当前位置: 仪器信息网 > 行业主题 > >

氧化催化剂分析

仪器信息网氧化催化剂分析专题为您提供2024年最新氧化催化剂分析价格报价、厂家品牌的相关信息, 包括氧化催化剂分析参数、型号等,不管是国产,还是进口品牌的氧化催化剂分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧化催化剂分析相关的耗材配件、试剂标物,还有氧化催化剂分析相关的最新资讯、资料,以及氧化催化剂分析相关的解决方案。

氧化催化剂分析相关的资讯

  • 新型铜催化剂助力二氧化碳变燃料
    中国科学技术大学教授高敏锐课题组合成一系列暴露不同铜(100)和铜(111)晶面比例的铜催化剂,发现铜(100)/铜(111)的界面位点相比于单一的晶面展现了显著增强催化碳—碳电化学耦联的性能,对于利用二氧化碳制备多碳燃料具有重要意义。相关成果日前发表于《美国化学会志》。  电催化二氧化碳还原制备高附加值化学品,是二氧化碳资源化利用的有效手段。近年来,科学界通过电催化二氧化碳制备能量密度高、应用前景广阔的多碳燃料取得很大进展,但其选择性和转化效率仍不尽人意。这主要由于二氧化碳转化为多碳燃料需经历动力学缓慢的碳—碳耦联过程。因此,设计并创制能高效促进碳—碳电化学耦联的催化剂至关重要。  研究人员利用电化学测试表明,与其他铜催化剂相比,这种新型铜催化剂在电流密度为每平方厘米100毫安至400毫安时,均有利于催化二氧化碳到多碳产物的转化。多碳产物的选择性与铜(100)/铜(111)界面的长度呈现线性相关,证明该界面为催化碳—碳耦联的活性位点。原位拉曼和红外实验证明,在铜(100)/铜(111)界面处,能更好吸附中间体,展现更强的碳—碳耦联能力。理论计算进一步表明,铜(100)/铜(111)界面处电子结构被优化,促进了碳—碳耦联动力学。  该项研究发现了铜原子排列变化形成的特定界面结构能更高效地催化碳—碳耦联,降低多碳产物形成过程中的关键步骤能垒,这一成果对于二氧化碳制备多碳燃料的电化学升级利用具有重要意义。  相关论文信息:https://doi.org/10.1021/jacs.1c09508
  • 预防催化剂中毒,元素分析不用愁
    岛津ICP光谱测试尿素水溶液多种金属元素 GB17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市车辆将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物(NOx)和颗粒物(PM)排放限值分别加严了77%和67%,并新增了粒子数量(PN)的限值要求。 为了达到国六排放标准,尾气后处理系统都会设置选择性催化还原(SCR)系统,以便有效降低尾气中氮氧化物含量。尿素水溶液是SCR 系统主要消耗品,在催化剂作用下,将氮氧化物还原成氮气和水。SCR催化剂通常以TiO2为载体,负载W、Mo、V、Mn 等活性金属。如果尿素水溶液金属离子浓度过高,特别是钾离子和钙离子,会减少催化剂表面的活性位,造成催化剂中毒,从而降低NOx的转化率,缩短SCR催化剂的寿命,所以在GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中对各种金属离子杂质含量有明确的限量要求。 表1 分析参数 岛津ICPE-9820全谱发射光谱仪测试尿素水溶液多种金属元素 ICPE-Solution独特的“自动确定最佳波长”功能,可以从全部波长范围的测定数据中,在数据库中自动检索提取可能存在的光谱干扰信息,自动确定最佳波长。 精确称取20±0.01g车用尿素溶液样品于100 mL容量瓶中,加入50 mL去离子水,再加入5 mL硝酸,去离子水定容至刻度并摇匀,使用ICPE-9820上机测试。 图1 Ca元素标准曲线图2 Ca元素谱峰轮廓图 表2 车用尿素样品分析结果注:N.D.表示未检出。 采用ICPE-9820高盐进样系统和直接进样(标准加入法)测定了柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中的10种杂质元素,结果表明所测市售尿素水溶液金属含量符合GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》要求,该方法无需分离基体、无需样品前处理、不加内标,测定结果准确,方法操作简便,可满足柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中杂质元素的检测技术需求。 撰写人:段伟亚、孙友宝
  • 岛津XPS助力湖南大学电催化与电合成实验室高影响因子文章发表:Ir单原子催化剂超低电位甲醇氧化
    Angewandte chemie影响因子:16.6设计Ir-C4单原子催化剂,实现了超低电位( 1.23V),以生产氢气和其他增值化学品,同样需要克服高过电位。近期,团队通过在高温聚合物电解质膜电解槽(HT-PEME)中将热催化与电催化相结合,开发了集成式热催化-电催化耦合反应体系,通过将醇类热化学脱氢与电化学氢泵相结合成功实现了热电耦合催化乙醇脱氢制备乙醛(PNAS., 2023, e2300625120)、热电耦合催化甲醇脱氢制备高纯氢气和CO(JACS., 2024, 146, 14, 9657-9664)以及低电位甲醇。相关研究表明,在HT-PEME中将热催化与电催化相耦合能够有效增强催化反应的速率和选择性,热电耦合能够相互协同促进。由于反应体系复杂,缺乏直接表征手段,目前缺乏直接证据证明热催化与电催化的相互协同。基于这一挑战,项目团队设计了Ir-C4单原子催化剂,实现了超低电位(图2. 热-电耦合催化甲醇氧化反应制氢体系的具体催化路径在HT-PEME中,施加电位之后甲醇在Ir-C单原子催化剂上由电促进热催化反应生成H2和CO,之后H2和CO在Ir-C单原子发生氧化反应,阴极发生氢析出反应生成H2。图3 Ir-C相关催化剂的EXAFS表征图4. Ir-C单原子催化剂、Ir颗粒催化剂XPS谱学测试通过EXAFS、XPS分析测试表明,Ir-C催化剂中的Ir主要是以单原子的形式存在,无Ir纳米颗粒。同时由于Ir原子与C载体之间的强相互作用,使Ir原子的电子结构发生了很大的变化,从而出现缺电子性质(Ir+)。特殊的几何结构和电子结构可能赋予Ir-C SACs具有优异的甲醇反应性。图5.Ir-C SACs和参比样品的甲醇氧化性能测试及在线产物分析如图5所示,当电解槽加热到80/100℃时,MOR的起始电压已低至0.4 V,随着温度的升高,MOR的起始电压逐渐降低。在160℃时,起始电压低于0.1 V,与理论平衡电位非常接近。研究结果表明,由于热和电化学耦合催化,甲醇可以被Ir单原子催化剂在超低电位( 0.1 V)下氧化。然而,同样条件下的Pt/C和Ir-C NP,其起始电位仍然很高,分别为0.3 V和0.4V。Ir-C SACs相比Pt位点和Ir颗粒位点的优异性能,证明了在热电化学耦合作用下IrC4位点独特的低电位甲醇氧化能力,表明其有巨大的Pt基催化剂替代能力。Ir(0.3)-C SACs在0.4 V(200℃)下的质量活度达到1.8 A mg-1Ir,比Ir-C NP和Pt/C分别高出约52倍和40倍。阴极HER对Ir(0.3)-C SACs(比Ir-C NP高3.3倍)的产氢率为0.2 ml min-1。质量比产氢速率最高达到18.3 mol H2h&minus 1gIr-1,与Ir-C NP和Pt/C相比,分别高出54倍和31倍。上述结果表明,得益于热学和电化学的耦合催化,Ir-C SACs的MOR和相应的产H2速率都表现出了显著的活性。阳极可以检测到CO、CO2、CH4和少量的H2证实热化学过程CH3OH → CO + 2H2,此外,超高的HOR和COOR活性证明了电化学氧化过程。本文的研究为热电耦合催化反应过程中热场-电场相互协同作用提供了直接证据,突破了以往关于MOR在Ir SACs上无活性的结论。该工作为设计高效催化反应和新型催化剂提供了指导。相关工作得到了岛津-KRATOS公司相关设备的大力支持。文献题目《Ultra-low-Potential Methanol Oxidation on Single-Ir-Atom Catalyst》使用仪器岛津AXIS SUPRA作者Liyuan Gong, Xiaorong Zhu, Ta Thi Thuy Nga, Qie Liu, Yujie Wu, Pupu Yang, Yangyang Zhou, Zhaohui Xiao, Chung-Li Dong, Xianzhu Fu, Li Tao*, Shuangyin Wang*State Key Laboratory of Chem/Bio-Sensingand Chemometrics, College of Chemistry and ChemicalEngineering, Hunan University, Changsha, Hunan 410082, P.R. China 全文链接https://onlinelibrary.wiley.com/doi/10.1002/anie.202404713
  • 中科院大连化物所基于聚合物光催化剂提升了光合成过氧化氢效率
    近日,中科院大连化学物理研究所微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队在利用聚合物光催化剂生产H2O2研究方面取得新进展,基于对间苯二酚—甲醛(RF)树脂的电荷分离能力的提升,以及光催化反应路径的调控,提升了RF树脂的光催化产H2O2性能,使其太阳能到化学能(SCC)的转化率达到1.2%。利用聚合物光催化剂将氧气和水转化为H2O2的方法具有低能耗、环境友好等特点,是非常有潜力的生产H2O2的方法。然而,在分子水平上设计光催化剂,调节光生载流子行为仍具有挑战。本工作中,该团队提出从分子尺度设计调控RF树脂中电子供体(D)与电子受体(A)比例的策略,将缺电子的1,4-二羟基蒽醌(DHAQ)分子引入到RF的骨架中。研究发现,DHAQ作为电子受体可以有效调节RF中的D/A比例,增强其电荷分离能力,同时调整了反应路径,通过水氧化和氧还原的双路径共同生产H2O2,使得该材料展现优异的光催化生产H2O2的催化活性,SCC效率达到1.2%,是目前文献报道最高的SCC效率。此外,团队与中科院大连化学物理研究所超快时间分辨光谱与动力学研究组(1110组)合作,结合飞秒瞬态吸收光谱等技术、原位表征实验以及理论计算模拟,阐析了DHAQ掺杂的RF树脂的微观结构以及促进电荷分离和双路径生产H2O2的机制。上述研究成果为在分子水平上设计高效人工光合作用的聚合物光催化剂提供了新思路。RF树脂作为一种窄带隙半导体聚合物,近年来在光催化生产H2O2方面展现出潜力。刘健团队长期致力于酚醛树脂纳米材料的合成策略创新及功能化研究,取得了系列代表性成果:发展了扩展St?ber法合成单分散的酚醛树脂微球(Angew. Chem. Int. Ed.,2011),制备了一系列孔径及粒度可控的多孔微球,以及中空结构、蛋黄—蛋壳结构、碗形酚醛树脂聚合物微纳材料(Nat. Commun.,2013;Adv. Mater.,2019;no.1c09864"ACS Nano,2022),发展了化学剪裁策略有效调控酚醛树脂微球的内部结构及功能基团分布(Adv. Mater.,2022)等。相关研究以“Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H2O2 Production with Exceeding 1.2% Efficiency”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是中科院大连化学物理研究所05T7组博士研究生赵陈。以上工作得到了国家自然科学基金等项目的支持。
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • 用户之声丨光催化水氧化过程的分解机理研究
    韩国西江大学Kyung Byung Yoon教授 岛津拜访了韩国西江大学的Kyung Byung Yoon教授。他是人工合成领域的顶尖研究人员之一。Yoon团队曾在《Science》上报道了一种不怕水的CO2捕获新材料,为低成本捕获CO2并再利用研究提供了方向。他的实验室配备许多分析仪器,包括Tracera GC-BID系统和QYM-01光反应量子产率评价系统*,QYM-01系统可实现对吸收光子准确而快速的定量测量。 * QYM-01 为岛津今年6月刚发布的Lightway PQY-01光反应评价系统的前序机型。 Q 请介绍一下您的研究内容。 这个广泛用于均相光催化水氧化过程的系统包含作为光泵的水氧化催化剂RuⅡ(bpy)32+和作为电子牺牲受体的S2O82?。但是,因为RuⅡ(bpy)32+会发生非常快速的分解,导致在所有S2O82?消耗完之前,反应过程就停止,所以该系统还远不够理想。就这一点而言,如果能研究清楚RuⅡ(bpy)32+的分解途径和产物,就可以设计出更高效的光催化水氧化系统。 我们发现,在光-RuⅡ(bpy)32+-S2O82?系统中存在两种RuⅡ(bpy)32+分解途径。第一种是通过黑暗环境中,在pH>6条件下,RuⅢ(bpy)33+氧化OH?而下形成OH• 自由基,OH• 自由基攻击RuⅡ(bpy)32+的bpy配体。这个在黑暗中分解的途径是次要的。在辐照过程中,RuⅡ(bpy)32+和RuⅢ(bpy)33+都受到光激发,并且光激发的RuⅢ(bpy)33+与S2O82?反应生成一种中间体。当中间体浓度较低时,中间体分解为催化活性的钌μ-氧代二聚体,当中间体浓度较高时,中间体分解为催化惰性的寡聚钌μ-氧代物。光诱导分解途径是主要途径。当RuⅡ(bpy)32+浓度较低时,即使在没有任何添加催化剂的情况下,光-RuⅡ(bpy)32+-S2O82?系统也会通过类似在黑暗中生成氧气的途径产生氧气。当RuⅡ(bpy)32+浓度较高时,由于光诱导分解途径的总速率比生成氧气的暗途径的总速率要快得多,因此系统中不会生成氧气。 Q “QYM-01”和“Tracera(GC+BID检测器)”是否正高效地用于您的研究?它们有多大用处? QYM-01可以在每分钟或更短的时间内获得紫外-可见光谱。这使我们能够监测光反应过程中物质的反应速度有多快。QYM-01还可以测量光敏剂吸收的光子数量。当我们检测到产物时,通过绘制吸收光子数量与生成产物的关系曲线来计算反应的量子产率。Tracera可高效检测液体产物,检测灵敏度较高。几乎检测到了柱内所有物质。 Q 您认为“QYM-01”和“Tracera(GC+BID检测器)”有哪些优点? 我们可以在光解过程中获得紫外-可见光谱,无需改变任何其他反应系统。我们可以测量我们正在使用的激发光的功率,这就是QYM-01的优点。至于Tracera,检出限很好。 Q 请告诉我们您对“岛津”的印象。 你们提供前所未有的产品和优质服务。 我们与Kyung Byung Yoon教授的交谈很愉快,通过这次采访,我们了解了Yoon教授对我们仪器和我们公司的看法。我们必须努力,争取越来越好。也非常感谢Yoon教授接受岛津的采访! 关于采访的评论 采访之后,Yoon教授说:“虽然QYM-01还有一些地方有待改进,但是岛津拥有QYM-01等前所未有的独特性创新技术,这令我印象深刻,我也期待这些技术的未来发展。”
  • 奥林巴斯Vanta XRF分析仪是如何应用于汽车催化剂回收行业的?
    Vanta XRF分析仪 应用于汽车催化剂回收行业首先,我们有必要先简要介绍一下汽车催化转化器(Car Catalyst或Car Cat)的功能。这些转化器的目的是减少汽车尾气排放到大气中的污染物。汽车催化转化器是一个蜂窝状圆柱体,有一层铂(Pt)、钯(Pd)和铑(Rh),也称为铂族金属(PGMs),以不同的含量附着在其表面。汽车尾气中未燃烧的残留物,如一氧化碳(CO)、碳氢化合物(CH)或氮氧化物(NO)等,经过附有铂族金属的蜂窝状圆柱体,被尾气中的氧气氧化并被中和。近50年来,汽车催化剂已经成为内燃机汽车不可缺少的一部分。汽车催化剂的平均寿命取决于几个因素,如燃料的质量和发动机的体积,但它通常可以维持100,000公里(约62,000英里)。通过对汽车催化剂的合理处理,我们可以为其中的铂族金属提供第二次生命。通过分类和适当处理废弃的催化剂,铂族金属可以被回收并在未来的生产中重复使用。目前,这些再加工铂族金属占催化剂总产量的40%左右,但仍不能满足日益增长的市场需求。目前,汽车催化剂回收不仅在经济上有利可图,也是世界经济发展趋势和环境标准所预测的必然。含有贵金属供循环利用的汽车催化转化器铂和钯是中和有害排放物最有效的两种元素。虽然除了汽车制造外,铂、钯还被用于许多行业——比如珠宝生产——但如今生产的90%的铂、钯都用于汽车催化剂的生产。随着新燃料标准(China VI, Tier 3, Euro 6d, Bharat 6)的采用,可以肯定地说,在未来几年,铂族金属的需求将会增长。因此,汽车催化剂回收有很大的市场前景。另外一个重要的事实是,从环境的角度来看,回收用过的汽车催化剂比通过采矿提取铂族金属的危害要小得多。更不用说,钯在一般是矿物加工厂的副产品,其提取效率很低。Vanta如何协助回收汽车催化剂?从采矿和废料加工行业引进的X射线荧光(XRF)测试方法已被证明可以完全胜任汽车催化剂的回收工作。如果不使用特殊设备,是不可能快速确定汽车催化剂中铂族金属的含量的,这为回收过程带来麻烦。而奥林巴斯便携式XRF分析仪Vanta可以在几秒内为用户提供待回收催化剂中的铂、铑和钯的含量。使用Vanta分析仪,可以对汽车催化剂进行分类,从而以较佳方式提取铂族金属并为回收确定一个合理的价格。Vanta分析仪可以与研磨机、搅拌机和秤等一起使用,是汽车催化剂回收必备的工具。Vanta分析仪可以分析的元素范围是从镁(Mg)到铀(U)(元素周期表的顺序),同时显示多达45个元素。当然,对于汽车催化剂回收来说,感兴趣的元素种类要少得多:铂(Pt)、钯(Pd)、铑(Rh)、钽(Ta)、铈(Ce)、硒(Se)、钨(W)、硅(Si)、铅(Pb)、锆(Zr)、钌(Ru)、镧(La)、镍(Ni)和硫(S)。所有这些元素都是优先考虑的,并包含在Vanta为该应用定制的Car Catalyst方法中。然而,你仍然可以分析从镁(Mg)到铀(U)范围内的其他元素。随着汽车催化剂回收业务的持续增长,试图以尽可能高的价格出售废旧汽车催化剂的诈骗者数量也在增加。提高汽车催化剂价值最常见的方法是增加含铅(Pb)的添加剂。还有更复杂的欺骗方法,比如在混合物中加入钽(Ta)或硒(Se)来模拟XRF光谱上的铂(Pt)峰。错误也可能在没有恶意的情况下发生——例如,带有非专业校准的pXRF很容易将柴油微粒过滤器(DPF)中的钨(W)误认为铂(Pt)——这种情况非常常见。Vanta分析仪可以帮助避免这种混淆,它独特的校准有助于防止此类欺诈或错误的发生。如何从催化转化器中制备样品,以获得准确和有代表性的结果?汽车催化剂块样本以及该样本的初步Pd含量(ppm)样品制备是XRF分析的重要组成部分。90%的XRF误差与样品制备有关。在汽车催化剂回收领域,通常需要处理两种类型的样品:块状蜂窝状样品(整体或分体)和粉末样品。蜂窝结构表面上涂附的铂族金属常常不均匀(图2),所以这样的样本只能提供一个初步测试结果,可以利用该结果对汽车催化剂进行简单分类或者识别那些铂族金属已经被移除的“空汽车催化剂”,特别是当回收小批量汽车催化剂的时候。为了对汽车催化剂进行分类以供后续提纯或大批量生产,需要额外的样品制备步骤以获得有代表性的结果。一般来说,我们建议以下方法:1) 按类型进行粗分类2) 每一类分别粉碎(重要的是要使颗粒大小分布尽可能均匀)3) 均质化4) 取样(如果需要,可以使用压机)另外,必要时也需要密切监测湿度。超过10%的湿度波动会极大地影响分析的准确性。样品获得后,要做3-5次测试,然后取平均值。如果在样品制备阶段没有发生错误,则应该有一个4ppm-31ppm左右的平均误差。不同的Vanta型号有什么区别?奥林巴斯为汽车催化剂回收提供了多种Vanta型号。它们之间的主要区别是分析速度、灵敏度和轻元素(镁(Mg)、铝(Al)、硅(Si)、磷(P)和硫(S)的检测能力。Vanta L分析仪是一种经济型催化剂分类设备。该设备配备了PIN探测器,所以它无法探测到比钛轻的元素。Vanta L分析仪的平均分析时间约为40-60秒。Vanta C和M分析仪是采用硅漂移探测器(SDD)技术的器件,能够检测轻元素,这将有助于确定碳化硅(SiC)的含量以及控制其含硫(S)量。在这些设备上的平均测试时间约为15-20秒,工作效率是配置PIN检测器设备的3倍。表中Pd(单位为ppm)的结果和误差显示了这种差异。Vanta M分析仪5秒测试的测量结果与Vanta L分析仪60秒测试的结果接近。Vanta L分析仪和Vanta M分析仪对Pd的检测结果和误差比较Vanta有哪些特性适合汽车催化剂回收?首先值得一提的是校准的稳定性和结果的重复性。很难相信这些结果来自便携式XRF。此外,基于Axon专利技术,每一台Vanta分析仪之间都能保证较高的重复性。这对市场的大型参与者来说尤其有利。此外,它还提供了使用“用户因子”来调整设备以适应不同催化剂基质,就像你去另一个时区旅行时,只要改变时钟就可以了。钨靶材和银靶材X射线管都是汽车催化剂分析的较佳选择。因为使用铑靶材X射线管时,光谱上会出现相应的特征峰。另外,Vanta分析仪测量窗口的大小是很重要的。大窗口能够分析一个大的表面积,从而提高准确性。回收催化剂是一个粉尘非常大的过程,因此IP55防尘防潮是明显有利的。Vanta系列主线的3年保修期也是一个显著优势。Vanta工作站对于生产过程,客户可以使用奥林巴斯XRF工作站(图3),这将Vanta变成一个成熟的台式XRF,便于固定使用。Vanta也符合工业4.0,可以进行网络连接和并打印报告,可以将数据直接从设备发送到ERP系统,而无需用户干预。此功能有助于让工作更加可控。随着汽车催化剂回收市场的快速增长,提纯工厂将收紧对来料的要求。在计算来料成本时,碳化硅(SiC)和硫(S)的含量将会越来越重要。因此,带有硅漂移探测器(SDD)和X射线粉末衍射仪(XRD)将越来越受欢迎。例如奥林巴斯Terra Ⅱ X射线衍射分析仪,不仅可以定量估计碳化硅(SiC)含量,还可以确定其特定相。在未来,随着奥林巴斯科学云3.0(Olympus Scientific Cloud 3.0)的开放和优化,我们能够为汽车催化剂回收者提供的不仅仅是一个测量工具,更是一个基于云进行计算和测试的生态系统,这对许多小型参与者来说可能是成功的关键。
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图
  • SICS法催化氧化脱硫脱硝工艺
    p   有机催化法脱硫脱硝原理: /p p   有机催化法脱硫是利用有机催化剂L中的分子片段与亚硫酸结合形成稳定的共价化合物,有效地抑制不稳定的亚硫酸的逆向分解,并促进它们被持续氧化成硫酸,催化剂随即与之分离。生成的硫酸在塔底与加入的碱性物质如氨水等快速生成高品质的硫酸铵化肥,其反应原理和过程与工业硫酸铵化肥的生产相似。 /p p   脱硝与脱硫原理相类似,当加入强氧化剂时,NO转化为易溶于水的高价氮氧化物生成亚硝酸。有机催化剂促进它们被持续氧化成硝酸,随即与之分离。加入碱性中和剂后可制成硝酸铵化肥。 /p p   该工艺流程: /p p   焦炉烟气先经过臭氧氧化,烟气温度小于150℃,然后进入脱硫塔,烟气中的SO2和NOx溶解在水里分别生成H2SO3和HNO2。有机催化剂捕捉以上两种不稳定物质后形成稳定的络合物L?H2SO3和L?HNO2,并促使它们被持续氧化成H2SO4和HNO3,催化剂随即与之分离。生成的H2SO4和HNO3很容易被碱性溶液吸收,这样就在一个吸收塔内同时完成了脱硫和脱硝,该工艺采用氨水做吸收剂,涤后的烟气通过填料层、二级除雾器除去水滴后,回送至焦炉烟囱直接排放至大气。 /p p   该工艺主要由以下系统组成: /p p   烟气系统:由焦炉引出焦炉烟气,经过化肥液体及喷水降温,由200℃降低到150℃以下,以适应臭氧反应温度低于150℃的要求。 /p p   吸收系统:烟气自下而上进入吸收塔,循环浆液自上而下喷淋,烟气和循环浆液直接接触,完成捕捉过程,处理后的洁净气体经过除雾器除雾后,排至烟囱。 /p p   脱硝氧化系统:脱硝氧化系统提供能氧化NO气体的氧化剂——臭氧。臭氧经过烟道内混合器后与烟气中的NO充分混合,将其氧化成易溶解的氮氧化物,进入吸收塔后被吸收得以去除。 /p p   盐液分离及化肥回收系统:吸收塔里浆液化肥浓度达到30%左右时,开启浆液排出泵,将其送入过滤器,分离出其中的灰尘。然后浆液进入分离器,将有机催化剂和盐液分开。催化剂返回吸收系统循环利用,盐液则进入化肥回收系统。 /p p   催化剂供给系统:捕捉浆液中不稳定的H2SO3和HNO2后形成稳定的络合物,在氧化空气下被持续氧化成H2SO4和H2NO3,被碱性溶液吸收,生成硫酸铵和硝酸铵。 /p p   该工艺主要特点: /p p   1)脱硫效率& gt 99%,脱硝效率& gt 85%,氨回收利用率& gt 99.0% 通过增加催化剂,提高亚硫酸铵的氧化效率,运行pH值低于氨法脱硫,能有效抑制氨的逃逸,氨逃逸率& lt 1%。 /p p   2)在同一系统中可同时实现脱硫、脱硝、脱重金属汞、二次除尘等多种烟气减排效果 整个过程无废水和废渣排放,不产生二次污染,同时净烟气中NH3含量小于8mg/Nm。 /p p   3)对烟气硫分适应强,可用于150-10000mg/Nm3甚至更高的硫分,因此,可使用高硫煤降低成本 对烟气条件的波动性有较强的适应能力。 /p p   4)可实现焦炉烟气低温脱硝,减少对设备的腐蚀 副产品硫铵质量达标,且稳定。 /p
  • 2021 年第一期飞纳电镜优秀论文赏析|一种新型电催化剂
    随着能源不断消耗,大气中 CO2 的排放量逐年递增,由此引发的环境问题已成为全球关注的热点。去年的联合国大会上,我国向世界承诺,二氧化碳排放力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和。如何减少 CO2 排放、有效转化和利用 CO2 已引起各国政府的高度关注,CO2 的固定和转化是降低其含量的有效途径之一。 我们都知道自然生物可以利用太阳能、化能等能量形式固定二氧化碳进行自养生长。到目前为止,科学家共发现了 6 种天然固碳途径。其中卡尔文循环(光合作用中的碳反应部分)是自然界分布最广的固碳途径,每年可将 1 千亿吨二氧化碳转化成再生物质。但天然固碳的转换效率较低、经济性较差,是限制其实现工业化利用的主要瓶颈。因此构建具有高转化效率的人工固碳途径一直是相关领域的研究重点。 图1. 卡尔文循环(来自:维基百科) CO2 电化学还原(ERC)技术是在常温常压条件下,利用电能(尤其是可再生能源发电)将 CO2 与水直接反应生成合成气、甲酸、碳氢化合物、醇类等高附加值的化学品或液态燃料的新技术,是一条实现可再生能源存储与 CO2 转化利用的绿色途径,对人类的可持续发展具有重要意义。ERC 技术不需要制氢、加温和加压等额外消耗的能量,且设备投资少,其潜在的经济效益和环境效益引起了研究者广泛关注。 近年来,电化学还原技术取得了长足进展,但仍存在许多亟待解决的问题,例如产物的选择性低、偏电流密度低、催化剂的稳定性与耐久性欠佳等,这些问题限制了 ERC 技术的实际应用和商业化。电催化剂作为 ERC 技术的关键材料,其性能直接影响 CO2 转化效率、还原产物选择性及稳定性。因此,开发高性能的电催化剂,提高催化剂的催化活性、选择性和稳定性具有重要的研究意义和应用价值。 在所有金属电催化剂中,Cu 基催化剂是唯一可在水溶性电解质溶液中将 CO2 高选择性地催化还原生成碳氢化合物和醇类的催化剂。在 Cu 基催化剂表面,CO2 可以还原成 CO、HCOOH、CH4、C2H6、C2H4 及含氧碳氢化合物(醇类)等 16 种不同的还原产物。不同的 Cu 基催化剂用于 ERC 反应时,还原产物分布不同。影响还原产物选择性和还原效率有多种因素,包括催化剂的结构、形貌、晶面、尺寸、组成、表面缺陷等。 浙江大学功能复合材料与结构研究所的研究人员研发出一种新型电催化剂,今年 6 月 2 日,相关研究成果以《在铜-分子界面上紧固溴离子使 CO2 高效电还原成乙醇》(Fastening Br&ndash Ions at Copper&ndash Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol)为题,发表在《ACS Energy Letter》上。 图2. 在新型电催化剂 CuBr 作用下的 CO2 &ldquo 酿&rdquo 酒过程 研发出的新型电催化剂十二烷硫醇改性 CuBr,在催化过程中会形成一个稳定的 Br 掺杂 Cu 硫醇界面,从而更高效地将二氧化碳还原成乙醇。该电催化剂的 C2+(含有两个碳原子及以上的化合物)法拉第效率提高了 72%, 乙醇的法拉第效率达到 35.9%。 图3. 新型电催化剂的合成过程 上图阐述了在铜箔上合成 CuBr 纳米四面体并使用十二硫醇(DDT)进行修饰改性的过程。首先将机械抛光的铜箔片在 CuBr2 溶液中浸泡 30s,快速形成 CuBr四面体。利用飞纳台式场发射扫描电镜 Phenom Pharos 对 CuBr 和 CuBr - DDT 的形貌进行观察,在铜箔的整个表面上可以清晰地观察到排列紧密、表面光滑的四面体纳米结构(图 3b)。经过 DDT 处理后,可以看到 CuBr 四面体表面吸附的絮凝状 DDT(图 3c)。 实验结果表明,用 DDT 分子修饰的 CuBr 对 C2+ 的法拉第效率高达 72%,乙醇-乙烯比接近 1.1。DDT 在 CuBr 上的吸附会阻碍 Br 的迁移和 CuBr 的完全还原,从而在催化过程中形成独特的 Br 掺杂 Cu 硫醇界面,且界面稳定性高。同时,DDT 的吸附抑制了氢和甲烷的产物选择性。在 Cu 中引入 Br- 可以稳定高价态 Cu,从而提升对乙醇的选择性。这一策略将有助于其他复杂电子-质子转移过程的电催化系统的设计。
  • 赫施曼助力石油化工废催化剂钴的测定
    石油化工废催化剂中往往含有一些有毒成分,主要是重金属和挥发性有机物,具有很大的环境风险。此外,废催化剂中有较高含量的贵金属或其他有价金属,可作为二次资源回收利用。因此,对于石油化工废催化剂的检测尤为重要。以石油化工废催化剂钴的测定为例,根据HG 5588-2019,用原子吸收分光光度法,其测定原理为:用原子吸收分光光度计,使用空气-乙炔火焰,于波长240.7nm处测定试料溶液中的氧化钴,用工作曲线法定量。主要步骤为:1、标准曲线的绘制。取5只50mL容量瓶,采用10ml规格的opus电子瓶口分配器,stepper模式设置4个体积分别为1、2、3、4mL,然后按分液键,将储备液(500μg/mL)分别加入4个容量瓶中(剩一个不加),然后定容,对应标准溶液中氧化钴的浓度分别为0、1、2、3、4μg/mL。按仪器工作条件,用空气-乙炔火焰,以不加氧化钴标准溶液的空白溶液调零,于波长240.7nm处测定溶液的吸光度。以氧化钴的浓度(单位为微克每毫升)为横坐标,氧化钴的吸光度值为纵坐标,绘制工作曲线或计算出线性回归方程。2、测定。量取一定量的试料溶液(5-10mL),置于50mL容量瓶中,再用瓶口分配器加入1mL盐酸溶液,用水稀释至刻度,摇匀。从工作曲线上查得或通过线性回归方程计算出被测溶液中氧化钴的浓度。 3、数据处理。计算氧化钴(Co0)质量分数:取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值应不大于0.20%。赫施曼的瓶口分配器是采用阶梯式量程原理,操作简单舒适、无人为误差。可代替量筒、刻度移液管,可便捷、安全地进行0.2-60ml的液体移取,带安全阀的ceramus型可应对盐酸、硝酸等易挥发、腐蚀性较强的特殊试剂。 赫施曼的10ml的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加;大体积的型号可代替烧杯、玻璃棒,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 化物所宽光谱响应光催化剂分解水研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和&ldquo 百人计划&rdquo 学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5 (Eg: 2.1 eV,吸收带边可至600 nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰,不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500&minus 600 nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。相关研究结果在线发表在《德国应用化学》期刊上。   太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个&ldquo 圣杯&rdquo 式的反应。光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。   助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在国际上明确提出了双助催化剂策略(Acc. Chem. Res. 2013, 46, 2355)。最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N (Eg: 2.1 eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能(J. Am. Chem. Soc. 2012, 134, 8348-8351.),随后又成功地将这种CoOx负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物Sr5Ta4O15-xNx 和MgTa2O6&minus xNx材料体系上(J. Mater. Chem. 2013, 12, 5651 Chem. Commun. 2014, 50, 14415)。   该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。   该研究工作获得基金委重大基金、科技部&ldquo 973&rdquo 项目以及中科院&ldquo 百人计划&rdquo 人才项目资助。 宽光谱响应光催化剂分解水研究取得新进展
  • 紫外拉曼光谱:破解催化剂技术瓶颈
    新材料作为高新技术的基础和先导,应用范围非常广泛,是21世纪最重要和最具有发展潜力的领域。而新材料的研制与催化剂的使用是分不开的。大连化物所凝聚科学技术研究团队十几年的智慧和心血,研究的催化材料紫外拉曼光谱技术,破解了催化材料的若干关键技术难题,为突破国家建设急需、引领未来发展的关键材料和技术提供了重要技术支持。该成果也因此获得了2011年度国家自然科学二等奖。   催化材料紫外拉曼光谱技术研究的带头人李灿院士告诉记者,作为化学反应中不可替代的催化剂,贵金属在诸多领域发挥着重要的作用。但是稀缺资源的价格都很昂贵,这无疑是横亘在催化剂制造的一道难题。而紫外拉曼光谱技术正是破解这一难题的金钥匙。紫外拉曼光谱是一种无损伤、高灵敏度的测量技术,在物理、化学、生物学、矿物学、材料学、考古学和工业产品质量控制等领域中有着广泛的应用,是研究分子结构和组态、物质成分鉴定、结构分析的有力工具。   紫外拉曼光谱技术破解了世界催化材料发展瓶颈,解决了催化材料关键科学难题,实现了四大突破。一是利用紫外共振拉曼光谱技术解决了一系列重要分子筛材料中有关骨架金属活性中心的结构鉴定难题。建立了微孔和介孔分子筛骨架过渡金属杂原子活性中心鉴定的表征新方法,不仅可以大幅节约贵金属用量,而且单原子相对均一的催化环境有望实现化学反应的高选择性,减少副产物的出现,从而实现真正的绿色催化。   二是紫外拉曼光谱研究了金属氧化物催化材料表面物相结构问题,发现金属氧化物的表面与体相常常具有不同相结构,物相形成过程中表面和体相的相变表现不同步。在太阳能光催化材料研究中,发现表面物相结构和光催化活性有直接关联,提出了“表面异相结和异质结增强光催化活性”的概念。   三是发展了水热催化材料合成中的原位紫外拉曼光谱技术,观察到分子筛合成初期的分子碎片以及模板剂与分子碎片的相互作用形成的微孔结构,提出了分子筛初期形成的重要中间体决定最终分子筛结构的机理。他们的研究发展了表征催化材料的新方法,发现了催化材料合成的重要转化过程和活性中心中间物种,提出了催化材料合成的机理。   四是获得了具有与均相不对称催化相媲美的多相手性催化剂。该催化剂是一大类化合物——手性化合物的一种,而手性药物则是手性化合物中非常重要的一个分支。手性药物是指具有左旋或右旋对映体化学结构的单一对映体化合物,包括光学纯药品、光学纯农业化学品及其他光学纯产品与中间体。利用“手性”技术,人们可以有效地将药物中不起作用或有毒副作用的成分剔除,生产出具有单一定向结构的纯手性药物,从而让药物成分更纯,在治疗疾病时疗效更快、疗程更短。手性药物的研究目前已成为国际新药研究的新方向之一。在国际制药界,手性技术已被广泛应用到消化系统疾病、心血管疾病、癌症等领域新药研发中。   李灿院士告诉记者,1998年他们成功研制出我国第一台具有自主知识产权的紫外拉曼光谱仪,解决了国际拉曼光谱领域长期存在的荧光干扰问题,在国际上最早将其应用于催化及材料科学的研究。到2004年研究组研制成功紫外—可见全波段共振拉曼光谱议,使我国在拉曼光谱的催化表征研究走在世界前面。2008年,研究组与卓立汉光仪器公司合作,开始将紫外拉曼光谱仪产业化。2010年完成国家重大装备研制项目“深紫外拉曼光谱仪的研制”,获得世界上第一张激发波长低至177纳米的深紫外拉曼光谱。   李灿院士骄傲地告诉记者,在过去的10年间,紫外拉曼光谱已经在化学、物理和生命科学等诸多领域显示出巨大的优越性,成为一项重要的分子光谱技术。我国紫外拉曼光谱研究在国际上的领先地位,极大地促进了中国在这个领域的国际合作研究,大化所与国内外十余个研究机构实现技术合作。今后,紫外拉曼光谱仪技术在多家研究机构的推广应用,一定会有力推动我国新能源、节能环保、电动汽车、新材料等七大战略性新兴产业健康快速发展,一定会让更多的新材料、精细化工产业受益。
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 仪器表征,科学家通过界面工程调控助力异相催化剂最新突破!
    【科学背景】乙烷是一种代表性的非甲烷挥发性有机化合物(NMVOCs),因其对烟气排放的严格标准而成为监管审查的焦点。因此,为了减少这些有害物质的排放,迫切需要开发高效的催化剂。然而,由于低温下烷烃分子固有的强C-H键,以及天然气中含有的乙烷(1-9 mol%),使得对于催化天然气燃烧的催化剂设计提出了更高的要求。传统上,贵金属基催化剂(如Pt或Pd)在低温下对低碳链烷烃的催化活性非常高。然而,其高成本和有限的可用性限制了其广泛应用。因此,针对这一问题,非贵金属基催化剂的研究备受关注。尤其是,过渡金属尖晶石型氧化物(AB2O4)因其在氧化反应中的出色活性和耐久性而备受关注。然而,尽管尖晶石型氧化物具有潜在的优势,但其合成过程中常常会出现一定程度的不完整性,导致所得产物并不总是符合理想的结构。特别是在合成过程中,某些金属离子可能会与其母尖晶石颗粒分离,形成多相氧化物,其性质更为复杂。此外,多组分氧化物之间的界面也被认为是影响催化性能的重要因素,但其作用机制和影响尚未得到深入研究。为了解决这一问题,中石化(大连)石油化工研究院有限公司研究员侯栓弟、副研究员刘世达,大连理工大学化工学院教授郭新闻教授、副教授聂小娃携手通过化学还原的方法设计了一种独特的MnCoOx催化剂结构,用于乙烷氧化反应。通过控制Mn/Co比例,形成了MnO2-MnxCo3-xO4界面的结构,从而优化了催化剂的性能。通过表征和催化性能测试,揭示了界面构造对乙烷氧化反应的重要作用机制。同时,本研究还通过原位X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算等手段,深入探讨了界面构造对催化性能的影响机制。【科学亮点】本文通过多种表征手段,如透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS),发现了MnCoOx催化剂中MnO2-MnxCo3-xO4界面的独特结构,从而揭示了该界面在乙烷氧化中的重要作用。针对催化活性与稳定性之间的关系,通过原位红外光谱(in situ IR)技术探究了C2H6在催化剂表面吸附的微观机制,得到了吸附位点和反应路径的清晰图像,进而挖掘了界面协同效应的本质。在此基础上,结合气相色谱(GC)分析与催化性能测试,结果表明,Mn/Co比为0.5的催化剂展现出最佳的催化活性与长时间稳定性,着重研究了MnO2与MnxCo3-xO4之间的相互作用。这些表征手段揭示了反应过程中C-H键的活化机制,并证明了界面钴位点的关键作用。总之,经过透射电子显微镜、X射线衍射等多种表征,深入分析了MnCoOx催化剂的微观结构和反应机制,进而制备出高效的新型催化材料,最终推动了异相催化领域的发展,为烷烃燃烧催化剂的设计提供了新的思路。【科学图文】图1:合成的MnCoOx催化剂的结构分析。图2. MnCoOx-0.5催化剂对乙烷氧化的催化性能。图3. MnCoOx催化剂的微观结构表征。图4. MnO2-MnCO2O4界面在乙烷氧化中的作用。图5:MnO2-MnCO2O4界面对乙烷氧化的性质。图6: MnCoOx-0.5催化剂上乙烷氧化的机理研究。【科学结论】总结起来,作者成功地通过简便的化学还原合成方法开发了MnCoOx催化剂,其在乙烷燃烧中表现出超过所有报道的非贵金属催化剂的最高比表面反应速率,以及在潮湿条件下长达1000小时的优异长期稳定性。具有强氧亲和力的Mn在富氧环境中倾向于扩散到尖晶石表面形成MnO2领域。MnO2和MnxCo3-xO4之间的相互作用促使了界面位点的构建。令人惊讶的是,在建立的MnO2-MnxCo3-xO4分层界面上,Co位点表现出对乙烷的优先吸附作用;而MnO2层则显示出对其活性晶格氧的强力H抽取能力,并通过界面区域的氧化还原途径进一步进行乙烷氧化。揭示界面的重要作用提供了一种有效的策略,用于调节涉及组分的配位环境以及它们的电子转移能力。原文详情:Wang, H., Wang, S., Liu, S. et al. RedOx-induced controllable engineering of MnO2-MnxCo3-xO4 interface to boost catalytic Oxidation of ethane. Nat Commun 15, 4118 (2024). https://doi.org/10.1038/s41467-024-48120-8
  • 大连化物所实现高温稳定的铜基催化剂的研制
    近日,大连化物所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑研究员、俞佳枫副研究员团队,与日本富山大学Noritatsu Tsubaki教授、我所电镜技术研究组(DNL2002)刘岳峰副研究员等人合作,成功构建了800℃高温稳定的铜基多相催化剂。合作团队结合磁控溅射(Sputtering,SP)和火焰喷射(Flame spray pyrolysis,FSP)两种负载型催化剂制备新技术,分别对金属铜的电子结构和TiO2载体的可还原性进行重构,首次在较低温条件下构建了非贵金属铜基催化剂上经典的金属载体强相互作用(Strong metal-support interaction, SMSI),进而实现了耐水耐高温铜催化剂的可控制备。  长期以来,铜基催化剂因其廉价和高活性而被广泛应用于多种工业催化反应中。但受限于较低的塔曼温度,铜纳米颗粒极易在300℃以上烧结聚集而导致失活,严重限制了其高温应用。因此,构建可稳定铜颗粒的保护层,从根本上限制其聚集长大是解决这一问题的关键技术之一。然而,金属铜的功函数较低,且对氢气活化能力较弱,很难诱导载体物种向其表面迁移形成包裹,无法像传统贵金属一样在温和条件下形成金属载体强相互作用。  本工作中,合作团队通过利用自主开发的SP技术,改变了Cu的外围电子环境,同时采用FSP技术,增加了氧化物中晶格氧无序度,分别促进电子转移和载体还原,实现了在300℃较温和条件下即可形成SMSI。研究发现,在高温(550-800℃)CO2加氢(逆水气变换)反应条件下,该铜基多相催化剂可连续稳定运行700小时,且未见颗粒长大。本工作实现了铜催化剂上SMSI的构筑和调控,阐明了催化剂表界面上的反应过程和催化机理,为提高铜基催化剂的水热稳定性提供了全新策略,有望进一步拓宽铜基催化剂的高温应用领域。  近年来,孙剑团队在CO2加氢和先进纳米催化材料的制备和新应用方面取得了系列成果,采用SP技术(Sci. Adv.,2018;ACS Catal.,2014)和FSP技术(ACS Catal.,2020;Chem. Sci.,2018;Chem. Comm.,2021;Appl. Catal. B: Environ. ,2016)先后开发了一系列与传统催化剂不同性质的催化材料,并成功应用于加氢、氧化、重整等多种催化反应中。  相关成果以“Ultra-high Thermal Stability of Sputtering Reconstructed Cu-based Catalysts”为题,于近日发表在《自然-通讯》(Nature Communications)上。该文章的第一作者是大连化物所DNL19T3俞佳枫。该工作得到国家自然科学基金、中国科学院青年创新促进会、兴辽英才青年拔尖人才计划、大连市杰出青年科技人才计划、大连化物所创新基金等项目的支持。(文/图 俞佳枫、孙剑)  文章链接:https://doi.org/10.1038/s41467-021-27557-1
  • 催化剂的定量和定性分析的完美组合:iChem 700全自动化学吸附仪和iMS 770全自动质谱分析联用系统
    iChem 700 和 iMS 770 联用 – 构成强大的催化剂表征/定量定性分析系统众所周知,在催化剂的研究中,定量分析以测定催化剂某一元素或化合物的量,定性分析以测定催化剂中某一元素或化合物的存在。定量和定性的组合联用对催化剂的研发过程中催化剂的表征、定量定性分析,形成完整的分析体系,对催化剂的研究起着至关重要的作用。iChem 700全自动化学吸附仪提供高质量的定量分析,iMS 770全自动在线质谱仪提供高质量的定性分析。iChem 700 全自动程序升温化学吸附仪 - 先进的催化剂表征/定量分析系统催化剂性能表征是评判催化剂性能的重要指标,其中催化剂的动力学指标最为重要。对于固体催化剂而言,同样重要的还有宏观结构和微观结构指标。催化剂性能的动力学表征衡量催化剂质量的最实用的三大指标,是由动力学方法测定的活性、选择性和稳定性,是活性催化剂提高化学反应速率的性能的一种定量表征。固体催化剂微观结构和性能表征结构固体催化剂起催化作用的部分是表面或表面若干层的原子所组成的活性中心。iChem 700 全自动程序升温化学吸附仪, 作为市场上配置优越的此类仪器,其性能卓越不言而喻。其硬件配置包括,6个高性能质量流量计,4个六通阀,2个三通阀,1个高温炉,1个蒸汽发生器,1个冷阱,1个高灵敏度TCD检测器,3个压力传感器,内部有4个温控区(分别为内部管路和阀门, TCD, 蒸汽, 高温炉)。14种规格的LOOP环可选。也许大家有兴趣了解,高配置的化学吸附仪有什么优点?其优点是显而易见的。1. 六个质量流量计:全自动化学吸附仪采用固体-气体两相反应,所以精确控制每一路气体的流量是确保分析数据质量的保障。2. 三个压力传感器:这样的设计,确保在制备,载气,分析气路的主管路上均配有压力传感器。实时检测各个主管路的压力变化,及时发现管路中可能有的堵塞。确保管路的随时通畅。进而保证分析数据的质量。3. 十四种LOOP环的选择:在不同的催化剂和催化剂不同的研发阶段,满足催化剂研发需要,并保证了低负载金属,小样品量,高负载金属,大样品量等各种情形下的需求。在有了上述高配置的仪器基础上,仪器的各项分析功能就有了强有力的保障:1. TPD分析(包括NH3-TPD):程序升温脱附,将已吸附吸附质的催化剂按预定的升温速率加热,得到吸附质的脱附量与温度的关系。主要用于研究吸附质与吸附剂之间的结合情况。 NH3-TPD分析可以提供催化剂的酸性位信息。2. TPR分析:程序升温还原,是将金属氧化物,混合金属氧化物和分散于载体上的金属的表面进行还原,从而获得金属氧化物与被还原的温度之间的关系。3. TPO分析:程序升温氧化,用于积碳催化剂的烧炭再生的考察,也用于研究气相氧与催化剂表面吸附氢和表面氧空位的反应。TPO确定催化剂在完成TPR之后重新被氧化,被氧化的部分占总共被还原部分的比例,用以反映催化剂的循环氧化还原性能。4. TPS分析:程序升温硫化,是一种研究催化剂是否容易“硫化”的有效,简单的方法。5. TPSR分析:程序升温表面反应,在一定程度上弥补了TPD的不足,将TPD和表面反应结合起来,对催化剂的研究提供了一种新的手段。6. 脉冲化学吸附分析:用以分析金属分散度和活性金属的尺寸。每一次脉冲注入的反应气体量由LOOP环的体积决定。脉冲化学吸附提供了一种分析活性金属表面积,催化剂金属分散度及活性金属颗粒大小的方法。7. 动态BET比表面分析:用以分析催化剂的比表面积,尤其是在各种化学吸附之前和化学吸附之后的BET比表面积的比较。与此同时,iChem 700的软件功能也包含了仪器控制和数据处理两个部分,同样具有强大的功能。从以上看出,iChem 700 全自动程序升温化学吸附仪,能够完成各种催化剂的表征和定量分析,成为催化剂研发和质量控制的有效手段和保障。iMS 770全自动在线质谱仪 – 催化剂定性分析系统iMS770质谱分析系统是分析大气压力下进样气体的紧凑型台式分析系统,是气体分析领域完美的解决方案,特别是在催化领域,iMS-770质谱分析系统集成了德国Pfeiffer Vacuum的核心组件。采用进口的一套进气装置,PrimaPlus质谱仪,干式膜片泵和HiPace涡轮分子泵。iMS-770质谱软件采用德国Pfeiffer Vacuum原装的分析操作软件,可对多达128种不同质量数的气体进行定性分析。其特点如下:1.采用四极质谱仪作为核心检测器,背景噪音低,检测限达到1ppm 2.高灵敏度离子源,采用镀氧化钇的铱灯丝,抗氧化能力强,寿命长。3.真空度和电流双重保护,防止系统误操作或突然漏气。4.分辨率为0.5-2.5amu,优化信号的强度,稳定性优于3%Ar。5.偏压技术和场轴技术,增强离子透过率,降低背景干扰。6.分子泵、前级泵产生干燥无油的测试环境,对不同气体有良好的抽气能力。7.高真空的分析室腔体,保温200℃。8.毛细管分流进样, 进样温度200℃,分流比例可调节。9.现场维护进样毛细管、离子源、灯丝、分子泵、前级泵等。10.分子泵,冷却类型,空气;轴承:复合轴承,使用寿命长。11.专用软件,操作简单,界面友好。iChem 700 和 iMS 770 联用 – 将质谱仪iMS 770的进气毛细管插入化学吸附仪 iChem 700的尾口,也就是经过化学吸附反应后生成的气体在流经化学吸附仪的TCD检测器后,进入质谱分析仪,在经质谱检测器的分析。这样的分析组合可以给催化剂研发人员对所研究的催化剂有一个更完整的表征。无论是在iChem 700化学吸附仪上做的TPD,TPR,TPO,脉冲化学吸附等各种实验,均可以将TCD分析后的气体,再引入到质谱检测器分析。综上所述,iChem 700对催化剂所做的定量分析和iMS 770对催化剂所做的定性分析,构成了催化剂的完整的表征系统,是催化剂研发人员必不可少的联用分析手段。
  • 你距离一流的催化剂可能只差一个表征
    p   催化在化工、能源、环境、材料、生物、制药、分析等领域被广泛应用。催化研究涵盖的领域更是包括了能源催化、催化材料、催化机理、环境催化、工业催化、电化学催化、化学合成催化、光催化、单原子催化等领域。90%以上的化学化工工程都是催化反应过程,因此,催化剂的表征与评价研究与应用具有重大的意义。 /p p   基于此,仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建),将于2020年5月12日组织召开 a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" 首届“催化剂表征与评价”主题网络研讨会 /a ,邀请业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国催化领域的研究发展。 /p p    strong 会议日程(以报名页面为准): /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 389px " src=" https://img1.17img.cn/17img/images/202004/uepic/2d2b81b9-37c4-4310-b824-24a0dde5bb40.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 389" border=" 0" vspace=" 0" / /p p    strong 报告嘉宾简介: /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 280px " src=" https://img1.17img.cn/17img/images/202004/uepic/f0ffda9a-a79b-46b2-b962-61852b503735.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" width=" 200" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-align: center " 浙江工业大学工业催化研究所 李瑛 /p p   李瑛,浙江工业大学教授,主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用。2005年获中国科学院大连化学物理研究所物理化学博士学位。师从国际催化委员会主席李灿院士。2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。2007.10-至今,浙江工业大学参加工作,目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8eb4aed1-d4cb-4371-87f4-5a95d4f8985f.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " 安东帕(上海)商贸有限公司 陈婧琼 /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 359px " src=" https://img1.17img.cn/17img/images/202004/uepic/b3624259-0e1f-46c8-96f6-617867a5f51a.jpg" title=" 刘伟.png" alt=" 刘伟.png" width=" 300" height=" 359" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国科学院大连化学物理研究所 刘伟 /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才,2013年度北京航空航天大学优秀博士论文。2003.07~2012.06 北京航空航天大学应用物理学士,凝聚态物理博士 2012.06~2013.10,四川大学物理系 讲师 2013.11~2017.03,电子科技大学物理系副教授 2011.07~12、2015.08~2016.08,美国密西根大学电子显微分析中心访问学者。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c2152725-0f04-4b8e-ad99-d0c80dbd4ec5.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center "   南京大学 彭路明 /p p   彭路明,博士,教授,博士生导师。1997-2001,南京大学化学化工学院化学系,学士(2001) 2001-2006,美国纽约州立大学石溪分校化学系,博士(2006) 2006-2008,美国斯坦福大学地质和环境科学系,博士后;2008- 至今,南京大学化学化工学院,副教授(2008-2013),研究员(2013-2017),教授(2017-至今)。 /p p   在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/c9d9165c-5824-45a4-84f4-ef47d8320e90.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" width=" 200" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 西安交通大学 杨贵东 /p p style=" text-align: left "   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202004/uepic/330e9a1d-1016-4fa5-af51-cd6ed2420c2b.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " 大连理工大学 刘家旭 /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p    strong 参与方式: /strong /p p   免费报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" & nbsp /a /p p a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self"   https://www.instrument.com.cn/webinar/meetings/catalyst/ /a /p p   或扫描下方二维码报名: /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7f447697-bd90-47df-8213-b3370e6155a6.jpg" title=" 报名二维码.png" alt=" 报名二维码.png" / /a /p p   扫下方二维码进入催化剂表征与评价交流群: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/810a8756-4206-4f04-a26c-8134245d0576.jpg" title=" 催化剂表征与评价交流群.jpg" alt=" 催化剂表征与评价交流群.jpg" / /p
  • 科学家研制出含铁燃料电池催化剂
    新材料不含贵金属 成本不再高企   近日,中科院大连化学物理研究所催化基础国家重点实验室博士邓德会、研究员潘秀莲、院士包信和等与洁净能源国家实验室燃料电池研究部合作,首次完成用铁替代燃料电池催化剂中贵金属的实验。相关研究成果日前在线发表于《德国应用化学》。   据了解,利用氢气发电是未来先进可持续能源体系发展的重要目标。为了实现这一目标,作为重要能量转换装置的质子交换膜燃料电池将会发挥不可替代的作用。然而,该类燃料电池需要大量的贵金属,如铂、钯、钌等作为催化剂,进而影响了其大规模应用。因此,大幅降低燃料电池电极材料中的贵金属含量,并最终采用地球上丰富的“廉”金属元素完全替代贵金属已成为该领域的重大机遇和挑战。   为此,该研究团队创造性地将铁基金属纳米粒子限域到具有豆荚状结构的碳纳米管的管腔中,采用该研究组新近研制成功的深紫外光发射电子显微镜,并借助上海光源先进的X射线吸收谱,结合理论计算,首次观察到金属铁的活性d电子通过与组成碳管壁的碳原子相互作用而“穿过”碳管管壁,使富集在碳管外表面的电子直接催化分子氧的还原反应。   该实验和理论研究进一步证实,在这一体系中,包裹纳米金属铁的碳壁阻断了反应气体与铁纳米粒子的直接接触,从原理上避免了反应过程中活性金属铁纳米粒子的深度氧化以及反应气氛中其他有害组分对催化剂的毒害,从而在根本上解决了纳米金属铁作为燃料电池阴极催化剂的稳定性难题。   业内专家认为,该项研究不仅为燃料电池催化剂的贵金属替代研究提供了行之有效的途径,而且,由此发展出来的概念为在苛刻条件下运行的催化剂的设计和制备开辟了新方向。   以上研究得到了国家自然科学基金委和科技部等相关项目的资助。
  • 重要成果!1000 mA/cm²高活性OER,easyXAFS台式X射线吸收精细结构谱仪解析电催化剂
    电化学分解水是一种将间歇性能源(如风能,太阳能)转化为氢能的有效途径,有利于推动碳中和。开发廉价高活性的氧析出(OER)电催化剂是该技术走向实际应用的关键之一。研究表明,过渡金属催化剂在OER过程中可重构形成具有更高活性的羟基氧化物,且杂原子的加入可促进这一表面重构反应。基于此,太原理工大学与新南威尔士大学合作提出一种原位重构策略,以FeB包覆的NiMoO作为预催化剂进行表面重构,获得了高活性的OER催化剂。作者利用美国easyXAFS公司研发的台式X射线吸收光谱仪XES150解析了催化剂的精细结构,并结合多种其他表征技术及理论计算,证明重构过程形成的稳定高价态Ni4+物种可促进晶格氧活化进而提升OER反应。该项工作揭示了催化活性的提升机理,并实现了1000mA/cm2级别的超高反应电流,以“Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities”为题发表于期刊Applied Catalysis B: Environmental。 本文中使用的台式X射线吸收光谱仪XES150无需同步辐射光源,可以在实验室内测试XAFS和XES数据,谱图数据与同步辐射光源谱图数据完全一致。仪器推出至今,已在全球拥有100+用户群体,市场份额遥遥领先,久经时间考验,细节打磨更完善,稳定性可靠性更高。设备还可实现图1. 台式X射线吸收精细结构谱仪-XAFS/XES 图一展示了催化剂的合成示意图,NiMoO/FeB 预催化剂通过原位重构形成NiFeOOH,其中的准金属硼诱导形成纳米片/纳米棒结构。所得的催化剂的OER活性高于纯NiOOH和贵金属RuO2(图2a)。该催化剂仅需1.545 V vs. RHE即可驱动1000 mA/cm2电流,性能优于其他文献报道(图2b)。作者利用台式XES150 system (Easy XAFS LLC, USA)测试了样品X射线吸收谱。通过Ni-K边 X射线吸收近边结构 (XANES) 光谱分析Ni的电子态。白线峰与 1 s 到 4p 跃迁相关。在 NiFeOOH 的 XANES 光谱中白线峰峰值位于 8352.66 eV,高于 NiOOH(图 2c),这表明NiFeOOH中Ni的平均氧化态高于NiOOH中的平均氧化态,并且NiFeOOH中形成了更多的Ni4+物种。 同时,由于金属 4p 轨道的离域,NiFeOOH吸收边向较低能量移动,峰展宽且边缘跃迁强度增加(即 1 s→4p),这些对配体-金属共价性敏感的特征性变化表明Ni-O 共价键增加(图 2d)。作者进一步分析拟合了Ni K-边的傅立叶变换扩展X射线吸收精细结构(EXAFS)的k3χ数据,以探究局部原子结构(图2e-2h)。与NiOOH 相比,NiFeOOH 的 Ni-O 散射路径原子间距离从 1.98 &angst 减小到 1.85 &angst ,证明 Ni-O 键的共价性质的增加。 Ni-O 散射路径的偏移归因于NiOOH 和 NiFeOOH 中不同的局部配位环境,这是由于其中NiOOH 和 NiO2物相的比例不同。 上述结果表明,NiFeOOH 中的稳定态物种主要是 Fe 掺杂的 NiO2 物质,这是由 Fe 掺杂和重构过程(即中等高电位下的电化学极化)引起的。 Ni4+生成量的增加导致Ni-O共价性增大,从而促进晶格氧的活化,提升OER催化反应活性。图1. NiMoO/FeB 预催化剂与NiFeOOH 催化剂的合成示意图。图2. (a) 催化剂的LSV曲线。(b)本文催化剂过电势与其他文献报道对比图。(c)(d)Ni-K边XANES谱图。(e)Ni-K边EXAFS谱图。(f)NiO, (g) NiOOH,及 (h) NiFeOOH的EXAFS拟合结果。参考文献:[1]. Yijie Zhang et al., Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities, Applied Catalysis B: Environmental, Volume 341, February 2024, 123297.相关产品1、台式X射线吸收精细结构谱仪-XAFS/XEShttps://www.instrument.com.cn/netshow/SH100980/C327753.htm
  • 中国工业环保促进会发布《催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法》(征求意见稿)
    各有关单位:由中国工业环保促进会组织起草的《催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法》团体标准已完成征求意见稿编制工作。为使标准具有科学性、先进性和适用性,现公开征求意见,欢迎社会各界对标准内容提出建议和意见。请各单位于2024年1月16日之前将征求意见表(附件1)以电子邮件形式反馈至我会。 联系人: 梁缙联系电话:18601248576邮箱地址:liangjin@ciep.org.cn 中国工业环保促进会2023年12月17日附件1:附件1. CIEP团标征求意见表.doc附件2:标准文本——催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法 讨论稿-第二版.docx附件3:编制说明——催化裂化及催化重整装置催化剂碳含量的测定元素分析仪法 讨论稿-第二版.docx
  • 原子层沉积技术——“自下而上”精准构建和调控异质催化剂结构和性能
    引言 异质催化剂的合成通常借助于传统的湿法化学法,包括浸渍法、离子交换和沉积-沉淀法等。然而,这些方法合成的催化材料往往具有非常复杂的结构和活性位点分布不均匀等问题,这些问题会显著降低催化剂的催化性能,特别是在选择性上,阻碍了科学家们在原子水平上理解催化剂的结构-活性关系。此外,在苛刻的反应条件下通过烧结或浸出造成的活性组分的损失会导致催化剂的大面积失活。因此,亟待发展一种简便的方法来调控催化剂的活性位结构和其在原子水平上的局部化学环境,从而促进对反应机理的理解和高稳定性催化剂的合理设计。 原子层沉积(ALD, Atomic layer deposition)是一种用于薄膜生长的气相催化剂合成技术,目前已成为一种异质催化剂合成的替代方法。和化学气相沉积(CVD, Chemical vapor deposition)一样,其原理是基于两种前驱体蒸汽交替进样,并在载体表面上发生分子层面上的“自限制”反应,实现目标材料在载体表面上的沉积。通过改变沉积周期数、次序和种类等方法可以实现对催化剂活性位结构的原子精细控制,进而为研究者提供了一种 “自下而上”可控合成催化剂的新策略。 美国Arradiance公司的GEMStar系列台式原子层沉积系统(如图1所示),在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅可在8英寸基体上实现厚度均匀的膜沉积(其厚度均匀性高于99%),而且适合对具有超高长径比孔径的3D结构进行均匀薄膜覆盖,在高达1500:1长径比微纳深孔内部也可均匀沉积。图1. 美国Arradiance公司生产的GEMStar系列台式三维原子层沉积系统 在本篇文章中,我们将介绍利用ALD方法在负载型单金属 和双金属催化剂精细设计方面的进展和ALD方法在设计高效催化剂方面的特点与优势。同时,我们也整理了利用ALD技术制备单原子和双原子结构金属催化剂的方法与策略以及利用氧化物可控沉积调控金属催化活性中心周围的微环境,从而实现提升催化剂活性、选择性和稳定性的方法。后我们也将展望ALD技术在催化剂制备领 域中应用的潜力。ALD合成负载型催化剂 近年来,研究者对各种氧化物和碳基材料基底上的金属ALD催化剂进行了广泛研究。由于高温下ALD生长的金属原子在氧化物和碳基基底上的高迁移率,沉积物通常以金属纳米粒子形式存在,而不是二维金属薄膜。如图2a所示,金属纳米颗粒的尺寸大小和负载量可以通过调整ALD循环次数和沉积温度变化来进行调控,且金属颗粒的尺寸分布通常非常狭窄。近期,中国科学技术大学的路军岭课题组使用ALD技术发展了一种双金属纳米粒子的合成新策略,即使用较低的沉积温度和合适的反应物,在负载的单金属纳米粒子表面增加二金属组分,获得原子可控的双金属纳米粒子(如图2b, PtPd双金属纳米粒子)。研究发现,在较低的温度下,金属基底会促进金属前驱体在其上的成核和ALD生长,而金属氧化物通常是惰性的,因此不能在低温下与金属前驱体反应和开始成核。图2. ALD合成(a)单金属Pt纳米粒子,(b) 双金属PtPd纳米粒子,(c)Pt 单原子催化剂在N掺杂的石墨烯上,(d)Pd单原子催化剂在g-C3N4上,(e)二聚的Pt2/石墨烯催化剂。 原子分散的金属催化剂,由于其特的催化性能和大的原子利用效率,越来越受人们的关注。使用ALD技术从气相中获得单原子催化剂具有很大的挑战性,因为ALD生长通常在高温下进行,金属的聚集会显著加剧,但考虑到ALD的自限特性,仍是有可能的。加拿大西安大略大学孙学良教授团队从事了先驱性的工作,在250℃下,对N掺杂的石墨烯表面进行五十次Pt ALD循环合成了Pt单原子催化剂(如图2c)。DFT计算表面,Pt单原子与N原子成键,其HER活性相对于商业Pt/C显著增强(~37倍)。类似的,路军岭团队通过调控石墨烯上的含氧官能团种类和数量,在150℃下对石墨烯表面进行一次Pd ALD循环(Pd(hfac)2-HCHO),合成了原子分散的Pd单原子催化剂(如图2d),没有观察到Pd团簇和纳米粒子的形成。除此之外,使用ALD技术还可以合成原子的超细金属团簇,如二聚物等。如图2d所示,路军岭团队报道了Pt2二聚体可以通过ALD技术在石墨烯载体上创建适当的成核位点 “自下而上”制备获得,即Pt1单原子沉积,并在起始位点上进行Pt原子的选择性二次组装。氧化物包覆实现金属催化剂的纳米尺度编辑 对于负载型金属催化剂来讲,其载体不仅仅是作为基底,也会通过电子转移或金属—氧化物相互作用,显著的调制金属纳米颗粒的电子性质。当氧化物层包覆在金属纳米颗粒上时,会形成新的金属-氧化物界面(如图3a),可以进一步改变金属纳米颗粒的电子性能和形貌,有望进一步提升其催化性能(如图3b)。金属纳米颗粒通常含有低配位位点(lcs)和高配位的台阶(HCSs),通过氧化物ALD沉积的选择性阻挡某些活性位点,局部改变其几何形态,影响催化过程中的化学键断裂和生成,导致不同的反应途径(如图3c)。另外,物理氧化包覆层还可以提高纳米颗粒的稳定性,在恶劣的反应条件下防止金属组分的烧结和浸出(如图3d)。在原子层面上控制氧化膜厚度,从而在高比表面材料上实现高的均匀性,使得ALD成为在纳米尺度上提高纳米金属催化剂催化性能的理想工具,且不会产生质量迁移的问题。图3. (a)ALD氧化物包覆负载型纳米离子生成新的金属——氧化物界面ALD合成,(b)ZnO包覆Pt纳米粒子催化剂显著提高催化活性,(c)ALD氧化铝包覆Pd/Al2O3显著提高催化选择性,(d)TiO2包覆层显著提高Co@TiO2催化剂催化稳定性。 总结和展望 催化剂的原子合成,是阐明催化作用的关键机制和设计先进高性能催化剂的关键。ALD特的自限制特性可实现催化材料在高比表面材料上的均匀和可控沉积,实现一步步和“自底向上”的方式在原子层面上构建复杂结构的异质催化剂材料。这些ALD催化剂具有较高的均匀性,使其相对于传统方法制备的催化剂,拥有更好的或可观的催化性能,并可作为模型催化剂有助于阐明催化剂的结构-性能关系。 参考文献:[1] Lu J. et.al, Acta Phys. -Chim. Sin. 2018, 34 (12), 1334–1357.[2] F. H. et al. J. Phys. Chem. C 2010, 114, 9758.[3] Elam, J. W. Nat. Commun. 2014, 5, 3264.[4] Liu, L. M. et al. Nat. Commun. 2016, 7, 13638.[5] You, R. et al. Nano Res. 2017, 10, 1302.[6] Huang, X. H. et al. Nat. Commun. 2017,8, 1070.[7] Elam, J. W. ACS Catal. 2016, 6, 3457.[8] Lu, J. ACS Catal. 2015,5, 2735.[9] Huber, G. W. Energy Environ. Sci. 2014, 7, 1657.
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新 ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。 2、原位表征 ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。 3、系统组件 集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 ICCS催化剂原位表征系统
  • 固体核磁共振新进展!揭示固体催化剂表面物种吸附状态
    近日,中国科学院大连化学物理研究所研究员侯广进团队利用高压原位固体核磁共振(NMR)技术,揭示了部分还原氧化铈催化剂表面上非解离吸附活化双氢物种的独特化学状态。相关成果发表在《美国化学会志》上。研究揭示固体催化剂表面非解离活化双氢物种。大连化物所供图氢气在固体催化剂表面的吸附活化是合成氨、合成气转化、储氢等诸多能源化工过程的关键步骤,这引发了研究人员对于催化剂表面氢物种化学状态及催化功能的研究兴趣。然而,受限于表面氢物种环境敏感的特点及固体催化剂表面结构复杂性问题,对催化剂表面氢物种的实验观测存在挑战。因此,亟需发展对表面氢物种的原位、高分辨分析方法,以研究其吸附位点、电子与几何结构、与催化剂的相互作用及对催化反应的影响等重要科学问题。固体核磁共振技术是高分辨研究催化剂表面吸附物种的重要谱学技术。然而,常规的非原位固体核磁共振方法难以研究表面氢物种在内的气氛敏感的活性物种的真实化学状态。侯广进团队前期克服技术挑战,开发出了高温高压原位固体核磁共振技术,该技术具有较宽的压力和温度操作窗口,并用于固、液、气等多相体系的原位固体核磁共振研究中,揭示了材料合成机制、气体吸附、主客体相互作用、催化反应路径及动力学等关键科学问题。本工作中,研究人员利用高压原位固体核磁共振技术,研究了氧化铈催化剂表面氢物种的化学状态。团队通过引入HD气体,原位动态下采集二维J耦合2H-1H相关谱,发现并证明了部分还原氧化铈表面存在非解离吸附的双氢物种。团队进一步通过精准测量其J耦合常数及运动弛豫的NMR分析,确定了该双氢物种的活化吸附状态,揭示了HD分子吸附在催化剂表面,H-D键被活化拉长。随后,团队与西安交通大学常春然教授理论计算团队合作,结合不同还原程度的氧化铈吸附氢气的原位1H NMR观测及DFT计算结果,证实了该双氢物种的吸附状态,及其与氧化铈表面氧空位缺陷之间的关联。此外,研究人员借助乙烯加氢的探针反应,利用原位NMR技术观测到了该物种的催化转化过程。该工作有助于加深对固体催化剂表面氢气吸附活化过程的认识,相关研究分析方法也有望拓展用于研究其它气体的吸附转化过程,从而指导相关催化剂和催化过程的精准设计。
  • 强大的光谱技术用于燃料电池关键催化剂研究
    英国利物浦大学(University of Liverpool)和西班牙阿利坎特大学(University of Alicante)的研究人员发现,领先燃料电池催化剂铂上存在低电位表面物质,这对发展氢燃料电池技术具有重要意义。利物浦大学斯蒂芬森可再生能源研究所(SIRE)的研究人员,利用高灵敏度光谱技术,探讨低配位Pt原子上OH物质(氢氧根负离子)的吸附性。这种光谱技术名为SHINERS,即壳层隔绝纳米粒子增强拉曼光谱技术。研究人员借助SHINERS方法证明,OH会在比以前认为的更多的负电位下被吸附。在交通运输领域,氢燃料电池正在引领下一场革命。在这些装置中,氢气中的储能与空气中的氧发生反应,从而产生电力,为电动汽车提供动力。氢燃料电池使用铂来催化其内部反应,包括氧还原反应和氢氧化反应。虽然市面上已有燃料电池驱动的汽车、客车和卡车,但所使用的铂成本较高,仍是这项技术的主要阻碍之一。在燃料电池中,要减少铂的使用量,甚至用成本更低和更有效的催化剂代替铂,需要从分子层面深入了解铂表面发生的反应。 到目前为止,人们一直认为,在发生反应的电位下,铂的表面比较“干净的”,没有其他物质。然而,这项研究表明,氢氧根负离子在极低的电位下被吸附在铂表面。对于理解氧还原反应的发生方式,以及寻找更有效的催化剂,这将产生重要影响。研究人员利用电化学技术和拉曼光谱,从而获得这些结果。电化学技术可以区分表面发生的不同过程。基于最近的发展,拉曼光谱首次可以检测吸附的氢氧根负离子。SIRE博士研究生Julia Fernández Vidal领导先进的拉曼测量。Julia表示:“通过系统的电化学和光谱研究,可以观察到OH吸附光谱信号。SHINERS是一种非常强大的技术,能够检测电极表面的分子单层。通过实验观察到这一点,非常令人兴奋。”
  • 最强光催化剂“出手”“水变氢”效率刷新世界纪录
    在太阳光或一缕LED紫外光照拂下,玻璃烧杯中加入一点点白色粉末,无须加热也无须其他能源,烧杯里的水便可源源不绝产生氢气,且经过数百小时的实验,这种白色粉末的量并未衰减。在云南大学材料与能源学院实验室,你能见到这样的“奇观”。  在碳达峰、碳中和背景下,洁净的氢成为未来的重要能源,高效、低成本制氢,特别是光解水制氢是科学家研究的方向。1月10日,国际著名期刊《自然通讯》发表了云南大学柳清菊教授团队与英国伦敦大学学院唐军旺教授团队、华东师范大学黄荣教授团队合作的一项重要研究成果——以单原子铜锚定二氧化钛,成功制备新型光催化剂,其分解水制氢量子效率高达56%,被审稿人称为“世界纪录”。这意味着“水变氢”有了一条可实用化的新路径。  提高催化效率 才能助推光解水制氢走向实用化  氢能是一种清洁无污染的可再生能源,燃烧值很高,可达每千克140兆焦耳,其具有来源丰富、燃烧产物无二次污染等优点,有望代替石油和天然气,因而受到世界范围的广泛关注。若能得以大规模实际应用,将为“双碳”目标的顺利实现作出贡献。  “目前,制备氢的主要方法有化石燃料制氢和电解水制氢,但两种方法都需消耗传统能源。”柳清菊向科技日报记者介绍,化石燃料制氢,二氧化碳排放量大,每生产1千克氢气,将产生10千克左右的二氧化碳;而电解水制氢也存在能耗和成本问题。“在环境和能源问题日益严重的今天,开发清洁、可持续、低成本的制氢技术,推进氢能的发展显得尤为迫切和重要。”柳清菊说,采用光催化技术,利用太阳能驱动水分解制氢是一种极具发展前途的新方法。  自1972年科学家发现二氧化钛半导体具有光催化性能以来,光解水制氢一直受到学术界及产业界的关注与重视。在能量大于或等于半导体禁带宽度的光照射下,光催化材料价带中的电子吸收入射光子的能量跃迁到导带,形成“电子—空穴”对,空穴和电子迁移到材料表面,与表面吸附的水分子发生氧化还原反应,也就是电子与水发生还原反应产生氢气,空穴氧化水产生氧气。  然而,由于电子带负电,空穴带正电,使得光催化材料中光照所产生的“电子—空穴”很容易复合,导致产氢量子效率低下,严重阻碍了光解水制氢的发展。因此,如何阻止“电子—空穴”的复合,提高光催化制氢效率,成为目前国际上光催化研究领域的重大挑战之一,也是制约光催化制氢技术实用化的瓶颈难题。  这其中,光催化材料是核心。而光催化材料的活性、稳定性和成本是决定光催化技术能否实际应用的关键。  铜离子“补位” 新型光催化材料设计制备突破瓶颈  金属单原子催化剂是近年来迅速发展起来的新型催化剂。相比传统金属催化剂,金属单原子催化剂中的原子以单个的形式负载在载体上,在催化反应中可充分参与反应,实现反应活性中心的最大化,利用效率可接近100%,在理论上可以同时提高催化活性并降低成本。然而由于单原子具有极高的表面能,在合成和催化反应过程中容易团聚、稳定性差、寿命短且制备成本高,阻碍了其实际应用。  “这次起光催化作用的二氧化钛,是一种钛和氧规则排列的晶体,我们通过独特的合成工艺,在其中生成大量的钛空位。”柳清菊向记者解释,有了这些钛空位,就可以请铜离子来帮忙“补位”。  “通过对钛基有机框架材料MIL-125中钛空位的设计和可控合成,我们研制出具有大比表面积和丰富钛空位的二氧化钛纳米材料,以此为载体锚定过渡金属铜单原子,使铜与二氧化钛形成了牢固的‘铜—氧—钛’键。”柳清菊介绍,在光催化制氢反应过程中,一价阳离子铜和二价阳离子铜的可逆变化,大大促进了光生“电子—空穴”的分离和传输,大幅提高了光生电子的利用率,使产氢量子效率获得突破,达到56%。这项突破获得了欧洲科学院院士、伦敦大学学院光催化和材料化学终身教授唐军旺团队的验证。  成本、工艺更“亲民” 光解水制氢产业已初露曙光  新研制的二氧化钛基光催化材料,具有性能稳定、无毒、无二次污染等优点,且生物相容性好、制备方法简单、成本低,与传统方法相比优势明显。通常含贵金属的催化剂,催化活性高,但相应的成本也极高。“新材料中,我们用的是‘贱金属’铜,它储量大、价格低、易获得,这是成本降低的第一个方面。” 柳清菊介绍,此外,原有的催化材料中单个金属原子活性很大,很容易形成团簇,使得催化活性降低。研发团队将铜原子牢固地锚定在钛空位上,不容易团聚,创新性地解决了这个问题,稳定时间很长,在常温常湿条件下,样品放置380天之久,仍然具有与新制备样品相当的产氢性能,进一步降低了产氢成本;另外,新型光催化材料制备工艺简单,无需昂贵的设备,使光催化制氢更加“亲民”。  近年来,柳清菊团队在实验室进行了大量的基础研究,包括材料设计、合成工艺、机理研究、性能优化等,已获得稳定的高性能光解水制氢光催化材料的实验室制备工艺,正准备开展放大工艺研发,为后续产业化奠定基础。虽然传统的光催化材料成本高、量子效率低,国内光催化产氢市场尚未成熟,但随着产业链衔接及相关政策的完善,光催化制氢产业化已是曙光初露。  对柳清菊团队而言,56%的产氢量子效率也不是终点。“我们还在继续努力,使效率进一步提高,如果能够提高到70%以上,对生产应用的意义将是不言而喻的。”柳清菊说,找准了方向,效率再提升将不是梦。随着光解水效率进一步提高和成本进一步降低,氢能时代将加速到来,人类也将还地球以绿水青山。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制