当前位置: 仪器信息网 > 行业主题 > >

移动噪声监测仪

仪器信息网移动噪声监测仪专题为您提供2024年最新移动噪声监测仪价格报价、厂家品牌的相关信息, 包括移动噪声监测仪参数、型号等,不管是国产,还是进口品牌的移动噪声监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合移动噪声监测仪相关的耗材配件、试剂标物,还有移动噪声监测仪相关的最新资讯、资料,以及移动噪声监测仪相关的解决方案。

移动噪声监测仪相关的资讯

  • Bruel & Kjaer发布适用于移动设备的新噪声监测App
    Bruel & Kjaer于近期宣布发布Noise Sentinel Stakeholder应用软件(App),它为社区提供了使用移动设备来获得环境数据的方法。Noise Sentinel是一个基于网络的系统,它适用于城市和工业区,可提供连续的、无人值守的噪声、振动、灰尘和空气质量的监测。这个服务能评估环境影响;提供实时数据使得对问题或查询有快速的反应;并且能自动生成符合相关法规的报告。Noise Sentinel Stakeholder应用软件允许公众查看任何时间任何地点的实时和历史噪声监控数据。这个应用软件适用于iOS和Windows移动设备,相关用户不论从个人手提电脑进入Noise Sentinel 还是进入Noise Sentinel - On Demand,都可以享受相同的功能。应用软件的主要好处包括:1、通过透明的平台能建立信任,使用移动的设备获取信息2、增加对某站点的社区实际影响的了解3、共享容易理解的数据来改善社区关系4、可随时查看历史信息为数据提供见解“有效的沟通对于维持业务操作来说是至关重要的。有了这个新的应用软件,Noise Sentinel客户可以很容易地与公众或者监管机构分享他们的环境数据,”Noise Sentinel产品经理Doug Manvell说,“我们不断努力为我们的客户提供更好的用户体验,当然也包括给我们的客户正面的体验。”Android版本的应用软件目前正在开发中。关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的网站:www.bksv.cn。Bruel & Kjaer是总部位于英国的思百吉集团(www.spectris.com)旗下的子公司。思百吉集团2013年销售额达12亿英镑,集团的4个业务板块在全球共有大约7,500名员工。媒体联系朱立市场传播经理Bruel & Kjaer 中国电话:+86 21 61133678邮箱:julie.zhu@bksv.com网站:www.bksv.cn
  • 成都科技力量在“疫”线!家用核酸检测仪、可移动式核酸检测车......
    家用核酸检测仪、可移动式核酸检测车、AI智能空气健康机器人......近日,成都迎战“奥密克戎”全力战疫,在隔离酒店、封控小区、核酸检测现场等疫情防控的“一线“,随处可见成都科技的力量。  40分钟内出结果 在家就能做的核酸检测仪即将面市  日前,四川大学华西医院院长李为民表示,华西医院从国外引进的专家──胡文闯教授带领的团队,通过多学科交叉合作,现已研发出了一款便携式、快捷的核酸检测试剂仪,它能够让市民自己在家就可以进行核酸检测。  “它像一个打火机一样大小,检测后40分钟之内就能够出结果。”李为民说,今后我们就不用到社区排长队,可以自己在家里像测尿妊娠试纸一样先查一查,如果是阳性再到医院做进一步筛查、证实。这样不仅能使广大老百姓更方便、快捷地做核酸检测,同时更有利于被感染者早期隔离、早期治疗。  更值得一提的是,这种新型核酸检测试剂仪是一次性的,费用不高,广大群众都能承受,但具体费用标准还要经过国家审批。这款可居家测试的核酸检测试剂仪预计将于今年上半年正式面市。  可移动的核酸检测车 每日最高检测量达40000+人份  可移动、高通量、严标准… … 由成都格力新晖医疗装备有限公司和成都格力钛新能源共同研发制造的移动P2+核酸检测车成为防疫抗疫一线的科技“好助手”。已整装待命,助力疫情防控。  据相关负责人介绍,移动P2+核酸检测车是格力为抗击疫情而开发的重点产品,自主研制生产填补了国内空白。车辆内部由试剂准备区、样本处理区和扩增分析区三大主要功能区组成,此外还有配套的三个缓冲区和一个灭菌区,可谓“麻雀虽小,五脏俱全”。  更值得一提的是,车辆采用了高通量样本制备,可实现快速又安全的检测,能满足大批量样本处理需求,每日检测量(10/1混采)至少可达20000+人份,紧急情况下(10/1混采)最高可达40000+人份。目前,这款移动P2+核酸检测车已经过专家论证及第三方质检机构检测,符合PCR核酸检测实验室和二级生物安全实验室相关标准要求。自2020年以来,已在珠海、长沙、广州、成都、洛阳、香港等20余个城市投入使用,服务疫情防控一线。  目前,四川天府新区,成都新津区、双流区均通过该核酸检测车提升移动检测能力。  无人机“起飞”助力疫情防控决策“更科学”  2月21日天府软件园,2月22日中德英伦城邦、南新逸苑,2月23日融城理想、复地金融岛、新园紫郡… … 连日来,在成都高新多个核酸检测点位,无人机“上场”为疫情防控提供有效决策辅助。  无人机具有机动灵活、效率高、视角广的特点,在应急情况下,可以随时起飞,高效巡查、全方位无死角地观察目标区域的情况,结合通讯手段,巡查画面可以实时、多路回传至疫情防控指挥中心部署的无人航空社会治理平台。毫秒级的低延迟传输技术、全域厘米级精度的实景三维地图… … 在技术支撑下,防控指挥部可及时、动态了解情况,灵活作出防控部署,有效降低了人工巡查带来的接触风险,且提高了效率。此外,无人机还可以执行空中喷洒消毒、社区防疫宣传等任务。  据了解,成都高新无人机政务飞行队是成都高新区网络理政办和携恩科技共同打造的全国首支无人机政务飞行队。自2月20日起,该无人机政务飞行队,保持24小时值守状态,每日派出三组人员,持续在区内多个核酸点位开展无人机疫情防控巡查工作。截至28日,已累计巡查任务点位70余个。  “萌新”上岗 AI智能空气健康机器人实现无死角消杀  在成都高新区石羊街道,天府世家封控小区内近日迎来了科技抗疫“小战将”—AI智能空气健康机器人。  28日,工作人员将智能空气健康机器人放置于将消毒的单元门厅,暂时停运电梯,并将门厅大门、地下室楼道门关闭,形成封闭无人空间,同时另一名工作人员通过手机APP远程操作机器人开始消杀运行,30分钟即完成该区域消毒净化工作,并形成消杀数据合格报告。  据了解,此次将有两台智能空气健康机器人参与到天府世家小区封控区域抗疫一线工作中。成都震道科技有限公司相关负责人介绍,智能空气健康机器人首创物联网防疫机器人人工远程“零接触”操控模式,消毒过程及结果可实时提供手机版数字消毒报告,采用臭氧浸漫式充溢消杀方式,可最快30分钟完成99平米密闭空间消杀病毒、降解甲醛、祛除异味等多种空气安全问题,进行空气消毒的同时净化PM2.5,实现集360度无死角、无残留消毒净化二合一,符合《国家臭氧消毒标准》,中国科学院实验结果对新冠病毒抑制率可达98.2%、对流感病毒抑制率可达99.9%。  石羊街道天府世家小区管理服务工作专班负责人表示,下一步,街道将联合各社区,持续深化巧用智能空气健康机器人等数字科技手段,实现有效集中可视化管理,准确高效落实指定区域消杀情况和居民隔离人员远程管理服务。
  • 我国首台可移动式中子成像检测仪问世 弥补无损检测不足
    p  记者7月17日从中国工程物理研究院核物理与化学研究所获悉,我国首台可移动式中子成像检测仪日前由该所研制成功。这种能够在集装箱货车中运输的中子检测设备,可实现待检对象的现场或在线检测,未来在我国航空航天领域重大装备制造中将发挥重要作用。/pp  可用于裂痕探测、材料性能分析等领域的中子成像检测,由于弥补了X射线等其他无损检测方式的不足,正广泛用于重大装备制造领域。但由于传统的中子成像检测设备自身体积较大,难以对大型、超大型装备进行现场检测。/pp  在国家重大科学仪器设备开发专项支持下,中物院核物理与化学研究所龚建研究员率领团队研发的可移动式中子成像检测仪,由小型加速器中子源、准直屏蔽系统、样品承载系统、成像系统、控制系统、数据采集处理系统及氚净化处理系统等组成。设备长6米,占地面积20平方米,仅一个房间大小 总重3.5吨,可以装在一到两辆集装箱货车中运输。对核心的小型加速器中子源,研究团队采用整体小型化和集成化设计思路,对离子源、高压电源及加速管等关键部件进行了特殊设计、验证和研制,满足了中子成像检测对加速器中子源小型化和高产额的应用需求。/pp  “该仪器的成功研制,带动了高产额小型加速器设计制造、中子探测技术,及航空发动机空心涡轮叶片、航天火工品的检测技术进步,打破了国外对这种广泛用于核能、航空航天等高端领域特种检测设备的封锁。”研究团队相关负责人表示,目前该设备已在航空发动机空心涡轮叶片残余型芯检测及航天火工品系列产品质量检测中得到了成功应用。/p
  • 我国环境噪声市场潜力巨大 自动监测仪器市场前景可期
    p  近年来,随着人们生活水平的提高,人们对声环境质量状况关注度也越来越高,环境噪声污染已经成为摆在人们面前的一个重要环境问题。/pp  日前,环保部发布了《2017年中国环境噪声污染防治报告》,据报告显示,2016年相关部门共收到环境投诉119.0万件,其中噪声投诉52.2万件,占环境投诉总量的43.9%。环境噪声污染已经严重影响了人们正常的工作、学习和休息。p  经过多年的努力,我国的环境噪声监测已具备了环境噪声常规监测的能力,但仍存诸多问题。/pp  目前,我国现有的环境噪声监测主要包括声环境质量监测和噪声污染源监测。在声环境质量监测中,一般采取城市区域环境网格法进行噪声监测,这种监测方法要求在待监测区域设立100个以上的等边长有效监测网,监测网点设在网格中央,每个点测试10分钟。该监测方法工作量浩大,同时每个测监点的测试值由于采样时间短,随机性强,不能实际反映该监测点及城市的声环境状况,无法完全满足公众对环境噪声认知和关注的需求,也无法满足环境管理的需要。/pp  在噪声污染源监测中,噪声污染源监测不同于大气、水污染的监测,噪声空间分布是不连续的,受建筑物等因素的影响较大。只有采用多抽样法测量,才能较为真实的反映有一个区域的噪声平均污染水平。然而,由于目前的监测仪器都是便携式,需要监测人员到场,如此多的点位,浪费了大量的人力物力。造成大多数噪声监测只停留在简单的数据获取阶段,而无暇进行更深层次的分析和评价,导致我国环境噪声监测水平的滞后。/pp  随着我国对声环境监测的重视以及《环境噪声监测技术规范噪声测量值修正》、《环境噪声监测技术规范结构传播固定设备噪声》等环境保护标准的制定,对噪声监测技术提出了更加规范的操作性,对噪声监测仪器提出了更高的要求。由于我国噪声自动监测仪器的开发研制起步较晚,全国大部分噪声监测站的噪声自动监测仪器普遍存在着技术含量低、功能单一、稳定性和可靠性差等问题,噪声自动监测仪器急需更新换代,建设声环境自动监测系统已是迫在眉睫的现实要求。/pp  建设声环境自动监测系统,从目前人工监测为主向自动化、智能化和网络化为主的监测方向发展 由单一监测向一体化监测发展,监测手段多样化 将声环境的状态利用传感技术、物联网技术等有机结合构成现代化的环境噪声自动监测系统 不断加大技术创新力度提升环境噪声监测技术与监测仪器技术水平和竞争能力,加速仪器国产化进程 加快制定噪声自动监测的相应法规,逐步在一些大中城市建立区域性的声环境自动化监测网络系统。/pp  目前,我国环境噪声相关产业总产值约为132亿元,呈缓慢上涨趋势 专业从事噪声振动控制相关产业的企业约600家,从业人数不到2万人……环境噪声监测行业发展的后劲有待发掘。/pp  在未来,构建一个自动化、网络化的环境噪声自动监测系统,是声环境监测现代化的必然趋势。构建先进的环境监测预警体系和现代化的自动监测系统,是全面推进声环境自动监测站建设的重要一环。因此,声环境自动监测仪器市场作为一个新兴市场,前景十分广阔。/p/p
  • 莱伯泰科携移动实验室产品参加2013现场检测仪器及技术研讨会
    2013年6月19-21日,由《现代科学仪器》主办的《2013年现场检测仪器及技术研讨会》在中国青年政治学院图书馆学术报告厅隆重举行。来自环境、药品、环境、农业已经国防领域的专家对现场检测仪器的现状,发展前景等进行了热烈的讨论。 莱伯泰科公司携其移动实验室产品及解决方案参加了此次会议,并做题为《现场气质联用及其进技术》的报告,与诸位专家共同分享了在仪器硬件抗震,软件简便化以及现场进样方法及技术等方面的理念和产品,得到了广大专家的普遍认可。《2013年现场检测仪器及技术研讨会》现场产品经理马忠强做题为《现场气质联用及其进样技术》的报告Griffin 460可移动气质联用系统
  • 《聚创环保小科普》噪声检测仪可以降低噪声吗?
    大家好,本期《聚创环保小科普》为大家普及噪声的基础知识,很多朋友会问:噪声检测仪可以降低噪声吗?接下来,由小编为您阐述噪声检测仪的功用。我们统称的噪声检测仪有多个分类,在上期文章中有详细给大家说明,有兴趣的朋友可以去看看。城市噪声污染已严重危害人类健康噪声检测仪从字面看,它主要是作为检测使用,是在一定范围的空间或者场所使用的一种对声音来源和大小的测试仪器,本身是不具有降低检测值功能的。但是我们使用了噪声检测仪起从而活得了相关数据,我们就能从根本源头上自主的减少制造噪声,从这个意义上来讲,也是在声源处减弱噪声了。声环境功能区的5类划分 制图:段恒 比如,在工业生产过程中,您发现车间员工抱怨声音过大已经严重影响了生产效率,但又无法精确找到声音的来源,这时您可以使用噪声检测仪,通过多组测量找到来源,正确分析声源的发声机理和特性,区别空气动力性噪声、机械噪声和电磁噪声,以及高频噪声和中、低频噪声,然后确定相应的措施。噪音危害警示牌必须佩戴听觉防护器具 另一种在线实时监测的噪声检测仪,我们在马路上或者工地门口经常能碰到,如图所示,上面会显示噪声:54.6db,db是分贝的意思,是声音高低的一种表示。PM2.5:39ug/m3,以及一些温度湿度风力的表示。这种在线式的仪器是告诉我们,这个场地周边的一些实时的数据,若是数据高了,施工的力度要放缓,甚至说,附近的居民可以直接联系市政的管理人员说家附近很吵,这时市政的管理人员会联系工地停工检查或者直接安装隔音板。在线实时扬尘噪声监测设备 噪声污染对人体健康的危害已经得到多方验证,高频率的噪声会让人烦躁,低频率的噪声会让人抑郁,频率的高低都严重危害这人体的健康。噪声通常是指那些难听的声音,令人厌烦的声音。噪音是杂乱无章的,小编查阅资料得知从环境保护的角度看,凡是能影响人类生活学习工作和休息的声音,凡是在某些场合里”不需要存在的声音“,都统称为噪声。如夜晚的汽车鸣笛,汽车的马达声,人群的嘈杂声以及各种物体碰撞发出的声响,都称之为噪声。听觉效果和声音的强弱对人体的影响 本期聚创环保为您推荐的是杭州爱华产AWA5636声级计,环境噪声的监测,是为了确保人类更好的提供生活质量的重要环节,在各大城市的繁华街道和小区,都已经有专业的在线监测设备矗立街头了。AWA5636声级计是一款便携式噪音检测设备,采用数字化和模块化设计,可根据用户的采集状况和需求进行灵活选配。仪器采用了数字检波技术,具有可靠性高稳定性能好,测量范围宽等优点,能满足民用,工业检测需要,可以广泛应用在工况企业,机关学校等需要对环境噪声测量和控制的场合。 杭州爱华AWA5636声级计以上内容由聚创环保编撰整理,转载及分享请注明出处。下一期《聚创环保小科普》为大家普及油气回收方面的文章哦,满满的干货敬请期待。
  • 《仪器小科普》噪声检测仪哪个品牌好
    聚众人之力,创碧海蓝天!关注聚创环保的新老朋友们,大家好,欢迎阅览本期的《仪器小科普》,今天,小聚跟大家分享得内容是:在声级计行业,杭州爱华,嘉升恒升,国营红声,这三个国产品牌应该如何选型呢?在开篇前先简单问大家几个问题:01:你知道声级计都有哪些分类吗?02:如何选择适合自己的声级计?03:每种声级计的市场定位您了解吗?04:不同价位的声级计都有哪些区别呢? 当您能够将上面的4个问题整理清楚的时候,小编想您一定能够摒弃销售们的推销套路,所谓磨刀不误砍柴工,很多时候,我们都是迷茫中选择了不适合的品牌和型号,等到我们发现时已经过了换货时期,所以看看吧。 众所周知,声级计是一种最基本的噪声检测仪器,它是由传声器、放大器、检波器、指示表多个部件组成;首先它是一种电子仪器,但是又不同于压力表,它的检测原理是模拟了人耳对声波反应速度的时间特性,把生活中的声音信号转换成电子信号,在仪器前端的指示表头将噪声声级显示出来。目前,在声音检测行业中,按照仪器的精密程度,将声级计分为“普通声级计”和“精密声级计”普通声级计。这类声级计对于传声器的要求不高,检测的动态范围和平直频响范围比较比较狭窄,在普通声级计中,是不配置带通滤波器(一种允许特定频段的波通过的设备)的。普通声级计在各行各业均有应用,因其具有良好的可靠性和稳定性,广泛应用在工业制造的车间噪声检测、家电卖场家电噪声检测、公路交通临时噪声检测等多个行业。普通声级计的主要的检测方向是持续声音的检测,无法准确的测量瞬间声音的检测,此类普通声级计市场售价700-2000元左右。另一种精密声级计。从字面意思上,我们就很好的理解这类仪器,精密级声级计的国家标准要求其必须具有检测频响宽(频率响应宽)、灵敏度高、长期稳定性能好,能够在多状况下使用,且能够和各种带通滤波器配套使用,并且能够与数据记录仪、录音机等多种设备相连接,用以输出或保存更多检测信息。精密声级计具有普通声级计所有的优点,它同时具有普通声级计不具有的优势,精密级脉冲声级计可以满足多领域一机检测,应用在各种机器、车辆、船舶、电器等工业噪声测量和环境噪声测量,此类仪器具有倍频程功能(频谱分析)、统计功能、有的还可以检测脉冲噪声,像第三方检测公司,工商执法部门,科学院校多是采购这类声级计。精密级声级计市场售价4000-20000元不等。 下面,小聚整理了杭州爱华,嘉升恒升,国营红声这三个品牌,普通声级计和精密声级计性价比高的两个型号,供朋友们选择!杭州爱华型号 参数市场参考价嘉升恒升型号 参数市场参考价国营红声型号 参数市场参考价以上声级计的型号和参数,就是本期聚创小编给大家整理的,供你采购时参考。 市场上的国产品牌仪器质量参差不齐,消费者需要多掌握一些仪器质量标志知识尤为重要哦,那哪些知识是“声级计”这个产品必备的呢?1.包装说明上是否有CMC/CPA计量认证标志。这一项非常重要哦,我们有的朋友在taobao上采购了一款不知名厂家生产的“分贝仪”,采购价只有不到百元,产品包装上没有任何的认证标志,在使用的过程中发现仪器非常不灵敏,是一款完全不能做计量使用的“玩具”。2.包装仔细,配件证书齐全。作为正规企业生产的高精密检测设备,在包装和运输过程中,不能出现任何的马虎,这有可能影响仪器检测的jing准度,所以合格的声级计仪器,企业一般会配有“仪器专用手提箱/包”箱中配有高密度海绵,可以应多各种工况场合和突发的震荡。3销售商能够提供完善的售前售后及其他增值服务。聚创环保是一家集设计、研发、生产、销售、服务于一体的高新技术企业,同时也是杭州爱华、嘉升恒升、国营红声授权代理商,能够为广大客户提供完善的售前售后及其他增值服务。聚创环保一直以“成为环境保护领域服务商”为企业愿景,以“聚众人之力,创碧海蓝天”为企业使命,不断提高企业综合实力,为客户提供更加优质的产品、更加完善的服务,为实现人类的碧海蓝天不断贡献力量。4.货比三家。采购高精密环保检测仪器设备产品价格不是独一的标准,不要以低价格考量产品的性价比,天下没有掉下的馅饼,一分价格一分货,利用低价来吸引客户,以此来诱骗那些喜欢贪小便宜的用户,甚至有些公司销售产业线单一,更是无法长期满足销售者后期采购需求。所以,在进行采购时一定要保持正常的心态,不要进行盲目的价格攀比。聚创环保在为您提供“声级计”品牌型号参数服务的同时,也同时为您提供风速仪、压力计、温湿度计、热指数仪、辐射热计、公共场所检测系统以及全套的实验室装备方案。所以选择聚创环保是您省时省力更放心的上好选择。
  • 新品上市丨助力“宁静中国”,LHNM 300型环境噪声自动监测仪正式发布
    研发背景2021年12月24日,十三届全国人大常委会第三十二次会议审议通过《中华人民共和国噪声污染防治法》(以下简称《噪声法》),自2022年6月5日起施行。为贯彻落实《噪声法》,按照《中共中央国务院关于深入打好污染防治攻坚战的意见》(2021年11月2日),2023年1月3日,国家生态环境部、中央文明办、发展改革委等12个部门联合发布“关于印发《“十四五”噪声污染防治行动计划》的通知”(环大气〔2023〕1号)。计划明确提出:从2025年1月1日起,设区的市级以上城市全面实现功能区声环境质量自动监测,统一采用自动监测数据评价。力合科技集多年环境自动监测研发经验和成果,2023年3月正式发布LHNM300型环境噪声自动监测仪,为户外环境噪声监测增添又一强有力终端产品。LHNM300实现多维一体化,实时监测各类环境噪声,可联合气象模块实现对大气温度、大气压力、风速、风向、雨量等参数的实时监测,并可以扩展接入视频模块进行远程视频实时监控。01产品介绍LHNM300的传感器采用数字化多功能声级计,适用于测量各类噪声的频率计权和时间计权声压级、等效连续声级、暴露声级、统计声级等多种声学评价量。LHNM300具有户外监测、1/1倍频程和1/3倍频程三种测量模式,3种模式数据同步计算,无需模式切换,可同时获得3种模式的数据。仪器通电自动开机运行,可长期工作于户外,对环境噪声等进行长期连续的监测,可稳定地运行于环境噪声监测系统和网络。02标准符合情况Electroacoustics–Specificationsforpersonalsoundexposuremeters(IEC61252:2017)《个人声暴露计规范》Electroacoustics-Soundlevelmeters-Part1:Specifications(IEC61672-1:2013)《电声学.声级计.第1部分:规范》Electroacoustics-Octave-bandandfractional-octave-bandfilters(IEC61260:2014)《电声学倍频程和分数倍频程滤波器》《电声学声级计第1部分》(GB/T3785.1-2010)《电声学个人声暴露计规范》(GB/T15952-2010)《电声学倍频程和分数倍频程滤波器》(GB/T3241-2010)03功能特点LED屏本地显示监测数据(选配);有线和无线数据传输;手机web端数据实时显示;自动校时,死机自动重启恢复;不间断电源具有充放电保护功能;具有防雷设计,漏电保护功能;具有防盗报警装置;安装容易,单人即可完成。04应用领域可广泛应用于声环境质量监测、工业噪声监测、建筑施工噪声监测、交通运输噪声监测和社会生活噪声监测。
  • 奥斯恩噪声监测系统助力河南省噪声污染防治行动计划
    前言 河南省生态环境厅联合河南省发展和改革委等共16部门联合印发《河南省噪声污染防治行动计划 (2023-2025年)》,全力推进工业企业、建筑施工、交通运输和社会生活等重点领域噪声污染治理,加快解决人民群众普遍关心的噪声污染问题,推动全省“十四五”声环境质量改善目标顺利实现。 噪声污染防 治事关人民群众身心健康,是最普惠的民生工程,是生态文明建设和生态环境保护的重要内容。为“还自然以宁静、和谐、美丽”,有效落实《噪声污染防 治法》(以下简称《噪声法》),全面实施噪声污染防 治行动,积极满足人民群众对宁静优美环境的强烈需求,逐步改善声环境质量,依据《“四五”噪声污染防 治行动计划》(环大气〔2023〕1号),制定本行动计划。 简介 深圳奥斯恩作为一家依托AIOT智能互联技术感知,专注于声学环境、应急安全、自然生态、水文水质、AI视觉识别仪器设备研发制造,销售与安装运维,跨领域信息化软件平台开发,环境综合应用服务的研发制型企业,在“构建完善城市噪声监测网络体系,噪声扰民事件整治数据支撑,降低噪声扰民投诉率”方向深多项应用解决方案,在社会生活类、建筑施工类、工业类噪声监测领域服务众多项目。 奥斯恩目前已具备功能区噪声自动监测站(国标)生产制造技术,可提供城市声功能区可行性建设分析,选点规划监测点,产品适用于区域声环境监测、功能区声环境监测、城市声环境监测等。可监测各小时的等效声级计、累积百分声级、值、最小值、标准差等,噪声计测量范围大、功能强稳定性好、可实现远程视频监控、远程广播喊话等功能。 功能区噪声监测系统 功能区噪声监测系统是在监测点位采用连续自动监测仪器对声环境功能区噪声进行连续的数据采集、处理和分析的仪器系统。本系统主要由噪声监测子站(全天候户外传声器、噪声采集分析单元、通信单元、供电系统、气象监测环境功能区噪声进行连续的数据采集、处理和分析的仪器系统。本系统主要由噪声监测子站(全天候户外传声器、噪声采集分析单元、通信单元、供电系统、气象监测模块等)、中心服务器、声环境自动监测数据统计分析平台等组成,并可以监测与分析环境噪声的特征,判断噪声来源,通过无线或有线的网络传输,实现远程数据遥测、噪声事件监测、系统自动校准,终形成多种报告。 工业企业噪声监测系统 工业企业噪声监测系统是针对工业企业室内噪声、工业企业厂界噪声需求而设计,实现噪声自动监测并进行噪声数据统计分析,掌握噪声变化规律和排放强度,智能识别超标声源类型和方向,为工业企业厂界噪声排放的管理、评价及控制提供数据支撑。 建筑施工噪声监测系统 建筑施工噪声在线监测系统主要用于建筑施工场所产生的噪声监测,其户外设计可适应不同施工场所复杂的现场环境下长期运行,使用寿命长。核心部件带有静电激励器装置,实现对传声器远程自动校准,传感器长期使用中测量的稳定性,提升建筑施工噪声监测自动化、标准化、智能化水平,为施工审批、噪声监管等提供数据支持。 道路交通噪声监测系统 交通噪声监测系统主要由噪声监测子站、鸣笛抓拍、通讯网络及监控管理云平台组成,主要监测参数包括噪声、车流量、人流量、违法鸣笛等。系统通过声呐(麦克风阵列)技术准确锁定任意的噪声源位置,并通过声纹识别技术提取喇叭声音特征,将环境干扰(如刹车声、鸟叫声、广场舞、人声、口哨声等)滤除,准确定位到实际的鸣笛车辆,从而对鸣笛的车辆进行视频抓拍和车牌识别,确定违法鸣笛车辆。 社会生活噪声监测系统 社会生活噪声监测系统是针对对商业活动、文化娱乐活动、体育运动中使用固定装置所产生的噪音、人群活动产生的噪音等各类不同场景的噪声监测系统。系统按照国家及行业标准规范,实现噪声24小时不间断监测与分析,掌握噪声污染情况,并可搭配LED高清显示屏、语音播报音柱等实现噪声数据实时显示、超标语音提醒等功能,为噪声污染防止监管提供强有力手段。 移动式噪声监测系统 奥斯恩移动式噪声监测系统,是我司结合不同的监测场景所衍生出来的产品,是移动监测、流动监测、突击检查等场景的监测利器。同时也是固定监测点位无法覆盖到区域的有效补充。 通过执法人员配合移动式噪声监测设备进行噪声污染排查显得日益重要,对噪声投诉区采取“不打招呼、不提前通知、不做检查预案,直赴基层、直达检查现场”的执法检查手段,严查各种噪声违法行为。对发现的环境违法行为,做到及时制止、有案必查、高效执法、迅速处理、及时整改,减少噪声污染信访投诉,切实保障人民群众合法利益。 智能噪声监测一体机 智能噪声监测一体机符合2级声级计标准,通过物联网技术与现场端仪器仪表进行互联互通,完成对环境噪声数据实时采集,并对采集数据统计分析,计算噪声值,是一种简易型的户外噪声自动监测系统。它由数据显示屏、噪声传感器、数据采集统计分析软件、GPRS无线传输模块、服务器云平台软件、微信客户端等部分组成,人性化表情变化设计、测量范围大、功能强稳定性好,可扩展“AQI”六要素。 手持式声级计 手持式声级计是一款数字化多功能声级计,配置分为一级/二级声级计,设计用于测量各类噪声的频率计权和时间计权声压级、等效连续声级、暴露声级、统计声级等多种声学评价量,它具有积分平均、并行测量、统计分析、24h测量、1/1倍频程、1/3倍频程和室内噪声等7种工作模式供用户选择,同时仪器还提供了低频A频率计权,用于二次辐射噪声测量,是一款功能强大、性能好的手持式仪器,适用于各类噪声长时间的、可靠并精确的测量,它内带8G(可选32G)的SD卡,标配5号电池供电。 声环境自动监测数据统计分析平台 声环境自动监测数据统计分析平台可实现对噪声污染源监测点实时排放水平监测的同时,能够自动预警噪声超标排放行为,通过智能分析噪声源特征,自动联动摄像头抓拍取证,形成超标事件告警信息,当场提醒发出噪声的主体自行整改,同时通知执法、监管部门予以督导落实。通过电脑端、手机端等方式对噪声污染排放状况进行实时跟踪、视频监控、超标录音、超标报警、历史查询、现场执法等功能,具有现场报警、报警推送等多种报警通知,为噪声数据网络化管理、实时数据分析提供了有力基础。 声环境大屏,显示所有前端设备的实时状态、监测数据和噪声污染扩散图,便于管理部门更好地实施污染排放情况的全局监控、预警和协调调度,及时控制超标排放,避免环保污染扩大。通过平台可以实时查看到噪声监测点分布、进行噪声问题定位,通过数据分析进行故障诊断、噪声治理等工作。
  • 大气环境监测移动实验室仪器配置及性能指标详解
    p  随着我国经济的快速发展,大气环境污染事故频发,气象灾害日益增多,雾霾污染严重。大气环境监测移动实验室已在大气、噪声、光等污染防治的监督管理等领域得到越来越广泛的应用,移动监测监督稽查将得到生态环境部重视。日前,全国移动实验室标准化技术委员会发布关于通知,对《大气环境监测移动实验室通用技术规范》征求意见。/pp  “大气环境监测移动实验室通用技术规范件”是大气环境监测标准体系中的一个重要组成部分,对污染源进行移动特性识别,建立规范移动特性参数和配备设施及设备等一系列特性条件,有利于保证移动监测车在移动中队污染源的检测效性,为推动国家环境移动实验室健康发展起作重要作用。本标准为首次制定,技术归口单位为全国移动实验室标准化技术委员会,起草单位有江西江铃汽车集团改装车股份有限公司、武汉天虹环保产业股份有限公司、聚光科技(杭州)股份有限公司、北京雪迪龙科技股份有限公司、中国环境监测总站、沈阳质量监督检验研究院等。/pp  标准中给出了大气环境监测移动实验室宜配备大气环境监测仪器设备及性能指标。明确指出:移动实验室所有配置的仪器设备应完全自动化、智能化,并具有移动特性,符合GB/T 29476-2012中的规定;移动实验室应配备服务器数据处理系统,具备现场进行数据分析及数据输出和远程在线交互能力;移动实验室的采样及监测设备,满足设备监测性能,可独立或集中分离采样;移动实验室设备应具备自校准功能;移动实验室设备应具备时间同步功能,测试数据与时间同步,报告日期不可修改;移动实验室的实验舱内设备、器具与载具的安装连接应牢固、可靠,根据设备性能要求增加减振措施;移动实验室设备应具备电磁兼容性,应符合GB/T 18268.1的规定。/pp  详细要求如下:/pp style="text-align: center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"strong仪器设备监测内容/strong/a/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="115"p style="text-align:center "监测类别/p/tdtd width="138"p style="text-align:center "监测内容/p/tdtd width="85"p style="text-align:center "性能指标/p/tdtd width="267"p style="text-align:center "参考标准或依据/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气VOC/a/p/tdtd width="138"p style="text-align:center "VOC/p/tdtd width="85"p style="text-align:center "见附录A/p/tdtd width="267"p style="text-align:center "环保部《2018年重点地区环境空气挥发性有机物监测方案》的通知,VOC监测项目/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"常规气态污染物/a/p/tdtd width="138"p style="text-align:center "S02、NOx、CO、O3/p/tdtd width="85"p style="text-align:center "见附录B/p/tdtd width="267"p style="text-align:center "HJ/T 193-2013中附录A表A.1/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"颗粒物/a/p/tdtd width="138"p style="text-align:center "PM2.5/PM10/p/tdtd width="85"p style="text-align:center "见附录C/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.2/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气气象参数/a/p/tdtd width="138"p style="text-align:center "风速、风向、温度、湿度、气压/p/tdtd width="85"p style="text-align:center "见附录D/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.3/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"自动校准设备/a/p/tdtd width="138"p style="text-align:center "-/p/tdtd width="85"p style="text-align:center "见附录E/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录A a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境挥发性有机物监测项目/a/strong/ptable width="605" border="1" cellpadding="0" cellspacing="0"tbodytr class="firstRow"td width="121"p序号/p/tdtd width="123"p类型名称/p/tdtd width="395" valign="top"p style="text-align:center "监测项目/p/td/trtrtd width="121"p1/p/tdtd width="123"p监测项目/p/tdtd width="395" valign="top"p style="text-align:left "非甲烷碳氢化合物、含氧有机物、卤代烃/p/td/trtrtd width="121"p2/p/tdtd width="123"p目标物名称/p/tdtd width="395" valign="top"p1、监测因子:非甲烷碳氢化合物58种 br/ 序号 名称 化合物 化学式 br/ 1 Ethane 乙烷 C2H6 br/ 2 Ethylene 乙烯 C2H4 br/ 3 Propane 丙烷 C3H8 br/ 4 Propene 丙烯 C3H6 br/ 5 isobutane 异丁烷 C4H10 br/ 6 n-Butane 正丁烷 C4H10 br/ 7 Acetylene 乙炔 C2H2 br/ 8 trans-2-Butene 反—2—丁烯 C4H8 br/ 9 1-Butene 1-丁烯 C4H8 br/ 10 cis-2-Butene 顺—2—丁烯 C4H8 br/ 11 isopantane 异戊烷 C5H12 br/ 12 Isobutene 异丁烯 C4H8 br/ 13 1,3-Butadiene 1,3-丁二烯 C4H6 br/ 14 1-Pentene 1—戊烯 C5H10 br/ 15 Pentane 正戊烷 C5H12 br/ 16 trans-2-Pentene 反—2—戊烯 C5H10 br/ 17 Isoprene 异戊二烯 C5H8 br/ 18 cis-2-Pentene 顺—2—戊烯 C5H10 br/ 19 2,2-Dimethylbutane 2,2—二甲基丁烷 C6H14 br/ 20 2,3-Dimethylbutane 2,3—二甲基丁烷 C6H14 br/ 21 2-Methylpentane 2-甲基戊烷 C6H14 br/ 22 Cyclopentane 环戊烷 C5H10 br/ 23 3-Methylpentane 3-甲基戊烷 C6H14 br/ 24 1-Hexene 1-己烯 C6H12 br/ 25 n-Hexane 正己烷 C6H14 br/ 26 2,4-Dimethylpentane 2,4-二甲基戊烷 C7H16 br/ 27 Methylcyclopentane 甲基环戊烷 C6H12 br/ 28 2-Methylhexane 2-甲基己烷 C7H16 br/ 29 2,3-Dimethylpentane 2,3-二甲基戊烷 C7H16 br/ 30 Cyclohexane 环己烷 C6H12 br/ 31 3-Methylhexane 3-甲基己烷 C7H16 br/ 32 Benzene 苯 C6H6 br/ 33 2,2,4-Trimethylpentane 2,2,4-三甲基戊烷 C8H18 br/ 34 n-Heptane 正庚烷 C7H16 br/ 35 Methylcyclohexane 甲基环己烷 C7H14 br/ 36 2,3,4-Trimethylpentane 2,3,4-三甲基戊烷 C8H18 br/ 37 2-Methylheptane 2-甲基庚烷 C8H18 br/ 38 3-Methylheptane 3-甲基庚烷 C8H18 br/ 39 Toluene 甲苯 C7H8 br/ 40 Octane 正辛烷 C8H18 br/ 41 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 42 Ethylbenzene 乙苯 C8H10 br/ 43 n-Nonane 正壬烷 C9H20 br/ 44 m/p-Xylene 对/间二甲苯(p/m﹚ C8H10/C8H10 br/ 45 o-Xylene 邻﹙O﹚二甲苯 C8H10 br/ 46 Styrene 苯乙烯 C8H8 br/ 47 Isopropylbenzene 异丙苯 C9Hl2 br/ 48 n-Propylbenzene 正丙基苯 C9H12 br/ 49 m-Ethyltoluene 3-乙基甲苯 C9H12 br/ 50 p-Ethyltoluene 4-乙基甲苯 C9H12 br/ 51 1,3,5-Trimethylbenzene 1,3,5-三甲基苯 C9H12 br/ 52 O-Ethyltoluene 2-乙基甲苯 C9H12br/ 53 1,2,4-Trimethylbenzene 1,2,4-三甲基苯 C9H12 br/ 54 1,2,3-Trimethylbenzene 1,2,3-三甲基苯 C9H12 br/ 55 1,3-Diethylbenzene 1,3-二乙基苯 C10H14br/ 56 1,4-Diethylbenzene 1,4-二乙基苯 C10H14br/ 57 Udecane 正十一烷 C11H24br/ 58 Dodecane 正十二烷 C12H26br/ 含氧有机物13种 br/ 序号 化合物 化合物 化学式 br/ 1 acrolein 丙烯醛 C3H4O br/ 2 Propanal 丙醛 C3H6O br/ 3 Acetone 丙酮 C3H6O br/ 4 Acetonitrile 乙腈 C2H3N br/ 5 MTBE 甲基叔丁基醚 C5H12O br/ 6 Methacrolein 2-甲基丙烯醛 C4H6O br/ 7 n-Butanal 正丁醛 C4H8O br/ 8 Methylvinylketone 甲基乙烯基酮 C4H6O br/ 9 Methylethyl ketone 甲基乙基酮 C4H8O br/ 10 2-pentanone 2-戊酮 C5H10O br/ 11 3-Pentanone 3-戊酮 C5H10Obr/ 12 n-pentanal正戊醛 C5H10Obr/ 13 n-Hexanal 正己醛 C6H12O br/ 卤代烃31种 br/ 序号 化合物英文名称 化合物中文名称 化学式 br/ 1 Freon114(C2F4Cl2) 氟利昂114 C2F4Cl2 br/ 2 Chloromethane 氯甲烷 CH3Clbr/ 3 Vinylchloride 氯乙烯 C3H3Clbr/ 4 Bromomethane 溴甲烷 CH3Br br/ 5 Chloroethane 氯乙烷 C2H5Cl br/ 6 Freon11(CFCl3) 氟利昂11 CCl3F br/ 7 1,1-Dichloroethylene 1,1-二氯乙烯 C2H2Cl2 br/ 8 Freon113(C2F3Cl3) 氟利昂113 C2F3Cl3 br/ 9 Methyl iodide 碘甲烷 CH3I br/ 10 Dichloromethane 二氯甲烷 CH2Cl2 br/ 11 1,1-Dichloroethane 1,1-二氯乙烷 C2H4Cl2 br/ 12 cis-1,2-Dichloroethylene 顺-1,2-二氯乙烯 C2H2Cl2 br/ 13 Chloroform 氯仿 CHCl3 br/ 14 1,1,1-Trichloroethane 1,1,1-三氯乙烷 C2H3Cl3 br/ 15 Carbontetrachloroide 四氯化碳 CCl4 br/ 16 1,2-Dichloroethane 1,2-二氯乙烷 C2H4Cl2 br/ 17 Trichloroethylene 三氯乙烯 C2HCl3 br/ 17 1,2-Dichloropropane 1,2-二氯丙烷 C3H6Cl2 br/ 18 Bromodichloromethane 溴二氯甲烷 CHBrCl2br/ 20 trans-1,3-Dichloropropene 反-1,3-二氯丙烯 C3H4Cl2 br/ 21 cis-1,3-Dichloropropene 顺-1,3-二氯丙烯 C3H4Cl2 br/ 22 1,1,2-Trichloroethane 1,1,2-三氯乙烷 C2H3Cl3 br/ 23 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 24 1,2-Dibromoethane 二溴乙烷 C2H4Br2 br/ 25 Chlorobenzene 氯苯 C6H5Cl br/ 26 1,3-Dichlorobenzene 1,3-二氯苯 C6H4Cl2 br/ 27 1,4-Dichlorobenzene 1,4-二氯苯 C6H4Cl2 br/ 28 Benzylchloride 苄基氯﹙氯甲苯)C7H7Cl br/ 29 1,2-Dichlorobenzene 1,2-二氯苯 C6H4Cl2 br/ 30 Bromoform 溴仿CHBr3br/ 31 1,1,2,2-Tetrachloroethane 1,1,2,2-四氯乙烷 C2H2Cl4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录B a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测移动实验室系统/a/strongstrong(NO2、SO2、O3、CO)监测仪器性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="128" rowspan="2"p style="text-align:center "检测项目/p/tdtd width="510" colspan="4"p style="text-align:center "性能指标/p/td/trtrtd width="128"p style="text-align:center "NO2分析仪器/p/tdtd width="128"p style="text-align:center "SO2分析仪器/p/tdtd width="128"p style="text-align:center "O3分析仪器/p/tdtd width="128"p style="text-align:center "CO分析仪器/p/td/trtrtd width="128"p style="text-align:center "零点噪声/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤0.25 ppb/p/td/trtrtd width="128"p style="text-align:center "最低检出限/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppb/p/td/trtrtd width="128"p style="text-align:center "量程噪音/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/td/trtrtd width="128"p style="text-align:center "示值误差/p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 4%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/td/trtrtd width="128"p style="text-align:center "20% 量程精密度/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "80% 量程精密度/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "24h零点漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h20%量程漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h80%量程漂移/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录C a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气质量可吸入颗粒物自动监测仪/a/strongstrong技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="425" colspan="2"p style="text-align:center "测量范围/p/tdtd width="213"p style="text-align:center "0~1mg/m3或0~10 mg/m3(可选)/p/td/trtrtd width="425" colspan="2"p style="text-align:center "50%切割粒径/p/tdtd width="213"p style="text-align:center "10 μm± 1μm空气动力学直径/p/td/trtrtd width="425" colspan="2"p style="text-align:center "最小显示单位/p/tdtd width="213"p style="text-align:center "0.001mg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "采样流量偏差/p/tdtd width="213"p style="text-align:center "≤± 5%设定流量/24h/p/td/trtrtd width="425" colspan="2"p style="text-align:center "仪器平行性/p/tdtd width="213"p style="text-align:center "≤± 7% 或5μg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "校准膜重现性/p/tdtd width="213"p style="text-align:center "≤± 2%标准值/p/td/trtrtd width="213" rowspan="3"p style="text-align:center "与参比方法比较/p/tdtd width="213"p style="text-align:center "斜率/p/tdtd width="213"p style="text-align:center "1± 0.1/p/td/trtrtd width="213"p style="text-align:center "截距/p/tdtd width="213"p style="text-align:center "0± 5 μg/m3/p/td/trtrtd width="213"p style="text-align:center "相关系数/p/tdtd width="213"p style="text-align:center "≥0.95/p/td/trtrtd width="425" colspan="2"p style="text-align:center "输出信号/p/tdtd width="213"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作电压/p/tdtd width="213"p style="text-align:center "AC 220V± 10%,50 Hz/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作环境温度/p/tdtd width="213"p style="text-align:center "0~50 ℃/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录D a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测/a/strongstrong移动实验室气象设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "测量项目/p/tdtd width="160"p style="text-align:center "测量范围/p/tdtd width="160"p style="text-align:center "测量精度/p/tdtd width="160"p style="text-align:center "输出信号/p/td/trtrtd width="159"p style="text-align:center "风速/p/tdtd width="160"p style="text-align:center "1~60 m/s/p/tdtd width="160"p style="text-align:center "± 0.3m/s/p/tdtd width="160" rowspan="5"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="159"p style="text-align:center "风向/p/tdtd width="160"p style="text-align:center "0~360/p/tdtd width="160"p style="text-align:center "± 3° /p/td/trtrtd width="159"p style="text-align:center "温度/p/tdtd width="160"p style="text-align:center "-40~60 ℃/p/tdtd width="160"p style="text-align:center "± 0.2℃/p/td/trtrtd width="159"p style="text-align:center "湿度/p/tdtd width="160"p style="text-align:center "0~100%RH/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="159"p style="text-align:center "气压/p/tdtd width="160"p style="text-align:center "300~1200 hPa/p/tdtd width="160"p style="text-align:center "± 1 hPa/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录E 大气环境监测移动实验室自动校准设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "设备名称/p/tdtd width="160"p style="text-align:center "性能指标/p/tdtd width="160"p style="text-align:center "技术要求/p/tdtd width="160"p style="text-align:center "备注/p/td/trtrtd width="159" rowspan="5"p style="text-align:center "多气体校准装置/p/tdtd width="160"p style="text-align:center "稀释比例/p/tdtd width="160"p style="text-align:center "1/200~1/2000/p/tdtd width="160" rowspan="12"p style="text-align:center "1.要求所有的稀释源使用含氧量为20.9± 0.2%的无干扰干燥气体; br/ 2.渗透室温度为渗透室中渗透管周围的温度;/p/td/trtrtd width="160"p style="text-align:center "流量计准确度/p/tdtd width="160"p style="text-align:center "± 1%/p/td/trtrtd width="160"p style="text-align:center "渗透室温度准确度/p/tdtd width="160"p style="text-align:center "± 0.1 ℃/p/td/trtrtd width="160"p style="text-align:center "臭氧发生准确度/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="160"p style="text-align:center "工作环境/p/tdtd width="160"p style="text-align:center "0~40 ℃/p/td/trtrtd width="159" rowspan="7"p style="text-align:center "零气发生器/p/tdtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"SO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "SO2体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"NO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"O3监测分析仪/a/p/tdtd width="160"p style="text-align:center "O3体积分数<0.5× 10?9/p/td/trtrtd width="160" rowspan="4"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"CO监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx<5× 10?9/p/td/trtrtd width="160"p style="text-align:center "O3体积分数<1× 10?9/p/td/trtrtd width="160"p style="text-align:center "不含HC/p/td/trtrtd width="160"p style="text-align:center "CO体积分数<10× 10?9/p/td/tr/tbody/tablepbr//p
  • 地表水检测移动实验室仪器配置及监测项目一览
    p  随着我国对地表水现场检测的需求不断扩大,地表水快速检测移动实验室在检测过程中的重要性逐渐显现,因此对地表水快速检测移动实验室的采样、检测仪器等相关设备也引起了高度重视。作为地表水采样与检测一体化的移动实验室平台,制定统一、规范的地表水快速检测移动实验室用于地表水现场采样与检测等显得尤为必要。/pp  日前,全国移动实验室标准化技术委员会发布关于通知,对《地表水快速检测移动实验室通用技术规范》征求意见。本标准由全国移动实验室标准化技术委员会提出并归口,起草单位为青岛佳明测控科技股份有限公司,合作单位为中国环境监测总站、青岛市环境监测中心、上海安杰环保科技股份有限公司、山东正泰希尔专用汽车有限公司。/pp  我们国家目前已经建立了《地表水环境质量标准》、《移动实验室通用要求》、《地表水自动监测技术规范》等标准,但是没有移动实验室地表水监测的专业性标准,本标准参考了以上标准,根据地表水的相关规定,做了相关规范,填补了地表水检测移动实验室没有技术规范的空白。/pp  标准中明确了地表水快速检测移动实验室仪器设备配置参考及地表水快速检测移动实验室监测项目。其中,地表水快速检测移动实验室可参考地表水快速检测移动实验室监测项目来选配仪器设备。详细内容如下:/pp style="text-align: center "strong地表水检测移动实验室配置仪器设备/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="39"p style="text-align:center "序号/p/tdtd width="157"p style="text-align:center "检测类别/p/tdtd width="480"p style="text-align:center "仪器设备/p/td/trtrtd width="39" rowspan="2"p style="text-align:center "1/p/tdtd width="157" rowspan="2"p style="text-align:center "采样器、样品采集、存储类/p/tdtd width="480"p style="text-align:center "a href="https://www.instrument.com.cn/Consumables/s_82.htm" target="_blank"聚乙烯塑料桶/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"单层采水瓶/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"直立式采水器/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"在线自动监测设备/a/p/td/trtrtd width="480"p style="text-align:center "a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"硬质玻璃瓶/a、a href="https://www.instrument.com.cn/Consumables/s_82.htm" target="_blank"聚乙烯瓶/a等容器、a href="https://www.instrument.com.cn/Consumables/s_82.htm" target="_blank"无菌瓶/a等容器、a href="https://www.instrument.com.cn/list/main/03.shtml" target="_blank"车载冰箱/a/p/td/trtrtd width="39"p style="text-align:center "2/p/tdtd width="157"p style="text-align:center "试验类/p/tdtd width="480"p style="text-align:center "a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"烧杯/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"试管/a、a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"试剂盒/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"容量瓶/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"量筒/a、a href="http://移液枪" target="_blank"移液枪/a、a href="https://www.instrument.com.cn/Consumables/s_81.htm" target="_blank"移液管/a等/p/td/trtrtd width="39"p style="text-align:center "3/p/tdtd width="157" rowspan="3"p style="text-align:center "检测仪器类/p/tdtd width="480" rowspan="3"p style="text-align:center "a href="http://五参数分析仪" target="_blank"五参数分析仪/a、a href="https://www.instrument.com.cn/zc/1687.html" target="_blank"高锰酸盐指数分析仪/a、a href="http://氨氮分析仪" target="_blank"氨氮分析仪/a、a href="https://www.instrument.com.cn/zc/319.html" target="_blank"总磷分析仪/a、a href="https://www.instrument.com.cn/zc/319.html" target="_blank"总氮分析仪/a、a href="https://www.instrument.com.cn/zc/35.html" target="_blank"可见/紫外分光光度计/a、a href="https://www.instrument.com.cn/zc/24.html" target="_blank"离子色谱仪/a、a href="https://www.instrument.com.cn/zc/1158.html" target="_blank"气相分子吸收光谱仪/a、a href="https://www.instrument.com.cn/zc/39.html" target="_blank"原子发射光谱仪/a。a href="https://www.instrument.com.cn/zc/1650.html" target="_blank"重金属分析仪等在线自动监测仪/a、a href="https://www.instrument.com.cn/zc/646.html" target="_blank"重金属分析系统/a、a href="https://www.instrument.com.cn/zc/293.html" target="_blank"电感耦合等离子体质谱仪ICP-MS/a、a href="https://www.instrument.com.cn/zc/24.html" target="_blank"离子色谱仪/a、a href="https://www.instrument.com.cn/zc/1.html" target="_blank"气相色谱仪/a、a href="https://www.instrument.com.cn/zc/290.html" target="_blank"气相色谱-质谱联用仪/a、a href="https://www.instrument.com.cn/zc/290.html" target="_blank"气相色谱-飞行质谱联用仪/a、a href="https://www.instrument.com.cn/zc/143.html" target="_blank"培养箱/a等。/p/td/trtrtd width="39"p style="text-align:center "3/p/td/trtrtd width="39"p style="text-align:center "3/p/td/tr/tbody/tablep  地表水快速检测移动实验室仪器设备选择原则:a) 根据使用的实际需求选择合适的仪器设备。 b) 有限选用主流分析方法的仪器设备  c) 仪器设备宜便捷、小型化。/pp style="text-align: center "strong地表水快速检测移动实验室监测项目/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytr class="firstRow"td width="44" valign="top"p style="text-align:center " /p/tdtd width="280" valign="top"p style="text-align:center "strong必测项目/strongstrong /strong/p/tdtd width="314" valign="top"p style="text-align:center "strong选测项目/strongstrong /strong/p/td/trtrtd width="44" valign="top"p style="text-align:center "河 流/p/tdtd width="280" valign="top"p style="text-align:center "水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、 br/ 石油类、阴离子表面活性剂、硫化物和粪大肠菌群/p/tdtd width="314" valign="top"p style="text-align:center "总有机碳、甲基汞,根据纳污情况由各级相关环境保护主管部门确定/p/td/trtrtd width="44" valign="top"p style="text-align:center "集中式饮用水源地/p/tdtd width="280" valign="top"p水温、pH、溶解氧、悬浮物②、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、铁、锰、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐和粪大肠菌群/p/tdtd width="314" valign="top"p三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯③、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯④、四氯苯⑤、六氯苯、硝基苯、二硝基苯⑥、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯⑦、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺、丙烯酰胺、丙烯腈、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、水合肼、四乙基铅、吡啶、松节油、苦味酸、丁基黄原酸、活性氯、滴滴涕、林丹、环氧七氯、对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、甲萘威、溴氰菊酯、阿特拉津、苯并(a)芘、甲基汞、多氯联苯⑧、微囊藻毒素-LR、黄磷、钼、钴、铍、硼、锑、镍、钡、钒、钛、铊/p/td/trtrtd width="44" valign="top"p style="text-align:center "湖泊水库/p/tdtd width="280" valign="top"p水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和粪大肠菌群/p/tdtd width="314" valign="top"p style="text-align:center "总有机碳、甲基汞、硝酸盐、亚硝酸盐,其它 br/ 根据纳污情况由各级相关环境保护主管部门确定/p/td/trtrtd width="44" valign="top"p style="text-align:center "排污河(渠)/p/tdtd width="280" valign="top"p style="text-align:center "根据纳污情况,参照表中工业废水监测项目/p/tdtd width="314" valign="top"p style="text-align:center " /p/td/tr/tbody/tablepbr//p
  • 关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告
    近日,上海市环境科学学会和浙江省生态环境监测协会发布关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告,根据《上海市环境科学学会团体标准管理办法》《浙江省生态环境监测协会团体标准管理办法(试行)》的要求,《生态环境监测现场移动端数据采集规范》(T/SSESB 8-2023 T/ZJEEMA 0005-2023)团体标准按照规定程序编制,经专家组审查通过,现批准发布,发布日期为2023年9月25日,自2023年10月1日起实施。规范中对现场移动端和现场监测仪器发展现状进行阐述,并列出常用仪器名称和主要功能,如下所示:此外,规范还在功能要求中强调,现场移动端的功能应能覆盖场监测业务全流程,具体包括:任务下载。现场移动端应具备下载和查看现场监测方案或采样计划的功能,信息内容包括被测对象基本信息、任务名称和编号、监测类别、监测点位、监测项目、监测周期和频次、样品类别和数量、采样和分析方法、质量保证与控制要求、样品运输保存要求、监测人员。适用时还应包括生产工艺和污染治理设施信息、执行标准及限值、监测仪器设备、监测点位示意图、分包项目等内容。仪器出入库管理。现场移动端应具备通过射频识别(RFID)、扫码等方式采集现场监测仪器信息的功能,包括但不限于任务名称和编号、出入库日期和时间、使用时长、使用人等。适用时还应采集仪器检定校准和期间核查、日常维修维护等内容。点位布设。现场移动端应具备通过电子监测点位示意图、地理信息定位、扫码等方式记录监测点位信息的功能。适用时还应通过照相、文字补充描述等方式采集点位信息。样品采集和测试。(1)现场移动端应具备通过无线模块、串口等方式采集现场监测仪器数据的功能,包括但不限于现场监测过程参数、测试结果、仪器使用前后关键性能指标核查信息、仪器状态和质控信息。对于无法通过仪器采集的数据和信息,可采用手工录入方式。(2)现场监测仪器通讯协议要求应符合附录A要求,监测因子和信息编码应符合附录B要求,现场监测仪器软件宜具备监测流程管理和控制功能。(3)通过现场移动端或LIMS中预设的原始记录表单,将现场监测过程中采集的数据自动生成相关记录,原始记录表单的格式和内容应符合实验室管理体系要求。(4)可通过现场移动端添加现场质控样品。样品流转。现场移动端应具备样品流转记录功能,样品流转信息包括但不限于监测任务基本信息、样品类别、样品名称、数量、性状、采样人或送样人、保存剂、保存温度和避光情况等。适用时还应采集样品运输轨迹和时间等信息。任务上传。现场监测任务完成后,现场移动端中该任务下的所有采集的数据均应上传至LIMS,包括监测数据、质控数据、仪器信息、地理位置信息、监测点位示意图等。详细内容见附件:关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告.pdf上海市环境科学学会关于《生态环境监测现场移动端数据采集规范(征求意见稿)》团体标准公开征求意见的函.pdf
  • 浙江聚光检测喜获全国首家环境检测移动实验室CMA资质认证
    聚光科技(杭州)股份有限公司(以下简称“聚光科技”)下属子公司浙江聚光检测技术服务有限公司(以下简称“浙江聚光检测”)在2016年末(12月22日-24日)迎来继公司成立之后的第六次现场扩项评审工作。为保证浙江聚光检测自主研发的移动监测车能获得CMA资质的认证,提升社会服务质量,特将本次评审领域从以往的固定实验室延伸到了移动实验室。平安夜前,检测人员还在移动实验车上处理分析结果  经过三天两夜的现场评审,以及一个月的资料整理提交,浙江聚光检测终于在3月1日收到了移动实验室CMA资质能力附表。这意味着浙江聚光检测成为了全国首家具有CMA资质认证的环境检测移动实验室。  移动监测车实验室搭载在线监测设备和仪表,针对有限和固定的因子,实现定点条件下的连续自动监测,并根据在线数据出分析报告。环境媲美固定实验室,可搭载使用大型分析仪器和成套的前处理装置,定性定量准确,可现场直接出具正式的检测报告。评审专家与浙江聚光检测工作人员在移动实验室前合影  浙江聚光检测依靠聚光科技母公司强大的研发团队和仪器优势,配备移动实验室监测车,可随时根据应急情况,在现场开展监测工作,具备提供各种应急监测解决方案的能力。移动实验室搭载色谱、光谱和质谱仪器,适用于国土安全、环境、水利、卫生防疫、石油化工、科研结构等领域,支持现场督查,巡检、质控,抽检等流动检测工作。检测能力与固定实验室相媲美,使应急能力得到有质的提升。  浙江聚光检测于2012年获得CMA资质,于2015年延续资质,并不断扩充CMA认证检测项目,扩增至1800余项指标,涉及水和废水、环境空气和废气、土壤、底泥、沉积物、固体废物、噪声、振动等领域。今年更延伸了认证领域,通过了移动实验室的认证,充分说明了浙江聚光检测实验室的检测能力。  此次现场评审的通过,标志着浙江聚光检测向标准化、规范化发展又迈出了坚实的一步,检测能力和服务水平将不断提升,为更好地适应检测市场的发展和产品质量认证工作奠定了良好的基础。检验检测机构资质认定证书附表
  • 车载移动设备与碳卫星携手监测京津冀CO2
    p  由中科院大气所开展的“追踪CO2——京津冀地区冬季CO2浓度强化观测”工作6日结束。这次监测,不但实现了在汽车上移动监测CO2,而且还在国内首次用车载移动监测与碳卫星“携手”完成了天空地立体监测。/pp  此次监测工作是在国家重点研发计划“京津冀城市群高时空分辨率碳排放监测及应用示范”支持下开展的。项目组成员将高精度、微型化的CO2监测仪器安装在汽车上,分别在晴好天气和高碳排放天气条件下,沿京津冀主要线路移动监测。/pp  去年12月29日上午,CO2移动监测正式开始。记者乘监测车随科研人员前往河北雄安。微型的CO2监测仪器就安装在汽车前挡风玻璃的底端,它可以即时把监测数据通过网络传到北京中科院大气所的数据监测后台中。监测车既走国道、乡村级公路,也走高速公路 既去城市,也去农村,通过GPS定位系统准确记录车辆经过地区的CO2浓度情况。/pp  项目组此次共在8条线路开展了移动监测工作,包括北京市内、北京门头沟区灵山、天津、承德、张家口、唐山、保定、雄安8个方向。/pp  据项目负责人、中科院大气所曾宁研究员介绍,此次移动监测还与我国发射的碳卫星监测相结合。比如上个月29日在对北京市内移动监测时,在中午13时30分左右,碳卫星正从北京上空经过。碳卫星采用了目标模式,临时改变倾角,对地面汽车移动监测的地区做重点监测。“这样把两方面的数据结合,会让我们的监测更加准确。”/pp  据了解,利用这次监测,科学家获得了京津冀地区更加全面的CO2浓度数据,这为准确识别碳排放源进而规划科学减排提供了技术支撑,同时也为提供独立可靠的CO2第三方碳监测数据做了有益探索。/p
  • 【媒体】省台小记者眼中的“空气警察”,“高空+移动+定点”天地一体 精准监测
    8月22日,河北广播电视台少儿频道《校园新鲜爆》栏目,播出了先河联合省台共同开展的儿童暑期环保知识实践活动。重点报道了先河空气质量监测系统、大气vocs解析监测车以及无人机监测设备等。一场世界前沿环保科技之旅,给孩子们的暑期留下了难忘的回忆。节目于本周六晚间8:25、周日晚间9:00再次重播,大家可以精彩回顾。 “读万卷书,不如行万里路”,为了提升孩子们实践学习的能力,深入了解环保科技的奥妙,先河环保为小记者们精心准备了三款明星产品,重点围绕高空飞翔、移动走行、定点监测等,成功点燃了孩子们学习的热情。赶紧来领略一下环保科技的洪荒之力吧!守卫蓝天的“飞行战士” 先河环境无人机监控系统在本次活动中被小记者们评为最具人气明星产品,它具有低空贴近、灵活飞行、快速到达等特点,在不同高度、不同位置,实时获取大气污染程度的具体参数指标,还能结合地面常规空气监测、网格化精准监测等,形成三维立体监测。 搭载xhaqsn-508移动空气质量传感网络监测仪、摄像系统等,实现对空气质量、特征污染物等气体成分以及海拔高度、气象参数等数据的快速监测,通过环境拍照功能实现数据的可视化展示,对经度纬度实现轻松定位,形成基于“无人机+互联网”大气污染智能化监测系统。可以绘制大气污染物浓度曲线,实现环境定点、垂直采样诊断。它涵盖大气环境中pm10、pm2.5、so2、no2、o?、co等常规参数,也可根据用户需求灵活配置vocs、h2s、nh?、hcl、cl2、hf、cocl2等特征污染物参数。可有效支撑政府的环境监测、应急监测、巡查执法、拍照取证等工作。图为甘肃省兰州市安宁区培黎街道利用无人机对大气污染情况进行监测。严谨高效的“陆地巡警” 这个被小记者称为面包车、房车的明星产品。通过学习了解到,原来它的名字叫做——大气vocs解析监测车。它为大家带来了科技与视觉的双重体验。 夏季臭氧问题最为严重,挥发性有机物(vocs)作为臭氧的重要前体物,在大气复合污染过程中对臭氧污染起到了重要作用。监测车可非常方便、快速地对城市空气中的vocs以及工业园区vocs污染进行定性、定量分析,各地用户可以很直观地了解vocs物种的浓度分布、行业来源,确定污染排放类型或企业,为有针对性的治理臭氧污染提供有效的数据支撑,达到高效管理的目的。一心为民的“站岗卫士” 视频中小记者们提到的空气警察,原来是——xhams2000系列空气质量监测系统。它采用国际先进物理光学为基础的光谱测量分析技术,主要监测大气中的pm10、pm2.5、so2、no2、o3、co等参数。测量精度高、可靠稳定,是国内首套拥有自主知识产权的空气质量检测系统。 根据国家标准,结合空气质量新标准监测能力建设要求,对污染监控点、空气质量评价点、空气质量对照点和空气质量背景点等不同功能的环境大气质量监测点,进行数据采集、传输、形成报表,实时发布监测数据及空气质量指数。目前,“河北省控空气自动站”,已安装运营214套(1700余台)监测仪器,并受到政府领导的认可与肯定。 伴着夕阳的余辉,环保之旅完美落幕,相信一颗科技的种子已在孩子们心中种下,会慢慢生根发芽,最终长成苍天大树,成为国家栋梁之才!
  • 力合科技“移动式水质自动监测系统”成功通过建设行业科技成果评估
    2016年4月5日,力合科技自主研发的LFSZ-2008移动式水质自动监测系统成功通过建设部科技发展促进中心组织的建设行业项目科技成果评估。评估委员会专家由中国科学院生态环境研究中心曲久辉院士、清华大学张晓健教授、国家环境分析测试中心黄业茹研究员、中国环境监测总站刘廷良研究员、中国水利水电科学研究院蒋云钟教授级高工、水利部农村饮水安全中心刘文朝教授级高工、环保部华南环境科学研究所许振成研究员、山东省城市排水水质监测中心贾瑞宝研究员、北京市市政工程市政设计研究院有限公司郄燕秋教授级高工、湖南省环境监测中心罗岳平高工等国内知名专家组成。评估委员会专家对力合科技自主研发的移动式水质自动监测系统进行了详细的实地考察并听取了汇报,对力合科技在该产品所做的工作给予了充分肯定,认为该系统采用模块化、小型化、通用化设计,监测参数扩展性好,可实现近百项水质参数的自动监测,可满足不同现场水质监测需求。同时创建了完善的自动监测数据在线质量控制体系,具有运行过程记录、标准样品自动核查、加标回收率自动测定等质控措施,保证了自动监测数据的准确性和可靠性;建立了综合信息化管理平台,可在现场与区域内其他监测系统组建动态监测网,对监测网络数据进行综合分析,为快速排查污染肇事源的位置、有效处理应急事故以及分析巡检结果提供定性、定量的数据支撑。评估委员会专家一致认为该系统在现场自动快速检测方面已达到国际先进水平,具有重要推广应用价值,同意通过评估。 评估会现场移动式水质自动监测系统 力合科技2008年开始对移动式水质自动监测系统进行研发,该产品主要有由改装车辆、取水单元、水样预处理单元、检测单元、控制系统、数据采集传输模块和管理平台等构成,采用模块化设计与系统集成,将自动监测仪器与便携式监测仪器相结合,具有水质的自动采样、预处理、检测分析、数据处理等综合功能,可满足不同现场水质监测需求。该产品经过不断改进和创新,自2012年开始在全国各地得到广泛应用,在广东高州洪灾、广西龙江镉污染、天津港危险品爆炸、甘肃陇南锑污染等重大灾害及污染事件应急监测中发挥了突出作用,多次获得国家部委和地方政府的表扬。
  • 市场前景广阔!一文读懂噪声自动监测行业现状及发展潜力
    随着技术的进步,现代噪声监测系统正朝着智能化、网络化方向发展,利用物联网、大数据分析等技术实现远程实时监控和预警,使得噪声管理更加精准高效,市场更加广阔。为了解当前噪声监测技术进展、应用成效、行业状况及挑战机遇,向大家展现当前噪声监测市场现状,仪器信息网开展了“噪声监测现状与市场动态”主题约稿活动,本篇文章为安徽蓝盾光电子股份有限公司回稿内容。噪声自动监测系统发展现状研究安徽蓝盾光电子股份有限公司摘要:近年来,随着噪声污染问题日益突出和相关法律法规的出台,市场上对噪声自动监测系统的需求逐渐增大。本文主要介绍了噪声自动监测系统的应用场景、市场需求、发展现状以及本司所研产品,以期为噪声监测技术的发展作出参考。关键词:噪声污染;自动监测技术;监管体系引言随着城市化水平的提高,以生活噪声、交通噪声、建筑施工噪声和工业企业噪声为代表的噪声高发区域不断扩大,噪声污染问题日益严峻[1,2]。王素华等[3]介绍:2019年南充市主城区道路交通噪声昼间在68.1~70.0/dB(A)覆盖的人口所占比例可达50.2%。2023年中国噪声污染防治报告[4]表明:2022年全国生态环境信访投诉举报管理平台(网络渠道)共接到公众投诉举报25.4万余件,其中噪声扰民问题占全部生态环境污染投诉举报的59.9%,排各环境污染要素的第1位。根据投诉类型对噪声来源统计分析显示:社会生活噪声投诉举报最多,占67.5%;建筑施工噪声次之,占25.1%;交通运输噪声占4.3%;工业噪声占3.1%。噪声污染具有污染源种类多和形成随机等特点[5]。例如,电锯发动机等设备运转产生的噪声受企业生产施工等时间的限制,发生频率具有规律性。而由钢铁散落或玻璃炸裂等引起的噪声则具有偶然性,难以预测和捕捉。因此,仅采用手工监测的技术手段已无法满足噪声污染监管的需求。如何精准掌握噪声污染分布规律、做好现场监管取证工作、降低噪声污染事件发生频率以及防治噪声污染偷排造假行为等问题成为噪声污染治理的重要议题。2023年《“十四五”噪声污染防治行动计划》(环大气【2023】1号)指出:到2025年,全国声环境功能区夜间达标率达到85%。自2025年1月1日起,设区的市级以上城市全面实现功能区声环境质量自动监测,统一采用自动监测数据评价。为统筹城市区域、交通及功能区声环境监测,可在噪声敏感建筑物集中的区域增设点位,形成普查监测与长期监测互补,面监测与点监测结合的监测网络。显然,为加快建设安静优美的⽣ 态环境,改善城市和乡村的声环境质量,推进现代化噪声⾃ 动监测系统的建设,则成为噪声监测行业发展的重要趋势。本文主要对噪声污染自动监测系统的发展现状和本司产品作出介绍,以期为噪声监测技术的发展作出参考。1 噪声自动监测现状1.1 噪声自动监测应用场景在噪声污染源监测方面,2021年《噪声污染防治法》指出,噪声污染源类型可分为工业生产噪声、建筑施工噪声、交通运输噪声和社会生活噪声。此外,《声环境质量监测》(GB3096-2008)[6]指出:噪声监测应在无雨雪、无雷电天气,风速5m/s以下时进行。因此,为保证监测数据有效性,在噪声自动监测时,应在常规噪声源监测的基础上,增加对风雷雨电等气象噪声源和虫鸣鸟叫等动物噪声源相关的数据监测。在噪声污染区域监测方面,标准[6]中对监测区域作出了5类声功能区的划分和噪声敏感建筑物的定义。因此,结合监测区域噪声限值和噪声源监测类型的要求,噪声自动监测技术可主要应用于如下场景:0类声环境功能区,如康复疗养区等特别需要安静的区域,有利于保护区域内人员活动的声环境质量;1类声环境功能区,以居民住宅、医疗卫生、文化教育、科研设计、行政办公等为主需要保持安静的区域,如公园、住宅区和学校周边的广场舞、音响等扰民场景,有利于提高区域内民众对声环境质量的保护意识以及降低噪声污染扰民事件的发生频率。2类声环境功能区:以商业金融、集市贸易为主要功能,或者居住、商业、工业混杂,需要维护住宅安静的区域,如夜间临时街边演出、高音喇叭呐喊等扰民场景,有利于提高区域内民众对声环境质量的保护意识和噪声污染的监测水平,以及降低噪声污染扰民事件的发生频率。3类声环境功能区:指以工业生产、仓储物流为主要功能,需要防止工业噪声对周围环境产生严重影响的区域,有利于降低工业噪声污染对职工和周边居民生活的危害。4类声环境功能区:指交通干线两侧一定距离之内,需要防止交通噪声对周围环境产生严重影响的区域,包括4a类和4b类两种类型。4a类为高速公路、一级公路、二级公路、城市快速路、城市主干路、城市次干路、城市轨道交通(地面段)、内河航道两侧区域;4b类为铁路干线两侧区域。有利于由飙车炸街鸣笛等行为和车流高峰等引起的噪声监管,提高交通噪声污染的防治水平[3]。噪声敏感建筑物区:指医院、学校、机关、科研单位、住宅等需要保持安静的建筑物,如在此类集中区域发生的建筑施工噪声扰民等场景,有利于提高区域内民众的声环境质量等。1.2 噪声自动监测系统市场需求在噪声站点监测方面,2022年,全国地级及以上城市声环境功能区设立3618个噪声监测点位,绝大多数采用手工监测,只有308个站点向国家报送自动监测数据,占总数的8.5%[4]。为此,“十四五”噪声污染防治行动计划解答会中生态环境部指出:应全面升级对噪声监测网络,预计两年左右在全国地级及以上城市建成3800多个自动监测站点。在噪声源监管方面,生态环境部计划在3~5年内完成涉及噪声污染的28万余家工业企业的排污许可证核发,以及近210万家工业企业排污许可登记。“十四五”噪声污染防治行动计划中指出:针对噪声重点排污单位和在噪声敏感建筑物集中区域的施工场地,皆应依法设置噪声自动监测系统,并分别与生态环境主管部门、监督管理部门联网。公共场所管理者应根据需要设置噪声自动监测和显示设施,具备条件的可与当地噪声污染防治监督管理部门联网。综上可知,噪声自动监测系统的建设已在声环境功能区和各类噪声高发区域得到广泛的应用,具有广阔的市场前景。1.3 噪声自动监测系统发展现状为掌握噪声污染分布现状,减少噪声污染,提高声环境质量,噪声自动监测系统在多数企业得到推广。截止2023年12月31日,经中国环境监测总站检测适应性合格的噪声自动监测仪数量已达68种。目前,设备端的应用主要体现在噪声数据监测、噪声源类型识别、噪声源定位识别、噪声超标录像回溯以及气象、车流量等相关性因素监测等方面。平台端的应用主要集中于数据实时在线查询、数据回补、数据标记、数据审核、数据分析、设备远程控制、设备运维、系统权限设置等方面。噪声自动监测系统组成如下图1所示。图1 噪声自动监测系统组成图噪声数据监测设备,即噪声数据户外采集设备,可为噪声污染治理提供定量的依据,是制定噪声污染源排放清单和精细化管控行动的基础。此类设备可分为移动式和固定式两种[7],主要由全天候户外传声器模块、噪声采集分析模块、数据处理和通讯模块、电源控制模块以及户外防护配套模块等部分组成。噪声源类型识别设备,即对法规标准中定义的生活噪声、工业噪声、建筑噪声和交通噪声等噪声来源类型进行识别,为噪声污染治理提供定性的依据,对于噪声污染源清单的编制和精细化管控具有重要意义。此类设备采用深度神经网络模型等算法[8],通过对声源数据库中标准声源的识别训练,实现对不同场景音源的自主识别。但由于噪声源种类繁多,对于标准声源库的建立仍缺乏明确的标准。噪声源定位识别设备,内置MEMS声阵列[9],利用波束成型等原理,通过声学雷达有效识别噪声源的水平和垂直方位。噪声超标录像回溯设备,是对噪声源定位识别设备功能的扩展。通过对最大噪声源方位的识别,并与监控摄像头联动,指导摄像头对噪声超标行为进行录像,实现噪声超标事件过程的记录和回溯,为噪声污染治理的取证提供有效的依据。但声源定位设备依赖于麦克风阵列的数量,麦克风数量越高,精确度越高,设备成本同等提高。因此,对此类设备的深度研究仍具有一定的市场前景。气象监测设备,融合温度、湿度、大气压、风速、风向、降雨量六种气象参数的监测,是对异常气象条件下不进行噪声监测的补充,为如何剔除气象异常数据和保障噪声数据有效性的提供判别依据。车流量监测设备,采用微波雷达监测技术,可通过调节车道宽度,实现对监测范围内不同车型车流量的自定义监测。通过对噪声—车流量的关联性分析,探究车流量分布规律对噪声污染的影响,为交通噪声污染治理提供理论依据。2 本司产品介绍如图2所示,本司所研LGH-11型环境噪声自动监测系统,主要由噪声监测设备、声源识别设备、声源定位设备、视频监控设备、气象监测设备、道路车流量监测设备、GPS/北斗定位设备、户外LED显示屏等多种硬件设备,以及自主研发的噪声监测平台组成。本系统,具备市场主流产品功能,取得中国环境监测总站检测适应性合格认证等多项检测认证证书,可灵活运用于多种噪声高发区域的远程监管,并与各类监管系统实现联动,为噪声扰民事件的取证、监管以及噪声污染精细化管理等提供了依据,进一步提高噪声管理效率和网络安全保障力度。图2 蓝盾LGH-11型噪声自动监测硬件组成图图3 某市4a类功能区某道路监测站点3 展望目前,噪声自动监测系统的发展已取得阶段性的进展,大大有利于噪声污染治理和民众对声环境质量防护意识的提高。但相较于大气污染和水污染监测技术的发展仍有明显差距,噪声自动监测市场的深度拓展仍具有广阔的前景。参考文献[1] 李玲珑,王克新.环境环境噪声自动监测系统应用及计量现状分析[J].仪器仪表标准化与计量,2024,(03):33-34,42.[2] 姚浩书.长沙市商业综合体设备噪声对周边建筑声环境的影响研究[D].长沙:湖南大学,2021.[3] 王素华,刘巧,吕娟,等.南充市主城区环境噪声和道路交通噪声监测及评价[J].绿色科技,2020,(18):125-128.[4] 生态环境部,中央精神文明建设办公室,教育部,等.中国噪声污染防治报告(2023)[R/OL].北京:中华人民共和国生态环境部,2023.[5] 任志宏.环境噪声监测中的质量控制措施探析[J].黑龙江环境通报,2023,36(06):64-66.[6] 中国环境科学研究院,北京市环境保护监测中心,广州市环境监测中心站.GB 3096-2008声环境质量标准[S].北京:中国环境科学出版社,2008.[7] 晏敏锋,陈更新.环境噪声自动监测系统综述[J].中国环保产业,2022,(06):40-42.[8] 王诗佳.基于深度学习的声音事件识别研究[D].南京:东南大学,2018.[9] 胡成立.基于声压传感器阵列的多点声源识别与定位虚拟仪器系统研究[D].大庆:东北石油大学,2020.
  • 聚光科技大气污染移动监测走航车来了!你要的干货都在这→
    聚光科技(杭州)股份有限公司(以下简称“聚光科技”)大气污染移动监测走航车通过对不同区域开展走航监测,可全面、快速、实时获取整个研究区域VOCs等定制因子污染全貌,精确定位重点污染企业及其内部重点污染源。  通过走航观测结果,有针对性提出区域整体监管方案,并可配合业务化巡查,对区域污染防治工作效果进行评估,以达到高效、灵活管控重点区域的目的。配置Style 1 TOF-MS VOCs走航监测车系统介绍  对VOCs进行现场监测及监察执法  对重点区域、企业和工段进行诊断和评估  为实施空气污染精准化管理提供技术支撑  为突发事件进行应急监测  系统功耗低,续航能力强应用案例1-全局走航 实现VOCs等定制因子污染画像及摸底全面、精准、实时定性定量诊断区域污染状况应用案例2-重点区域走航 锁定重点区域、敏感点位走航、异味恶臭溯源应用案例3-重拳出击偷排漏排 减排前:确定减排方案减排中:抽查企业达标排放减排后:治理效果评估应用案例4-厂界走航,解决纠纷 围绕园区厂界走航东南风时,观测到园区东南方位出现污染西北风时,观测到园区西北方位出现污染说明厂界污染来自于A园区应用场景及特点 你问我答问1:聚光科技TOF-MS VOCs走航监测车相比于同行优势在哪里呢?答:相比于同行的走航车,聚光科技TOF-MS走航车优势如下:1、秒级监测:可在秒级分析周期内,直接给出总VOCs浓度、具体污染物种类以及各自浓度,不存在时间延迟,分析结果与走航图高度匹配。2、进样系统:连续直接进样,无需对样气进行富集,所有样气无选择性进入检测系统,不存在样品丢失现象。3、高灵敏度:聚光科技TOF-MS约是同行TOF-MS的50倍,走航过程中对污染物的响应更加灵敏。例如:同是秒级走航时,假如某处空气中甲苯浓度为0.5-5 ppb,聚光科技可以给出该检测结果,而同行可能无响应。问2:TOFMS能测多少种物质?答:原则上电离能低于我们使用的紫外灯光子能量(10.78 eV)的物质均能实现电离和检测,大约有300多种物质可以测量被测得,后期可以根据客户需求拓展监测因子。问3:走航车曾在哪些地方试用走航过?表现效果如何?答:走航车已经为东至、滨海、荆州、武穴、襄阳、济南、衢州、新余、宜昌、张家口、石家庄等11个城市提供了走航服务,里程超23000公里。Style 2 近地面空气质量走航车系统介绍  监测方法符合国家环境监测标准的要求   简洁灵活的模块化多参数空气质量连续自动监测系统  可进行环境常规监测,为执法提供数据支撑  为突发事件进行应急监测应用案例1-重点区域走航 安徽某市重点区域走航监测更全面了解城市空气质量状况主城区外围PM浓度明显高于城区内部需加强外围污染源管控,减少影响应用案例2-敏感点位溯源巡查 不定时不定点走航,发现可能存在的异常施工现场应用案例3-突发事件应急监测、效果评估 走航车迅速出动并做出研判,指导管控,见效明显应用案例4-已建站点比对 安徽某市空气质量校准比对监测,用于校准传感器监测设备,提高数据质量Style 3 颗粒物来源解析监测车系统介绍  可进行颗粒物组分质量浓度监测  源解析方法符合颗粒物源解析技术指南  时间分辨率高,可实现实时快速源解析   系统成熟,经验丰富应用案例1-污染事件快速溯源 河南某市对不同污染时段PM2.5快速溯源,为不同污染状况下采取应急措施提供科学指导应用案例2-精细化溯源   河北某市,对PM2.5进行精细化来源解析,定性定量分析污染物来源,为精准化实时管控提供科学指导:  1、首先解析出PM2.5主要贡献源为二次源(二次硝酸源、 二次硫酸源和二次有机碳源)、燃烧源、移动源、扬尘源和工艺过程源  2、结合源清单将二次源拆分为移动源、工艺过程源、燃烧源及其他(餐饮、溶剂使用、储存运输、废弃物处理);  3、最后细分至行业,得出主要贡献源类有民用燃烧、非道路移动源、生物质炉灶排放、道路移动源、 工艺过程源。 聚光科技  聚光科技于2011年4月15日上市,是国内先进的城市智能化整体解决方案提供商,致力于为行业提供全方位的生态环境监测服务,业务涵盖大气、水质和烟气等领域。公司在研发实力、业务规模和市场占有率等方面都居行业前列,是中国分析仪器行业和环保监测仪器行业的龙头企业。
  • 乐氏科技携科赛乐粉尘、噪声在线监测仪亮相第十六届中国环博会
    5月6日,由德国慕尼黑国际博览集团、中国环境科学学会、全联环境服务业商会、中贸慕尼黑展览(上海)有限公司等单位联合举办的IE expo 2015第十六届中国环博会(原IFAT CHINA+EPTEE+CWS)在上海新国际博览中心N4馆正式拉开帷幕,为期三天。 此次环博会荟集了全球顶级污水处理、泵管阀、固体废弃物处理、资源回收利用、大气污染治理、室内空气污染治理、场地修复、环境监测、环境服务业等环境污染治理领域的前沿技术与最新解决方案。 乐氏科技也于5月6日,携科赛乐粉尘、噪声在线监测仪,益康烟气分析仪参展此次环博会。乐氏科技展台现场
  • 爱唯施受邀参加白云机场同首都机场噪声管理及噪声监测运维服务交流会
    近日,广州白云机场有限公司航务管理部、白云机场公共区管理分公司净空管理部主管领导及负责人等赴京同首都机场相关部门一同召开了噪声管理技术及噪声监测运维服务交流会。首都机场公共管理部主管领导和负责人对接白云机场出席了交流会____会议中白云机场同首都机场就各自工作关注的焦点讨论了噪声管控相关议题,主要包括:(1) 航空噪声管理的具体措施 ,(2)噪声监测系统的管理和操作使用经验,(3)与政府和局方、航空公司等相关单位的沟通协调机制,(4)噪音投诉处理方法,(5)噪声监控系统运维工作内容及注意事项。双方参会的各位代表就以上内容进行了深入的探讨和交流,为今后噪声监测工作的开展提供了多方面的参考和借鉴。__北京爱唯施环境科技有限公司同时作为首都机场和白云机场的噪声系统解决方案的提供商及首都机场噪声运维商,爱唯施常务副总姜爽女士和公司运维服务工程师等受邀一同参加了此次交流会,为向白云机场提供更多运维调研信息,爱唯施在会议上介绍了爱唯施机场噪声运维服务的方针和目标,首都机场运维服务成果,航空监测的年度季度和临时监测报告和工作成效等。 现场运维管理方面,由爱唯施运维工程师介绍了运维管理的任务,设备维修与故障处理,易耗品的更换服务等工作的实施成效,以及爱唯施的运维服务延伸,包括配合客户要求完成工作相关的数据收集汇总及文件报告支持,固定站点搬迁选址建议,特殊噪声事件的响应,移动监测等.首都机场目前布控运行的爱唯施噪声监测和管理系统包括:1个监控中心(ANOMS噪声数据处理服务器和ANOMS Rover噪声及雷达数据获取服务器及相应的系统软件,包括噪声获取软件、航迹处理软件、跑道计算软件、报告模块、投诉处理模块、雷达数据处理软件等系统软件)21个3639型固定监测终端2个移动监测终端5个气象站。白云机场代表此行同时在爱唯施运维团队的陪同下到首都机场各个噪声监测站点实地考察了爱唯施的3639系列噪声监测设备布控和运维情况,为接下来白云机场的相同系列噪声监控设备运维服务的计划开展提供了多方面的参考和调研支持。此次交流会和站点现场考察为机场噪声管控专业部门提供了一个全方位多层次的交流平台.同时爱唯施将继续本着“运行规范、反应及时、数据准确、管理有效”的管理方针,在日常的工作贯彻执行这一精神,为客户提供高效、及时、满意、优质的服务。交流会现场现场考察白云机场代表现场考察首都机场噪声监测站点关于爱唯施北京爱唯施是澳大利亚Envirosuite公司(以下简称EVS)的全资子公司, 2020年2月EVS收购全球著名的噪声监测管控公司 EMS Brüel & Kj?r(以下简称EMSBK),EMSBK 客户遍布40多个国家,主要业务为飞机场噪声监管、采矿和勘探噪声监管、都市噪声监管。EVS的业务领域主要在空气质量、臭气水污染监管。收购后, EVS成为横跨空气质量、水污染监管和环境噪声监测三大领域
  • 安捷伦科技公司扩展移动检测仪器阵容以适合多种现场应用
    移动测量仪器能够加快能源、环境、食品、法医学和材料等市场的现场分析进程 2013 年 2 月20 日,北京 &mdash 安捷伦科技公司(纽约证交所: A)今日推出了适合现场应用的最新系列分析解决方案,能够实现各种样品的即时分析,获得与实验室测量精度相当的结果。 整个套装包括专门设计的GC、GC/MS、FTIR 和 HPLC技术包,适用于多种环境,扩展了安捷伦化学分析平台的应用范围, 包括食品和质量控制、农业、法医学、采矿、生物燃料、化学及其他环境和材料应用。 如今,全系列移动检测解决方案已在全球范围内推出。 安捷伦微型气相色谱业务部总经理兼移动检测解决方案团队负责人Ludovic Debusschere说:&ldquo 我们很荣幸为全世界客户不断推出更多的移动检测解决方案, 这些激动人心的移动设备专门设计用于实现快速的现场筛查和分析,并获得与安捷伦实验室仪器相同的精确度、选择性和灵敏度。&rdquo 全系列移动检测仪器包括五款旗舰仪器: 490微型气相色谱仪、1220 Infinity 车载液相色谱仪、4100 ExoScan手持式FTIR和4500便携式FTIR系统,以及可配备 7667A 微型热脱附仪的5975T 车载 GC/MSD。 这些移动设备可用于加快食品生产和质量检测过程;测量生物燃料、石油和天然气的关键参数;实现材料的非破坏性测试;以及监控采矿作业过程。 它们还可在国土安全、军事和法医学领域用于快速检测药物和爆炸物,以及实现环境样品(如空气、水和土壤)的现场分析。 安捷伦化学分析事业部总裁 Mike McMullen 说:&ldquo 为客户提供随时随地可用的仪器是安捷伦帮助科学家完成重要发现和管理工作流程的另一种途径。 不论是在实验室还是在现场,安捷伦都伴随您左右,致力于开发解决方案以满足客户不断变化的需求。&rdquo &ldquo 这些重要的新技术为客户提供了更快速、更经济有效的方法,使其在最紧要的时刻现场制定明智的可操作的决策, 且不论他们的工作是在何地开展,&rdquo Debusschere 补充说道, &ldquo 我们将继续与客户密切合作,开发其他移动式仪器以帮助他们应对需要在现场进行即刻分析的挑战。&rdquo 备注: 安捷伦将于 2 月 26 日举办一场在线网络讲座,介绍全系列移动检测仪器并探讨这些技术的实际应用领域。 在线讲座结束后还将提供该网络讲座的重播。 如需注册,请访问:移动检测&mdash &mdash 随时随地实现实验室级分析。 关于安捷伦科技公司 安捷伦科技(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • “移动源超低排放实时监测监管与质控技术”项目启动
    1月7日,国家重点研发计划“大气与土壤、地下水污染综合治理”重点专项“移动源超低排放实时监测监管与质控技术”项目启动暨实施方案论证会在合肥科学岛召开。   该项目由中国科学院合肥物质科学研究院牵头,中国计量科学研究院、中国环境科学研究院、成都理工大学、清华大学等单位共同承担。项目面向新标准下移动源污碳排放在线监测监管及质控需求,针对移动源排放多污染物共存、现场测量条件多变等特点,重点突破耐高温秒级传感、低损耗采样、多组分协同监测、多光谱增强遥测等关键技术,研发重型柴油车排放高温原位传感、非道路移动机械排放便携式监测、船舶飞机排放高灵敏成像跟踪遥测等设备与质控技术,构建溯源至国际单位制的颗粒物监测与气体遥测设备校准平台,完成设备比对测试以及四类典型移动源排放监测应用示范,以期为我国移动源污染防控提供自主化的监测技术设备支撑。会上,项目负责人从项目研究背景与挑战、目标内容与考核指标、技术路线与创新之处、任务分解与进度安排等方面进行了详细汇报。项目各课题负责人就各自承担课题的阶段目标、研究增量、实施方案、进度管理等进行了汇报。与会专家听取汇报后,对项目和各课题的总体框架和实施路线给予充分肯定,对项目执行过程中存在的技术难点展开研讨和交流,并给出具体建议。中国工程院院士张远航、刘文清、贺泓等环境领域专家学者,以及合肥研究院有关负责人等参加了上述活动。
  • “大气移动监测挑战赛”胜利收官
    p  2019年1月13日,历时半年的“大气移动监测挑战赛”胜利收官,挑战赛成果汇报会在北京举行。汇报会发布了挑战赛成果报告,并评选出系统设计奖、实地展示奖、应用前景奖和探索奖等奖项。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/4af4c057-b33d-4701-a4ac-d05a04e600f6.jpg" title="大气移动监测挑战赛汇报现场.jpg" alt="大气移动监测挑战赛汇报现场.jpg"//pp style="text-align: center "  “大气移动监测挑战赛”汇报会现场/pp  自2013年《大气污染防治行动计划》颁布以来,中国的空气质量不断改善。为进一步提升空气质量,2018年《打赢蓝天保卫战三年行动计划》部署实施,提出“精准监管、精准施策”的要求。这就需要探索并建立一个能够实现广覆盖、高时空分辨率的空气质量监测体系。/pp  为此,生态环境部积极推动环境监管技术创新,于2018年8月正式宣布启动“千里眼计划”。/pp  “千里眼计划”明确提出,要深化构建“热点网格”试点,不断探索“热点网格+地面监测微站+移动式监测设备”的工作模式,提高监管的精准度和时效性。/pp  自此,移动监测发展迎来了新机遇。/pp  从推动热点网格管理,聚焦监管范围,到精准施策,禁止环保“一刀切”,大气污染防治工作已经进入精细化管理阶段。而大气移动监测作为新兴的监测手段,能够以较低的成本,实现更大范围、更小尺度的地域覆盖,是对传统固定监测网络的必要补充。/pp  在此背景下,为展示移动监测技术发展水平、为“千里眼计划”提出的移动监测提供技术支持、助力“蓝天保卫战”,美国环保协会北京代表处、南科大工程技术创新中心(北京)、北京环丁环保大数据研究院(环丁联盟)于2018年6月5日联合发起了“大气移动监测挑战赛”。/pp  活动举办过程中,地方监测系统和企业积极参与,河北省沧州市和湖南省湘潭市成为挑战赛的联合主办城市。2018年10-12月,参赛企业在沧州、湘潭进行了实地测试并提交监测结果报告。在挑战赛专家评审会上,各参赛单位展示了不同类型的新技术在移动监测中的具体应用案例。主办方组织专家对参赛单位提交的申报方案、实测结果进行了严格的盲选评议,并评选出系统设计奖、实地展示奖、应用前景奖和探索奖。/pp  会上,美国环保协会、南科大工程技术创新中心(北京)、北京环丁环保大数据硏究院(环丁联盟)与沧州市签署了《大气移动监测合作备忘录》。未来,四方将在建立移动监测技术创新平台、加强技术交流、推动技术创新、深化大气热点网络试点等方面开展合作。/pp  今后,美国环保协会、南科大工程技术创新中心(北京)、北京环丁环保大数据研究院(环丁联盟)还将寻求更多合作伙伴,共同推动空气质量监测技术的创新和相关标准的制定,促进新兴技术与空气质量管理有效融合,为进一步推进热点网格工作寻找好技术、好方案。/pp  生态环境部生态环境执法局局长曹立平,中国环境科学研究院院长、国家大气污染防治攻关联合中心主任李海生,中国工程院院士、清华大学环境学院院长贺克斌,以及相关评审专家、挑战赛主办方、挑战赛联合主办城市、参赛企业、地方环保部门、投资机构等代表共100余人出席了此次活动。/p
  • 为什么体感和PM2.5监测值不大一样?扬尘检测仪监测数值到底准不准?
    近年来,工业生产和社会生活的高速发展,使得微颗粒排放物进入大气的比例呈逐年上升趋势,PM2.5污染已凸显为重大的环境问题。为此,中科院安徽光学精密机械研究所副所长刘建国做出了解答。 为什么体感和 PM2.5 监测值不太一样? 什么是体感?就是人们凭自己的感觉判断空气质量,例如通过视觉目测大气能见度,或者通过嗅觉感受所呼吸的空气是否有刺激性气味等等。大气细颗粒物不仅是形成雾滴的凝结核,而且也存在吸湿性增长。在不利气象因素下极易形成恶性循环,形成雾和霾长时间共存、难以消散的局面。因此,人们对雾霾的体感会大大增强。什么意思呢?就是说在恶性循环的情况下,会导致人们感受到的雾霾污染程度比实际情况要严重。“为了身体健康,人们自然会关注空气质量。但要治霾,首先要对霾的主要成因大气细粒子(PM2.5)及其时空分布和区域输送进行系统监测。通过对PM2.5的成分分析,结合大气污染源清单和预报模型,来掌握不同地区PM2.5的来源,我们才能对症下药。”刘建国说。准确监测PM2.5需要解决哪些技术难题?目前监测PM2.5有哪些技术? 目前,国内外对PM2.5浓度的监测主要有滤膜采样———光散射法、人工称重法、石英微量振荡天平法和β射线法。当光照射在空气中悬浮的粒子上时,产生光散射。在光学系统和粉尘性质一定的条件下,散射光强度与粉尘浓度成比例。光散射法测定空气中的粉尘浓度是通过测量散射光强度,经过转换求得粉尘质量浓度的方法。人工称重法是美国环保署和我国环保部推荐的标准方法,但由于需要较长的采样时间,无法提供目前空气质量日报和预报所需要的每小时均值。而石英微量振荡天平法和β射线法等方法是自动监测,每小时可获得一个监测结果,被称作“等效方法”。所有等效方法的监测值都要与标准方法所获得的结果进行比较,以确定其是否准确。如何监测,在监测过程中会碰到哪些难题?“为防止采样过程中水汽凝结的影响,无论是石英微量振荡天平法还是β射线法自动监测设备,采样管都要加温到空气的露点以上,通常是50℃,相对湿度保持在40%以下,整个测量过程都要在恒温恒湿的状态下进行。”刘建国告诉记者,但加温过程会造成颗粒物中挥发性和半挥发性物质的损失,导致测量结果偏低。“现在,我国已经参考美国的做法,增加了补偿装置,可以把挥发性物质和半挥发性物质的损失再补回去,这样就可以使测量结果更可靠。”刘建国称,颗粒物往往是固液混合物,构成非常复杂,即使是 PM2.5监测标准方法——人工称重法,同样也可能由于所采用的滤膜及温湿度的变化产生颗粒物损失等问题。测量结果可靠吗?根据2011年11月1日开始实施的《环境空气 PM10 和 PM2.5 的测定重量法》,人工测定PM2.5须通过具有一定切割特性的采样器,以恒速抽取定量体积空气,使环境空气中PM2.5被截留在已知质量的滤膜上,根据采样前后滤膜的重量差和采样体积,计算出PM2.5的浓度。 “在人工称重法测量过程中,要尽可能避免气态物质被滤膜吸附,滤膜平衡时要做到恒温恒湿。如果这些条件在实际大气环境中不能完全满足,就会引起测量误差。”刘建国强调,现有技术水平下,人工称重法所获得的监测数据已经尽可能地接近了PM2.5的实际状况。通过和人工称重法进行严格比对,光散射法、激光散射法、石英微量振荡天平法和β射线法的测量结果也是可靠的。目前市场上更多的扬尘检测仪都使用激光散射法监测PM2.5,建大仁科泵吸式噪声扬尘监测站最显著的特点是电控箱内安装高精度的空气质量变送器,可以不受环境中水分子的影响,精确监测出工地环境中颗粒物PM2.5、PM10的含量。当监测系统开始工作后,空气经进气口时由电子泵吸入变送器内,先由除湿设备将空气中的水分去除,再将其流动至空气质量传感器内。这时,空气质量传感器通过激光散射测量原理,以独有的数据双频采集技术进行筛分得出单位体积内等效粒径的颗粒物粒子个数,通过科学独特的算法计算出单位体积内等效粒径的PM2.5、PM10质量浓度,并将监测数值同时输出。泵吸式噪声扬尘检测仪配置1路百叶盒监测,通过内置的传感器对工地环境中的温度、湿度、噪声等气象因素进行实时监测;1路风速采集;1路风向采集;1路PM2.5、PM10和TSP采集;1路继电器输出可接现场二级继电器控制雾炮(默认)、吊塔喷淋及工程洗车机等;它所监测到的数据可通过LED屏(54cm*102cm)现场实时显示,也可通过RS485接口或移动卡以GPRS/4G的方式上传至云平台在界面显示,实现远程监控。通过手机扫码下载“噪声扬尘监控气象站”APP配置工具,能够对泵吸式噪声扬尘监测站的参数进行设置,如各项参数的上下限值,限值LED屏显示的内容,继电器开启闭合的时间,以及只能联动雾炮的工作时间等。泵吸式噪声扬尘监测系统由泵吸式噪声扬尘检测仪、通讯技术和监控软件云平台组成,集数据采集、存储、传输和管理于一体,能够24小时全天候在线实时监测现场环境,具有实时性、多参数、智能化的特点。系统支持两种数据上传:一种是无线数据上传,通过内置的移动卡通过根据GPRS/4G通讯方式上传;另一种是通过RS485从站接口,可以实现最远2000米的远距离有限传输。监控中心云平台支持在电脑、移动端、平板电脑等多个终端随时查看工地施工情况和扬尘指数的实时数据和历史数据。为保证工地环境治理符合环保要求,若出现PM2.5、PM10、噪声、TSP等环境数值超标的情况,系统会以平台告警、手机告警、邮件告警形式自动给管理员发告警信息;具有远程联动功能,可联动(雾炮)喷淋控制系统,改善空气质量。
  • 环保大数据:2700多家监测站 26.8万台监测仪器
    &ldquo 大数据、&lsquo 互联网+&rsquo 等智能技术已成为推进环境治理体系和治理能力现代化的重要手段,要加强数据综合应用和集成分析,为科学决策提供有力支撑。&rdquo 6月19日,在环保部开展的&ldquo 环评和监测工作创新&rdquo 大讨论上,环保部部长陈吉宁说。  数据显示,截至目前,我国已建立各级监测站2700多家,共有监测人员近6万名,监测用房287万平方米,监测仪器设备26.8万台。所有省级监测站都具备水质109项全分析能力,多数省级站装备已达到国内先进水平,所有市级监测站都具备开展空气、地表水、生态、噪声等环境质量监测和污染源监督监测能力,基本能够说清辖区内环境质量状况和污染源排放情况。但同时必须指出的是,环保部门长期形成了数据多头采集的体系,数据冲突的现象时有发生。据介绍,环保部至今没有建立一套统一的污染源数据库。  &ldquo 各种业务数据和信息分散在不同部门,彼此割裂与相互封闭,缺乏数据整合、共享及综合应用能力。&rdquo 环保部科技司巡视员兼副司长刘志全说,应尽快开展数据资源统一管理与共享平台建设,建立数据汇交、共享、质控管理机制。同时,按照&ldquo 数据运营、全民参与、服务社会&rdquo 的要求,制定环保数据资源服务产业政策,编制环保数据资源目录体系,发布数据资源产品,培育和扶持大数据服务企业,发展新型环保产业。  环保部卫星中心主任王桥认为,新常态下我国环境管理与社会公众对环境监测的要求已不再是简单的数据提供和统计汇总,而是要面向环境质量评价、环境容量测算、环境变化预测、环境绩效考核、环境风险预警、环境监督执法等提供全方位的服务,解决问题的主要途径就是开展环境质量监测数据综合分析。为此,他建议国家启动&ldquo 环境监测大数据工程&rdquo 。  在他看来,&ldquo 环境监测大数据工程&rdquo 的主要任务有两个方面:一是利用物联网、智能传感、云计算等技术,构建环境监测信息感知体系,实现定点采样、自动监测、现场视频、移动终端等各类监测设备的广义互联、信息融合、实时接入和共享,并全面实现从监测数据到监测信息的转化。  二是利用云计算、数据挖掘、多元统计分析等技术,开发环境质量监测数据综合分析工具与多维可视化表达工具,构建一体化环境监测大数据云服务平台,面向环保系统及全社会推出系列化环境质量监测综合分析数据产品,并按各级环境管理部门与社会公众需求提供云端服务,包括环境质量多维查询、动态分析、趋势预测、综合评估、风险预警、生活服务等,全面实现从监测信息到监测服务的跨越。  &ldquo 环保部应会同相关部门制定统一的大气、地表水、地下水、土壤、海洋、生态、污染源、噪声、振动等监测技术标准规范,要求排污单位、各类监测机构统一执行,增强各部门监测数据的可比性 并建设环境监测信息传输网络与大数据平台,建立数据集成共享机制,各地环保部门也要做好辖区内监测数据的集成、共享与上传。同时,依据新环保法建立统一的环境监测信息发布制度,由环保部门权威发布环境质量、污染源监测等信息,满足公众环境知情权益。&rdquo 环保部环境监测司司长罗毅说。
  • 揭秘川源中国蓝绿藻监测“移动实验室”
    蓝藻又称蓝绿藻、蓝细菌,是最原始、最古老的藻类植物之一。由于蓝藻对高温、低光强和紫外线均有适应性,同时可以过量摄取无机碳和营养物质,受氮、磷等元素污染后易大面积爆发引起水体富营养化。 蓝藻能产生各种天然毒素,主要是环肽、生物碱和脂多糖内毒素,致毒类型包括肝毒性,神经毒性,细胞毒性,遗传毒性,皮炎毒性等。 实验室采用酶联免疫吸附测定(ELISA)和荧光定量聚合酶链式反应(qPCR)分别对样品中所含目标毒素及物种丰富度进行检测。 为了获取更直接的数据,公司改装了一台可直接进入现场实时检测的“移动式监测车”,“移动式监测车”还原了实验室的基本布局,装有qpcr洁净操作台、存储冰箱、耐酸碱实验桌面、防火地板、水槽及回收水水槽等。实验桌上装有可调节大小的固定条用于固定ELISA酶标仪和qCPR仪等设备。“移动式监测车”可实现:▸更及时地在采样完成后对样品进行预处理以及检测,使检测数据更具时效性。▸避免了长途采样时,样品储存长时间对检测结果的影响。▸减少运送时间、减少外部微生物影响及水样中微生物降解的状况。▸提供更直接、更准确的环境检测报告。蓝绿藻实时快速监测的重要意义1. 对水体中蓝绿藻生长及毒性情况进行实时快速高效的监测并实现对蓝绿藻水华爆发的快速预警。2. 预测各水体潜在的蓝绿藻水华爆发程度及毒性程度,为有关部门实施蓝绿藻水华爆发的监测和预防提供具体的信息和方向。3. 对饮用水、娱乐用水等进行准确快速的监测,杜绝微生物及毒素带来的危害,确保用水安全。4. 推动ELISA和qPCR技术在环境监测方面的运用,一定程度上弥补传统监测手段的不足。延伸阅读:蓝绿藻实时快速监测方法➤酶联免疫吸附测定(ELISA) ELISA方法的基本原理是酶分子与抗体或抗体分子共价结合,此种结合不会改变抗体的免疫学特性,也不影响酶的生物学活性。此种酶标记抗体可与吸附在固相载体上的抗原或抗体发生特异性结合。滴加底物溶液后,底物可在酶作用下使其所含的供氢体由无色的还原型变成有色的氧化型,出现颜色反应。因此,可通过底物的颜色反应来判定有无相应的免疫反应,颜色反应的深浅与标本中相应抗体或抗原的量呈正比。此种显色反应可通过ELISA检测仪进行定量测定,这样就将酶化学反应的敏感性和抗原抗体反应的特异性结合起来,使ELISA方法成为一种既特异又敏感的检测方法。 川源-同济微生物技术研发中心运用上述ELISA方法,针对蓝藻爆发水体中常见的三种藻毒素:微囊藻毒素、拟柱孢藻毒素和蛤蚌毒素开发了合理高效快速的检测方法及流程,能够在1至2小时内完成对待测样品中毒素浓度的检测。➤荧光定量聚合酶链式反应(qPCR)-Taq-Man探针法 实时荧光定量PCR (Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。qPCR是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。 实时荧光定量PCR分为:SYBRGreen法和TaqMan探针法两类。本实验室运用TaqMan探针法,目前所有的探针法qPCR的理论基础都是利用了荧光共振能量转移现象,探针上存在一对能产生荧光共振能量转移的基团,利用PCR反应中的一些过程(酶切,杂交等),使两个基团的距离产生变化,使系统中的荧光强度或者荧光种类发生变化,这种变化又与PCR产物的种类和量有直接关系,通过检测这种变化,我们就可以检测出PCR反应体系中产物的种类和量。 本实验室所用的Taq-Man探针法是最经典的探针方法,设计一条与扩增产物能互补杂交的探针,在探针的5’端标记荧光基团(供体),在探针3’端标记淬灭基团(受体),当探针完整时,荧光基团和淬灭基团距离很近(探针长度)因荧光共振能量转移,荧光基团在入射光激发下不发出荧光。PCR反应进行时,探针杂交在扩增产物上,当引物介导的延伸反应到达探针位置时,因taq酶拥有5’-3’的外切酶活性,会从5‘端切割(水解)探针,从而使5’端的荧光基团和3’端的淬灭基团分离,使它们的间距超过10nm,超出荧光共振能量转移的范围,荧光基团此时在合适入射光的作用下,就能发出自身波长的荧光。探针杂交是特异性的,所以荧光的种类和量能特异性的代表目标产物的种类和量。 川源-同济微生物技术研发中心采用针对产毒微囊藻特有的毒素合成酶基因中的mcyB基因设计的引物,并运用Taq-Man探针法对样品中mcyB基因进行定量分析。此方法能够在1小时内完成对待测样品中产毒微囊藻含量的检测。
  • 赛默飞推出首款移动检测车 进军移动检测市场
    仪器信息网讯 2014年6月17日,赛默飞世尔(以下简称为:赛默飞)在北京举行的&ldquo 2014中国国际食品安全与创新技术展&rdquo 上展出赛默飞移动检测车,据悉此次是该移动检测车的首次亮相。赛默飞移动检测车  近几年来,中国食品安全和环境等相关问题日益突出,而中国地域广阔,可移动,可现场、快速检测的移动检测车正好能满足中国在此方面的监管等需求。广阔的市场需求引发了众多相关仪器供应商进入移动检测市场,各类移动检测车如&ldquo 雨后春笋&rdquo 般涌现出来。目前,在中国,移动检测车已经相继投入到食品、药品及环境等监管领域。  据赛默飞食品安全市场开发经理张玉玺介绍,&ldquo 先前,赛默飞已经有很多产品被成功应用到政府监管的移动检测业务上。如今,依托赛默飞产品线的广度与深度,以及其在实验室建设方面的专业经验,我们相信赛默飞可以在移动检测实验室业务上能够发挥更大作用,拓展更多相关业务。&rdquo 移动检测车内部  此次赛默飞展出的移动检测车主要针对食品微生物检测、理化指标快速检测和食品包装检测应用而设计,配备了核酸提取仪、定量PCR、多功能食品安全一体机、红外光谱仪,以及实验操作所必需的小型超净工作台,纯水机和相关耗材等。此外,在移动检测车的后部专门设置了区域环境监控系统,配备了空气质量监测仪与有毒有害气体检测仪,可以对区域内PM2.5等空气质量数值实时监测。移动检测车后部的空气质量监测仪  张玉玺表示,&ldquo 赛默飞的移动检测车是一个多功能展示的平台,我们拥有众多便携,抗震,操作简便,分析快速的仪器,未来可以根据用户的具体需求进行配套定制化开发,并引入各种尺寸车用平台。无论是药检、食品检测、环境监测还是公共安全,相信我们都可以提供与传统实验室一致的服务。作为本次食品安全周的一次成功亮相,我们的移动检测综合解决方案将在近期正式发布销售&rdquo (撰稿:杨娟)
  • 力合动态丨“鄂环监清江号”,长江航道大气复合污染移动监测站
    根据生态环境部发布的《中国移动源环境管理年报(2023)》显示,移动源污染已成为我国大中城市空气污染的重要来源,是造成细颗粒物、光化学烟雾污染的重要原因,交通污染防治的紧迫性日益凸显。我公司承建的湖北省长江航道和沿线港口船载监测系统项目(后简称“该项目”),是国内首个将交通站监测系统与移动监测船联合应用的案例。湖北省是“华北-长江中下游平原”重要大气传输通道的关键枢纽,搭载系统的航行线路为“宜昌-武汉-九江”长江段以及汉江部分河段,不仅可有效科学评估长江流域湖北段空气质量,还可反映沿线流域整体大气污染状况。图 鄂环监清江号监测船以支撑、服务、引领生态环境决策管理为导向,实现监测先行、监测灵敏、监测准确,全面提升长江沿线城市细颗粒物与臭氧污染协同监测和预报能力提供坚强支撑,是长江流域大气环境监测的重要补充,切合长江大保护的总体战略。该项目系统配置了一氧化碳分析仪、臭氧分析仪、非甲烷总烃监测仪、VOCs走航分析仪、碳组分分析仪、水溶性离子分析仪、无机元素分析仪、气象仪等。图 鄂环监清江号监测仪器间01应用成效实时监控分析长江航道湖北段环境空气质量现状,结合标识组分和轨迹模式,分析港口水陆交通所带来的污染物的潜在影响范围和影响程度,识别长江船舶排放对沿线环境空气质量的影响。 图 长江沿线城市站点细颗粒物质量浓度变化提升污染物溯源能力构建典型船舶排放PM2.5和VOCs源成分谱,对长江流域污染物进行统一监管监控,实时分析,发现污染来源及扩散趋势,准确分析污染物传输、迁移过程,甄别污染贡献率。图 固定港口站的污染源解析结果应急预警建立应急预警体系,污染高值立刻报警,为环境管理部门提前决策和应急管控提供科学依据。图 长江航道某时间段空气质量源解析占比图提升管理水平整合现有国控、市控和道路交通站点监测数据,分析典型路边站点污染物时空分布与扩散影响,根据前期分析结果提出针对性建议,提高生态环境污染治理水平。02关于我们力合科技立足于科技创新,交通站核心产品均为自主研发生产并通过国家环保产品认证,且集成路边小屋、集装箱、户外柜、监测车/船等多种模式,站点类型包括公路点、港口点、工业园区货场点、机场点。应用案例目前力合交通站在湖南湘江新区、湖北省站监测船及孝感、安徽芜湖等地均取得较好应用成效。
  • 禾信仪器中标528万移动监测车采购项目
    项目编号:公告类型: 中标结果公告招标方式: 国内公开截止时间:招标机构:招标地区: 常德市招标产品: 监测车所属行业: 其他专用汽车 合同编号:CDGP-2021123027362合同名称:常德市生态环境局移动监测车采购项目编号:2021112224156项目名称:常德市生态环境局移动监测车采购采购人(甲方):常德市生态环境局供应商(乙方):广州禾信仪器股份有限公司所属地域:常德市合同金额:合同金额小写:5279800???大写:伍佰贰拾柒万玖仟捌佰元合同签订日期:2022-01-07合同公告日期:2022-02-11代理机构:常德市伟恒招标咨询有限公司免责声明:本页面提供的政府采购合同是按照《中华人民共和国政府采购法实施条例》的要求由采购人发布的,信息的真实性、准确性、完整性由采购人负责。
  • 首个在线质谱仪应用于移动监测车案例成功
    北方雾霾的持久不散,让开展PM2.5组分和VOCS专项监测迫在眉睫。辽宁省环境监测实验中心日前为争取时间,与仪器厂商沟通,先行借用2台仪器临时改装现有应急监测车,提前开展监测。将在线质谱仪应用于监测车开展移动监测,成为全国首个应用实例。  辽宁省环境监测实验中心于今年启动省级环境空气监测能力建设,先后编制“辽宁省大气环境超级站建设方案”、“辽宁省级大气流动监测系统建设方案”、“关注区环境空气自动监测点位建设”和“辽宁省提前实施环境空气质量新标准加快国家空气监测网建设方案”4个建设方案,已均获批准。  其中方案提出加快完成流动监测系统招标采购,对移动监测车进行改装,集成6参数监测设备、环境摄影系统和在线单颗粒物质谱仪,并实现数据远程传输和远程联合分析、联合指挥等功能。系统调试完成后将开展比对监测和考核,以及辽宁中部城市群颗粒物组分及来源分析等专项监测工作。  此外辽宁省2014年将全面启动超级站建设,主要完成站房仪器配置,包括3个实验室(多参数观测实验室、气溶胶观测实验室、光化学观测实验室)和1个中控展示系统建设,以及总体联调和试运行。超级站建设完成后,辽宁省空气质量监测将从单一常规监测转变为集业务与研究于一体的多层次监测阶段,将大大提高辽宁省监测能力和水平,更好的为管理提供决策支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制