当前位置: 仪器信息网 > 行业主题 > >

影像度二次量仪

仪器信息网影像度二次量仪专题为您提供2024年最新影像度二次量仪价格报价、厂家品牌的相关信息, 包括影像度二次量仪参数、型号等,不管是国产,还是进口品牌的影像度二次量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合影像度二次量仪相关的耗材配件、试剂标物,还有影像度二次量仪相关的最新资讯、资料,以及影像度二次量仪相关的解决方案。

影像度二次量仪相关的论坛

  • 二次元影像测量仪与投影仪有哪些区别?

    最近几十年不仅仅是我们,乃至全世界都能感受到中国制造的产品质量与效率都有质的飞跃。产品质量和效率的提升离不开生产设备和生产规范的高效管理,在管理过程中,对半成品、成品的合格率检测是必不可少的,以机械零件加工为例,在加工完一个机械零件后,我们对该机械零件的二维尺寸参数并不是很确定。这时,我们就需要通过检测手段,来获取机械零件的二维尺寸参数。传统的检测手段有投影仪、卡尺等,随着技术的进步,最新的二次元影像测量仪逐步替代传统检测手段,成为新的首选测量解决方案。今天我们就来分析一下[b]VX3000系列[color=#333333]二次元影像测量仪[/color][/b]与投影仪的区别。[align=center] [img]http://www.chotest.com/Upload/2019/6/201906149843071.jpg[/img][/align][align=center] [/align][b][color=#e01e2b]1.测量精度:[/color][/b]  投影仪检测工件的精度一般在45μm左右,在现代化的生产加工过程中,已经不能满足生产者的精度需求。二次元影像测量仪的测量精度普遍在±2μm左右,最高可达1μm,是完全可以满足生产者对精度的要求的。[b][color=#e01e2b]2.测量效率:[/color][/b]  用投影仪检测工件单次只可检测一个工件,并且需要在操作软件上定位原点,再进行一定编程工作,才可以测得一个工件的尺寸数据。二次元影像测量仪单次可以测量多个工件,小微型工件甚至可以测量几十个,只要在视场范围内,一次测多少个操作员说了算,二次元影像测量仪不需要定位原点,也不需要进行复杂的编程。只需在测量第一个工件时建立模板,此后测量相同的工件只需按一键测量按钮,即可得出工件的二维尺寸参数,批量测量最多可同时测量512个部位,大大提升了工作效率![b][color=#e01e2b]3.仪器体积:[/color][/b]  投影仪都是比较笨重的仪器,外形体积硕大,重达五六百千克,不方便搬运到不同车间进行检测作业。VX3000系列二次元影像测量仪的体积轻便,重量在30-40千克之间,单人即可搬运到不同的车间生产线上进行测量工作,省时省力省空间。

  • 二次元影像测量仪在工作中的广泛应用性

    二次元影像测量仪在工业生产中,有着广泛的应用,对很多行业的工件都可以进行测量,同时,在影像测量仪的测量中,也有着许多的测量方式,通过这些方式,影像测量仪才能顺利的完成测量的任务。 以下介绍精密检测仪器二次元影像测量仪的两个测量方式,他们分别是轮廓测量和表面测量。  1、轮廓测量  顾名思义就是影像测量仪测量工件的轮廓边缘,一般采用底部的轮廓光源,需要时也可加表面光做辅助照明,让被测边线更加清晰,有利于测量。  2、表面测量  表面测量可以说是二次元影像测量仪的主要功能,凡是能看到的物体表面图形尺寸,在表面光源照明下,影像测量仪几乎全部能测量,电路板上的线路铜箔尺寸、IC电路等,当被测物件是黑色塑料、橡胶时,影像测量仪也能轻易测量尺寸。http://www.zhengyekeji.net/include/upload/ckeditor/images/1319709450197084656155029.jpg  二次元影像测量仪(又名影像式测绘仪)是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个PCB实验室解决方案设备的主体。

  • 二次元影像测量仪使用及维护保养

    二次元影像测量仪使用及维护保养事项1、 在测量和归位时,移动工作台要注意不要大力撞击工作台两端,放置在撞击过程中损坏光栅尺。2、 仪器镜头是精密光学部件。在对仪器镜头倍率大小调整时,请注意调整方向和力度,以免损坏。3、 对仪器专用电脑的使用时要尽量避免电脑中毒,在使用杀毒软件是要主要不要将仪器的驱动插件删除。4、 不要擅自输入软件密码,修改软件的校准参数,除非得到我公司专业售后人员的同意和指导。5、 使用完毕后,关闭表面光和透射光的电源,延长LED灯使用寿命。6、 仪器使用完毕后,罩上防尘罩,避免灰尘进入。7、 放置工件时,要轻拿轻放,防止玻璃台面、或大理石台面划伤。8、 工作台导轨,Z轴升降导轨要定期喷涂防锈油,防止生锈,影响机台精度。9、 如果仪器需要搬动,请将工作台固定板和Z轴固定板锁紧,方可进行。10、仪器各紧固件及电气接插件都已经连接牢固,可靠、客户不得自行拆卸。11、请尽量保持仪器放置区域的温度、湿度符合要求,以提高仪器使用寿命和测量精度。本文转发自:http://www.yhyvm.com

  • 目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别?

    随着中国市场的科技技术日新月异,制造业对产品的精度要求越来越高,人为测量已无法满足客户要求,大家都开始借助仪器测量。目前市面上对于尺寸的测量主要是有二次元及三次元等。那么这些测量仪的区别在哪儿呢?目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 【资料】影像测量仪按分类是咋分的?

    影像测量仪在行业内又被称为视频测量仪,前期习惯叫它二次元;它是将工件的投影和视频图像集合在一起,进行影像传送和数据测量的光、机、电、软件为一体的非接触式测量设备。适用于以二坐标测量为目的的一切应用领域,机械、电子、仪表、五金、塑胶等行业广泛使用。 影像测量仪的分类如下:  一.影像测量仪按原理分类  A、手动型:手动移动工作台,影像测量仪具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;仪器备有RS-232接口,与电脑连接后,采用专用测量软件可对测绘图形进行处理及输出。  B、全自动型:全自动光学影像测量仪是最新推出的一款光学测量仪器,专为高端全自动量测市场量身定制。大幅度减少阿贝误差,提高的测量准确度,有效保证各轴稳定性。同时引进日本伺服全闭环控制系统,采用我司最新开发的MCINS自动量测软体,具有CNC编程功能,能够大幅度提高了定位精准度及重复性、且测量速度快。    二.影像测量仪按结构分类  A、小型影像测量仪:工作台行程范围比较小,适合较小工件的检测。一般行程在150mm以内。  B、普通型影像测量仪:工作台行程150mm—600mm之间,一般Y轴方向,行程在300mm范围内性价比是最好的。  C、增强型影像测量仪:在普通型的基础上加探头,从而到达三维测量的效果,可以检测高度。  D、大行程影像测量仪:大工作平台,根据客户的需求定制,奥秋目前可以制作1200mm左右行程,交货周期一般在3个月左右。

  • 二次衍射对STEM-Z衬度像和晶格像会产生什么样的影响

    二次衍射通常是由于重叠而产生的。二次衍射对衍衬像的影响可以通过做暗场像来辨别,如果是面缺陷导致的二次衍射,也可以通过倾转样品来加以确认。晶格像是相干成像,重叠会产生摩尔条纹,所以在对晶格像做图像的FFT后应该也能看到类似二次衍射斑点的附加斑点。求解惑:我们应该如何区分晶格像做FFT后多出来的附加斑点是由于相变还是二次衍射引起的呢? 重叠对HAADF-Z衬度像会产生什么样的影响?PS:问题有点非主流,做晶格像或者是HAADF-Z衬度像的时候都要求样品要足够薄,通常是不会有这些相关的顾虑的。但是在下的课题和纳米晶相关,晶粒尺寸比较小,在薄区附近也会有些许重叠,实在是无奈QAQ。

  • 分享影像测量仪的性能特点

    影像测量仪应用在各个不同的精密产品的行业中,是院校、研究所和计量检定部门的计量室、试验室以及生产车间不可缺少的计量检测设备之一。  影像测量仪的性能:  1、影像测量仪具备基本的点、线、圆、两点距离、角度等基本测量功能及坐标平移的功能,能满足基本的二次元测量要求。  2、花岗石底座与立柱,机构稳定可靠  3、影像测量仪的X、Y轴装有光栅尺,定位精确。  4、Z轴采用交叉导轨加配重块的全新设计,镜头上下升降受力均衡,确保精度。  5、LED冷光源(表面光合轮廓光)避免工件受热变形。  6、激光定位指示器,精确制定当前测量位置,方便测量。  7、影像测量仪可以使用OVMLite软件。  8、影像测量仪的镜头:3DFAMILY-S型0.7X-4.5X连续变倍镜头,影像放大倍率:28X-180X。

  • 【分享】二次元影像测量仪小知识

    【分享】二次元影像测量仪小知识

    影像式精密测绘仪系列产品,克服了传统 投影仪的不足,能将被测物体影像直接输入到计算机,使其数字化,在电脑或显示屏上生成画面让您更直观、简便、清晰的了解产品的形状、大小及尺寸。同时,您可以将所测得结果输出到Excel或Word软件里面作数据备份和客户所需测量资料传送。产品集绘图、测量、数据转换等功能为一体,功能更强大,操作更简便。它适用于五金、模具、机械、电子、注塑、橡胶等行业,是工程开发,绘图测量,品质检测的必备仪器。 1、CNC 电动桌面:(以软件功能控制工作台面,增加操作人员使用及操作上的方便性)。 2、CNC自动测量:可按客户自行设定的程序自动测量出产品尺寸,测量值可自动转到Excel生成统计报表。 3、SPC 数据转换( 制程能力 分析):能将测量之数据输出至Excel进行分析。 4、辅助 对焦 :由计算机判定每次的对焦面,以保证变换焦距时测量的重线性及精准度。 5、简易测高:搭配辅助对焦功能可测量Z轴高度。 6、图形输出到 AutoCAD :可将实时影像中按实际工件外形所描绘的图形直接输出到AutoCAD中成为工程图。 7、图形输出到AutoCAD并自动摆正:可将按实时影像中研润企业生产按实际工件外形所描绘的图形按实际需要来自行设定基准并在传输过程中摆正。 8、AutoCAD中标准工程制图输入:可把AutoCAD中的标准工程制图直接输入到测绘仪软件的影像中,令AutoCAD工程图兴实际工件外形重叠进行对比,从而找出工件和工程制图的区别。 9、 JPEG 图片输入:可输入先前拍照储存的JPEG图片兴实时影像中的实际工件进行重叠对比。 10、鸟瞰图:可观察工件的全图形研润企业生产并具有类似AutoCAD的缩放功能。 11、在鸟瞰全视图中进行标注:可以在鸟瞰的全图中进行标注尺寸。 12、自定义圆 :可按客户需要自定义标准的图(由客户自行定义圆的圆心坐标、直径、半径)。再以标准的圆和影像中的工件作重叠对比,从而找到工件与标准图形之间的误差。 13、自定义线段 :客户自行定义线段的起点坐标、长度、旋转的角度,再与影像中的工件作重叠对比,从而找到工件与标准图形之间的误差。 14、直接画图:直接移动工作桌,以十字线中心点画线、圆、弧时不仅可以在AutoCAD中直接生成图形同时在测绘仪软件的影像中也生成相同外形及位置的图形。 15、自设客户坐标 :可以根据客户本身的需要在实时影像中的实际工件上自行设定坐标原点(0,0),再以(0,0)点为基准在画面任一点上标示该点X,Y坐标位置。 16、坐标标注:以自己所设定之坐标原点(0,0)为基准,标注图上任意一点的坐标位置。 17、图形自动捕捉:可自行设定参数,研润企业生产对线、圆、弧进行自动扫描边缘并自动取得图形。 18、专利取R角功能:为目前市面上准确的平面取R角方式。19、测量:可测量平面上的任何几何尺寸(角度、直径、半径、点到线的距离、圆的偏心、两圆间距等等)。 20、绘图:可将实时影像中的实际工件外形进行描绘,研润企业生产形成完整的工程图,绘图方式和AutoCAD相似。 21、自动捕捉图形线条的各结点:可以自动捕捉线的起点、中点、终点及两线的交点、圆心及圆周上的三个结点,用于辅助标注绘图等应用功能。 22、标注:可在实时影像中的工件上标注尺寸。有长度、角度标注、坐标标注及连续标注等。 23、拍照:可拍下实物照片,包括所标注的尺寸。 24、自动测量:可以自动重复测量同一产品所要检测的尺寸而不需要每次重复绘图、标注,节省时间。25、描边;用于逆向工程,可将产品外形描边,描出图形可转入AutoCAD形成工程图。 26、形位公差:真圆度,真直度,可计算出产品上圆形真圆度及直线边真直度。http://ng1.17img.cn/bbsfiles/images/2012/04/201204161654_361710_2459908_3.jpg

  • 【资料】细菌总数在二次供水检测中准确度的控制

    细菌总数在二次供水检测中准确度的控制 徐霞君 (深圳市水质检测中心) 摘 要:二次供水水样中细菌总数检测结果的准确度往往受多方面因素的影响,具体表现在取样、培养基的配备、培养条件、无菌室实验操作、计数及后处理等。本文对各影响因素中的各个细节提出规范对策,从而使二次供水细菌总数在检测中的准确度得以控制。 关键词:细菌总数、二次供水、检测、准确度、控制   二次供水是生活饮用水二次供水的简称,是指通过二次供水设施间接向用户供给生活饮用水的行为,二次供水设施主要为地下水池与天面水池,按《深圳经济特区生活饮用水二次供水管理》规定,每年至少清洗消毒二次,消毒方式有氯消毒、二氧化氯消毒、臭氧消毒、紫外线消毒等,消毒完成后,由专业清洗机构及时通知市水质检测中心进行取样检测。我水质检测中心在对二次供水8项指标(色度、浑浊度、肉眼可见物、PH、细菌总数、总大肠菌群、余氯)的检测中,在统计其月检不合格率时,其中因细菌总数超标引起二次供水水质不合格的占绝大多数。我们在不排斥原水样的超标外(市政水在经过不合格的二次供水水箱设施时受到一次污染),但也存在二次供水水样的细菌总数在检测中受到二次污染,即在检测中受到各种因素的影响,具体表现在取样、培养基的配备、培养条件、无菌室实验操作、计数及后处理等。因此,要提高二次供水水样细菌总数的准确度,必须对各影响因素进行规范控制。 1 取样中的规范 取样中存在的规范控制主要表现在取样瓶灭菌和水样的采集与保存两方面。 1.1 取样瓶的灭菌 取样瓶必须是清洁无菌的,一般用磨砂口带塞瓶,瓶的颈部和上部必须用锡泊纸覆盖,在160~170℃的烘箱内经干热灭菌2h方能达到灭菌目的。有的技术人员把取样瓶的消毒时间控制为1h,灭菌不彻底。因各种微生物对热的抵抗力不同,芽孢需要160℃、2h才能杀死。 灭菌后的采样瓶,两周内未使用,需重新灭菌。已灭菌和封包好的采样瓶,不论在什么条件下采样时,均要小心开启包装纸和瓶盖,应避免瓶盖和瓶子颈部受杂菌污染。 1.2 水样的采集与保存 采样时,不要用水样冲洗采样瓶,因余氯的存在会影响待测水样在采集时所指示的真正细菌含量,为去除余氯,于灭菌前按500ml采样瓶内加0.3ml10%Na2S2O3溶液,瓶内须留足够空间,一般采样量为瓶容量的80%左右,以便操作时摇匀,以获得具有代表性的样品。

  • 全自动精密影像测量仪的优势

    [color=#2f2f2f]来源:http://www.dg[/color][url=https://links.jianshu.com/go?to=http%3A%2F%2Fbbs.elecfans.com%2Fzhuti_715_1.html]ti[/url][color=#2f2f2f]anze.com[/color]在精密影像检测仪器中,我们可根据仪器的具体影像将其划分为[url=http://www.dgtianze.com/www.dgtianze.com][b]二次元影像测量仪[/b][/url]和三坐标测量机两种,他们是在工业生产中常用的两种仪器,而客户在购买仪器时,只会根据自己的需要而选择一种,那么我们就要对每个类型的精密仪器再次的划分,那就是根据操作方式将其分为手动型和自动型两种。 在现在的精密影像检测行业中,不管是二次元还是三坐标,手动机台已经慢慢的被全自动影像仪所取代,那么,相比于手动,全自动在应用中有哪些优势呢? 不管是二次元等精密检测仪器,还是其他一些日常用品,我们对它们进行选择时,最终所要考虑的因素就是性价比,只有性价比最好的产品才能最终获得青睐,那么自动检测仪器的性价比与手动相比,好在哪里呢? 相比于手动机台,自动机台在价格上是无法去其相比的,一个手动的仪器,其价格仅仅是几万而已,而自动仪器的价格则是动辄几十万,因此自动机台在这方面是不具备优势的。那么我们就将二者的性能进行比较。手动与自动的操作方式不同,所以性能也有很大的区别,手动机台由于人为操作的因素,所以在检测过程中会产生很大的人为误差,这也手动二次元在检测中的精度就会大大的逊色与自动机型,再者手动机台由于需要手动进行控制,所以它的检测效率相比于自动机台,也是具有很大的差距,这样就无法满足相当大一部分客户的需求。 我们从以上可以看出,虽然自动机台的价格远远的高于手动型,可是自动二次元除了性能好之外,还能满足一些手动仪器所无法解决的问题。因此,综合这些因素,可以看出自动型仪器的性价比要优于手动型影像检测仪器,这也是为什么更多的人会选择自动影像测量仪的原因。 全自动影像测量仪是科溯源最新一代的高性能活动桥式测量机,它有着高稳定性的测量系统,可以快速有效的完成通用的检测需要,并最大程度的提高检测的效率。全自动影像测量仪具有以下的性能特点:1、单边活动桥式结构,显著提高运动性能,确保测量精度及稳定性。2、三轴导轨均采用高精度天然花岗岩,具有相同的温度特性及刚性。3、三轴导轨均采用自洁式预载荷高精度空气轴承,运动更平稳,导轨永不受磨损。4、应用范围广泛,可应用于汽车、电子、五金、塑胶、模具等工业行业中。

  • 激光粒度分析中的二次衍射

    激光粒度分析中的二次衍射

    激光粒度分析中的二次衍射任中京(山东建材学院,济南,250022) 摘要本文计论了双层颗粒群产生的二次衍射,并给出了二次衍射复场分布的表达式,同时讨论了二次衍射与颗粒浓度之间的关系,找到了抑制二次衍射的最佳浓度。本文结论对于提高激光粒度仪的测量准确度具有重要意义。关键词激光:粒度分析;二次衍射引言各种激光粒度分析仅均是通过检测颗粒群的衍射谱来分析颗粒大小及其分布的。为获得正确的衍射谱。需要颗粒群散布在同一平面上。而事实上,颗粒群在检测区内很难呈二维分布。对于动态颗粒群更是如此。只要颗粒群不满足二维分布的要求,那么经颗粒衍射的光,就有可能再次发生衍射.我们把此种衍射称为二次衍射。在激光粒度分析中,二次衍射是测量误差的主要来源。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441910_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441911_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441912_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441913_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281100_441914_388_3.jpg我们注意到衍射谱归一化总能量恰好等于入射光强度I0,这是物空间与频谱空间能量守恒的结果。 (18)式定量地给出了衍射谱中各种成分之间的比例关系,为我们研究抑制二次衍射的途径提供了依据。3 抑制二次衍射的最佳浓度从(18)式可见,在衍射谱中有三种成分同时共存,它们对粒度分析的作用各不相同:透射项对粒度分析没有贡献,应尽量减少;一次衍射谱是粒度分析的依据,要尽可能增强;二次衍射谱的作为一种宽带噪声叠加在之上,应尽力抑制。此三者在谱面上的分布如图 4所示。为了找到一个抑制二次衍射的最佳比例,我们把各项强度随 K值变化的规律及典型值列于表2,取I0=I,并绘出曲线。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281101_441915_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281101_441916_388_3.jpg4 结论综上所述,二次衍射谱是一次衍射谱的卷积,是叠加在一次衍射谱上的宽带噪声。二次衍射强度正等于颗粒在光轴方向重叠的几率。理论分析表明:当颗粒在分散介质中的体积浓度C0=0.17时,二次衍射可以得到有效地抑。本文讨论仅限于二次衍射,对于三维分布题粒产生的高次衍射,有待进一步研究。参考文献l J.W.顾德门.付立叶光学导论。北京:科学出版社,19792 REN,Z.J.eta1.PARTICUOIAJGY,1988

  • 二次拟合标准曲线的不确定度

    各位大神,谁手里有关于二次拟合曲线的不确定度评定的资料呢?实验室测试十溴二苯醚,标准曲线是二次的,从网上找了一天也没有找到关于二次拟合不确定度评定的方法。高手们知道的指导一下吧。

  • 二次拟合标准曲线的不确定度

    各位大神,谁手里有关于二次拟合曲线的不确定度评定的资料呢?实验室测试十溴二苯醚,标准曲线是二次的,从网上找了一天也没有找到关于二次拟合不确定度评定的方法。高手们知道的指导一下吧。

  • 各种光谱测量仪要如何区别

    目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 菜鸟请教二次电子像衬度明亮问题

    菜鸟请教二次电子像衬度明亮问题

    请教各位电镜专家一个问题:最近在观察钢中非金属夹杂时,成分上看很像夹杂,但是在二次电子像下观察时其呈现白亮色(和钢基体比)且感觉悬浮在基体表面上。而一般情况下夹杂物的二次电子像都比钢基体衬度深,发黑且边界清晰。请问导致这种情况发生的可能原因是什么,是这些夹杂物的导电性不好,还是因为这些夹杂物的化学成分特殊(均含Na、Li的氧化物,普通的夹杂物一般为Al、Ca的氧化物)?或者帮我普及一下二次电子像衬度(和基体相相比亮或暗)与哪些因素相关http://ng1.17img.cn/bbsfiles/images/2016/05/201605311533_595490_1613632_3.jpg

  • 一键式非接触光谱共焦测量仪

    一键式非接触光谱共焦测量仪

    如今三C行业,或者是精密仪器行业,都要求极高精度,我们人为是无法测量0.01以上的精度的,这个时候,问题就来了,我们要如何确保精度质量呢?针对这些需求,市面上推出了很多的测量仪器,有2次元,三次元这这些测量仪已经可以满足很多企业的需求了,但是有些企业的产品,他不仅仅是需要平面尺寸,他甚至还需要测量平整度。这次候就应运而生了一种五次远,这些仪器之间都有些什么区别呢?我们该如何选择适合自己的测量仪器呢?现在就将他们的区别来理一下,也给大家参考一下:现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。想要了解更多,可联系:15012834563,小周[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/12/201712291417_2603_3353984_3.jpg!w690x920.jpg[/img]

  • 【原创】二次电子像中的成分衬度

    【原创】二次电子像中的成分衬度

    一个表面抛光的金属样品,采用背散射电子像可以看到不同的成分分布,而采用二次电子像时也能同意观察到几乎完全相同的图像,应该说二次电子像中也包含部分元素成分的衬度信息,值得大家注意。[img]http://ng1.17img.cn/bbsfiles/images/2010/10/201010112130_250975_1872735_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/10/201010112131_250976_1872735_3.jpg[/img]

  • 【分享】什么是二次离子质谱分析?

    二次离子质谱(SIMS)是一种用于分析固体材料表面组分和杂质的分析手段。通过一次离子溅射,SIMS可以对样品进行质谱分析、深度剖析或成二次离子像。SIMS具有很高的元素检测灵敏度以及在表面和纵深两个方向上的高空间分辨本领,所以其应用范围也相当广泛。涉及化学、生物学和物理学等基础研究领域及微电子、催化、新材料开发等各个领域。 二次离子质谱法对于大部分元素都有很高的探测灵敏度,其检测下限可达百亿分之几的数量级。对痕量组分能进行深度剖析,可在微观(µ m级)上观察表面的特征,也可以对同位索进行分析和对低原子序数的元素(如氢、锂、铍等)进行分析。 ①痕量分析二次离子质谱法有极高的分辨率,可以达到十亿分之几的数量级。因此,可以对痕量的物质做出定性分析以确定其在表面的存在。当然进行这种分析要求排除所有可能影响结果的干扰。防止表面吸附物污染被测试表面,测试要在高真空和高纯度的离子束条件下进行。 ②定量分析定量分析采用的是以标样为基础的分析方法。一次离子的种类、能量和电流密度、样品环境、探测器效率以及二次离子分析器的能带通道确定之后,就能使用元素的相对灵敏度系数对样品进行确切的分析。只要二次离子质谱仪的灵敏度足以探测到基体的所有主要成分,所得结果就是这种基体材料成分的原子百分比。 ③深度分析深度分析的一般方法是监控样品中某元素的二次离子信号随溅射时间的变化。对于均匀基体材料,通过适当的标定试验(已知镀层厚度、陷口深度等)就能把时间转换为深度。元素的定量可以由二次离子强度的变化及二次离子强度定量分析方法得到。

  • 一次线性拟合与二次曲线拟合

    在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定某些元素时,如果高点发生弯曲,一次线性拟合不佳,r少于三个999时,而采用二次曲线拟合,r0.999,可不可以采用二次曲线?二次曲线拟合的可靠性如何?与一次线性相比,结果的准确度更可靠吗?

  • 【讨论】如何保证二次供水水质?

    实际上,我们现在饮用的自来水大多属二次供水。所谓二次供水,是指单位或个人将城市公共供水或自建设施供水经储存、加压,通过管道再供用户或自用的形式,二次供水是目前高层供水的惟一选择方式。二次供水设施是否按规定建设、设计及建设的优劣直接关系到二次供水水质、水压和供水安全,与人民群众正常稳定的生活密切相关。二次供水设施主要为弥补市政供水管线压力不足,保证居住、生活在高层人群用水而设立的。相比原水供水,二次供水的水质更容易被污染,二次供水的安全性和可靠性一直都受到市民的广泛关注。二次供水水质污染的直接结果是影响用户感官、使饮用者感到恶心、呕吐、腹胀、腹泻,严重的甚至发病,或由于掉入二次供水设备的虫子、老鼠等携带的病菌入侵,使二次供水水质污染,可导致二次供水系统用户发生集体性腹泻,严重危害人体健康和扰乱居民生活秩序。 因为二次供水涉及到产权问题,给充分保证其水质带来了难度,大家都是怎么做的啊?

  • 【原创大赛】材料显微分析技术简介——第一篇 神奇的二次电子

    【原创大赛】材料显微分析技术简介——第一篇 神奇的二次电子

    材料显微分析工作不仅限于通过显微镜等设备对材料的微观形貌进行拍摄,还包括了对所拍摄到的微观图像进行分析。对这些数据的分析工作要求我们一定要考虑到:对样品自身背景、取样方法、制样工艺、拍摄条件以及接收信号种类对测试结果的影响。对电镜原理及分析技术的理解不仅可以让我们得到漂亮美观的显微图像数据,可以帮助我们挖掘到很多关于材料本身的信息。我们知道扫描电镜对样品的微观信息进行分析,有各种个样的成分信息。比如背散射电子、二次电子、背散射电子衍射花样、阴极荧光、特征X射线、韧致辐射X射线等等。[align=center][img=,690,329]http://ng1.17img.cn/bbsfiles/images/2017/07/201707310824_01_1735_3.jpg[/img][/align][align=center]图1、 不同二次电子的特征及产生机理示意图[/align]拿二次电子衬度形貌的分析来举例如图1所示,二次电子在扫描电子显微镜中主要分三大类:第一类是一次二次电子SE1,主要是由入射电子与样品极表面(几纳米的深度)相互作用而产生的,它的产率受入射电子束方向与样品表面夹角的影响,因此体现的是样品的形貌衬度;第二类是二次二次电子SE2,主要是由入射电子束在材料机体内发生弹射后又从电子束进入材料的入射点周围及附近弹出时,与材料表面相互作用而引起的,它的产率受材料主体成分及材料晶体取向的影响,因此体现的是材料成分信息及材料晶体取向信息(一般情况下SE1信号在材料的观测中为主要衬度,只有在SE1衬度极弱的条件下,SE2信号的衬度才可以被我们观察到);第三类是三次二次电子SE3,主要是由电镜样品舱内或物镜极靴或样品台与弹射出样品的背散射电子作用而产生的,它一般是作为噪音来被二次电子探测器接收到的,这类信号越多,电镜拍摄到的图像衬度越差。[align=left][b]SE2二次电子的应用[/b][/align]我们都知道一般SE1二次电子用来观测图像的形貌衬度,而把SE2或SE3当做噪音来看待,但是随着制样工艺及电镜表征技术的发展,SE2二次电子信号也可以被我们用来分析材料的微观结构信息,如下图粉末颗粒截面:[align=center][img=,690,518]http://ng1.17img.cn/bbsfiles/images/2017/07/201707310824_02_1735_3.jpg[/img][/align][align=center]图2 电极材料截面形貌观测[/align][align=center][/align][align=left]我们可以观测,当通过氩离子束抛光把样品表面抛的绝对平的时候,SE1的形貌衬度在图中样品的平面部位的衬度就很弱,因此反应晶体取向衬度的SE2信号就被我们观察到了,图像中颗粒截面的这种亮暗不同是由不同 取向的晶粒造成的,通过它我们可以很直观的看到样品的晶粒度(亮暗区域的大小)、晶体取向差(亮暗灰度绝对值)。对我们研究新材料的性能及合成工艺有很大的帮助。[/align][align=center][/align]

  • 【“仪”起享奥运】为何悬浮物恒重总是第三次和第一次接近,第二次误差很大?

    问题描述:为何有时悬浮物的两次恒重称量读数不稳,第二次比第一次的还重?以前同样做法恒重很简单,现在总是出问题,最近水样有多。解答:主要是天平称量产生的随机误差所致,而随机误差有正有负;其次是天平室不是恒温恒湿,其前后称量的环境条件不一致和称量瓶密封差,如在雨季实验室受高湿环境影响,称量值便可能不稳定和越称越重。为了消除天平的随机误差,获得准确的恒重差,建议每次称重应当在称量部件从干燥器中取出后 1min 内完成,初次读数后,分别按 5s 的等时间间隔读取另外两个读数,记录 3 个读数的平均值做为一次称量结果;第一次称量结束后,将称量部件放回干燥器平衡或烘箱处理至规定时间,将天平归零后再进行第二次称量,两次称量符合允差取平均,不符合就再进行第三次恒重。恒重称量的环境条件影响,建议三次称重的室内温度差异不超过 1℃度,湿度不超过 5%。

  • 原吸中一次拟合与二次拟合

    原子吸收光谱法中一次曲线和二次曲线有何区别?1、拟合原理的区别2、试验结果的影响3、两种拟合有何优缺点欢迎大家讨论!http://simg.instrument.com.cn/bbs/images/default/em09502.gif

  • 【求助】请问利用二次电子像能否判断金属分布

    看过论坛上的一些资料,初步了解BSE信号分辨金属分布区域应该效果更好,但此图片(请见附件)是SEM-SEI,二次电子像。[b][i]讨论开始:[/i][/b]图中有些圆孔顶端(黄箭头所指处)比其他区域衬度更亮,当然二次电子像受表面形貌影响甚大,原来怀疑是由此引起,但请看图中红箭头所指的管,其高度应明显高于周围,但周围有几个圆孔顶端却更亮;另外,请看兰色箭头所指的两根管子,上边的一个景深方向明显暗于顶口(好象有一层东西的感觉),而下边这个管延景深方向却是一直很亮。管的材料是钛(原子序数22),表面做过修饰,为金(原子序数79)。[b][i]请问我能否初步判断:[/i][/b]那些特别亮的管顶口有金的存在?我是初学者,请多指教,谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制