全自动电解质仪

仪器信息网全自动电解质仪专题为您提供2024年最新全自动电解质仪价格报价、厂家品牌的相关信息, 包括全自动电解质仪参数、型号等,不管是国产,还是进口品牌的全自动电解质仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动电解质仪相关的耗材配件、试剂标物,还有全自动电解质仪相关的最新资讯、资料,以及全自动电解质仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

全自动电解质仪相关的厂商

  • 400-860-5168转4598
    深圳市航创医疗设备有限公司是深圳市高新技术企业,主要研发生产和销售HC-800全自动离子分析仪和HC-988系列电解质分析仪的知名厂家。 深圳航创公司具有独立知识产权。在医疗检验仪器方面有着20余年的生产积累,深圳航创电解质分析仪在医疗行业家喻户晓。深圳航创HC-800全自动离子分析仪产品突破传统技术局限,可以快速微量精准检测多种水质离子项目,在工业控制和原料质量、金属酸洗、石油开采和勘探技术、稀土、玻璃蚀刻、造纸工艺、氟化工、新能源材料、职业病防治、高端医疗检测、环保工程、环境监测、高校科研及教学、饮用水和饮料、食品安全等众多领域都有大量的客户群,为各领域各行业解决无数的检测难题,在离子检测方面独树一帜,开创离子微量精准速检之先河。
    留言咨询
  • 400-860-5168转3154
    上海安杰智创科技股份有限公司(简称“安杰科技”),创立于2001年,总部坐落于上海机器人产业园,在北京设立全国运营中心“北京东方安杰科技有限公司”。安杰科技是高新技术企业,发明并制造出气相分子吸收光谱仪。 公司从创立之初就以保驾人类健康、护航绿色环境为不懈追求目标,以分析化学、物理光学、光谱学、人工智能为核心技术,推出了系列全自动分析检测仪器,广泛应用于疾控医疗、生态环境、石油化工、水文海洋、供水排水、农业食品、科研高校等众多领域的核心实验室及第三方检测实验室等多领域、多场景。安杰科技主要产品有气相分子吸收光谱仪、全自动尿碘仪、全自动电解质分析仪、高锰酸盐指数分析仪、化学需氧量(COD)分析仪、流动注射分析仪以及元素分析仪;可分析检测的项目有氨氮、总氮、硫化物、亚硝酸盐氮、硝酸盐氮、凯氏氮、尿碘、水碘、血碘、锂钠钾钙镁电解质元素、高锰酸盐指数、化学需氧量(COD)、挥发酚、氰化物、阴离子表面活性剂、总磷、六价铬、硼化物、氯离子、氟化物、硅酸盐、甲醛、尿素等指标,以及铊等金属和非金属元素。公司承担了国家科技部“重大科学仪器设备开发”重点专项1项、上海市高新技术成果转化项目6项、上海市中小企业科技创新基金项目1项、上海市科学技术委员会科研计划项目1项、上海张江国家自主创新示范区专项发展资金项目1项;牵头起草、参与编制了国家标准和行业标准16项。安杰科技以气相分子吸收光谱法为核心技术,在水质分析检测领域率先应用该仪器,实现了“零”的突破。通过近20年的自主研发创新,成为了实验室分析检测仪器生产智造领域方向和标准的领跑者。 安杰科技,让分析检测更简单!
  • 上海睿析科学仪器有限公司是一家集高纯气体发生器、色谱仪、顶空进样器、热解析仪、超纯水机等实验室仪器的研发、生产、销售于一体的高科技企业。公司先后申请通过了20余项国家专利及相关软著专利,曾获得国家高新技术企业,上海市科技型中小企业、上海市氢科学技术研究会理事单位、全国卫生产业企业管理协会氢医学健康产业分会理事单位等荣誉称号。 公司高纯气体发生器事业部,先后开发研制了高纯氢气发生器、氮气发生器、无油静音空气发生器、氮氢空一体机等一批业内工艺成熟的产品,利用固体聚合物电解质(Solid polymer electrolyte)SPE阳离子(质子)交换膜,进行纯水电解氢气发生器的研发、生产和销售。利用变压吸附(Pressure Swing Adsorption,PSA)气体分离技术陆续开发出多款高纯度大气量氮气发生器,适用于国内外各种氮吹仪、液质联用;广泛用于石油、化工、煤炭、医 药、食品、饮料酒、环保、室内检测、卫生、检疫、电力、公安、高校等实验室分析检测部门。 公司还研发了多款超纯水机,是采用预处理、反渗透技术、超纯化处理以及后级处理等方法,将水中的导电介质几乎完全去除,又将水中不离解的胶体物质、气体及有机物均去除至很低程度的水处理设备。 公司研发的AHS-50 型全自动顶空进样装置是具有全自动化设计、触摸大屏显示、造型美观大方、操作更为方便的新一代全自动顶空进样器。可以自动运行50个样品,无需人员值守,开机自检,故障报警和提示,采用自主专利技术自动定位、校准样品盘,防止错位造成的卡瓶。 创新、诚信、务实、高效是上海睿析科学仪器有限公司的企业精神,公司承诺:我们不接受不良产品,不制造不良产品,不流出不良产品,愿与社会各界朋友携手共创美好明天。
    留言咨询

全自动电解质仪相关的仪器

  • 全自动生化分析系统 3500,在传统的生化分析仪上,加入了更多的模块,首次将5大功能集成到一台机器,可以做常规的生化,也可以做糖化血红蛋白,血凝,电解质,还可以做特定蛋白。
    留言咨询
  • HC-9886全自动电解质分析仪HC-9886全自动电解质分析仪的性能特点:1. 仪器采用ARM快速高性能处理器,伺服程序网络下载功能,保证仪器程序及时得到更新。 2. 去蛋白液定时自动处理功能,去除管道蛋白吸附,不堵塞,电极性能更稳定、测试更准确。 3. 侧驱自动复位式进样系统,操作方便,无污染,更环保。 4. 仪器设有液体检测程序,能自动识别并提示进样过程中的错误,确保了进样及测量的可控、可靠。 5. 电极采用进口膜制作,性能稳定,使用寿命长。 6. 自动电位跟踪技术,自动两点定标,斜率、截距双参数校正,保证测试结果的准确。 7. 光电定位液体分配阀,具有集成度高、简化流路及便于维护保养的优点。 8. 采用进口压力传感器测试TCO2,传感器性能稳定,获得国家专利保护。 9. 智能化免维护设计:定标,进样,测量,冲洗,显示并打印报告,仪器故障诊断与排除,全程自动化,无需人工清洗与维护。 10. 能自动进行质控数据处理,自动统计并打印均值、SD及CV值。 11. 自动进样器是可选配件,对于每天样本多,需要批量处理时,可提高工作效率。 12. 可选配数据通讯软件,实现数据库管理,可长期存储,随时查询。 13. 超大7寸彩色带触控显示屏,双输入响应,用户交互式UI设计。 14. 采用USB和RS232双通讯接口设计,可实现远程控制,双向数据传输。15. 技术参数 HC-9886全自动电解质分析仪测量项目测量范围测量精度分辨率 钾0.40—15.00mmol/LC.V≤1.0%0.01mmol/L钠30.0—200.0 mmol/LC.V.≤1.0%0.1mmol/L氯30.0—200.0 mmol/LC.V.≤1.0%0.1mmol/L标准离子钙0.10—5.00 mmol/LC.V.≤1.0%0.01mmol/L总钙计算值//PH4.00—9.00C.V.≤1.0%0.01总二氧化碳4.0—100.0 mmol/LC.V. ≤3.0%0.1mmol/L阴离子隙计算值//16. 其他参数 HC-9886全自动电解质分析仪 型号参数HC-9886分析速度(S)25-90样本量(ul)60-220 打印机内置低噪音热敏高速中文打印机外部接口USB环境温度(℃)10―35相对湿度<85%电压(v)~220V±10%频率(Hz)50功率(W)60
    留言咨询
  • 1、可靠的长寿命电极   采用进口材料制造的无引线组装式离子选择性电极,制造商保用壹年,奥迪康独家采用超量氯化银内电极,彻底杜绝了早期失效的隐患。所有电极采用采用独特的全密封技术,使电极的渗漏(特别是极易发生渗漏的参考电极)完全消失,大大提高了电极的稳定性及寿命,使电极维护工作完全实现用仪器自动完成,这些技术是使奥迪康电解质能长期稳定工作的重要保证,同时使电极寿命大为延长,我们用户的电极平均寿命已达2年以上,最长的达到5年以上。 2、全自动智能化运行   AC9000自动系列电解质分析仪采用了最新的嵌入式处理器,仪器所有的测试、校准、电极状态监测等全部由程序控制。仪器配置了各种智能化的监测传感器,可以准确检测样品、气泡、废液溢出报警、标准液耗尽报警,并增加了样品位置指示灯及标准液位置指示灯使用户使用更为简单方便,使测试结果更准确。   AC9802,AC9102样品泵校准、样品气泡检测、废液溢出报警、标准液位报警以上四个功能选配。 3、先进独特的流路设计   AC9000自动系列电解质分析仪采用了奥迪康独特的流路设计,不采用旋转型流路分配阀而使用全电磁阀控制流路,而大量标准化制造的电磁阀的可靠性远高于各仪器厂家的旋转型分配阀,使仪器的可靠性大为提高。同时采用了反冲及波浪冲洗技术,使准确性明显提高,交叉互染率进一步降低。 4、确保准确的三大措施  1)要保证准确性必须首先保证稳定性,AC9000自动系列的全部电极均被安置在全铝合金电极屏蔽盒中,并且特别加装了样品接地电极,使电极组工作稳定可靠,即使在有干扰的情况下也能准确测量。  2)采用独特的流路设计,特别使样本路径达到最短、最简单,而且全部采用微孔管径,并采用防气泡检测,管路全程冲洗,采用自动校准与手动校准相结合的方法,并在分析方法上采用智能化终点判断程序以保证分析测量的每一个数据的准确性。  3)采用国际通用的校准方法,系统有斜度与截距进行校正,并采用专用的质控分析程序,可对批间和日间质控测量后给出包含均值(X)。标准差(SD)变异系数(CV)的质控报告,既能保质临床样本及室内质控的测试水平,又能适应不同厂家的质控品,确保室间质控水平的提高。 5、友好的界面及全面的数据管理   AC9000自动系列电解质分析仪采用LCD液晶显示器,全中文界面,采用YES/NO数字键组合这种最优化的操作方式,分级菜单控制,操作简单,每位操作者使用手册在中文引导下即可快速掌握使用方法。   AC9000自动系列电解质分析仪采用内置打印机,可以方便地打印全部样本数据、计算数据、参考值范围,仪器的内存可以存储10000个以上的测量数据,仪器有USB通迅接口,可以和外部计算机及管理软件通讯,亦可方便地手动查询数据。 技术参数 型 号AC9802自动电解质分析仪 测量项目K+、Na+、Cl-、Ca2+、pH 计算项目nCa、TCa 测量参数测量项目测量范围(mmol/L)分辨率(mmol/L)重复性误差 钾(K+)0.50~15.000.01CV≤1.0% 钠(Na+)30.0~200.00.1CV≤1.0% 氯(Cl-)30.0~200.00.1CV≤1.0% 钙(Ca2+)0.10~5.000.01CV≤1.0% pH(H+)4.0~9.00.01CV≤1.0% 测量时间25秒,进样、测量、冲洗、打印全程时间40秒 样本量100μL(手动定位60μL) 数据储存10000个,存满后可自动刷新 通讯接口232通讯接口/USB接口 显示240×64LCD液晶显示器(有背光) 打印机内置58mm热敏打印机 电源AC220V±22V 50Hz 25W 尺寸348mm×362mm×205mm 重量5.5Kg 测量方法采用ISE离子选择性电极法 测量环境温度5℃~40℃、相对湿度≤85%
    留言咨询

全自动电解质仪相关的资讯

  • 北京松上全自动微小型生化分析仪亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,北京松上技术有限公司的全自动微小型生化分析仪亮相国家“十一五”重大科技成就展。 全自动微小型生化分析仪   针对乡镇和社区等基层医疗机构对临床生化分析仪的需求,北京松上技术有限公司采用微纳技术、光谱技术和自动化技术等,研制出基于微型光谱仪连续光谱分析的多功能、多参数、智能化、集成化的全自动微小型生化分析仪,具有低成本、高性能、结构紧凑、操作简便等特点。   关于北京松上技术有限公司:   北京松上技术有限公司成立于1990年,位于北京经济技术开发区,多年来专业致力于临床检验仪器的设计开发和制造,2005年度销售额3000余万元。松上公司以开发适合国内外现代临检仪器为目标,自主创新开发研制了拥有自主知识产权的一系列产品,包括A-6型半自动生化分析仪、S-2000电解质分析仪、公爵2000血凝仪、M-4250尿十项分析仪、A7(A7S)全自动生化分析仪、A8全自动生化分析仪等产品、NX-Ⅲ型男性功能动态诊断仪。
  • 346万!鸡西市传染病医院全自动生化分析仪等采购项目
    项目编号:[230301]JXCG[GK]20220019项目名称:全自动生化分析仪等医疗设备采购采购方式:公开招标预算金额:3,468,400.00元采购需求:合同包1(全自动生化分析仪等医疗设备采购):合同包预算金额:3,468,400.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1临床检验设备全自动生化分析仪1(台)详见采购文件980,000.00-1-2临床检验设备糖化血红蛋白仪1(台)详见采购文件20,000.00-1-3临床检验设备电解质分析仪1(台)详见采购文件50,000.00-1-4临床检验设备全自动五分类血液分析仪1(台)详见采购文件360,000.00-1-5临床检验设备全自动凝血分析仪1(台)详见采购文件320,000.00-1-6临床检验设备全自动尿液分析仪1(台)详见采购文件200,000.00-1-7临床检验设备全自动粪便分析仪1(台)详见采购文件220,000.00-1-8临床检验设备血沉仪1(台)详见采购文件30,000.00-1-9临床检验设备化学发光分析仪1(台)详见采购文件550,000.00-1-10临床检验设备酶标仪1(台)详见采购文件49,000.00-1-11临床检验设备水浴箱2(台)详见采购文件3,500.00-1-12临床检验设备核酸提取仪1(台)详见采购文件80,000.00-1-13临床检验设备核酸扩增仪1(台)详见采购文件115,000.00-1-14临床检验设备显微镜2(台)详见采购文件37,600.00-1-15临床检验设备生物安全柜3(台)详见采购文件70,500.00-1-16临床检验设备药品冷藏柜(单开门)5(台)详见采购文件25,000.00-1-17临床检验设备药品冷藏柜(双开门)3(台)详见采购文件54,000.00-1-18临床检验设备高压蒸汽灭菌锅2(台)详见采购文件70,000.00-1-19临床检验设备纯水机3(台)详见采购文件72,000.00-1-20临床检验设备洁净工作台1(个)详见采购文件10,500.00-1-21临床检验设备离心机2(台)详见采购文件17,200.00-1-22临床检验设备离心机3(台)详见采购文件54,000.00-1-23临床检验设备8联管离心机3(台)详见采购文件3,600.00-1-24临床检验设备离心机1(台)详见采购文件15,300.00-1-25临床检验设备离心机1(台)详见采购文件9,000.00-1-26临床检验设备恒温培养箱2(台)详见采购文件11,000.00-1-27临床检验设备结核菌荧光显微镜1(台)详见采购文件30,000.00-1-28临床检验设备旋涡振荡器1(台)详见采购文件1,300.00-1-29临床检验设备干式恒温器1(台)详见采购文件3,900.00-1-30临床检验设备红外线灭菌器2(台)详见采购文件6,000.00-本合同包不接受联合体投标合同履行期限:合同签订起一年
  • Nature子刊:原位拉曼光谱用于电解质演化捕捉
    在目前的电池研究工作中迫切需要改进的分析工具来识别锂离子电池的退化和失效机制。然而,了解并最终避免这些有害机制需要持续跟踪不同电池组件中的复杂电化学过程。为了达到这样的目的,剑桥大学Tijmen G. Euser教授团队报导了一种原位光谱方法,该方法能够在具有石墨阳极和LiNi0.8Mn0.1Co0.1O2阴极的锂离子电池的电化学循环过程中监测碳酸盐基液体电解质的化学性质。通过在实验室级别的软包电池内嵌入空心光纤探针,我们通过无背景拉曼光谱证明了液体电解质物质的演化。光谱测量的分析揭示了碳酸盐溶剂和电解质添加剂的比例随电池电压的变化,并在跟踪锂离子溶剂化动力学方面表现出极大的潜力。原位电解质监测可以促进研究复杂的化学途径和实际电池中化学物质之间的串扰现象。一个关键的例子是在没有初始碳酸亚乙烯酯(VC)的样品中出现了亚乙烯基拉曼谱带,这表明虽然亚乙烯基物质在阳极被消耗,但它们也在循环过程中通过碳酸亚乙酯(EC)氧化产生。本工作所提出的操作方法有助于更好地理解当前锂离子电池的局限性,并为研究不同电化学储能系统中的降解机制拓展了前景。原位拉曼如何表征电解质演化过程测试装置:图1. 具有空心光纤耦合拉曼分析设备的锂离子软包电池在拉曼装置中(图 1a),10-15 厘米长的空芯光纤的近端被封装在一个定制的微流体单元中,允许光线和流体进入光纤(图 1b, c)。纤维的远端安装并密封在软包电池的电极之间。使用两层单层PE聚合物隔膜(MTI)来避免纤维和电极之间的直接接触(图1d)。简化的空芯光纤(图 1c)经过优化,可在充满电解质时引导拉曼泵浦光和信号波长范围内的光。光纤的 36 µm 宽纤芯区域既可用作波导通道,又可用作微流体通道,其内部体积低至 30 nL/cm。自动注射泵用于根据需要从软包电池中取样和注入电解液。使用底部填充的 10x 0.3 NA 显微镜物镜将拉曼泵浦激光(785 nm 连续波,图1a)发射到填充电解质的光纤芯中。拉曼信号沿光纤的长度产生,一部分以反向传播的光纤模式被捕获,并被引导回邻近的光纤端面。产生的拉曼光的 CCD 图像(图 1c 中的右侧图像)显示大部分拉曼光是在中空光纤芯内产生和引导的。每次光学测量后,电解质样品被注入回软包电池中。由于需要避免任何电池扰动,需要 22 分钟的单次采样间隔(在 C/10 C 速率下大约是完全放电时间的 4%)。定期重复采样以达到在较长时间内监测电解质的目的(典型的充电-放电形成周期需要超过 10 小时)。测试结果分析:图2. 空心光纤中的在线拉曼测量。(a) 从光纤端面发出的拉曼光(左,图像比例尺为 50 µm)和光谱色散图像(右) (b) 在连续样品渗透期间跟踪的拉曼光谱。红色虚线表示泵何时开启;t1-a表示样品流体到达纤芯的时间。 白色虚线表示泵何时关闭,然后是样品注射器的开关。水平实线表示获取 c 中所示光谱的时间 (c) 得到不同溶剂混合物的光谱。与电池化学相关的突出显示的拉曼谱带是 893 cm-1处的碳酸亚乙酯呼吸模式(深红色虚线)、740 cm-1处的 PF6 阴离子模式(绿色虚线)和以 1628 cm-1为中心的碳酸亚乙烯酯 -HC = CH- 谱带(不存在于这些溶液和光谱中)。阴影区域表示与锂溶剂化机制相关的 1700-1850 cm-1处的 EC 和 EMC 带, 插图 i 展示了由 IPA 的拉曼强度(819 cm-1)监测的样品交换时间和 EMC 骨架(~900 cm-1)模式(c中的箭头)。插图 ii 显示了 1700-1850 cm-1处的 EC 和 EMC 波段。纤维芯内的动态交换和拉曼光谱首先在没有软包电池的情况下针对一系列电解质成分和典型溶剂进行了非原位测试(图 2)。光谱仪 CCD 记录近端面图像和光谱分散的光纤图像(图 2a)。在整个实验过程中,以每个光谱 20 秒的积分时间连续记录光谱。为了能够同时监测多个拉曼波段,我们在光谱范围、分辨率和信号强度之间进行了最佳权衡(图 2b)。最初,纤维填充有异丙醇 (IPA),其拉曼光谱如图 2b-c 所示。更换注射器以交换样品,泵流速设置为 5 µL/min (0.083 µL/s) 以渗入纤维芯。一旦拉曼信号稳定,注射泵就会关闭。 样品交换后系统的流体稳定时间目前约为 400 秒(对应于约 33 µL 的流量,图 2c)。此处依次渗透到纤维中的样品是 IPA、碳酸甲乙酯 (EMC)、碳酸亚乙酯 (EC) 和 EMC 的 3:7 混合物,以及商用电池级液体电解质溶液 LP57(即 EC 中的 1.0 M LiPF:EMC 3:7 v/v)。对于每个样品,在 410 和 2182 cm-1 之间获取相对宽带的拉曼光谱(图 2c)。拉曼光谱清晰显示了各种电解质成分特征。 首先,在 LP57 电解质中可以清楚地看到 PF6- 阴离子拉曼谱带在 740 cm-1 处的光谱位置。PF6- 峰在 ~720 cm-1 处与 EC 骨架模式部分重叠。检测 PF6- 很有意义,因为它的分解是基于一种发生在 NMC811 等富镍正极的表面的降解机制。此外,PF6- 很容易与电解质分解反应中产生的水发生反应。 其次,893 cm-1 处的 EC 呼吸模式与分子的环结构完整性有关。最后,1700-1850 cm-1 之间的阴影(宽紫色)带对应于 EMC 和 EC/VC 中羰基(C = O)键的拉曼峰,其光谱位置随锂离子溶剂化动力学而变化。此外,还标记了(弱)光谱带在 1628 cm-1(灰色虚线)处的预期位置,这是由于亚乙烯基 –HC = CH 添加剂 VC 的振动。因此,通过在装置中使用低密度衍射光栅,我们可以同时监测许多重要的电解质成分。图3. 循环过程中的电池电解质拉曼光谱演变。(a) 在 LiNi0.8Co0.1Mn0.1O2(NMC811) - 石墨锂离子软包电池的形成周期期间操作拉曼光谱,其电解质包含 LP57 + 2 wt.% VC。将电池恒流充电至 4.3 V,恒电位保持在 4.3 V,然后放电 (b) 拉曼光谱演化显示电池电解质的一系列拉曼模式中空纤维嵌入由 LiNi0.8Co0.1Mn0.1O2 (NMC811) 阴极和石墨阳极组成的软包电池中,以监测其在循环期间电解质的化学变化。每个圆形电极的有效面积为 1.54 cm2(直径 14 mm),并被一层聚合物隔膜覆盖。HC 纤维放置在两个分隔层之间,以保护电极表面免受纤维的机械损伤(图 1d)。将电池密封并填充 100 µL LP57,并添加 2 wt.% VC。尽管 HC 纤维在两个隔膜之间产生了微小的间距,但总电极表面与电解质的体积比 (~15 cm2/mL) 仍然非常接近于研究环境中常规组装的软包电池。将电池恒流充电至 4.3 V,在 4.3 V 下恒电位保持 1 小时,最后以 C/10 (18.5 mA g-1NMC) 的循环速率放电至 3.5 V。为确保在纤维芯中进行完全的样品交换,每 22 分钟从电池中提取 24 µL 体积的微量样品(大约是内部纤维体积的 50 倍),通过纤维内拉曼光谱进行分析,然后重新注入软包电池。我们从EC分子从正极到负极的穿过隔膜的扩散时间(td)来监测电极过程。假设聚合物隔膜的曲折度为 2.5,液体扩散系数为 10-6 cm2/s,这导致分子从一个电极到另一个电极的扩散时间为 td = 445 s(~7 分钟)。与之前的实验一样,我们使用宽光谱窗口(640-2340 cm-1,粗光栅)同时跟踪一系列化学物质。在第一个电化学循环期间,拉曼光谱的演变被测量为电池电压(红色曲线)的函数,在此期间预计会由于 EEI 形成而发生许多化学变化(图 3a)。在 PF6-、EC 呼吸模式和 EMC 和 EC/VC 中的羰基 (C = O) 键的谱线中观察到清晰的特征,如图 2b 所示。此外,在~1628 cm-1 处检测到(弱)亚乙烯基-HC = CH-拉曼谱带。在整个循环过程中收集完整的拉曼光谱可以对电解质盐和溶剂及其相互作用进行详细分析。总结:循环过程中碳酸酯溶剂的C=O拉伸模式相关的拉曼光谱变化,以及亚乙烯基-(C=C)双键浓度的变化等信号都可以由原位拉曼装置检测得到。对这些信号的获取和分析有助于研究电解质中的溶剂和盐成分在电池循环中的变化,揭示电池性能降解的机理,对开发长寿命的电池系统具有非常重要的意义。参考文献:Ermanno Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 2022.DOI: 10.1038/s41467-022-29330-4

全自动电解质仪相关的方案

全自动电解质仪相关的资料

全自动电解质仪相关的试剂

全自动电解质仪相关的论坛

  • 求购铝电解质粉末全自动磨样机XRD

    我公司生产电解铝,需要对电解质进行粉碎,人工操作工作量大,需要求购一台全自动磨样机,麻烦大家推荐一下,谢谢!生产厂家也可以直接联系13568255169.

  • 【转帖】目前临床电解质测量方法中直接法要比间接法优越

    【转帖】目前临床电解质测量方法中直接法要比间接法优越

    一、目前大部分全自动生化分析仪测量电解质所用间接法与直接法实有极大差别,且误差较大。全自动生化分析仪目前在测量血液常规项目时,是以比色法为主,主要原理是运用光谱技术中不同原子吸光不同而测量的,那么对于ISE模块的功能实现,主要有两种方法,一是比色法,二是间接法。比色法因其测量精度,准确度等与所要求的相差太大,此法在医学的早期实验室检查中使用,已经是属于淘汰的用法。间接法,其方法原理与目前市场上存在的其它仪器所用直接法相似,但ACA的脆弱性所致,为防仪器内部被堵塞,对样品的要求极为严格,需经常规分离再经稀释后方可测量,而一般的生化ISE模块对样品的稀释倍数又大都在30倍左右,在如此大的稀释倍数下,对管路确是有益,但从数据统计处理角度来看,这样的测量,将会把误差同比例放大,那么这样测到的结果,准确度和精确度不能达到要求。另外,ACA所采用的间接法与目前其它仪器所采用的直接法的差异,在此引用一本检验行业的权威之作《临床生化检验》一书对此的描述:间接电位法:样品与标准液要用指定离子强度与pH的稀释液作定量稀释,再行测定,此时样品和标准液的pH和离子强度趋向一致,所测离子活度等于离子浓度,间接法所测结果与火焰法相似。在高脂血症或高蛋白血症的血清样品中,由于单位体积血清中水量明显减少,若用定量样品作稀释后,再用间接法测定,会得到假性低血钠(或钾),但直接法能真实地反映血清中离子的活度,据报告:直接法比间接法约高2~4%。 二、全自动生化分析仪的前期准备工作较多,且带ISE部分的全自动生化分析仪价格要贵5到8万不等。对于中小型医院来讲,实用性不高,有一定资源浪费。通过对ACA的了解,也发现ACA对使用者的解放度不够,想人类自从走上电子电器时代,辅助电子产品的宗旨之一就是解放人的时间,而ACA仪器,因庞大而复杂的系统,在检测操作前有预热、校正、模块检测、纯水检测、系统试剂检测等诸多繁杂工作要准备,此为常态流程,但若仪器再出故障,工作量势必会大幅增加。尽管为全自动工作仪器,但却不利于检验科室工作的顺利进行,以大型三甲医院为例,每天的病患标本多则上百,若仅在ACA上花费如些之多的时间,工作的开展将使效率大大降低。从费用方面讲,进口设备因为技术垄断,在国内的市场上尚无有力竞争对手的情况下,有一定的定价权,更有市场垄断之疑,售价少则十多万,多则几十万,而对于带ISE模块的ACA仪器则又在同等基础上贵出约5到8万,且大多只能检测三项指标K、Na、Cl,而同等产品,将不同项目分离单测,国内品牌售价则要低较多,如国内品牌迈瑞。在试剂消耗上,因ACA大都是整套配套试剂,所以用于电解质的测定上,相应的成本就会上升,对于中小型医院,因各种原因,只能对常见疾病做治疗,可能真正所需只是电解质的检验报告,如此,为测定少数项目而使用ACA,对医院来讲,设备的利用率不高,造成一定的资源浪费。 三、间接法与直接法相比,间接法因本身的系统误差要大于直接法,所以总误差要大。从准确度和精确度来看,间接法因稀释造成误差放大,所以不如直接法。全自动生化分析仪测量电解质所用间接法与直接法的结果差异,我想可以用误差产生的概念来说明。首先说明几个概念,第一,真值:客观存在的真实值;第二,误差:测量结果与被测量真值之差。间接法与直接法测量结果都有误差,但却有本质的不同。误差产生的原因有两种,叫系统误差和偶然误差。对于间接法和直接法,因测量,计算,得出结果等步骤都是由仪器完成,偶然误差可以近似认为一致,但系统误差却不容忽视。间接法因测量方法所限,故其系统误差要大于直接法,正如早期临床检验中所用的火焰法,因本身方法之限,所造成的系统误差较大,系统误差是不可避免的,所以最终结果在特殊血清中会有假性低血钠(或钾)出现。至于准确度和精密度的关系,我们用三个图来标示,最为清楚: http://ng1.17img.cn/bbsfiles/images/2010/10/201010141509_251441_2178037_3.jpg [font=宋

  • AVL986-S电解质分析仪常见故障的处理

    论文中文名:AVL986-S电解质分析仪常见故障的处理 作者中文名 李效银,陆叙林 期刊中文名 医疗装备 出版时间 2004 期次 10 关键词 分类号 文献标识码 文章编号 论文英文名 Abstract Keyword [摘要] 1 定标失败定标失败常见有三种情况 :漂移 (Calibra tiondrift) 定标值超出范围 (Calibrationoutofrange或Slopeoutofrange) 定标不稳定 (Calibrationunstable或Slopeunstable)。(1)漂移 :AVL986 -S对泵管要求极为严格 ,这也是本仪器的不足 ,造成结果漂移的主要原因是两个进样管不对称 ,按照公司的方法是调整进样螺丝道道对称效果 ,但不能解决根本问题。根除的方法是采用贝科曼全自动生化分析仪进样方法改进 ,在样品进到反应池之前各加一个预进样池 ,我们在使用中获得了满意的效果。同时 ,定标失败也受外界干扰或电极不稳定所致 ,新电极或新换电极内... [作者简介] [作者单位] 山东潍坊第89医院,山东潍坊第89医院 山东潍坊261021 ,山东潍坊261021 [参考文献]

全自动电解质仪相关的耗材

  • 宽带电解质反射镜
    宽带电解质反射镜:高宽带、高反射率,应用于低功率到高功率激光和固定或可变的 入射角。宽带电解质反射镜有两款不同类型的产品:MPQ 和TLM2。其中,MPQ覆盖主流的紫外和可见光波段的激光器波长,具有极高的反射率。TLM2:可调谐。能分别在450~2100nm波段实现连续激光和在780~1030nm实现短脉冲激光的高反射率。美国CVI laser optics 设计和生产紫外到近红外波段的高性能光学器件,主要应用在激光的光束调节和传输方面,在业内有很高的知名度。 美国CVI laser optics主要生产包括反射镜、球面镜,平面镜,偏振片,棱镜和波片。 还提供一系列用于超快激光应用的低色散和色散补偿光学元件。
  • 康辉 酸性氧化电位水生成器专用电解质
    康辉牌电解质的特点: 1、康辉牌电解质经过特殊加工而成,主要成分为NaCl,纯度≥99.5%,水不溶物≤0.02%符合GB28234-2011中5.2.2电解用氯化钠应符合GB/T 1266中化学纯级的要求,且不含任何添加剂。2、康辉牌电解质为白色粉末状,无坚硬物、赃物及沉淀物、无任何气味,使用后无任何残留物。3、专用电解质性能优于其它NaCL,溶解充分、速度快,能使电解效率提高,残留氯减少,腐蚀性降低,电解槽寿命延长,高效能保护设备,使您的水质更加干净、清澈,长期保持给水管道通畅、无异物堵塞。
  • 瑞士万通 电解质 NH NO 1 mol(50 mL) | 6.2327.000
    电解质 NH NO 1 mol(50 mL)Electrolyte NH4NO3 1 mol (50 mL)订货号: 6.2327.000电解液 c(NH NO ) = 1 mol/L(用于复合 Ca-ISE 6.0510.100)技术参数容量(mL)50
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制