]测敲低[/size][size=16px] MSI1 对人小细胞肺癌细胞药物敏感性的影响[/size][size=16px]药敏实验结果如图[/size][size=16px] 3-2 所示,与对照组相比,实验组 H69-shMSI1-1、H69-shMSI1-2、H82-shMSI1-1、H82-shMSI1-2、H526-shMSI1-1、H526-shMSI1-2、SW1271-shMSI1-1、[/size][size=16px]SW1271-shMSI1-2 经不同浓度[/size][size=16px]顺铂处理[/size][size=16px] 24、48、72、96、120 h 后细胞的药物敏感性无明显变化。[/size][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302321124223_9282_5887180_3.png[/img]

  • 细胞自噬 细胞自噬

    细胞自噬是机体一种重要的防御和保护机制。但是这种自噬“信号”如何传递给细胞从而使其“执行”自噬过程,则一直是科学界的难题。近期,我校生命科学学院林圣彩教授课题组成功找到高等动物细胞在生长因子缺失条件下,启动自噬的部分“密码”,从而在细胞自噬机制研究方面取得重大突破。  4月27日,最新一期的美国《科学》杂志以研究文章的形式刊发了这项研究成果,并配发专门评述。这也是近三年来,我校生命科学学院第二篇发表在这一世界顶级学术刊物上的论文。2009年6月,该院韩家淮教授的一篇有关细胞选择死亡方式机制的研究文章曾“登上”该杂志。  所谓自噬,是指细胞消化自身蛋白质或细胞内的结构(细胞器)的一种自食现象。通过这种现象,细胞可以降解、消除和消化受损、变性、衰老和失去功能的细胞器和变性蛋白质等生物大分子,为细胞的生存和修复提供必须的能量。  科学家们认为,自噬与细胞凋亡、细胞衰老一样,是一种十分重要的生物学现象。有关实验表明,包括肥胖症、糖尿病、神经退行性疾病、免疫失调及癌症在内的人类许多重大疾病的发生都与该过程的异常有关。为此,自噬也是当前生命科学中最热门的研究领域之一。  据林圣彩介绍,对自噬进行分子机制的研究始于上世纪90年代的以单细胞生物酿酒酵母为模型的研究,目前,一系列构成单细胞生物自噬核心机器的基因已被发现并命名。  然而,对自噬在多细胞生物特别是哺乳动物中的调控机制的研究,科学界至今仍在不断探索中。摆在科学家面前的一个根源性的问题是:在多细胞生物中,诱导自噬的各种信号是如何被传递到细胞内自噬“核心机器”从而启动自噬过程的?  研究表明,与单细胞生物不同,在多细胞生物内,外界营养元素要依赖于生长因子的调控才能被转运到细胞内。一旦细胞外的生长因子匮乏,细胞便能启动自噬以维持能量平衡。那么,生长因子缺失这一信号又是如何“传达”的呢?  这也成为长期致力于细胞信号转导研究的林圣彩教授课题组近年来的研究目标之一。经过多年研究,课题组终于成功“**”这一自噬启动“密码”——即通过一种名为GSK3的激酶活性增高后磷酸化并随之激活乙酰转移酶TIP60,进而导致自噬核心机器中的蛋白激酶ULK1的乙酰化水平增强而启动细胞自噬。简言之,这一发现揭示了多细胞生物在生长因子缺失条件下的细胞自噬过程的新的介导分子及其通路。  林圣彩认为,弄清楚了细胞内到底有哪些蛋白分子“参与”了自噬和它们如何串联在一起,将有益于科学界从“源头”上认识相关疾病,并为这些疾病的诊断和治疗提供新的靶点。

  • 【“仪”起享奥运】多吃4类食物,让大脑更有活力

    [b][size=18px][color=#06948c]多吃4类食物,让大脑更有活力[/color][/size]1.富含优质蛋白质的食物[/b]如鱼类(特别是海鱼)、虾、蟹等海产品,以及鸡蛋、瘦肉和鸡鸭肉。这些食物有助于维持大脑的正常功能。[b]2.富含胆碱和卵磷脂的食物[/b]胆碱是神经传导的递质,对改善记忆力十分重要。这类食物包括豆制品、蛋类(特别是蛋黄)、花生、核桃、燕麦、小米等。卵磷脂则可以[b]延续脑细胞的生命,增强脑部活力,[/b]食物来源包括芝麻以及谷类食物。[b]3.碱性和富含维生素的食物[/b]如豆腐、豌豆、白菜、萝卜、葡萄等。这些食物在一定条件下可以抗疲劳、抗大脑老化。同时,新鲜的水果和蔬菜,如菠菜、西蓝花、生菜、苹果、香蕉、梨、草莓和猕猴桃等,也是良好的维生素来源。[b]4.其他有益食物[/b]包括牛奶、蜂蜜水、坚果类以及含有不饱和脂肪酸的食物,如大豆油、玉米油、芝麻油等植物油,[b]都可以提高脑细胞的活性,延缓痴呆症的病理过程[/b]。除了饮食外,我们还可以通过进行手指操、解谜游戏,深入阅读以及不断学习新知,从而持续锻炼和挑战自己的思维。

  • 【分享】酸乳中乳酸菌活力的测定

    1 目的要求(1)初步掌握乳酸菌活力测定的一般方法。(2)了解乳酸菌在乳发酵过程中所起的作用。2 基本原理乳酸菌的细胞形态为杆状或球状,一般没有运动性,革兰氏染色阳性,微需氧、厌氧或兼性厌氧,具有独特的营养需求和代谢方式,都能发酵糖类产酸,一般在固体培养基上与氧接触也能生长。酸乳风味的形成与乳酸菌发酵过程代谢的多种物质有关,而这些物质的产生与发酵速度等活力指标有密切关系。乳酸菌的活力可由多种参数确定,如细胞生长情况,细胞干重和光密度(OD值)等。由于乳液不透明,不能直接测OD值,可用NaOH和EDTA处理使其澄清后再测。较简便的活力测定包括凝乳时间,产酸和活菌数量等指标的检测。3 实验材料3.1样品 市售酸奶或乳酸菌饮料。3.2 培养基 MRS固体和液体培养基,复原脱脂乳培养基。3.3 实验用仪器设备 超净工作、恒温培养箱、鼓风干燥箱、高压蒸汽灭菌锅、冰箱、油镜显微镜、碱式滴定仪、天平、培养皿、移液管、试管、烧杯、量筒、温度计、酒精灯、接种针、载玻片等。4 实验方法与步骤4.1 菌种的分离(1)编号 取五支无菌水试管,分别用记号笔标明10-1、10-2~10-5。(2)稀释 将酸奶样品搅拌均匀,用无菌移液管吸取样品25mL,移入含有225mL无菌水的三角瓶中,在漩涡混合器上充分振摇,使样品分散均匀,获得10-1的样品稀释液,然后根据对样品含菌量的估计,将样品稀释至适当稀释度。(3)倒平板 选用2~3个适宜浓度的稀释液,分别吸取1mL注入平皿内,然后倒入事先溶化并冷却至45℃左右的MRS固体培养基,迅速转动平皿使之混合均匀,待冷却凝固后倒置,于40℃培养48h。(4)分离 无菌操作,从培养好的固体平皿中分别挑取5个单菌落接种于液体MRS培养基中,置40℃培养箱中培养。(5)镜检 通过镜检,确定所分离的乳酸菌是乳杆菌还是链球菌。保加利亚乳杆菌呈杆状,单杆、双杆或长丝状;嗜热链球菌呈球状,成对、短链或长链状。4.2 接种按1%的接种量,将MRS液体培养物接种于已灭菌的复原脱脂乳中,另分别接种具有较高活力的保加利亚乳杆菌和嗜热链球菌作为对照。培养温度为保加利亚乳杆菌40℃, 嗜热链球菌45℃。4.3 观察与测定(1)观察: 观察并记录各试管的凝乳时间。(2)酸度测定:用NaOH滴定法,测定发酵乳液的滴定酸度。(3)计数:采用倾注平板法,测定活菌数量。

  • 纳米钻石“温度计”测量活细胞温度更精准

    有望提供一种新的治疗癌症的方法2013年08月01日 来源: 科技日报 作者: 陈丹 科技日报讯(记者陈丹)据《自然》杂志网站8月1日(北京时间)报道,纳米钻石可用于量子计算机中处理量子信息,而哈佛大学的研究人员利用纳米钻石的量子效应,将其变为“温度计”,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。 在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。 研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石“温度计”来精确控制。“现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。”参与该研究的哈佛大学物理学家彼得·毛瑞尔说。 他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石“温度计”将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。“你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。”毛瑞尔说。 目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石“温度计”的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该“温度计”的敏感度已经达到0.0018开的温度波动。 总编辑圈点 这样的“温度计”应该造价不菲,好在钻石是纳米级的。而其能够检测出细微到0.05开的温度波动,让其他测量细胞温度的方法难以望其项背,我们有理由相信,这项技术不仅仅只应用于医学领域。目前晶体管已经达到极小量度,在20或30纳米级别,离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,只有掌握这方面的知识,才能真正操控原子级设备,而纳米钻石“温度计”或许能派上大用场。 《科技日报》(2013-08-02 一版)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制