当前位置: 仪器信息网 > 行业主题 > >

有源电力滤波器

仪器信息网有源电力滤波器专题为您提供2024年最新有源电力滤波器价格报价、厂家品牌的相关信息, 包括有源电力滤波器参数、型号等,不管是国产,还是进口品牌的有源电力滤波器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合有源电力滤波器相关的耗材配件、试剂标物,还有有源电力滤波器相关的最新资讯、资料,以及有源电力滤波器相关的解决方案。

有源电力滤波器相关的资讯

  • 德州仪器推出独立式有源EMI滤波器IC 支持高密度电源设计
    2023年3月28日,德州仪器 (TI)(纳斯达克股票代码:TXN)宣布推出业内先进的独立式有源电磁干扰 (EMI) 滤波器集成电路 (IC),能够帮助工程师实施更小、更轻量的 EMI 滤波器,从而以更低的系统成本增强系统功能,同时满足 EMI 监管标准。随着电气系统变得愈发密集,以及互连程度的提高,缓解 EMI 成为工程师的一项关键系统设计考虑因素。得益于德州仪器研发实验室 Kilby Labs 针对新概念和突破性想法的创新开发,新的独立式有源 EMI 滤波器 IC 产品系列可以在单相和三相交流电源系统中检测和消除高达 30dB 的共模 EMI(频率范围为 100kHz 至 3MHz)。与纯无源滤波器解决方案相比,该功能使设计人员能够将扼流圈的尺寸减小 50%,并满足严苛的 EMI 要求。更多有关德州仪器新的电源滤波器 IC 产品组合的信息,请参阅TI.com/AEF。   德州仪器开关稳压器业务部总经理 Carsten Oppitz 表示:"为了满足客户对更高性能和更低成本系统的需求,德州仪器持续推动电源创新,从而以具有成本效益的方式应对 EMI 设计挑战。我们相信,新的独立式有源 EMI 滤波器 IC 产品组合将进一步助力工程师解决他们所面临的设计挑战,并大幅提高汽车、企业、航空航天和工业应用中的性能和功率密度。"   显著缩减系统尺寸、重量和成本,并提高可靠性   如何实施紧凑和高效的 EMI 输入滤波器设计是设计高密度开关稳压器时的主要挑战之一。通过电容放大,这些新的有源 EMI 滤波器 IC使工程师能够将共模扼流圈的电感值降低多达 80%,这将有助于以具有成本效益的方式提高机械可靠性和功率密度。   新的有源 EMI 滤波器 IC 系列包括针对单相和三相商业应用的 TPSF12C1 和 TPSF12C3,以及面向汽车应用的 TPSF12C1-Q1 和 TPSF12C3-Q1。这些器件可有效降低电源 EMI 滤波器中产生的热量,从而延长滤波电容器的使用寿命并提高系统可靠性。   新的有源 EMI 滤波器 IC 包括传感、滤波、增益、注入阶段。该 IC 采用 SOT-23 14 引脚封装,并集成了补偿和保护电路,从而进一步降低实施的复杂性并减少外部组件的数量。   减轻共模发射以满足严格的EMI标准   国际无线电干扰特别委员会 (CISPR) 标准是限制电气和电子设备中 EMI 的全球基准。TPSF12C1、TPSF12C3、TPSF12C1-Q1 和 TPSF12C3-Q1 有助于检测、处理和降低各种交流/直流电源、车载充电器、服务器、UPS 和其他以共模噪声为主的类似系统中的 EMI。工程师将能够应对 EMI 设计挑战,并满足 CISPR 11、CISPR 32 和 CISPR 25 EMI 要求。   德州仪器的有源 EMI 滤波器 IC 满足 IEC 61000-4-5 浪涌抗扰度要求,从而大幅减少了对瞬态电压抑制 (TVS) 二极管等外部保护元件的需求。借助 PSpice® for TI 仿真模型和快速入门计算器等支持工具,设计人员可以轻松地为其系统选择和实施合适的元件。   德州仪器始终致力于通过持续的突破性成果进一步推动电源发展,例如,低 EMI 电源创新可帮助工程师缩减滤波器尺寸和成本,同时显著提高设计的性能、可靠性和功率密度。   封装及供货情况   车规级TPSF12C1-Q1 和 TPSF12C3-Q1 现已预量产,仅可从 TI.com.cn 购买,采用 4.2mm x 2mm SOT-23 14 引脚封装。2023 年 3 月底,商用级 TPSF12C1 和 TPSF12C3 的预量产产品将可通过 TI.com.cn 购买。TPSF12C1QEVM 和 TPSF12C3QEVM 评估模块可在 TI.com.cn 上订购。TI.com.cn 提供多种付款方式和配送选项。德州仪器预计各器件将于 2023 年第二季度实现量产,并计划在 2023 年晚些时候发布另外的独立式有源 EMI 滤波器 IC。
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 上海微系统所实现集成3D打印编码滤波器的超导单光子光谱仪
    近日,中科院上海微系统所尤立星、李浩团队,陶虎团队以及上海交通大学王增琦团队合作,结合超导纳米线单光子探测技术、双光子3D打印编码滤波技术、计算重构技术等实现单光子计数型光谱分析仪。相关成果以“Superconducting Single-Photon Spectrometer with 3D-Printed Photonic-Crystal Filters”为题于2022年9月27日在线发表在中科院一区学术期刊ACS Photonics上,并被选为当期副封面论文。 图1 集成3D-打印滤波器的超导单光子光谱仪概念图   光谱作为物质的指纹,是人类认知世界的有效手段,在科学研究、生物医药等领域已经有了较为普遍的应用。目前,在单光子源表征、荧光探测、分子动力学、电子精细结构等领域的光谱测量,已经达到了量子水平,例如,在生物、化学和纳米材料领域需要对单个原子、分子、杂质等微弱光谱进行探测分析,这些光谱覆盖范围广,强度弱,因此,对宽谱、高灵敏度、高分辨率的光谱探测器存在迫切需求。   传统的半导体探测器如光电倍增管(PMT)、雪崩二极管(SPAD)等虽然实现了单光子灵敏度的探测,但是存在近红外探测效率低,噪声大,探测谱宽有限等问题。近年来快速发展起来的超导纳米线单光子探测器(SNSPD)因其高效率(90%)、低暗计数(0.1cps)、低抖动(~3ps )、宽谱(可见~红外)的优异性能,在众多领域都得到了应用。将SNSPD集成到光谱分析仪中,不仅能够实现极弱光的光谱测量,还具备非常宽的工作范围,在量子信息技术、天文光谱、分子光谱等领域具有重要的应用价值。该工作中,合作团队利用超导单光子探测器的高效、宽谱等性能优势,首先设计制备4*4阵列型偏振不敏感超导单光子探测器,然后借助双光子3D打印技术的灵活性在每个探测器像元上制备光子晶体编码滤波器,最后通过分析探测像元光谱响应特性等建立了计算光谱重构问题的数学模型,最终实现光子计数型光谱分析仪。   文中该光谱分析仪工作范围覆盖 1200~1700nm,灵敏度达到-108.2dBm,分辨率~5nm。相比当前商业光谱仪的灵敏度(一般灵敏度在-60~90dBm),具有两个数量级以上的提升,为单光子源表征、前沿天文光谱学、荧光成像、遥感、波分复用量子通信等微弱光谱分析领域的研究提供了有效的解决方案。论文第一作者为上海微系统所博士研究生肖游,第二作者为上海微系统所博士研究生维帅,第三作者为上海交通大学徐佳佳。通讯作者为上海微系统所陶虎研究员、李浩研究员、尤立星研究员。该研究得到了国家自然科学基金(61971408 、61827823), 重点研发计划 (2017YFA0304000), 上海市量子重大专项 (2019SHZDZX01), 上海市启明星(20QA1410900)以及中科院青促会 (2020241、2021230)等项目的支持。论文致谢清华大学张巍教授、郑敬元博士的讨论。
  • 我国高温超导滤波系统实现规模商业应用
    记者10月22日从在清华大学召开的高温超导滤波技术成果鉴定会上获悉,我国自主研制、拥有完全自主知识产权的高温超导滤波系统首批产品订货已完成生产并交付用户使用,在全国16个省市区的通信装备上投入长期实际应用。这是我国高温超导应用研究的重大突破,标志着我国高温超导在通信领域已进入规模商业应用和产业化阶段。鉴定会专家对项目成果给予高度评价,鉴定意见指出,项目总体技术达到国际先进水平,为采用高温超导技术提高通信装备的抗带外干扰性能和电磁兼容性奠定了坚实的技术基础,为我国通信现代化作出了重大贡献。   据该项目负责人、清华大学物理系教授曹必松介绍,自1986年高温超导材料发现至今,26年来我国投入大量人力物力进行应用研究和技术攻关,其最终目的就是要实现高温超导材料的大规模商业应用。“这次高温超导滤波系统由最终用户采购,在全国16个省市区批量供货投入运行,与一般的研究或以试验为目的的应用完全不同,标志着经过长期不懈的研究,我国高温超导研究已经从实验室研究阶段发展到了面向最终用户的大规模商业应用。高温超导真正的实际应用已经成为现实。”   据了解,在微波频段,高温超导材料的电阻比普通金属低2—3个数量级,用超导薄膜材料制备的滤波器带内损耗小、带边陡峭、带外抑制好,具有常规滤波器无法比拟的、近于理想的滤波性能。“但是高温超导材料必须在其转变温度Tc以下才能实现其超导零电阻特性,所以高温超导滤波系统的研发难度非常大。我们和综艺超导科技有限公司共同研发的超导滤波系统是由超导滤波器、在零下200摄氏度工作的低噪声放大器和小型制冷机等部件组成的,具有极低的噪声和极好的频率选择性,可应用于各种无线通信装备,同时大幅提高灵敏度和选择性、提高抗干扰能力和探测距离等。”曹必松说。   2005年,在国家科研经费支持下,该项目组在北京建成了超导滤波系统移动通信应用示范基地,实现了小批量长期应用。为实现超导滤波系统在我国的规模化商业应用,在国家相关部门和各级领导支持下,清华大学和综艺超导科技有限公司的研究团队十余年如一日,艰苦奋斗,攻克了高性能超导滤波器和低温低噪声放大器设计制备技术、多通道超导滤波器性能一致性研制技术、满足装备苛刻使用要求的环境适应性技术和超导滤波系统集成技术等一系列技术难题,获得超导滤波技术授权发明专利10多项,于2009年12月完成了超导滤波系统产品样机的研制。   2010年1月至11月,在国家主管部门的组织下,由7个专业测试单位对超导滤波系统产品进行了全面性能测试,包括电性能测试,满足通信装备高低温、冲击、振动、低气压、盐雾、霉菌、湿热等苛刻使用要求的环境适应性试验,通信装备加装超导滤波系统前后的性能对比试验和用户长期试用等。   试验结果表明,超导滤波系统的全部性能都达到或超过了通信装备实际应用的技术要求。在通信装备上加装超导滤波系统前后的性能对比试验表明,超导滤波系统使重度干扰下原本无法工作的通信装备恢复了正常工作,使中度干扰下装备最大作用距离比原装备平均增加了56%。自2010年10月起,超导滤波系统在该型通信装备上投入长期运行,至今已连续无故障运行2年以上。   2011年1月19日,超导滤波系统通过了国家主管部门组织的技术鉴定,获得了在我国通信装备实际应用的许可。同年8月,综艺超导公司获得了首批5种型号超导滤波系统产品的订货合同,在全国10多个省市区推广应用。其他型号超导滤波系统产品也将在未来几年内陆续投入市场。   据介绍,综艺超导科技有限公司由江苏综艺股份有限公司等股东投资、在2006年成立的高新技术企业,公司设在北京中关村科技园区。目前,综艺超导已建成一流水平的超导滤波系统生产基地,并且已经顺利完成首批高温超导滤波系统批量生产和用户交付。   曹必松说,高温超导滤波技术在移动通信、重大科学工程和国防领域具有广阔的应用前景。为进一步推广超导滤波技术的应用,还需要攻克适应于各种不同通信装备应用要求的高难度的超导滤波系统设计、制备技术、适应于各种应用环境的环境适应性技术等研究难题。   与会专家认为,经过未来几年的努力,该技术将在更多无线通信领域获得大规模应用,并带动超导薄膜、制冷机、专用微波元器件等相关产业链的形成和发展,在我国形成一个全新的高温超导高技术产业,为我国通信技术的升级换代提供一种全新的、性能优异的解决方案。
  • 应用案例 |吸收光谱优化基于深度学习网络的自适应Savitzky Golay滤波算法
    Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.近日,来自安徽大学、山东师范大学联合研究团队发表了一篇题为Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究论文。研究背景 Research BackgroundNitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.氮氧化物(NO2)是大气中的主要污染物,源自自然光照、排放和工业排放。长时间暴露于NO2与呼吸问题的风险增加有关。NO2在大气中产生的二次污染物可能导致光化学烟雾和酸雨。激光光谱学,如吸收光谱、荧光光谱和拉曼光谱,在物理学、化学、生物学和材料科学中发挥着日益重要的作用。它为追踪具有极高灵敏度、选择性和快速响应的气体分析提供了强大的平台。激光吸收光谱已被用于NO2的定量分析。然而,测得的气体吸收光谱数据通常受到各种噪声的污染,如随机和相干噪声,这可能扭曲有效吸收光谱并影响检测灵敏度。The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple multivariate thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.最近,Savitzky-Golay(S-G)滤波算法因其参数较少、操作速度较快且保留了光谱的高度和形状而受到关注。此外,可以在一个简单的步骤中计算导数和平滑的光谱。Rivolo和Nagel开发了一种自适应S-G平滑算法,逐点选择最佳滤波参数。通过简单的多变量阈值方法,S-G滤波器可以去除连续葡萄糖监测(CGM)信号中的所有类型噪声,并进一步用于检测低血糖/高血糖事件。S-G平滑滤波器广泛用于平滑傅立叶变换红外光谱的光谱,可消除随机地震噪声、遥感图像融合和脉动波的处理。The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance. S–G 平滑滤波器的性能取决于多项式阶数和窗口大小的适当折中。然而,在实际应用中,噪声源和吸收光谱是未知的。在固定的窗口大小和多项式阶数下获得最佳的滤波效果是困难的。为解决这个问题,我们提出了一种优化的自适应S-G算法,将深度学习(DL)网络与传统的S-G滤波结合起来,以提高测量系统的性能。实验设置Experimental setupFig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube&trade , HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.图1展示了实验设置,包括光源、带有气体压力控制器的多通道吸收池、一系列镜子、探测器和计算机。Fig. 1. Experimental device diagram.宁波海尔欣光电科技有限公司为此项目提供了量子级联激光器(型号:QC-Qube&trade 全功能迷你量子级联激光发射头)。激光器由温度控制器控制,最大峰值输出功率为30 mW,由电流控制器控制,工作在~6.2 mm,通过钙氟化物(CaF2)镜子的辐射与追踪激光(可见红光,波长632.8 nm)共线,使用氧化锌硒(ZnSe)分束器。光束进入具有2 m有效光程的多通道池,通过流量控制器和气体池入口和出口的隔膜泵控制池中的压力。典型频率为100 Hz的三角波用作扫描信号。在296 K的温度下,波数从1630.1调至1630.42 cm-1。使用热电冷却的汞镉镓探测器进行信号检测,该探测器使用75 mm焦距的平凸透镜。DAQ卡探测器放置在探测器旁边,将数据传输到计算机,数据由LabVIEW程序进行实时分析。QC-Qube&trade , HealthyPhoton Co., Ltd.Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.结论ConclusionAn improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.在这项研究中,我们开发了一种改进的Savitzky-Golay(S-G)滤波算法,用于去噪氮氧化物(NO2)的吸收光谱。我们引入了深度学习(DL)网络到传统的S-G滤波算法中,以实时调整窗口大小和多项式阶数。DL网络的自适应和跟踪反馈能够有效解决数字信号处理中选择输入滤波器参数的盲目性。我们将优化后的自适应S-G滤波算法与多信号平均滤波(MAF)算法进行比较,以展示其性能。优化后的S-G滤波算法被用于检测氮氧化物在基于中量子级联激光器(QCL)的气体传感器系统中的应用。实验结果表明,该算法获得了5倍的灵敏度增强,表明新开发的算法可以生成高质量的气体吸收光谱,适用于大气环境监测和呼吸气检测等应用。reference参考来源:Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187
  • 可用于医疗诊断或药效检测的新技术“波长诱导频率滤波”
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。这种传感器还可以用于检测肿瘤细胞死亡的分子特征。除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 兰光发布铝箔针孔检测仪 药用铝箔针孔度检查台新品
    铝箔针孔检测仪 药用铝箔针孔度检查台SBG-80T针孔检测台,由D6500高显色性超级光管与精密制造的投光机构组成。各项技术指标充分满足CIE国际照明委员会及CY3-91标准有关色评价与配色比色照明条件的规定。可全天候应用于铝箔针孔度的测试。SBG-80T针孔检测台专业技术:进口CIE D65 光源配置光谱稳定、显色准确符合标准的钢化玻璃,照度规范、光照均匀、可靠安全配置光源寿命自动计时器,方便用户及时了解仪器的运行情况测试原理:在规定的环境及灯箱光源下,利用铝箔针孔的透光性,观察铝箔针孔数量,并测量针孔的尺寸。测试标准:该仪器参照多项国家和国际标准:GB/T 3198、GB/T 22638.2、YBB 00152002-2015测试应用:基础应用:药用铝箔——适用于药品包装用铝箔针孔度测试工业铝箔——适用于工业用铝箔针孔度测试SBG-80T针孔检测台技术指标:观察尺寸:400×250mm色温:6500 K玻璃透射光照度:1000Lux左右使用环境光照度:20Lux-50Lux放大倍数:100倍最小刻度值:0.01mm电源:220VAC 50Hz/ 120VAC 60Hz外形尺寸:800mm(L) × 600mm(W) × 230mm(H)净重:10 kg产品配置:标准配置:主机、显微镜创新点:1、推出的新产品,用于铝箔材料针孔检测 2、实验效率高,坚固耐用,外形美观 铝箔针孔检测仪 药用铝箔针孔度检查台
  • 俄乌战场惊现国产手持分析仪器,性能还很惊艳
    自俄乌战争爆发以来,全球目光聚焦于那些参战的兵器和设备。在战场上,一件引起关注的装备是中国广东生产的SA6型频谱分析仪,它在俄军的配备中起到了不可忽视的作用。根据社交媒体上流传的最新视频,俄军士兵目前正在使用中国广东某企业生产的SA6型手持频谱分析仪,在战场环境下进行快速的射频环境分析,以探测附近是否有乌克兰军队的无人机行动。经过笔者检索发现,该仪器在网上公布的价格为1490元人民币。发货地为广东深圳。在另一个平台显示的价格为371.95€。据介绍,SA6是一款简单的便携式频谱分析仪和信号范围,旨在显示 35 至 6200 MHz 频率范围内的信号频谱。频谱分析仪可以处理来自所有广泛使用的技术的信号:Wi-Fi、2G、3G、4G、LTE、CDMA、DCS、GSM、GPRS、GLONASS等。另一个重要特点是跟踪发生器的附加功能,可以测量无源或有源设备(如滤波器或放大器)的频率响应。该软件允许测量驻波比和回波损耗模块。这需要一个外部定向耦合器和一套校准措施。专场链接:#频谱分析仪-厂商-品牌-仪器信息网 (instrument.com.cn)#
  • 近红外光谱的柔性生命力——Norris导数滤波浅说
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   导读:近红外(NIR)光谱分析是融合样本、变量和模型三个多维空间的建模体系。它具有直接快速的分析优势,同时,也对方法学提出了挑战。光谱预处理是一项基本技能,在信息提取、去噪,模型维护及传递中扮演重要角色。由于对象、条件和测量方式的多样化,预处理模式通常需要个性化优选。Norris导数滤波(NDF)包含导数阶数、平滑点数和差分间隔三个可变参数,是多模式的算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。本文以近红外玉米粗蛋白分析为例,分享对Norris导数滤波的理解。在材料制作前期,惊闻Karl H. Norris博士病逝!谨以此文悼念Dr. Karl H. Norris! /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 319px " src=" https://img1.17img.cn/17img/images/201908/uepic/dd11b712-09f6-4b18-87b6-a00f0bd3234f.jpg" title=" 微信图片_20190819100830.jpg" alt=" 微信图片_20190819100830.jpg" width=" 300" height=" 319" border=" 0" vspace=" 0" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span br/ /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 暨南大学光电工程系 潘涛教授 /strong /span /p p span style=" color: rgb(0, 176, 80) " strong   引 言 /strong /span /p p   众所周知,近红外(NIR)光谱是典型的多维信息数据。近红外光谱分析是融合样本、变量和模型三个多维空间的建模体系,化学计量学是核心技术。相对于其他分析手段,近红外光谱具有快速简便的优势,它可以不进行化学或物理的前处理,直接进行测量。例如,采用漫反射法直接测量固体样品(如粉末,颗粒,纤维等)、透射法直接测量多种组分的复杂液体样品(如血液,牛奶,酒类等)。同时,它也对方法学提出了挑战。例如,需要处理光谱基线漂移和倾斜等光谱扰动。光谱预处理是非常必要的,但由于样品和测量方法的多样性,预处理模式通常需要个性化优选。 /p p span style=" color: rgb(0, 176, 80) " strong   1. 几类常见光谱预处理方法 /strong /span /p p    span style=" color: rgb(0, 176, 80) " strong 标准正态变量变换 /strong /span (standard normal variate transformation, SNV)是常用的光谱预处理方法。它在每一条光谱内进行横向标准化处理,提升光谱之间的差异度,提高模型稳健性和预测能力 sup [1, 2] /sup 。用于消除固体颗粒大小、表面散射以及光程变化对NIR漫反射光谱的影响 sup [3] /sup 。最近,我们将SNV方法应用于水稻种子鉴别、种子纯度定量的近红外分析 sup [4, 5] /sup 。 /p p    span style=" color: rgb(0, 176, 80) " strong 多元散射校正 /strong /span (multiplicative scatter correction, MSC)是另一种常用的光谱预处理方法 sup [6~9] /sup 。它与SNV基本相同,主要是消除颗粒分布不均匀及颗粒大小产生的散射影响,在固体漫反射和浆状物透(反)射光谱中应用较为广泛 sup [3] /sup 。MSC假设样品光谱与平均光谱整体线性相关,并以全谱区为窗口来校正所有波长的吸光度。然而,在宽谱段的情形,难以对局部相关性差的波长实现满意的校正效果,这会影响光谱的整体预测能力。 /p p   文献[10]提出的 span style=" color: rgb(0, 176, 80) " strong 分段多元散射校正 /strong /span (piecewise multiplicative scatter correction, PMSC)是一种分段线性校正方法。PMSC方法允许可变的校正窗口(p+1+q),从算法上覆盖MSC。校正窗口参数的优化是必须的 sup [11] /sup ,然而,受限于当时的计算机水平,相应的参数优化平台尚未建立,影响了PMSC方法的应用。最近,本团队提出移动窗口相关系数谱,用于描述光谱之间的局部相关性,构建了基于PLS回归的PMSC参数优化平台,取得了显著优于MSC的预测效果,应用于水稻种子纯度、土壤有机质的近红外分析 sup [12] /sup 。 /p p   上述基础性的光谱预处理方法,通常需要和平滑、求导法进行联用。平滑用于消除弱噪声而保留光谱轮廓,一阶导数用于校正光谱的基线漂移(additive baseline),二阶导数用于校正光谱的线性基线漂移(linear baseline)等噪声 sup [11] /sup 。 /p p    span style=" color: rgb(0, 176, 80) " strong Savitzky-Golay平滑 /strong /span (SG smoothing)是一种十分优雅的产生导数光谱的预处理方法 sup [13] /sup 。它采用平滑窗口波长数(2m + 1)、多项式次数(n)和导数阶数(s)作为参数。在平滑窗口内,对中心波长的光谱数据进行多项式校正,再通过移动窗口方式实现全谱的校正。不同的参数组合对应不同的平滑模式,计算公式也各不相同。功能各异的参数的融合,提升了近红外光谱的柔性生命力,可满足多样性光谱预处理的个性化需求。本团队构建了三维参数(m,n,s)遍历的偏最小二乘(PLS)算法平台,实现了SG平滑模式的大范围参数优化,应用于近红外光谱的血糖分析 sup [14] /sup 、土壤检测 sup [15,16] /sup 、转基因甘蔗育种筛查 sup [17] /sup 、糖化血红蛋白分析 sup [18] /sup 、地中海贫血筛查 sup [19,20] /sup 、血粘度测定 sup [21,22] /sup 等方面。 /p p    span style=" color: rgb(0, 112, 192) " Norris导数滤波(Norris derivative filter, NDF)是另一个著名的光谱预处理方法。它由被誉为“近红外光谱之父”的Karl H. Norris博士等人提出 sup [23, 24] /sup 。但是,Norris当时只简单的描述了算法的框架,后面的应用文献中也未看到详细描述。我们在褚小立的专著 sup [3] /sup 中找到了稍微具体的公式,但是严格的方法体系,特别是多参数融合方法仍需完善。在从事近红外光谱的长期工作中,我们深感到Norris导数滤波的柔性生命力。 /span /p p span style=" color: rgb(0, 112, 192) "   最近,仪器信息网和中国仪器仪表学会近红外光谱分会计划开设的《近红外光谱新技术/应用进展》网络专题,并向我约稿。由此,萌发了写一篇小文介绍Norris导数滤波的想法。 /span /p p span style=" color: rgb(0, 176, 80) " strong   2. Norris导数滤波(NDF) /strong /span /p p   NDF是一个基于多个可变参数的多模式光谱预处理算法群,在近红外分析中有广泛应用。它包括移动平均平滑和差分求导两个环节,使用三个参数:平滑点数(s),导数阶数(d)和差分间隔(g)。功能各异的参数组合,提供了多样性的光谱预处理方式,可以满足不同对象的近红外分析的个性化需求。 /p p   最近,我们构建了三维NDF参数(d,s,g)遍历的PLS算法平台,实现了NDF模式的大范围参数优化,应用于玉米粗蛋白分析和血清尿素氮分析 sup [25, 26] /sup 。 /p p span style=" color: rgb(0, 176, 80) " strong   【移动平均平滑】 /strong /span /p p   移动平均平滑法选择一个具有奇数个波长的平滑窗口(s),用窗口内的全体测量值的平均值代替中心波长的测量值,自左至右移动窗口,完成对所有点的平滑(左右半宽带的波长除外)。设全谱段的波长总数为N sub 0 /sub ,s是一个可变的奇数,s = 1, 3, & #8230 ,S。理论上,S可以取不超过N sub 0 /sub 的最大奇数。由于关联性低,采用太宽的平滑窗口是不合理的,本文设平滑点数上限S=99。特别地,s=1代表不进行移动平均平滑,即,原光谱。 /p p   设光谱的第k个波长的吸光度为x sub k /sub ,在以k为中心,宽度为s的对称波长窗口内,对中心波长吸光度进行平滑,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 124px " src=" https://img1.17img.cn/17img/images/201908/uepic/60849de6-dced-4490-8f63-649d3cee9496.jpg" title=" 01.png" alt=" 01.png" width=" 600" height=" 124" border=" 0" vspace=" 0" / /p p   值得注意的是,对于最左边或最右边的 img src=" https://img1.17img.cn/17img/images/201908/uepic/b8cea792-9064-4cd0-862c-f9fafaf26e44.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / 个波长,由于该点左边或者右边的点数小于& nbsp img src=" https://img1.17img.cn/17img/images/201908/uepic/d295318f-2ca9-492e-859f-c3beef9935bd.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / ,不能进行对称平滑。考虑到数据的连续性,对于最左边的 img src=" https://img1.17img.cn/17img/images/201908/uepic/fe38ef55-a973-4f74-93fc-0302a031f2e2.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / span style=" text-align: center " 个波长,我们提出近似平滑,如下: /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 122px " src=" https://img1.17img.cn/17img/images/201908/uepic/0fc41379-50ef-4a45-bdb2-ab12d1f348c4.jpg" title=" 02.png" alt=" 02.png" width=" 600" height=" 122" border=" 0" vspace=" 0" / /p p   对于最右边的波长,吸光度的平滑方法类似于公式(2),如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/98199654-339d-4808-ac8b-b9678b723566.jpg" title=" 03.png" alt=" 03.png" / /p p   上述处理,使得光谱边界数据自然过渡,更为合理。 /p p span style=" color: rgb(0, 176, 80) " strong   【差分求导】 /strong /span /p p   为了避免差分求导产生传递误差,通常需要经过移动平均平滑光谱后,再进行中心差分法求导。由于近红外光谱比较平坦,不同对象的光谱分辨率不尽相同。光谱采集的数据间隔不一定适用于差分间隔。Norris导数采用一个可变的波长间隔数作为导数的差分间隔(g),g = 1, 2, & #8230 ,G。由于关联性低,太大的差分间隔是不合理的,本文设差分间隔的上限G=50。 /p p   对于第k个波长的吸光度x sub k /sub ,采用基于差分间隔g的中心差分,计算吸光度的一阶导数,自左至右移动,得到所有点的导数值(左右半宽带的波长除外)。如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f4858970-26bd-4911-84b4-a7eec9998e8d.jpg" title=" 04.png" alt=" 04.png" / /p p   值得注意的是,对于最左边或最右边的g个波长,由于该点左边或者右边的点数小于g,不能执行中心差分法求导。考虑到数据的连续性,对于最左边的g个波长,我们提出前向差分法计算一阶导数,如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/88f4e45a-9f52-40cb-889c-3b57efab9059.jpg" title=" 05.png" alt=" 05.png" / /p p   对于最右边的g波长,则可通过后向差分法计算一阶导数,如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/01dbdd54-82d4-49fc-bafa-7dc511a8f3bd.jpg" title=" 06.png" alt=" 06.png" / /p p   二阶导数,可由上面的一阶导数再求导获得,编程实现简单,不再赘述。 strong 考虑到3阶以上的高阶导数的绝对量值小,光谱信息含量低,一般不建议采用3阶以上的导数。 /strong 本文设导数阶数为d = 0, 1, 2。特别地,d=0代表不进行差分求导,即,只进行移动平均平滑。 /p p span style=" color: rgb(0, 176, 80) " strong   【参数联合优化】 /strong /span /p p   对于任意一个参数组合(d, s, g),都对应一个Norris导数模式。对于d = 0, 1, 2;s = 1, 3, & #8230 , 99;g = 1, 2, & #8230 , 50,共有50+2× 50× 50=5050个模式。三个功能各异的参数的变化,使得Norris导数谱比原谱更为灵活、柔性、多样化,适用性宽。下面,提出一种基于PLS的Norris参数的联合优选方法。为提高参数选择合理性,采用基于随机性、相似性、稳定性的定标-预测-检验的多划分建模设计 sup [27, 28] /sup 。 /p p   建立所有Norris导数谱的PLS模型,称为Norris-PLS模型。计算每一组样品划分的预测均方根误差(SEP)和预测相关系数(R sub P /sub )。进一步,计算所有划分的平均值(SEP sub Ave /sub ,R sub P,Ave /sub )和标准偏差(SEP sub SD /sub ,R sub P,SD /sub )。并基于综合预测效果: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 41px " src=" https://img1.17img.cn/17img/images/201908/uepic/10c59c4b-f073-4ce9-a25a-09c90ec33c1a.jpg" title=" 7.png" alt=" 7.png" width=" 600" height=" 41" border=" 0" vspace=" 0" / /p p   优选具有稳定性的全局最优Norris参数,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 62px " src=" https://img1.17img.cn/17img/images/201908/uepic/4e15c028-35d0-4198-b122-f5bc4e751221.jpg" title=" 8.png" alt=" 8.png" width=" 600" height=" 62" border=" 0" vspace=" 0" / /p p   此外,对应导数阶数d=0, 1, 2,可以计算两类单参数局部最优解,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 95px " src=" https://img1.17img.cn/17img/images/201908/uepic/fb7412b2-80aa-4b3b-871d-21148c32e7e3.jpg" title=" 9.png" alt=" 9.png" width=" 600" height=" 95" border=" 0" vspace=" 0" / /p p   可得到,关于平滑点数s的三条建模效果曲线SEP sup + /sup (0, s),SEP sup + /sup (1, s),SEP sup + /sup (2, s)和关于差分间隔数g的两条建模效果曲线SEP sup + /sup (1, g),SEP sup + /sup (2, g)。通过它们可以分析Norris参数的适应性。 /p p span style=" color: rgb(0, 176, 80) " strong   3. 实例—近红外玉米粗蛋白分析 /strong /span /p p span style=" color: rgb(0, 176, 80) " strong   【材料】 /strong /span /p p   玉米颗粒样品156份,研磨并过筛(1.0mm)为粉末样品(未干燥),采用凯氏定氮法测量样品粗蛋白。最小值、最大值、平均值、标准差分别为7.31、12.1、9.46、0.92(%)。 /p p span style=" color: rgb(0, 176, 80) "   strong  【近红外光谱仪器】 /strong /span /p p   Nexus sup TM /sup 870 FT-NIR光谱仪(Thermo Nicolet Corporation,MA,USA);漫反射附件;波数范围:9997~3996 cm sup -1 /sup ;分辨率:32 cm sup -1 /sup 。 /p p    strong span style=" color: rgb(0, 176, 80) " 【定标-预测-检验的多划分建模】 /span /strong /p p   从156个样品随机选取56个为检验集,余下100个为建模集;进一步将建模集随机划分为定标集(50个)和预测集(50个),共10次。对所有划分建立PLS模型,确定平均预测效果(SEP sub Ave /sub ,R sub P,Ave /sub ,SEP sub SD /sub ,R sub P,SD /sub ,SEP sup + /sup )。 /p p span style=" color: rgb(0, 176, 80) "    strong 【分析】 /strong /span /p p    strong 先来观察玉米粉末样品的近红外光谱及其Norris导数谱的特征。 /strong /p p   以一个玉米粉末样品为例,采用不同平滑点数(s = 1~49,奇数),首先计算移动平均平滑谱,如图1所示。其中,s = 1为原光谱。观察到:随着平滑点数增大,主吸收峰右移,且渐趋平坦。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1dd5ef51-7b05-4b16-be80-4c924cd44302.jpg" title=" 图1.png" alt=" 图1.png" / /p p style=" text-align: center " strong 图1 玉米粉末样品的移动平均平滑谱随平滑点数的演变图 /strong /p p   在移动平均平滑谱(s = 13)的基础上,采用不同差分间隔数(g = 1~30),进一步计算Norris导数谱(一、二阶导数),如图2所示。观察到:主吸收峰翻转为波谷,同时出现新的特征峰。随着差分间隔增大,波谱幅度逐渐减小。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 232px " src=" https://img1.17img.cn/17img/images/201908/uepic/edc64a8e-9c8f-4b57-b4f2-d76bbd2da356.jpg" title=" 图2.png" alt=" 图2.png" width=" 600" height=" 232" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2 玉米粉末样品的Norris导数谱随差分间隔的演变图: (a)一阶导数 (b)二阶导数 /strong /p p   strong  再展示相关的建模效果。 /strong /p p   首先,未经预处理的直接PLS模型的平均建模效果,汇总在表1中。 /p p   在所有5050个Norris-PLS模型中,全局最优模型的参数(NDF模式)为d =2,g =3和s=13,相应的建模效果,也汇总在表1中。观察到:所有预测效果的指标均有显著的改善。 /p p style=" text-align: center " strong 表1 玉米粗蛋白分析的建模预测效果(%) /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 104px " src=" https://img1.17img.cn/17img/images/201908/uepic/9539dcc6-2f95-46ae-8caa-c25937062f19.jpg" title=" 表1.png" alt=" 表1.png" width=" 600" height=" 104" border=" 0" vspace=" 0" / /p p    strong 进一步观察Norris参数的适应性。 /strong 采用单参数局部最优解,分析建模效果曲线。其中,SEP sup + /sup (2, s)、SEP sup + /sup (2, g),参见图3。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 208px " src=" https://img1.17img.cn/17img/images/201908/uepic/26a55fc2-210b-4561-8367-75081383a9db.jpg" title=" 图3.png" alt=" 图3.png" width=" 600" height=" 208" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 单参数局部最优Norris-PLS模型的建模效果:(a)平滑点数,(b)差分间隔数 /strong /p p   在所有二阶的Norris导数谱中(d=2),不同平滑点数对应于局部最优模型的SEP sup + /sup ,如图4(a)所示;不同差分间隔数对应于局部最优模型的SEP sup + /sup ,如图4(b)所示。观察到:不同参数的建模效果差异颇大。 /p p   结果表明:(1)不同的Norris参数,建模预测效果明显不同;(2)参数的设置,不能凭经验设定,针对具体情况进行全局优化是必要的。 /p p strong   后 语 /strong /p p   Norris导数滤波是一种执行良好的光谱预处理算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。Norris模式的优化选择是必要的。 /p p span style=" color: rgb(0, 112, 192) "   这里分享的,可能是近红外的一个小话题。但,近红外光谱分析就是由多个这样的小话题组成的。从2006年第一届全国近红外光谱会议召开,到近红外分会成立十周年的现在,我们见证了我国近红外事业的发展壮大。祝福它!这里的内容可能有点艰涩,但我们相信它是有趣的。谢谢大家的阅读,恳请提出宝贵意见! /span /p p span style=" font-family: " times=" " new=" " strong   参考文献 /strong /span /p p   [1] R.J. Barnes, M.S. Dhanoa, Susan J. Lister., Appl Spectrosc, 1989, 43(5): 772–777 /p p   [2] M.S. Dhanoa, S.J. Lister, R. Sanderson, R.J. Barnes, J Near Infrared Spec, 1994, 2(1): 43-47. /p p   [3] 褚小立,化学计量学方法与分子光谱分析技术,北京:化学工业出版社,2011 /p p   [4] J.M. Chen, M.L. Li, T. Pan, L.W. Pang, L.J. Yao, J. Zhang, Spectrochim Acta A, 2019, 219: 179-185 /p p   [5] J. Zhang, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Comput Electron Agr, 2019, 164: 104882 /p p   [6] P. Geladi, D. MacDougall, H. Martens, Appl Spectrosc, 1985, 39:491-500. /p p   [7] T. Isaksson, T. Næ s, Appl Spectrosc, 1988, 42:1273-1284 /p p   [8] K.E. Kramer, R.E. Morris, S.L. Rose-Pehrsson, Chemometr Intell Lab, 2008, 92:33-43. /p p   [9]& nbsp A Rinnan, F. van den Berg, S.B. Engelsen, Trends Anal Chem, 2009, 28:1201-1222. /p p   [10] T. Isaksson, B. Kowalski, Appl Spectrosc, 1993, 47:702-709. /p p   [11] T. Næ s, T. Isaksson, T. Feaern, T. Davies, A User Friendly Guide to Multivariate Calibration and Classification, Chichester, UK: NIR Publications, 2002 /p p   [12] F.F. Lei, Y.H. Yang, J. Zhang, J. Zhong, L.J. Yao, J.M. Chen, T. Pan, Chemometr Intell Lab, 2019, 191(15):158-167 /p p   [13] A. Savitzky, M.J.E. Golay, Anal Chem, 1964, 36(8): 1627-1639 /p p   [14] 谢军,潘涛,陈洁梅,陈华舟,任小焕,分析化学,2010,38(3): 342-346 /p p   [15] H.Z. Chen, T. Pan, J.M. Chen, Q.P. Lu, Chemometr Intell Lab, 2011, 107: 139-146 /p p   [16] 潘涛,吴振涛,陈华舟,分析化学,2012,40(6): 920-924 /p p   [17] H.S. Guo, J.M. Chen, T. Pan, J.H. Wang, G. Cao, Anal Methods, 2014, 6: 8810-8816 /p p   [18] Y. Han, J.M. Chen, T. Pan, G.S. Liu, Chemometr Intell Lab, 2015, 145: 84-92 /p p   [19] J.M. Chen, L.J. Peng, Y. Han, L.J. Yao, J. Zhang, T. Pan, Spectrochim Acta A, 2018, 193: 499-506 /p p   [20] L.J. Yao, W.Q. Xu, T. Pan, J.M. Chen, J Innov Opt Heal Sci, 2018, 11(2): 1850005 /p p   [21] J.M. Chen, Z.W. Yin, Y. Tang, T. Pan, Anal Bioanal Chem, 2017, 409(10): 2737-2745 /p p   [22] J. Zhang, F.F. Lei, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Spectrochim Acta A, 2019, 219:427–435 /p p   [23] K.H. Norris, P.C. Williams, Cereal Chem, 1984, 61(2): 158-165 /p p   [24] P.C. Williams, K.H. Norris, Near-infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA, 1987 /p p   [25] J. Zhang, L.J. Yao, Y.H. Yang, J.M. Chen, Tao Pan, 19th International Council for NIR Spectroscopy Meting (NIR2019), 2019, Gold Coast, Australia /p p   [26] Y.H. Yang, F.F. Lei, J. Zhang, L.J. Yao, J.M. Chen, T. Pan, J Innov Opt Heal Sci, 2019, 1950018 /p p   [27] T. Pan, J.M. Liu, J.M. Chen, G.P. Zhang, Y. Zhao, Anal Methods, 2013, 5: 4355-4362 /p p   [28] T. Pan, M.M. Li, J.M. Chen, Appl Spectrosc, 2014, 68(3): 263-271 /p p style=" text-align: right "   strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "  (暨南大学光电工程系 潘涛,张静,施小文 供稿) /span /strong /p
  • 药厂检测药用铝箔的质量需要用到的检测仪器
    药包材“大家庭"的又一成员药用铝箔是使用范围zui广泛的一种片剂、口服固体药品的包装材料,对药品起着长期的保护作用。为了确保药品的品质,药厂检测药用铝箔的质量需要用到哪些检测仪器呢?1.针孔度测试仪:取长400 mm.宽250 mm (当宽小于250 mm时,取卷幅宽)试样10片,逐张置于针孔检查台(800 mmx600 mmx300 mm或适当体积的木箱,木箱内安装30W日光灯,木箱上面放一块玻璃板,玻璃板衬黑纸并留有400 mmx250 mm空间以检查试样的针孔)上,在暗处检查其针孔,不应有密集的、连续性的、周期性的针孔:每一平方米中,不得有直径大于0.3 mm的针孔:直径为0.1 ~0.3 mm的针孔数不得过1个。 PAHT-30铝箔针孔度测试仪2.阻隔性能:水蒸气透过量照水蒸气透过量测定法(YBB00092003- 2015) 第- -法试验条件B或第二法试验条件B或第四法试验条件2测定,试验时热封面向低湿度侧,不得过0.5 g/ (m2.24 h)。 WVTR-RC6水蒸气透过率测试仪3.热合强度测试仪:热合强度:取100 mmx100 mm的本品2片,另取100 mmx 100 mm的聚氯乙烯固体药用硬片(符合YBB00212005- 2015) 或聚氯乙烯/聚偏二氯乙烯固体药用复合硬片(符合000022005- 2015) 2片,将试样的黏合层面向PVC面(或PVC/PVDC复合硬片的PVDC面)进行叠合,置于热封仪进行热合,热合条件为:温度155 C士5C,压力0.2MPa,时间I秒,热合后取出放冷,裁取成15 mm宽的试样,取中间3条试样,照热合强度测定法( YBB00122003- 2015) 测定,试验速度为200 mm/min士20 mm/min,将PVC (或PVDC)片夹在试验机的上夹,铝箔夹在试验机的下夹,开动拉力试验机进行180*角方向剥离,热合强度平均值不得低于7.0 N/I5 mm (PVC). 6.0 N/15 mm ( PVDC)。 ETT-AM电子拉力试验机4.破裂强度测试仪:取40 mmx40 mm本品3片,分别置破裂强度测定仪上测定,均不得低于98 kPa. PR-01耐破强度测试仪5.荧光物质取100 mmx100 mm本品5片,分别置于紫外灯下,在254 nm和365 nm波长处观察,其保护层及黏合层均不得有片状荧光。 UAT-02暗箱式紫外分析仪
  • IXblue-新型“全玻璃”有源光纤! ---适用于智能驾驶应用
    ‍IXblue-新型“全玻璃”有源光纤!---适用于智能驾驶应用 如今,有一个新兴市场:需求量非常大的紧凑型市场所需激光雷达的激光器,其要求具备高功率输出(脉冲功率高达几瓦)。它们被用于自动驾驶车辆,以绘制环境地图。这种高功率激光器的泵浦信号在光纤中通过纯二氧化硅的多模波导进行传输。在高功率下,泵浦激光最终将与光纤的丙烯酸酯涂覆层相互作用,泵浦激光的能量会分布到该涂覆层所存在的细小缺陷上,产生过高的热量,该缺陷最终会被破坏并将其烧毁(造成光纤涂覆层的损伤)。解决该问题的一个常规方案,是生产一种具有耐热特性的丙烯酸酯涂层的光纤(最高125°C;85°C会发生)。但今天,iXblue提供了一个最终的解决方案--IXblue全玻璃有源光纤:在光纤中,泵浦激光将不再与光纤涂覆层相互作用,无论温度如何、激光传输特性都将保持不变。基于iXblue在Er/Yb光纤方面的长期技术和一些获得专利的新工艺技术,成就了这一新产品——“IXF-2CF-AGEY”(双包层全玻璃铒镱光纤):一种在其纤芯中Er-Yb共掺的光纤,纤芯被双包层(甚至三包层*)包裹。在外包层是一种折射率较低的掺氟二氧化硅(SiF)材料,这意味着激光仅与光纤内的玻璃材料相互作用,使其非常可靠且对温度不敏感(高达200°C)我们仔细甄选了纤芯成分,从而获得了高效率(每根新光纤上测试的功率转换效率都高于40%)和低的1μm放大自发辐射,这也是10年来开发的iXblue铒镱共掺光纤一直被认可的标记。 “使用高温双层丙烯酸酯涂层(HTC)可将长期工作温度范围提高至125°C,使IXblue全玻璃有源光纤成 为恶劣环境下1.5μm激光雷达的理想解决方案。”iXblue产品线经理Arnaud Laurent 解释道。 全玻璃设计保证泵浦激光仅仅与光纤中玻璃材质接触,确保在苛刻使用环境中长期运行。增强的长期可靠性、更高的工作温度是应对恶劣环境的关键优势,同时降低了系统对冷却条件的要求。 iXblue全玻璃光纤非常适合大批量需求的光纤激光器制造商,基于自由空间或混合(光纤/自由空间)架构中使用。光纤直径为125μm,纤芯为5或9μm。Si内包层的八角形结构是一种良好的几何结构,可实现有源光纤纤芯的最佳的泵浦信号吸收。上海昊量光电作为IXblue在中国的授权代理商,负责IXblue电光调制器、IXblue光纤及其他新型激光器等光电仪器在中国市场的销售、技术服务、市场推广服务。对于IXblue全玻璃有源光纤有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。‍‍
  • 中国科大在毫米波频率综合器芯片设计领域取得重要进展
    近日,中国科大微电子学院胡诣哲与林福江课题组设计的一款基于全新电荷舵采样(Charge-SteeringSampling, CSS)技术的极低抖动毫米波全数字锁相环(CSS-ADPLL)芯片入选2023 Symposium on VLSI Technology and Circuits(以下简称VLSI Symposium)。VLSI Symposium是超大规模集成电路芯片设计和工艺器件领域最著名的国际会议之一,也是展现IC技术最新成果的橱窗,今年VLSI Symposium于6月11日至16日在日本京都举行。该论文第一作者为我校微电子学院博士生陶韦臣,胡诣哲教授为通讯作者。   极低抖动毫米波频率综合器芯片是实现5G/6G毫米波通信的关键核心模块,为毫米波通信提供精准的载波信号。此研究提出的电荷舵采样技术,将电荷舵采样和逐次逼近寄存器型模数转换器(SAR-ADC)进行了巧妙的结合,构建了一种高鉴相增益,高线性度且具有多bit数字输出的数字鉴相器。CSS-ADPLL的结构十分紧凑(如图1所示),由电荷舵鉴相器(CSS-PD)、SAR-ADC、数字滤波器和数控振荡器组成,具有优异相位噪声性能,较快的锁定速度并消耗极低的功耗。 图1.论文提出的电荷舵采样全数字锁相环(CSS-ADPLL)架构   测试结果表明,该芯片实现了75.9fs的时钟抖动与–50.13dBc的参考杂散,并取得了-252.4dB的FoM值,为20GHz以上数字锁相环的最佳水平,芯片核心面积仅为0.044mm2。该研究成果以“An 18.8-to-23.3 GHz ADPLL Based on Charge-Steering-Sampling Technique Achieving 75.9 fs RMS Jitter and -252 dB FoM”为题由博士生陶韦辰在大会作报告。 图2.CSS-ADPLL相位噪声与参考杂散测试结果   该研究工作得到了科技部国家重点研发计划资助,也得到了中国科大微电子学院、中国科大信息科学技术学院支持。
  • 104个项目!2022年度江西省科技厅重点研发计划拟立项项目公示
    2022年度江西省科技厅重点研发计划拟立项项目公示各有关单位:2022年度江西省科技厅重点研发计划项目经组织申报、专家评审等环节,现对拟立项项目予以公示。任何单位或个人对拟立项项目持有异议的,可在公布之日起7日之内,以书面形式向省科技厅科技监督处或驻厅纪检监察组反映,并提供必要的证明材料。以单位名义提出异议的,应由单位法定代表人签字并加盖本单位公章发送电子邮件至指定邮箱;个人提出异议的,应当签署真实姓名并提供有效联系方式。我厅承诺按有关规定对异议人身份予以保护。联系方式及电话:1.省科技厅科技监督处联系电话:0791-86263938;电子邮箱:jdc_jx@126.com2.省科技厅发展计划处联系电话:0791-862568453.省纪委驻厅纪检监察组联系电话:0791-86265917通讯地址:南昌市东湖区省政府大院北二路53号邮编:330046江西省科学技术厅2022年10月29日2022年度江西省重点研发计划立项项目清单序号项目名称承担单位项目负责人省内依托单位(经费承接单位)1面向飞机设计和研制的大数据技术及其示范应用研究南昌航空大学钟伯文2数字化检测技术在民机复材加筋壁板制造过程中的应用研究江西先进复合材料研发中心李云龙3高性能变几何航空电推进涵道风扇设计方法北京大学南昌创新研究院周超4固定翼飞机机身铝合金框架密排连接孔结构的抗疲劳激光冲击强化工艺研究南昌航空大学丁相玉5直升机传动承力件激光熔覆修复与延寿关键技术研究南昌航空大学郑海忠6耐高温碳纤维增强热塑性复合材料制备及在航空领域的应用研究北京大学南昌创新研究院白树林7大型航空复合材料精确成型技术研究江西航空研究院李建军8变电站智能巡检机器人厦门大学九江研究院姚俊峰9城市轨道交通道岔系统减振控制关键技术华东交通大学张斌10激光剪切散斑无损检测系统技术研究合肥工业大学王永红华东交通大学11面向高原地区的鹰式臂全电脑三臂凿岩台车研制江西鑫通机械制造有限公司李永丰12气体驱动浮芯辅助共注塑工艺的成型机理研究与成型装备研发华东交通大学柳和生13含高比例分布式电源的有源配电网智能管控与故障自愈技术研究国网江西省电力有限公司电力科学研究院范瑞祥14商用车氢燃料发动机关键技术研究南昌智能新能源汽车研究院楼狄明15基于智能控制策略的增程式电动轻卡关键技术研发江铃汽车股份有限公司邓海燕16基于车-云协同管理的电动汽车动力电池失效诊断与预警技术研究华东交通大学曾建邦17新型高性能汽车用弹簧扁钢开发及关键技术研究方大特钢科技股份有限公司陈明18高性能铋层状超高温压电换能陶瓷制备关键技术研究景德镇陶瓷大学沈宗洋196G用超高频低损耐蚀稀土基软磁材料制备及应用研究中国科学院赣江创新研究院谭果果20稀土掺杂高增益低损耗石英基光纤制备关键技术研究国瑞科创稀土功能材料(赣州)有限公司张料林21非热处理高强高导热稀土镁合金开发及示范应用南昌大学罗岚226μm超薄电解铜箔技术的开发及产业化江西省江铜铜箔科技股份有限公司余科淼23多功能天然灭火水凝胶材料设计制备及产品开发江西科技师范大学徐景坤24稻壳基铅炭电池材料制备及其电池性能研究江西金糠新材料科技有限公司熊源泉25纳米纤维素锂金属电池隔膜制备关键技术研究东华理工大学那兵26高效单晶硅太阳电池关键技术研究晶科能源股份有限公司杨洁27基于预锂化负极的超长寿命磷酸铁锂储能电池及光储示范江西赣锋锂电科技股份有限公司戈志敏28高稳定超高镍三元正极材料及其固态锂电池的研发南昌大学李勇29新能源汽车用固态动力电池关键技术的研发宜春清陶能源科技有限公司何泓材30地质时空大数据云服务平台及其可视化关键技术研究江西省地质博物馆汤森进315G陶瓷介质波导滤波器研发与产业化江西一创新材料有限公司王一凡32基于工业大数据驱动的钢铁产品质量全流程智能管控技术研究与应用新余钢铁股份有限公司肖敏33氮化镓电子器件三元氮化物新型介质研究江西省纳米技术研究院蔡勇34高温高压蒸汽管线剩余寿命与危险预警的物联网无损监测关键技术研究南昌航空大学石文泽35基于多模态全光融合的空地协同安防物联网系统研发南昌大学杨鼎成36轻量级可解释性医学影像诊断系统华东交通大学李广丽37江西原始瓷与白浒窑古法柴烧釉彩的研发景德镇陶瓷大学虞澎澎38基于量子保密通信的现代物流大数据平台兼容联通关键技术及应用华东交通大学甘卫华39电影胶片档案数字化及其修复关键技术研究华东交通大学罗国亮40早稻高效分子育种技术创新与优质高产广适新品种选育江西惠农种业有限公司胡桂英41油菜高效育种技术创新与“三高”新品种选育江西省农业科学院作物研究所陈伦林42辣椒优异种质资源精准鉴定与特色优质新品种选育江西省农业科学院蔬菜花卉研究所袁欣捷43柑橘资源种质评价利用与优质极端熟期新品种选育赣南师范大学陈健美44杉木良种选育研究与应用江西省林业科学院肖复明45泰和乌鸡食用和药用品种鉴别选育及其相关功能因子产品的研制泰和傲昕乌鸡发展有限公司路则庆46江西特色柑橘设施栽培关键技术研究与示范江西农业大学刘勇47优质富硒赣南脐橙关键技术研究与示范赣南师范大学姚锋先48井冈蜜柚标准化种植技术研究与示范江西农业大学杨莉49典型湖库净水渔业技术研发与应用中国水产科学研究院长江水产研究所杨德国江西省水生生物保护救助中心50高纯度茶皂素提取关键技术研究与产品开发南昌大学李红艳51油茶授粉结实关键调控技术研究与示范中国林业科学研究院亚热带林业实验中心钟秋平52林下中药材黄精、铁皮石斛生态高效种植关键技术研究与示范江西农业大学曾黎明53江西薄壳山核桃良种高效栽培关键技术研究与模式创制江西省林业科学院左继林54新型微生物菌肥研制与产业化示范应用江西省科学院微生物研究所黄俊生55绿色富硒投入品研发及应用示范江西农业大学吴建富56茄果类蔬菜冬春季设施生产关键技术研究与集成示范南昌市农业科学院高旭春57生猪饲料减粮替抗关键技术研发与产业化应用江西农业大学游金明58江西省农村“厕所革命”新技术产品研发与应用推广南昌大学谢显传59耕地酸化防控和培肥协同关键技术研究与示范江西省农业科学院土壤肥料与资源环境研究所冀建华60特色赣味预制菜加工关键技术研究与应用南昌大学陈奕61低廉油脂资源高值化利用关键技术与示范宜春大海龟生命科学有限公司代志凯62食药同源农产品中稳血糖功能因子的加工稳态化关键技术及新产品研发南昌大学胡婕伦63江西名优特色蔬菜产地初加工及绿色防腐减损关键技术研发江西省农业科学院农产品加工研究所袁林峰64江西中医药大学欧阳辉67植物抗炎有效成分发掘与合成通路的研究与利用江西省、中国科学院庐山植物园肝脏代谢性疾病靶点发现及创新药物研发赣南医学院胡宇峰73痰液直接质谱分析无创筛查肺癌临床研究及设备研发
  • 新品发布悌可光电推出欧美伽光学无人机专用滤光片
    近日欧美伽光学推出针对无人机专用滤光片。随着人工智能、传感技术和控制系统的技术的成熟,近年来无人机行业飞速发展。从传统的娱乐航拍,迅速发展出农业植保,测绘,智能电力检测、外卖快递等,行业也由消费电子扩展至智慧农业、石油与天然气,水利,林业、快递运输多个领域。 举例农业用检测滤光片:在现代农业中,无人机技术的应用越来越广泛,专为农作物测绘而设计的无人机滤光片成为农田管理的得力助手。这款产品配备了专用光学滤光片,飞行高度和相机透镜的精妙搭配保证了获取清晰高效的农田数据,让监测和分析变得如此轻松。滤光片选取最佳波长,根据作物光谱反射率,可以匹配任何品牌的无人机,帮助用户精准监测作物生长状态,健康状况一目了然。现在我们来看看 用于农作物检测的滤光片示例下面的滤光片示例通过使用4个单独的滤光片/相机组合来计算作物的NDRE值,并计算NDRE的比率。这里涉及到的特定波段的比率和差异可以用于许多植物指数的计算。 农作物监测滤光片——红色波段(red)在叶绿素A/B重叠区域的中心,而红色边缘波段(red edge)在反射率曲线的上升边缘的中心。 优化用于农作物监测的光谱性能如何选取最佳波长的滤光片,取决于你所监测的作物的光谱反射率,以及在健康(和患病)植物中存在的叶绿素、类胡萝卜素和花青素的比例。不仅每种健康植物类型都有独特的色素比例,且当植物受到压力时,这些色素的比例也会发生变化。类胡萝卜素和花青素在压力期间都会上调——这就是为什么当作物干燥或受到压力时,叶子会变成黄色、红色或棕色。农作物无人机监测的注意事项1.光源—由于通常使用太阳作为光源,所以光强度可能随云层的变化而变化。云、雾霾和尘埃也会影响太阳光谱的光谱分布,优先散射较低的波长。虽然光谱变化不是造成误差的主要因素,但测量系统需要一个中性(即白色)反射的测试目标进行校准,以获得最佳的测量结果。 2.信号来源植物中常见的色素包括主要的叶绿素A和B,它们赋予植物绿色,但也包括不同数量的类胡萝卜素和花青素。反射光谱在波长被吸收的位置下降。反射率信号-水合作用、叶绿素含量和其他色素含量(花青素和类胡萝卜素)的组合会影响植物反射率的光谱。在压力的作用下类胡萝卜素和花青素表达上升,叶绿素表达下降,将使作物变黄和棕色。同时也会反应在反射率光谱和植物指数上。热成像-可以用来制作在9-14微米波长范围内的作物的温度分布图。水合作用和蒸腾作用良好的植物比那些干燥和热胁迫的植物更冷。阳光不是测量的严格必要条件,但它可以与反射率同时进行,因为可以探测到红外波长。3.无人机的飞行高度和相机上的透镜-决定了图像的视野和分辨率。高度和视场还决定了信号进入成像滤光片的入射角。随着入射角的增加,滤光片的响应区域通常会转移到更低的波长,边缘也变得不那么陡峭。4.光谱滤光片-一般通过对应的带通滤光片:蓝色、绿色、红色、红色边缘和近红外进行标准化差异(示例如下)。另一种选择是使用线性可变带通滤波器,它的带通随滤光片一维方向的变化而变化,可以提供类似“彩虹”的滤光效果。这种滤光片在相机上产生光谱,从而实现高光谱成像。这款无人机农业用检测滤光片的推出,为农业生产带来了全新的技术。随着农业现代化进程的不断推进,无人机技术在农业领域的应用越来越广泛,为农业检测提供了更为便捷、高效的农田管理工具。无人机滤光片的问世,不仅提升了农作物监测和分析的精准度,也使农业生产更加智能化、科技化。可以通过使用这款滤光片,及时了解农田的情况,有效掌握作物的生长情况,为农田的精细化管理提供重要依据。欧美伽光学提供多种无人机适用类型滤光片详细请咨询!
  • 这家仪器公司冲刺IPO,涉嫌夸大未来市场空间
    2015年,西安爱科赛博电气股份有限公司(以下简称“爱科赛博”)递交申报材料,拟冲击深交所创业板。此后,爱科赛博自称拟进行新一轮增资扩股,于2016年撤回上市申请。而后经过6年的“蛰伏”,爱科赛博重整上市之路,向科创板发起冲击。本次重启上市背后,爱科赛博身后或疑云未消。爱科赛博独立董事系重要产学研合作单位下属研究所的主任,结合双方长期合作情况,该名独董还参与到双方合作项目中,或“独董不独”。此外,爱科赛博测算其主要盈利增长点,即精密测试电源业务的增长空间的依据、方法及结果的客观性与准确性存疑,涉嫌夸大市场空间。同时,爱科赛博合作多年的经销商客户,由其前员工设立,该客户成立当年即与爱科赛博合作,全部采购额来自爱科赛博,且爱科赛博对其销售的毛利率低于第三方。种种异象背后,该经销商是否为其而生?一、独立董事“来自”产学研单位,且“现身”合作项目的作者名单为了进一步完善上市公司的治理结构,充分发挥独立董事在公司治理中的积极作用,监管部门制定了一系列法规,对独立董事的任职资格进行了界定。反观爱科赛博,自2016年起担任独立董事的刘进军,已于产学研合作单位任职长达20年,并且,无论是双方共同建设的实验室,还是一起合作的获奖项目,刘进军均在其中担任重要“角色”。1.1 2002年至今刘进军任西安交大电新中心主任,2016年起任爱科赛博独董据爱科赛博签署日为2023年6月19日的招股说明书(以下简称“招股书”),2016年4月至招股书签署日2023年6月19日,刘进军担任爱科赛博的独立董事。1997年以来,刘进军长期从事电气工程特别是电力电子技术领域的科研与教学工作,历任西安交通大学(以下简称“西安交大”)的电气学院副院长、教务处领导等职务;截至招股书签署日2023年6月19日,刘进军担任西安交大教授、博士生导师。可见,2016年至签署日2023年6月19日,刘进军在担任爱科赛博的独立董事期间,同时供职于西安交大。此外,据国际电气及电子工程师学会(IEEE)及西安交大官网公开信息,2002年8月至查询日2023年8月11日,刘进军还担任西安交大电气工程学院下设的“电力电子与新能源技术研究中心”(the Power Electronics and Renewable Energy Center,以下简称“西安交大电新中心”)的主任一职。值得一提的是,西安交大的“电气工程学院”即为“电气学院”。也就是说,1997年至今,刘进军供职于西安交大;2002年8月起,刘进军担任西安交大电新中心的主任一职;到了2016年,刘进军在西安交大任职之余,开始兼任爱科赛博的独立董事一职。事实上,刘进军所在单位西安交大与爱科赛博之间,关系匪浅。1.2 2003年西安交大电新中心与爱科赛博联合创办企业,该企业的业务与爱科赛博相关据招股书,西安赛博电气有限责任公司(以下简称“赛博电气”)系爱科赛博已被注销的全资子公司,系由爱科赛博与西安交大电新中心联合创办的。据河南森源电气股份有限公司签署日为2010年12月15日的招股说明书及爱科赛博招股书,2003年,赛博电气由爱科赛博的前身西安爱科电子有限责任公司(以下简称“爱科有限”)和西安交大电新中心联合创办,专业从事以有源电力滤波器为核心的电能质量产品和解决方案的研发、生产、销售及服务。另据招股书,爱科赛博的主营业务为电力电子变换和控制设备的研发、生产和销售,主要产品为精密测试电源、特种电源和电能质量控制设备。不难看出,爱科有限与西安交大所联合创办的赛博电气,其业务、产品均与爱科赛博紧密相关。简而言之,2002年,刘进军开始担任西安交大电新中心主任;而在其任职一年后,西安交大电新中心即与爱科有限联合设立赛博电气,共同开展电能质量产品的相关业务。而爱科赛博与西安交大电新中心的合作不止于此。1.3 2009年,爱科赛博与西安交大电新中心合作成立电力电子联合实验室据爱科赛博参与发起的公开平台2016年4月9日发布的信息,2009年,爱科赛博与西安交大合作成立集科研开发、高端客户培训、学生实验和社会服务等多功能于一体的“爱科赛博——交大PEREC电力电子联合实验室”。2011年和2015年,爱科赛博与西安交大合作的项目分别获得两项国家科技进步二等奖。此外,爱科赛博作为西安交大学生实训基地,连续多年来共圆满组织6批次西安交大本科毕业生暑期实践活动。在双方的产学研合作的基础上,爱科赛博与西安交大之间还进一步设立了“爱科赛博交大校友电气奖助学金”。未来,爱科赛博将继续坚持以产学研合作加快科技成果转化、促进企业发展。需要说明的是,据西安交大公开信息,西安交大电新中心的英文缩写为PEREC。即是说,爱科赛博与西安交大设立的联合实验室,或由刘进军担任主任的西安交大电新中心,作为西安交大的对接方。那么,刘进军是否在爱科赛博与西安交大开展产学研合作期间已参与其中?更进一步来看,刘进军还是双方合作项目的主要完成人之一。1.4 2011年,刘进军“跻身”爱科赛博与西安交大合作项目的获奖人名单前文提到,2011年和2015年,爱科赛博与西安交大合作的项目分别获得两项国家科技进步二等奖。具体来看双方在2011年的合作项目。据签署日为2023年4月6日的《关于西安爱科赛博电气股份有限公司首次公开发行股票并在科创板上市申请文件的审核问询函的回复》(以下简称“首轮问询回复”),2011年,爱科赛博所参与的“供用电系统谐波的有源抑制技术及应用”项目(以下简称“系统谐波项目”)获得国家科技进步二等奖。获奖单位分别为西安交大、爱科有限、株洲交流技术国家工程研究中心有限公司、许继集团有限公司,获奖人员包括西安交大的刘进军。可见,在西安交大与爱科赛博的产学研合作期间,刘进军还是双方合作项目的获奖人之一。不仅如此,2020年,爱科赛博曾为刘进军的研究项目提供资金支持。1.5 2019年爱科赛博与西安交大共建研究中心,2020年捐款助力实验室建设据西安交大于2021年3月21日发布的《2020年度西安交大爱科赛博创新港工业自动化实验室建设基金项目总结》(以下简称“实验室建设项目总结”),2019年11月,爱科赛博与西安交大签订战略合作协议,建设“西安交大—爱科赛博”先进电力电子装备研究中心。该研究中心依托西安交大西部科技创新港的研究平台和爱科赛博的产业化平台而设立。2020年5月,爱科赛博向西安交大捐赠100万元,助力电气学院工业自动化系在西部科技创新港的实验室建设。值得一提的是,爱科赛博与西安交大的此番合作成果显著。“实验室建设项目总结”显示,在“软件”建设的项目成果方面,创新港科研平台取得了一系列科研成果,发表论文十余篇。申请专利五个,软件著作权四个。其中包括《A Study of Virtual Resistor-Based Active Damping Alternatives for LCL Resonance in Grid-Connected Voltage Source Inverters》(以下简称“论文1”)及《Small-signal modeling and stability prediction of parallel droop-controlled inverters based on terminal characteristics of individual inverters》(以下简称“论文2”)。1.6 爱科赛博与西安交大的合作成果中,作者出现刘进军的“身影”据期刊《IEEE电力电子学报》2020年第1期,“论文1”的作者包括Teng Liu、Jinjun Liu、Zeng Liu、Zipeng Liu;“论文2”的作者包括Shike Wang、Zeng Liu、Jinjun Liu、Dushan Boroyevich、Rolando Burgos。显然,上述论文1和论文2中的作者“Jinjun Liu”,即为刘进军。换言之,到了2020年,已经担任爱科赛博独董的刘进军仍亲身参与到爱科赛博与西安交大的产学研合作中,并贡献了研究成果。也就是说,2020年,独立董事刘进军在爱科赛博的资金支持下完成其研究成果。1.7 管理办法指出,独立董事应与公司不存在直接或间接利害关系据发布于2023年8月1日且现行有效的《上市公司独立董事管理办法》,独立董事是指不在上市公司担任除董事外的其他职务,并与其所受聘的上市公司及其主要股东、实际控制人不存在直接或者间接利害关系,或者其他可能影响其进行独立客观判断关系的董事。不难看出,1997年至今,刘进军供职于西安交大。2002年8月起,刘进军还担任了西安交大电新中心的主任一职。到了2016年,刘进军兼任爱科赛博的独立董事。值得一提的是,2003年西安交大电新中心与爱科赛博共办业务及产品与爱科赛博相关的企业。到2009年,爱科赛博与西安交大电新中心共建电力电子联合实验室。除此之外,2011年,刘进军现身爱科赛博与西安交大合作项目的获奖人名单。2019年爱科赛博与西安交大签约共建研究中心,并在2020年捐款助力实验室建设。实验室建设的项目成果中包括两篇论文,而论文作者之一系刘进军。在上述刘进军与爱科赛博、西安交大的关系之下,爱科赛博聘任刘进军担任独董,是否为后续与产学研单位的进一步合作“铺路”?刘进军作为独董的独立性该如何保证?或该打上“问号”。问题仍在继续。二、测算行业市场规模的来源客观性存疑,涉嫌夸大未来市场空间行业市场容量及未来增长空间都将影响企业的成长性。无论创业板或是科创板企业均是如此。对于拟冲击科创板上市爱科赛博而言,精密测试电源业务系最大盈利增长点,但就该业务的市场容量有限,监管层给予了关注。然而,在测算精密测试电源行业空间时,或存夸大的嫌疑。2.1 精密测试电源业务系最大盈利增长点但市场容量有限,未来市场空间遭问询前文提及,爱科赛博的主营业务为电力电子变换和控制设备的研发、生产和销售,主要产品为精密测试电源、特种电源和电能质量控制设备。据招股书,2019年起,爱科赛博将精密测试电源业务独立成产品线并大力发展相关业务,受益于下游新能源发电、新能源汽车等行业的快速发展,精密测试电源在光伏储能、电动汽车等领域的市场需求旺盛且毛利率高,成为爱科赛博最大的盈利增长点。然而,精密测试电源的市场空间容量或相对有限。据首轮问询回复,上交所关注到,爱科赛博的主要产品为精密测试电源、精密特种电源和电能质量控制设备,产品广泛应用于多行业领域。但是单一细分应用领域市场容量相对有限、最终用户较为分散。基于此,上交所要求爱科赛博分析其产品的未来市场空间。对此,爱科赛博回复称,通过市场调研,爱科赛博了解到的市场主要参与主体2022年度在国内市场销售规模可分为3个梯队。第一梯队系10亿元以上销售规模的3家厂商,第二梯队系1亿元至10亿元销售规模的8家厂商,第三梯队系1亿元以下销售规模的厂商。其中,前两个梯队厂商2022年度测试电源在国内市场销售规模合计约49亿元,预计约占市场份额50%-70%,据此估算2022年度国内测试电源的市场规模约为70亿元到100亿元。2.2 首轮问询回复中未披露市场规模测算依据及过程,被监管层进一步追问然而,上述回复未能令监管层满意。据签署日为2023年5月24日的《关于西安爱科赛博电气股份有限公司首次公开发行股票并在科创板上市申请文件的第二轮审核问询函的回复》(以下简称“二轮问询回复”),上交所关注到,爱科赛博估算2022年度国内测试电源的市场规模约为70亿元到100亿元,爱科赛博市场占有率3.1%-4.4%,但未说明2022年国内测试电源整体市场规模的测算过程、测算依据。基于此,上交所要求爱科赛博说明国内测试电源2022年整体市场规模的测算过程、测算依据。2.3 同样选取沙利文的数据来推算市场份额,不同企业披露的数据存在出入据二轮问询回复,因精密测试电源行业暂未有专门的行业研究报告,而精密测试电源行业与电子测量仪器行业在产品及市场参与主体方面具有相似性,故在测算精密测试电源行业市场规模时,尝试参考电子测量仪器行业的市场集中度。据二轮问询回复,电子测量仪器的市场集中度的数据系参考弗若斯特沙利文(以下简称“沙利文”)于2021年2月出具的《全球和中国电子测量仪器行业独立市场研究报告》,“2019年全球电子测量仪器市场占比前五家公司一共占据了总市场份额的48.7%”。也就是说,爱科赛博依据沙利文的数据来推算市场份额。然而,沙利文出具的市场研究报告中,关于市场规模数据的可信度存疑。据广州必贝特医药股份有限公司(以下简称“必贝特”)签署日为2023年6月1日的招股说明书,随着国内自身免疫性疾病诊断技术的发展和完善,国内自身免疫性疾病市场规模从2016年的29亿美元扩张至2020年的45亿美元,复合年增长率为12.6%。值得注意的是,必贝特招股书中使用的国内自身免疫性药物市场规模的数据,系援引自沙利文的数据,且相关数据系基于批发价格水平。据签署日为2022年11月2日的《苏州泽璟生物制药股份有限公司2021年度向特定对象发行A股股票募集说明书(注册稿)》(以下简称“泽璟制药募资书”),苏州泽璟生物制药股份有限公司(以下简称“泽璟制药”)同样对国内自身免疫性疾病药物市场进行了分析。泽璟制药募资书显示,2020年,国内自身免疫性疾病药物的市场规模达到了174亿元。需要说明的是,泽璟制药对于国内自身免疫性疾病药物市场规模的分析亦是引用Frost & Sullivan的分析数据,即沙利文数据,相关数据亦是基于批发价格水平。据国家统计局于2021年2月28日发布的《2020年国民经济和社会发展统计公报》,2020年全年,国内美元兑换人民币的平均汇率为1:6.9。若按照上述汇率进行测算,必贝特招股书中披露的2020年国内自身免疫性疾病药物市场规模45亿美元,应折合人民币约为310.5亿元。折合后,必贝特披露的国内自身免疫性疾病药物市场规模数据,比泽璟制药披露的数据多出136.5亿元。也即是说,在同样援引沙利文数据的背景下,2020年,必贝特招股书中披露的国内自身免疫性疾病药物市场规模,与泽璟制药募资书中披露的数据存在超百亿元的“缺口”。个中沙利文的数据的权威性和可信度或遭拷问。需要强调的是,抛开爱科赛博所选取数据的可信度问题不谈,其市场份额的测算过程同样存在疑点。2.4 爱科赛博对市场规模的测算过程存疑,涉嫌将市场空间上限夸大14.62亿元前文提到,爱科赛博所援引沙利文数据显示,测算电子测量仪器行业的前五名厂商市场份额为48.7%。另据二轮问询回复,根据智研咨询、北京研精毕智等国内咨询机构出具的公开行业研究报告,2021年全球前十名电子测量仪器厂商的市场份额合计为68.4%。综合上述数据,爱科赛博推算电子测量仪器前十名企业的市场集中度约为50%至70%。不难看出,爱科赛博对电子测量仪器行业市场集中度的测算,是以行业前五名及前十名厂商的市场规模为基础。耐人寻味的是,爱科赛博在实际测算过程或缺乏准确性。据二轮问询回复,2022年度测试电源销售收入不低于1亿元的主要市场主体共11家,合计销售收入约49亿元,其他小规模厂商的销售情况无法获取。按照精密测试电源行业11家企业的市场份额合计占比为70%推算,则精密测试电源的市场空间为70亿元;按照精密测试电源行业11家企业的市场份额合计占比为50%推算,则精密测试电源的市场空间约为100亿元。综上,假设电子测量仪器行业的市场集中度具有可参考性,则精密测试电源的市场空间或为70亿元至100亿元。不难发现,爱科赛博是以行业内前11家厂商的合计销售收入作为分子,并分别以前5名厂商及前10名厂商的市场占有率作为分母,来测算行业的市场空间,或存在“水分”。事实亦是如此。依据前5名及前10名厂商合计市场规模为基础,测算市场空间的结果小于爱科赛博所测算的结果。据二轮问询回复,经调研、整理,相关市场主体2022年度测试电源销售收入的前十名厂商分别为致茂电子股份有限公司、Keysight Technologies,Inc.、艾德克斯电子(南京)有限公司、合肥科威尔电源系统股份有限公司、爱科赛博、青岛艾诺智能仪器有限公司、AMETEK,Inc.、菊水电子工业株式会社(日本)、Elektro-Automatik,Inc.、AC Power Corp.,对应的销售收入分别为约15亿元、约10亿元、约10亿元、约3.5亿元、约3.08亿元、约2亿元、约1亿元、约1亿元、约1亿元、约1亿元。经《金证研》南方资本中心测算,精密测试电源行业内,前五名和前十名厂商的合计销售规模或为41.58亿元和47.58亿元。按照前五名厂商市场份额为48.7%测算,精密测试电源行业的市场规模或为85.38亿元。按照前十名厂商市场份额为68.4%测算,精密测试电源行业的市场规模为69.56亿元。可见,参照市场集中度的测算基准,实际测算的精密测试电源行业的市场规模或为69.56亿元至85.38亿元,测算结果小于爱科赛博所测算的70亿元至100亿元。2.5 拟冲击科创板,科创属性中对营业收入复合增长率有明确要求据2022年修订且现行有效的《科创属性评价指引(试行)》,支持和鼓励科创板定位规定的相关行业领域中,同时符合下列4项指标的企业申报科创板上市,其中第四项为最近三年营业收入复合增长率达到20%,或最近一年营业收入金额达到3亿元。不难发现,主营业务精密测试电源业务系爱科赛博的最大盈利增长点。然而,上交所关注到精密测试电源的市场容量有限,要求爱科赛博分析其产品的未来市场空间。但是爱科赛博因在首轮回复中对其市场空间未详细披露测算过程而再遭问询。此后,爱科赛博在二轮问询回复中披露相关市场空间。然而,科赛博选取沙利文的数据作为测算依据来推算市场份额,合理性及权威性存疑。同时,爱科赛博以11家厂商销售收入为分子,以5家、10家厂商的市占率为分母测算市场空间,经《金证研》南方资本中心测算,精密测试电源行业的市场规模上限或为85.38亿元。在此基础上,作为最大盈利增长点的精密测试电源业务,其所属行业的市场空间或有限,在此基础上,未来爱科赛博能否满足科创属性中关于复合增长率的要求?尚未可知。上述问题仅为“冰山一角”。三、前员工成立公司当年即合作,销售毛利率“偏低”或“为其而生”对于员工在报告期内离职后的去向,向来系监管关注重点。尤其是涉及同业公司及上下游。反观爱科赛博,前员工杨锐在离职前夕成立了一家公司,该公司不仅成立当年就与爱科赛博达成合作,更是逐渐成为第一大经销商客户。但奇怪的是,离职一年有余,杨锐再次“现身”爱科赛博。不仅如此,爱科赛博对该名前员工设立的公司销售毛利率低于第三方。3.1 2017年前员工杨锐离职前一周设立陕西久正,陕西久正成立即与爱科赛博合作据首轮问询回复,2012年2月3日,杨锐入职爱科赛博,主要从事电能质量控制设备的销售工作。2017年5月1日,杨锐从爱科赛博离职。杨锐离职前任爱科赛博销售部下属的通用电能质量产品销售部门的西北大区经理。值得一提的是,离职前夕,杨锐在外设立了一家公司。据市场监督管理局公开信息,2017年4月25日,陕西久正金能电气有限公司(以下简称“陕西久正”)成立,杨锐系其法定代表人及唯一股东。即是说,2017年4月,杨锐设立陕西久正,次月杨锐自爱科赛博离职。需要指出的是,陕西久正成立当年即与爱科赛博合作。据首轮问询回复,爱科赛博与陕西久正自2017年开始合作。3.2 2020-2022年陕西久正均为前两大经销商客户,累计贡献逾6,500万元收入据招股书,爱科赛博披露了2020-2022年经销模式下的前五大客户情况。其中,2020-2022年,爱科赛博对陕西久正的主要销售产品为电能质量控制设备,销售额分别为2,089.96万元、1,944.03万元、2,497.39万元。2020-2021年,陕西久正为爱科赛博经销模式下的第一大客户,2022年为经销模式下的第二大客户。经测算,2020-2022年,赛克赛博向陕西久正合计销售额为6,531.38万元不难看出,进入报告期以来,陕西久正仍系爱科赛博经销模式下的大客户。事实上,杨锐自爱科赛博离职后,或曾现身其官网。3.3 截至2018年12月,杨锐仍为爱科赛博第一业务部的联系人据Internet archive回溯爱科赛博官网,2018年12月7日的信息显示,在爱科赛博所显示服务网络地区中,第一业务部的业务覆盖新疆等省份,杨某系爱科赛博第一业务部的联系人,其电话号码为180****0101。经《金证研》南方资本中心研究,截至查询日2023年8月11日,通过支付宝实名认证系统,杨锐系电话180****0101的背后机主。也就是说,截至2018年底,杨锐仍系爱科赛博第一业务部的联系人。也即是说,2018年12月7日,彼时从爱科赛博离职一年有余的杨锐,却还在担任爱科赛博第一业务部的联系人,合理性存疑。在此基础上,爱科赛博与陕西久正的交易公允性存疑。3.4 爱科赛博系陕西久正唯一供应商,毛利率低于同类型产品其他经销商据首轮问询回复,爱科赛博系陕西久正的唯一供应商。2020-2时低于其销售主要产品电能质量控制设备的毛利率。对此爱科赛博解释称由于陕西久正系主要经销商及成立之初给予优惠,但对比另一产品的主要经销商博众测控,爱科赛博对博众测控销售的毛利率则“偏高”。两种情形明显存在差异。由上述情形看出,前员工杨锐于2017年创立陕西久正并从爱科赛博离职。蹊跷的是,截至2018年12月,杨锐仍系爱科赛博第一业务部的联系人。此外,陕西久正成立当年即与爱科赛博建立合作,且爱科赛博系陕西久正的唯一供应商。不仅如此,爱科赛博对陕西久正销售的毛利率不仅低于同类型产品其他经销商的毛利率,也低于主要销售产品电能质量控制设备的毛利率。种种异象之下,前员工杨锐是否仍在爱科赛博任职?而其设立的陕西久正成立即与爱科赛博合作,是否系在爱科赛博的授意下设立?且合作期间,爱科赛博对陕西久正销售的毛利率偏低,是否具备商业合理性?进一步而言,重要经销商陕西久正是否为爱科赛博“而生”?存疑待解。牵一发而动全身。面对以上问题,爱科赛博未来能否在日益激烈的市场竞争中获得“一席之地”?
  • 广州致远电子ZDS4054 Plus型数字示波器
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/634b0d0b-c3ee-4cd5-83f8-2ce8f29657ae.jpg" title=" 广州致远电子_副本.png" / /p p   ■仪器名称:数字示波器 ZDS4054 Plus型 /p p   ■英文名称:Digital Oscilloscope /p p   ■厂家名字:广州致远电子股份有限公司 /p p   ■仪器介绍:存储深度等于采样率乘以采样时间,512M超大存储深度,长时间捕获波形,依然不会出现波形失真。波形刷新率越高,死区时间就越短。ZDS4000系列示波器,标配业界最高的1M次波形刷新率,配合模板触发,最大概率的发现并捕获异常信号。不同于传统示波器只测一个周期,或通过抽样减少数据量再测量的模式,ZDS4000系列示波器通过FPGA全硬件并行处理,基于原始采样率和512Mpts全存储深度,对每一帧波形每一周期进行测量统计,仅需约1秒即可实现对512Mpts数据的“真正意义”参数测量,测试项目可达51种,并且支持24种参数同时显示。这与传统意义示波器的测量有着本质的区别,也是示波器测试手段与测试方法的重大突破。 /p p   ZDS4000系列示波器不只提供了512M的波形大数据,还配有强大的波形搜索功能和智能标注功能。您可以先通过边沿、脉宽、欠幅、上升/下降时间、周期/频率等多种搜索条件来定位512Mpts波形数据中的异常点,再对找出的异常信号使用标注功能,对异常信号进行标注。这里,所有的测量都是经过FPGA全硬件加速,整个过程1S左右即可完成。再对找出的异常信号使用标注功能,对异常信号进行标注。ZDS4000系列示波器每个通道都内置有从50Hz到200MHz范围的滤波器,特别适用于过滤掉无用信号、观察特定带宽信号的场合,而且支持对滤波之后的波形进行触发和测量分析。ZDS4000系列示波器支持双ZOOM模式,可以为两个缩放窗口分别设置缩放系数,所以可以同时显示两个不同时间轴范围的缩放波形,配合触屏和大旋钮的便捷操作,也能够轻松对各个窗口的波形进行控制。 /p
  • Medtec医疗设计制造展八大看点,有源医疗器械核心部件领风骚
    Medtec医疗设计制造展八大看点,有源医疗器械核心部件领风骚Medtec China 2022暨第十七届国际医疗器械设计与制造技术展览会,将于12月7-9日在苏州国际博览中心举办,展会规模及展商数量再度扩容,展位面积增长18%。届时来自25个国家和地区的800多家参展企业将汇聚一堂,其中有源医疗设备配套参展商数量占比35%,首次参展企业数量高达366,他们将展出包含医疗器械研发和设计、自动化生产、原材料、管件挤压和加工、零部件、电子组件、制造设备、表面处理、自动化生产、包装和消毒,以及测试检验设备等21 大类别的产品、技术和服务。Medtec China还将同期举办创新技术论坛和法规峰会2022,并邀请80+行业权威和知名企业家,围绕植入介入、医用材料、高端有源医疗设备、塑模成型、3D打印等前沿领域和产业热点做主题演讲,这场医械行业的年终盛会倒计时不到30天,精彩内容提前曝光,8大看点揭秘医械行业盛会,帮助观众规划观展。点击下载《 M ed tec China 2022 展前预览》 Medtec China 2020现场盛况看点一:聚焦有源医疗装备,打造高端医疗设备设计与制造服务专区“十四五”医疗装备产业发展规划明确重点,国家对自主研发高端有源医疗设备并掌握其核心技术与部件提出了要求。Medtec China着眼有源医疗装备,开辟高端医疗设备设计与制造服务专区,涵盖光学组件、内窥镜部件、激光器、成像解决方案 、芯片传感、集成电路、连接器线束、电源电机、软件配套等展品。同时本届展会力邀近120家高端有源医疗装备设计制造资源供应商参展,包括江苏集萃苏科思科技、视疗科技、洛可可工业设计、宁波圻亿、深圳市格兰拓普、韬睿、徐州三洁环保设备、杭州贝丰、杭州海康慧影、杭州通鉴、北京伟恩斯、思脉得、日立金属投资、Kitron、Perma Pure LLC、秋时电子、东莞市赛仑特、深圳市金雨滴、FUTEK传感器、砷泰中国等,共同助力国产高端医疗装备创新突破。其中宁波圻亿、深圳市连科特、上海迅音、富延升、近江、深圳市三平影像、小精密工具等企业首次参展,将在现场带来包括定制化摄像模组-视场角、医疗影像内窥镜线束和各种医疗心电电缆及 OEM 线束、CG外夹式超声波流量传感器、IO-Link 主站、超声影像-LUVS前端基座等新产品及技术,更有镁伽科技全新一代智能自动化移液产品上市发布,值得期待。点击了解更多 2022 有源 参展企业名录 看点二:超过800个品牌确认出展,有源医疗设备配套参展商数量占比35%为顺应我国医疗器械发展的大势并为国内医疗器械生产提供源源不断的资源支持和设计研发的创新动力,Medtec China深挖本土优质医疗生产制造资源,今年将有800多家企业参展,其中有源医疗设备配套参展商数量占比35%,逾366家参展企业首次亮相Medtec China,带来多前瞻性与创新力的行业技术解决方案。首次亮相的展商包括:3M中国、云耀深维、合瑞迈、山东奥精、Alpha Plan、奥美凯、阿美特克、安徽英太、安庆市宝洁包装、安庆市康明纳包装、义乌市艾森、深圳市皓星伟业、北京当盛、北京尚宁、北京伟恩斯、贝普医疗、贝里精英包装、上海顺谱、比尔安达、深圳逗点、珠海博纳百润、邦美泰、板石智能科技、邦尼医疗科技、柏中紧固件、卡塔罗精密、Cathx Medical、成都合达、诚联新材料、德特威勒医药包装、东劢医疗、苏州艾利特机器人、仪景通光学、上海发微等。Medtec China 2022首次参展企业(部分)看点三:33,000m²四馆同开创Medtec历史规模之最,集结行业头部企业为高端医疗器械设计制造保驾护航Medtec China本届展会规模扩大至33,000平米,多个传统强势品类均匀分布在各个展馆,包括医用材料、医疗部件、激光加工设备、挤压加工、医用电子、合同制造服务等,观众可以根据采购需求规划参观线路,真正实现一站式轻松采购。今年多家产品品类的行业头部企业携新产品新技术或者新服务再次参展,为医疗器械设计制造保驾护航。路博润、迈图、艾曼斯、塞拉尼斯、奥美凯和埃万特等知名医用橡塑材料的头部企业们将继续参展。迈图的生物制药管硅胶和硅凝胶-先进伤口护理等新产品会在现场展示。优质精密医用部件专区的展商包括SP Medical、斯迈利、Yangbum、罗信、康德莱、诚发、明石、盛玛特、双九、达尔乐等,将集中展示包括骨科植入物、牙科零部件、运动医学PEEK模具、压缩弹簧、蛇骨、模组、弹簧管、前端头等精密加工零件。激光加工制造行业领军企业通快(中国)有限公司将集中展示UDI 抗腐蚀打标、TruPrint 2000,相干(北京)商业有限公司带来焊接工具 Select,昆山允可精密工业技术和英诺激光将带来医用支架激光切割机 YC-SLC300、激光应用及表面处理服务等。点击 查看更多行业头部企业展品介绍。Medtec China 2022 21大展品品类看点四:国际展团规模扩大,先进医疗设计制造技术助跑中国医疗器械高技术水平赛道Medtec China 作为国际化的医疗器械展会,拥有强大国际背景和资源,每年都有来自美国、德国、新加坡、欧洲、日本等国际展团参与,2022年展团企业规模相较于去年扩大了近60%,他们将在现场为观众带来创新产品和先进的解决方案,为国内医疗器械生产提供源源不断的资源支持和设计研发的创新动力。此外,国际企业的工程师们还将专门打造一场“国际展团技术演讲”,分享当下前沿技术资讯,先进的产品设计理念。德国展团今年依旧势头强劲:XENON Automatisierungstechnik、Alpha Plan、 Diener electronic、teamtechnik Maschinen und Anlagen、rose plastic (Kunshan)、Kloeckner Pentaplast (Suzhou) Specialty Materials、LPKF Laser & Electronics、Audion Elektro、PIA Automation (Suzhou)、ruhlamat Automation Technologies (Suzhou)、Sanner Pharmaceutical & Medical Packaging Materials (Kunshan)等多家展商为观众带来医疗行业高端德国制造。新加坡和欧洲展团将再次参展,研发“实力”与技术“热力”兼备,DNIV International、Forefront Medical Technology (Jiangsu)、DOU YEE ENTERPRISES (S)、REGA (YIXING)TECHNOLOGIES、IMA S.p.A.、Weiss-Voetsch Environmental Testing Instruments (Taicang) 、Bossard Fastening Solutions (Shanghai) 、Yangbum Engineering、jMedtech Coating Technologies等企业将携最新产品亮相Medtec,将集中展示AMADA 焊接机、AE医疗級成像电源、医用橡胶硅胶制品、桌上式试验箱LabEvent系列、医用设备紧固解决方案。点击 立刻预登记报名成为专业观众,来现场采购更多国际前沿产品看点五:国内外法规动态尽在掌握,专家解读聚焦有源器械加快产品上市“法规峰会:中国医疗器械法规更新与应对”一直是传统热门会议。随着《医疗器械监督管理条例》、《欧盟医疗器械MDR》等新法规的正式实施,医疗器械相关新政策频频出台,全球医疗器械监管的力度在逐步加严。为帮助我国医疗器械企业了解国内外法规变化,力邀来自中国国际旅行卫生保健协会医疗物资分会的秘书长陈红彦、国家心血管病中心医学统计部的副研究员王杨、国家食品药品监督管理总局高级研修学院的特聘专家陈瑜、上海市药品监督管理局政策法规处(国际合作处)调研员林峰等专家莅临现场开讲。点击 查看会议详情。 质量论坛B将邀请到FDA 驻华办公室医疗器械国际项目和政策分析官员耿众昊和高级法规咨询师虞则立先生一同道FDA在新冠疫情期间监测医疗器械质量体系合规、FDA远程检查、容易引起FDA兴趣的GMP合规问题等话题的分享。该会议长期以来获得了法规/质量/技术工程师的极大关注和积极参与。点击 立刻报名参会看点六:会议规模再创新高,携百位专家问道高端有源医疗设备的创新设计及智能制造凭借着对行业热点高敏感度及平台垂直的生产制造资源,Medtec不断扩张会议规模数量高达100+,从法规、质量、市场、技术四大板块布局,涵盖植入介入、医用辅料、塑模成型、精密加工、3D打印、牙科、医疗粘接与焊接等多项热门领域,来自中国国际旅行卫生保健协会医疗物资分会、国家食品药品监督管理总局高研院、FDA、中国医学科学院阜外医院、北京大学、上海交通大学、华中科技大学等权威机构及高校重量级大咖共聚Medtec现场,还有汉高乐泰、迈图、埃万特、通快、相干、德尼培、塑联、迈格码、帝目集团、赛默飞世尔科技、安姆科、路博润等知名企业工程师纷纷献策解决方案及创新技术。点击 查看更多会议内容和演讲嘉宾信息为了助力我国高端有源医疗设备的创新设计及智能制造,“创新技术论坛和法规峰会”打造多场相关主题会议。包括质量论坛A:高端医疗设备生命周期风险管理、技术论坛J:高端有源医疗设备核心部件与技术论坛、技术论坛N:第四届医疗器械高端自动化制造技术论坛,邀请到来自机械工业仪表仪器综合经济技术研究所医疗设备可靠性研究室的李春霞主任、以及来自中国科学院高能物理研究所的钱森、厦门大学公共卫生学院的刘刚、米克朗的周晓来独家解读高端有源核心装备及部件的研发趋势与重难点。看点七: Quality Expo China同期举办,稳抓医疗器械质量管理Medtec China现场同期举办质量检测技术及测试仪器展览会(中国),打造一个质量管理人的资源交流平台。聚集了海内外优秀的测试、计量、检验和校准设备及用品类供应企业。更有多场质量会议,打造产学研一体化平台,各参展企业工程师亮相质量聚焦专场会议,比如上海泰珂玛、马波斯、徕卡显微系统、安徽皖仪、无锡瑞埃德等企业将在现场做技术及案例分享,内容包括使用机器学习来预测和减少医疗产品的故障批次、用于可追溯显微镜检查的智能设备 Exalta、马波斯在医疗行业的多种质量控制方案、光学测量与计算机断层扫描技术在医疗领域的应用等。点击 查看更多质量检测企业及其演讲议题看点八:新市场新机遇新展馆新体验,首次移师苏州医疗器械产业发展优质生态圈苏州是医疗器械产业发展的热土,在培育医疗器械产业具有政策支持优势、产业聚集优势、产业配套优势。苏州高新区十多年来聚焦构建医疗器械产业发展最优生态圈,全区已集聚以医用机器人、医学影像设备、检测设备和诊断试剂为重点的超700家医疗器械相关企业。Medtec今年移师苏州国际博览中心后将首次启用1层的B1-E1四个展馆全馆,规模扩大至33,000平米,较去年增长近18%。B1-E1展馆四馆之间互相连通,观众可以不出展馆轻松从两端开始观展,一路饱览展商及其展品,同时馆内设置休息区、商务洽谈区、能量补给区、会议活动区等,将便捷观展的理念落实到每一个细节。苏州国际博览中心地处苏州工业园区CBD核心区域,紧邻金鸡湖,不仅拥有便捷的地铁和公交,更有步行5-10分钟即达的酒店配套、高端商业综合体以及文化旅游观光经典设施。点击 查看如何到达展馆Medtec China 2022暨第十七届国际医疗器械设计与制造技术展览会,将于12月7-9日在苏州国际博览中心举办,提前预约登记快捷入场,更有多重超值礼品提供,点击 立刻预登记报名参观。参展报名、参观咨询及媒体合作,请联络:Sophia Xu 徐镭月电话:+86 10 6562 3307邮箱:Sophia.xu@informa.com
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 2009仪器信息网特别聚焦之“中国高校十大科技进展”
    为了促进高校科技工作者争出创新成果,向全社会展示高校科技工作的实力和水平,教育部科技委从1998年起开展了年度“中国高校十大科技进展”征评活动。至今已评选12届,45所高校共120个项目入选。“中国高校十大科技进展”已成为高校科技界的品牌。2009年度中国高等学校十大科技进展评选于12月23日揭晓。 1 数字视频编解码技术研究与国家标准制定   北京大学等单位   数字音视频领域基础性国家标准《信息技术先进音视频编码》(简称AVS)十个部分今年制定完成,每年能节省上百亿元专利费,对我国音视频产业实现“由大变强”战略转型意义重大。   历经八年实践,AVS探索出了“技术、专利、标准、产品、应用”相互促进的“大团队、大循环”创新模式。北京大学、清华大学、浙江大学、武汉大学、华中科技大学、中国科技大学等高校和中国科学院计算技术研究所等科研机构与华为等通力合作,提出了50多项自主专利技术,制定出的标准复杂度低、方案简洁而性能与国外同类标准相当。今年4月,欧洲信号处理学会《视频通信学报》出版了AVS专辑,10月,国际电信联盟(ITU)正式将AVS列为网络电视支持的视频标准之一。   AVS已成为国际范围本领域三大主流标准之一。我国以及美、欧、日、韩等国的十多家企业开发的AVS编解码芯片进入市场,上海、杭州、陕西、河北、新疆、青岛、无锡等地已经采用AVS开展数字电视播出,采用AVS的中国蓝光高清晰度光盘机已经批量上市,北京大学有线网对60周年国庆盛典进行了高清转播。在国家相关部门的支持下,AVS正在通过数字电视等视听产品迅速进入千家万户,成为支撑自主数字视听产业健康发展的重要力量。   2 抗病毒感染新型免疫分子机制的研究   第二军医大学   我国是一个病毒性疾病高发的大国,乙肝病毒感染患者估计有1.2亿,SARS也曾于2002年在我国流行,HIV以及流感病毒暴发也时刻威胁着国民的健康。I型干扰素(IFNα/β)是治疗病毒性感染的重要分子,研究I型干扰素产生的分子机制将为寻求新的药物靶标和抗病毒药物提供指导。   该项目立足于1998年自主发现的一种新型免疫分子Nrdp1,研究了其在天然免疫中的作用和分子机制,利用动物模型(转基因小鼠)、细胞模型(巨噬细胞)和分子技术手段(基因克隆表达、相互作用分子、蛋白活性分析等)系统、深入、立体地进行了研究,首次发现Nrdp1抑制细菌感染引起的炎症因子分泌和肝损伤,促进IFNβ的产生和抑制病毒感染,提示Nrdp1在抗炎和抗病毒感染方面均具有极大的应用前景。   该项目还分析了DNA病毒识别和清除的免疫机制的研究现状并提出了新的发展方向。该项目提出Nrdp1可能是一种新的抗感染治疗的药物靶标,而且病毒的识别和清除存在新的机制。相关研究结果分别于2009年7月以论文形式和2009年10月以述评形式发表于《Nature Immunology》杂志。目前针对Nrdp1的抗细菌感染和抗病毒感染活性新申请国家发明专利两项。Nature China为Nrdp1的研究发表了专题述评,认为该研究是当月自然科学的亮点之一,并且受到了国内外免疫学界的关注和好评。   3 天河一号高性能计算机系统   国防科学技术大学   天河一号高性能计算机系统是国防科学技术大学于2009年9月自主研制成功的我国首台千万亿次高性能计算机系统,实现了我国自主研制高性能计算机能力从百万亿次到千万亿次的跨越,使我国成为继美国之后世界上第二个能够研制千万亿次高性能计算机的国家。   天河一号是国际上首台采用GPU和CPU异构并行体系结构的64位千万亿次高性能计算机系统,全系统包含6144个通用处理器和5120个加速处理器,内存总容量98TB,点点通信带宽40Gbps,共享磁盘总容量为1PB。系统峰值性能每秒1206万亿次双精度浮点运算,LINPACK实测性能563.1万亿次,居2009年度中国超级计算机前100强之首,列11月17日国际TOP500组织公布的第34届世界超级计算机前500强第五、亚洲第一,列11月20日国际Green500组织公布的世界最节能的超级计算机前500强第八。   天河一号高性能计算机系统作为国家超级计算天津中心的业务主机和中国国家网格主结点,将广泛应用于石油勘探数据处理、生物医药研究、航空航天装备研制、资源勘测和卫星遥感数据处理、金融工程数据分析、气象预报、气候预测、海洋环境数值模拟、短临时地震预报、新材料开发和设计、土木工程设计、基础科学理论计算等众多领域。   4 禽流感病毒聚合酶关键亚基的结构与机制研究   南开大学等单位   近年来,由H5N1、H1N1等不同亚型流感病毒引起的疫情,对全球的人类健康造成了严重的威胁,带来了严重的经济损失。流感病毒聚合酶由PA、PB1和PB2三个蛋白质组成,是负责病毒基因组转录和复制的核心,一旦伴随着病毒侵入正常细胞,就开始利用正常细胞内的原料进行病毒基因组的复制。其中,高度保守的PA亚基由于参与到聚合酶的形成和基因组复制等核心的生命过程,因此成为认识聚合酶作用机制、开发广谱抗流感药物的重要靶点蛋白质。   饶子和教授研究组与中科院生物物理研究所刘迎芳教授研究组合作,2008年成功解析了PA C端结构域与PB1 N端多肽的复合物结构,揭示了流感病毒聚合酶的组装模式(Nature 2008 Aug 28 454(7208):1123-6)。在此基础上,今年又成功解析了PA N端结构域独立的晶体结构,首次揭示了该蛋白典型的核酸酶结构特征,推翻了原来公认的PB1行使核酸酶活性的观点,证实了核酸酶活性对于流感病毒复制的关键作用(Nature 2009 Apr 16 458(7240):909-13) 通过进一步解析PAN与底物/抑制剂复合物的晶体结构,阐释了PA蛋白发挥功能的分子机制,发现了一系列对PA蛋白有良好抑制效果的抑制剂,为设计和开发针对流感病毒聚合酶的高效药物提供了重要信息,同时还应邀在《Influenza:Molecular Virology》一书中发表了相关综述。   5 微波通信用高温超导接收前端   清华大学   高温超导滤波器具有常规滤波器无可比拟的近于理想的滤波性能,可广泛应用于移动通信、军事通信、卫星通信等领域,大幅度提高灵敏度和抗干扰能力,市场前景巨大。但在该项目实施前,受到国外技术封锁,许多关键技术有待攻克,在我国没有获得实际应用。   清华大学物理系曹必松教授带领的团队经过十多年研究,发明了高性能高温超导滤波器、零下200度工作的低噪声放大器的设计制备技术和超导—金属接触电极制备工艺,研制成功了第一台适合于我国CDMA移动通信用的超导前端,在北京建成了我国首个高温超导移动通信应用示范基地并成功地连续运行超过三年,每天为十多万居民提供优质服务,使手机发射功率下降一半以上,大幅提高了基站的覆盖范围和通话质量,实现了高温超导在中国通信领域的首次应用和批量长期应用,使我国成为继美国之后,世界上第二个成功地将高温超导技术应用于移动通信的国家。   该项目关键技术指标处于国际先进水平。获得授权中国发明专利9项,授权美国发明专利1项,获2009年国家技术发明奖二等奖(已评出,建议授奖),2008年教育部技术发明一等奖,2007年信息产业部信息产业重大技术发明(十项之一)。该技术已与十多家用户签订了合同、协议,研制、生产超导前端并实现其在多种通信设备中的应用。   6 成年哺乳动物雌性生殖干细胞的发现及其生物学特性研究   上海交通大学   上世纪20年代以来,科学家们一直认定:女性和绝大多数雌性哺乳动物卵母细胞的产生仅发生在胎儿期。出生后卵母细胞数目不再增加,只会不断减少,即出生后雌性哺乳动物卵巢内,没有生殖干细胞存在。上海交通大学生命学院吴际教授团队经不懈探究首次发现和分离出生后小鼠(包括成年小鼠)卵巢中雌性生殖干细胞,经摸索培养条件得到能长期自我更新的生殖干细胞株并鉴定和研究其生物学特性。然后将此细胞移植于不孕小鼠体内,证实能产生新的卵母细胞,与雄性交配后生出正常后代。这一发现改变了八十多年生殖与发育的传统观点,开辟出一个崭新研究领域。该成果2009年5月发表在《Nature Cell Biology》上,受到国际学术界广泛关注,《Science,Nature》、《Nature Medicine》和众多杂志刊发评论文章,《Nature China》将这一成果列入最新研究亮点,世界各媒体(路透社、纽约时报、华盛顿邮报、ABC News、The Times等)纷纷报道。该成果能为动物生物技术和人类提供卵母细胞新来源,建立性细胞途径转基因动物和开发优良动物品种,对治疗卵巢功能早衰,不育症等雌性生殖细胞发生障碍性疾病,再生医学及抗衰老,避孕药开发,人口调控,濒危动物保存等都具有重要意义。   7 世界最早的带羽毛恐龙的发现   沈阳师范大学   鸟类最早何时出现问题一直是鸟类起源研究最薄弱的环节之一,鸟类是否由恐龙起源也长期存在争论。沈阳师范大学古生物研究所课题组2009年10月1日在英国《自然》杂志报道了产自辽宁省西部建昌地区距今约1.6亿年的侏罗纪带羽毛恐龙——“赫氏近鸟龙”的新发现,其时代早于德国“始祖鸟”数百万年至1000万年。该化石属于兽脚类恐龙中的伤齿龙类,全身广泛被羽毛覆盖,特别是其脚部长有较长的正羽毛,证实了在恐龙向鸟类的演化过程中内部骨骼与体表衍生物之间的复杂配置关系,代表了目前世界上最早的长有羽毛的物种和最早的带毛恐龙。该成果首次揭示了世界最早的带毛恐龙早于“始祖鸟”已存在,首次提出了兽脚类恐龙分异的时间框架假说,解决了有关鸟类起源的“时间倒置论”等问题,为鸟类起源于恐龙提供了新的证据,并支持恐龙演化过程中曾存在“四翼”阶段的假说。该项成果代表了鸟类起源研究一个新的、国际性的重大突破,有力地推动了鸟类起源研究和恐龙演化研究,为全球鸟类起源研究作出了重大贡献,是2009年国际古生物学领域最重大的科学发现之一。   8 电力大系统安全域预警监控理论及其工程应用   天津大学   电力系统作为国家的重要基础设施,保证其安全稳定运行意义重大,而发展先进的安全预警与监控技术是实现这一目标的关键。该项目旨在发展基于安全域理论的电力系统安全性综合预警与监控理论、方法与技术,并与已有理论和方法互为补充,构建科学的在线综合预警与监控系统,保障电力系统安全、稳定和高效运行。   该项目在理论研究方面,系统地发展了电力系统综合安全域理论,证明了综合安全域的一些重要微分拓扑学和非线性动力学性质,为其实用化提供坚实的理论保障 在技术研发方面,发明了安全域边界的快速求解、预想事故快速扫描和概率安全评估等多种实用技术,极大地提高了安全域的计算速度和在线安全监控的运算效率 该项目发展了高维安全域智能化降维方法以及多种安全域可视化展示技术 基于安全域理论研制了集在线安全分析、概率安全评估、控制方案优化、安全性信息可视化展示为一体的电力系统安全性预警与监控系统,提高了复杂电网的安全性运行水平,对防范大停电事故有积极作用。   该成果已成功应用于国家电网公司调度中心等部门,社会效益显著。出版专著2部,申请发明专利19项,获软件著作权4项。   9 基于自旋的量子调控实验研究   中国科学技术大学   将量子力学和计算机科学结合并实现量子计算是人类的一大梦想,而实现这一梦想的关键挑战之一就是量子调控的研究。中国科学技术大学微尺度物质科学国家实验室(筹)的杜江峰研究小组在基于自旋的量子调控实验研究方面通过采用磁共振技术对核自旋、电子自旋进行精密量子调控,在退相干研究、量子模拟和量子计算等研究方向取得了重要的创新性成果,推动了实用性量子计算机的研究。   量子系统不可避免的信息流失严重制约着量子计算的研究进程。杜江峰与其同事的研究(Nature 461,1265(2009))表明,通过精巧的脉冲控制,可以使固态体系中环境对电子量子比特的不利影响被降到最小,大大减少量子体系中量子信息的流失,并成功厘清各种退相干机制在此类固体体系中的影响。同期发表的专文评述指出:“他们所使用的量子相干调控技术被证明是一种可以帮助人们理解并且有效对抗量子信息流失的一个重要资源……从而朝实现量子计算迈出重要的一步。”   与此同时,他们实验上第一次观测了一个复杂量子体系(同时包含二体和三体相互作用)基态的纠缠量子相变过程,采用量子纠缠见证的手段探测了由于三体相互作用导致的一类新的量子相变(Physical Review Letters 103,140501(2009)),该成果被认为是对量子模拟实验研究的重要贡献。   10 双功能单分子器件的设计与实现   中国科学技术大学   中国科学技术大学合肥微尺度物质科学国家实验室单分子物理化学研究团队,利用低温超高真空扫描隧道显微镜,巧妙地对三聚氰胺小分子进行了单分子手术,将其从普通化工原料转变为既有二极管效应又有机械开关效应的双功能单分子器件,为单分子器件的多功能化开辟了新的思路。这一成果发表在2009年9月8日的美国《国家科学院院刊》上。   自1974年Aviram和Ratner提出单分子整流器件的概念以来,科学家们在搜寻功能化单分子电子器件的研究中历经了35年的历程,但在有效构建单分子功能器件中仍然面临许多困难。   该项工作是该团队在利用分子手术实现对单分子磁性控制后,再次成功地通过分子手术技术取得的重要研究成果。美国《国家科学院院刊》审稿人认为,该工作“结果可靠,创新性强,代表了这个领域的发展水平”。《自然》子刊《Nature Chemistry》杂志在短期内两次介绍和评价该工作,在9月4日的Research Highlights栏目以“分子电子器件:可控的导电性”介绍该工作,又在11月发表专文,评价该工作为单分子器件研究两种新的研究途径之一。
  • ICP-MS技术漫谈V--碰撞/反应池CCT技术之于icpTOF:复杂基体高时间分辨率测量中充分非必
    ICP-MS技术漫谈系列前篇回顾ICP-MS技术漫谈I: CeO+/Ce+ 和 BaO+/Ba+分不清楚?ICP-MS技术漫谈II icpTOF飞行时间质谱仪“免疫系统” – Notch Filter陷波技术ICP-MS技术漫谈III ICP-MS 谱图多原子离子干扰区分所需质量分辨率ICP-MS技术漫谈IV 无海平面,何来山峰海拔高度:论icpTOF全谱原始数据(包含基线信号)记录之重要性ICP-MS技术漫谈V 本文CCT模式TOFWERK ICPTOF 自1980年首次推出以来,电感耦合等离子体质谱ICP-MS技术已在多个领域(如地质学、环境科学、材料科学、法医学、考古学、生物学及医学等),成为一种成熟且广泛应用的多元素及同位素分析方法。ICP-MS以其卓越的灵敏度、低检出限、宽线性动态范围和多同位素检测能力而著称,同时还能与多种样品处理/进样技术(如色谱、电热蒸发、(单)微液滴生成和激光剥蚀等)耦合使用。同有机质谱类似,质谱干扰也是影响ICP-MS准确测量多种元素的主要挑战。这些干扰主要来源于单价或双价的原子及分子离子,其产生与等离子体、样品组成、ICP操作条件及相关样品的物理化学特性有关。目前,处理这些干扰的策略包括利用多极离子导引器与上游质量分析器内通入气体进行的离子-分子反应或产生动能差异,以及采用超高分辨率磁扇区ICP-MS技术以区分多原子干扰物。 使用有选择性的化学反应来减少对目标元素的干扰并将产生的附加干扰物的离子转移到未被占用的质荷比(m/z)通道,是一种有效的解决质谱干扰问题的方法。例如,引入氢气H₂ 作为反应气体能显著减弱由氩离子(Ar⁺ )及基于氩的多原子离子所引起的背景干扰,使得能够在其丰度最高的同位素峰上检测到钙(Ca)、铁(Fe)或硒(Se)。此过程中主要的反应产物为H₃ ⁺ ,不会引入额外的干扰信号,从而提高了分析的准确性和灵敏度。这种方法通过改变干扰物质的质荷比来“清理”分析信号,使得原本由于干扰而无法检测的元素或同位素得以准确测定。 本文中,研究人员探讨了电感耦合等离子体-飞行时间质谱(ICP-TOF-MS)结合碰撞/反应池技术(CCT)在高时间分辨率分析中的应用优势,特别是在使用多样的样品引入技术,包括高速激光剥蚀和微液滴生成。通过在CCT中采用氢气(H₂ )作为反应气和氦气(He)作为碰撞气,研究着重于多元素测定的能力,特别是在抑制基于氩的背景离子、提高多同位素灵敏度和优化激光剥蚀定量分析方面。这些CCT中的气体分子和离子束发生化学反应或者物理碰撞,从而实现清除某些特定的同位素,或者将多原子离子解离。 使用H₂ 作为反应气体时,能够显著降低氩离子(Ar⁺ )和氩分子离子(Ar₂ ⁺ )的信号,使得钙(Ca)和硒(Se)的丰度最高的同位素得以检测。此外,降低Ar⁺ 信号时还允许在进行飞行时间分析前,无需陷波技术(notch filter)来选择性减弱特定质荷比(m/z)信号值,从而改善了质荷比40和80附近同位素的传输效率。 研究发现,以不超过4mL/min的流量引入氢气、氦气或两者混合气体,可以通过碰撞诱导聚焦机制将离子检测灵敏度提升1.5至2倍,并且质量分辨率也提高了16%。使用CCT后,钙(40Ca)的检出限(LOD)提高了超过三个数量级,硒(80Se)的检出限(LOD)提高了一个数量级。对于NIST SRM610标准中的多种元素,检出限均提高了2到4倍,同时在大多数元素上保持了定量准确性(小编注:如果应用偏重于轻质量数元素分析,可以通过关闭CCT模式来达到最优效果)。 实验还表明,当采用微液滴样品引入技术时,碰撞池中的He缓冲气体量会导致单个微液滴信号的宽度增加至数十至数百微秒。但是,高速激光剥蚀产生的单气溶胶羽流事件的持续时间未受碰撞效应影响,表明在100 Hz的激光剥蚀频率下,即使开启CCT,也不会对成像效果产生显著影响。这些发现强调了CCT在提高ICP-TOF-MS性能和分析精度方面的潜力,尤其是对于高时间分辨率的多元素分析。01实验参数和设置 实验是在瑞士TOFWERK AG公司生产的icpTOF仪器上进行的,该仪器与多种样品引入系统相结合使用。icpTOF装备有陷波滤波器,位于碰撞/反应单元(CCT)下游,用于精确调控飞行时间(TOF)谱图中多达四个特定质荷比(m/z)的高信号强度。通过调整频率和振幅,可以选择性地衰减特定m/z离子信号,同时这也会影响到相邻的m/z。在进行激光剥蚀(LA)实验时,通常只需衰减氩离子(Ar+)的信号,以避免信号饱和导致探测器损坏。表1:在不同实验设置的情况下,ICP-TOFMS的运行参数和碰撞/反应池的设置。碰撞/反应单元操作:碰撞/反应单元使用的氦气(99.999%纯度,由瑞士Dagmersellen的PanGas AG提供)和氢气(99.9999%纯度,同样由PanGas AG提供)或这些气体的混合物进行加压。气体的流量通过质量流量控制器进行精确控制,使用Micro Torr气体净化器(由加利福尼亚的SAES Pure Gas, Inc.提供)来去除气体中的杂质。在需要进行离子束衰减的实验中,调整陷波滤波器的操作参数以确保背景信号的总强度维持在500 kcps以下。激光剥蚀导入:激光剥蚀实验在NIST SRM610、NIST SRM612和USGS BCR-2G标准样品上进行。使用的是193nm ArF准分子激光剥蚀系统(GeoLasC,由德国哥廷根的Lambda Physik提供)。高分散LA实验在一个充满氦气的单体积圆柱形剥蚀室中进行,使用44μm直径的圆形激光光斑和10Hz的激光剥蚀频率,单脉冲信号的持续清洗时间为1.5-2秒(FW0.01M)。低分散LA实验在一个双体积管状样品池中进行,使用5μm直径的圆形光斑和100Hz的激光频率,单脉冲信号的持续清洗时间小于10毫秒(FW0.01M)。所有实验都采用线扫描模式,扫描速度分别为5μm/s(高分散)和50μm/s(低分散)。通过调节操作参数,实验每天都能在保持相近的铀(238U)和钍(232Th)的灵敏度以及低氧化物生成率的同时,获得最高的238U+灵敏度。高分散LA-ICP-TOFMS数据的采集时间分辨率为1秒,而低分散LA-ICP-TOFMS数据的采集时间分辨率为1毫秒。在后处理中,对TOF质谱进行了重新校准和基线去除。微液滴导入:微液滴导入实验使用的是德国Microdrop Technologies GmbH公司的商用微滴生成器(MD-K-150-020和MDE-3001,配备30微米直径喷头)。在50Hz的条件下产生直径为25到30微米不等的液滴,并通过氦气和氩气传输到ICP。多元素标准溶液由单元素标准溶液制备而成(由德国达姆施塔特的Merck AG和美国弗吉尼亚克里斯琴斯堡的Inorganic Ventures提供),每个元素的最终浓度通常为100 ng/g。02实验结果使用氢气作为反应气体以衰减背景信号:本研究的激光剥蚀NIST SRM610实验是在仪器参数优化后进行的。实验使用高色散LA-ICPTOFMS装置,并在反应池中通入不同流量的氢气。除了氢气流量和陷波滤波器的设置外,三个实验中的ICP-TOFMS操作参数和碰撞/反应池设置保持恒定。图1报告了气体背景信号强度的平均值。当通入氢气流量大于1.5mL/min以上,m/z=40的信号是无需使用陷波滤波器进行衰减的。气体背景信号分析虽然仅反映了仪器在不引入样品时的背景信号情况,但这种分析并不完全代表分析特定样品时的背景信号水平,因为样品基质可能会提升基线信号。尽管存在这一局限性,此类测量对于估计激光剥蚀实验中的背景信号强度仍然非常有用,特别是低背景信号对于实现更佳的检出限(LOD)至关重要。在不引入氢气的条件下,背景信号主要由Ar+离子及其相关的氩基分子离子(例如Ar2+、ArN+和ArO+)贡献,同时H2O+、N2+和O2+也展现出显著的峰值。ICP-TOFMS的丰度灵敏度特性导致这些背景离子增加了质谱的基线水平。通过向CCT中增加氢气流量,Ar+信号可以显著衰减至每秒几百次的强度水平。特别是当氢气流量达到5 mL/min时,Ar2+的信号可以降低超过四个数量级,达到每秒几个的强度水平。这一衰减效果涉及到的反应主要是氢原子的转移,例如Ar+转变为ArH+,使得在质谱中m/z=37和m/z=41位置的信号变得占主导地位。在更高的氢气流量下,ArH+通过质子转移的方式进一步减少。图1:分析m/z小于100的范围内的平均背景信号强度与通入氢气流量的关系。左右两图为同样的数据但被绘制在线性y轴(a)和对数y轴(b)上。当没有氢气流过反应池时,使用陷波滤波器来衰减m/z=40处的信号强度。当H2气体以2.5mL/min和5mL/min则不需要信号衰减。 图2a和c展现了在高色散LA-ICP-TOFMS条件下,特定同位素(27Al、55Mn、89Y、141Pr、238U)的灵敏度与氢气和氦气流量之间的关系。这些同位素覆盖了广泛的m/z范围。对于氢气和氦气,灵敏度随气体流量增加先升高后降低,显示出相似的趋势。特别是,对于55Mn,在气体流量为1 mL/min时,其灵敏度达到最大值,与不通气的标准条件相比,分别增加了28%(氢气)和84%(氦气)。对于27Al,在氢气流量为0.5 mL/min时灵敏度最高,而对于238U,在氢气流量为1.5 mL/min时灵敏度最高,相较于不通气的标准条件,它们的灵敏度分别提高了11%(27Al)和2%(238U)。在通入氦气时,27Al和238U的灵敏度分别在氦气流量为0.5 mL/min和3.5 mL/min时达到峰值,相比不通气的标准条件,它们分别提高了3%(27Al)和73%(238U)。灵敏度的提升主要归因于碰撞聚焦效应。随着m/z增大,较高的气体浓度下灵敏度的下降趋势减缓,这与低质量离子的速度减慢和散射过程加快有关。 同位素238U+/232Th+的信号强度比随气体流量的增加而稳步上升,在通入氢气和氦气时分别从1.25增加到1.36和从1.31增加到1.47。这表明在通入气体时,Th+的减少速度超过U+。这可能是由于Th+与气体中的杂质反应或散射过程。然而,鉴于U和Th的碰撞截面和动能相似,散射过程的影响可能较小。Th+相对于U+更快的减少可能与其与气体中水分子的反应有关。 同时,137Ba++/137Ba+的信号强度比随着气体流量的增加先上升后下降,这一趋势在通入氢气和氦气时均被观察到。这表明Ba++的透射率最初随气体流量的增加而提高,可能是由于双电荷离子在进入碰撞/反应池前在静电离子光学器件中获得较高的动能。然而,随着气体流量的进一步增加,Ba++离子的反应速率可能超过了Ba+,导致其离子信号强度的连续下降。图2:灵敏度和选定的离子强度比与通入反应池的氢气H2流量的关系(a)。钙的同位素的检出限与通入反应池的氢气流量的关系(b)。在低于1.5mL/min的氢气流量设置时,每种氢气流量设置都会相应调整陷波滤波器上的设置,以保持尽可能高的灵敏度,同时防止检测器饱和。对于H2气体流量大于1.5mL/min,则未启用陷波滤波器。灵敏度和选定的离子强度比与通过碰撞池的氦气He流量的关系(c)。质量分辨率和灵敏度与通过碰撞池的氦气流量的函数关系(d)。在此实验期间,陷波滤波器设置保持不变,m/z=40处的信号强度必须始终衰减。所有实验均在NIST SRM610上进行,使用直径44微米的圆形光斑和10Hz的激光频率。实验采用线扫描模式进行,扫描速度为5µ m/s。03检出限和氢气气体流量的关系及同位素的选择 图2b展示了多个Ca同位素(40Ca, 42Ca, 43Ca和44Ca)的检出限随着通过反应池的氢气流量变化的情况。在氢气流量为3mL/min时,40Ca的检出限数值最佳,达到0.33mg/kg,这一检出限比CCT模式下其他Ca同位素的检出限好一个数量级以上。与无氢气流的标准条件相比,检出限提升超过了三个数量级,这主要归因于氢气对Ar+信号的选择性衰减,从而显著提升了检出限。随着氢气流量的进一步增加,检出限的上升归结于灵敏度降低。 此外,研究中还观察到Se同位素(特别是80Se)在氢气流量为3.5mL/min时达到了最佳检出限0.95mg/kg,相比于标准条件下可获得的检出限(针对77Se为4.1mg/kg)提高了约四倍。对于238U和89Y,当氢气流量分别达到5mL/min和3.5mL/min时,观察到检出限降低了四倍,这表明通过调整氢气流量,可以显著改善某些特定元素的检出限。 对于27Al,在无氢气通入的条件下其检出限数值最低,但即使在低氢气流量下,27Al的信号也可能因碰撞而衰减。当通入3.5mL/min的氢气时,27Al的检出限恶化了两倍,这表明氢气流量的增加对某些元素的检测性能有负面影响。 这些观察结果说明,在通过反应池的氢气流量对检出限有着显著的影响,不同元素和同位素受氢气流量影响的程度各不相同。通过优化氢气流量,可以在不牺牲其他性能的前提下,针对特定元素达到更低的检出限。对于更多细节和氢气流量与灵敏度及背景信号之间的相关性分析,建议参考原始研究的辅助材料。04质量分辨率和丰度灵敏度与He气体流量的函数关系 图2d的结果表明,通过向碰撞池中添加氦气(He)作为碰撞气体,可以略微提高特定同位素的质量分辨率。这一发现对于改善质谱分析的准确性和分辨能力具有重要意义。质量分辨率的提高允许更好地区分质量相近的同位素,从而降低了分析中的误差和不确定性。例如,141Pr和238U的质量分辨率分别在氦气流量为5mL/min和6mL/min时提高了16%和13%。这种效果是由于碰撞导致离子动能的离散度减小,从而使得同位素峰更加尖锐。 与使用氦气相似,实验中也观察到使用氢气(H2)作为反应气体时,同样可以提高质量分辨率。例如,在氢气流量为2.5mL/min时,238U的质量分辨率提高了4%。这进一步证明了通过调整碰撞/反应池中的气体种类和流量,可以有效地优化质谱分析的性能。 在进行了ICP-TOFMS操作参数和碰撞/反应池设置的优化后,特别是在优先考虑峰形而非灵敏度的情况下,238U的质量分辨率可以超过4000。尽管这种优化导致238U的灵敏度降低了7%,但显著提高的质量分辨率对于解决复杂样品分析中的同位素重叠问题至关重要。 此外,通过监测209Bi+在m/z=209和m/z=210处的强度,研究人员还探讨了丰度灵敏度的变化。发现通过将氦气流量提高至3mL/min,可以提高丰度灵敏度。这是因为增加的氦气流量导致重质量侧的质谱峰底部变宽,尽管这种效果在质量分辨率的测定中未能得到充分体现。这一发现强调了在实际应用中,对碰撞/反应池中气体流量和种类的精细调节对于优化质谱分析性能的重要性。 钙的定量与氢气气体流量和同位素选择的关系:图3a和b的研究报告通过使用高色散LA-ICP-TOFMS技术在NIST SRM612和USGS BCR-2G样品中测定钙(Ca)元素含量,并探讨了通过反应池的氢气(H2)流量对测定结果的影响。这项研究选择NIST SRM610和29Si+作为参考样品和内标,因为NIST SRM610与NIST SRM612成分相似,适用于校准,而对于USGS BCR-2G的定量,使用NIST SRM610进行校准则被视为非基质匹配的方法。 研究发现,在没有氢气流的标准条件下,能够测定的Ca浓度主要基于44Ca+的强度,而40Ca+、42Ca+和43Ca+的信号未能检测到高于背景水平。当在NIST SRM612中测定Ca时,发现无论选择哪种同位素,准确度和精确度都遵循相似的趋势,并且在氢气流量低于2.5mL/min时得到提升。这表明低氢气流量有助于提高钙定量的准确度和精确度,而较高的氢气流量则因碰撞引起的信号损失而导致逆向趋势。 此外,2.5mL/min的氢气流量被发现能够实现最准确的Ca测量,基于40Ca强度测得的Ca浓度与GeoReM数据库中的参考值相比,偏差仅为1.3%。在USGS BCR-2G标准样品中,较小的氢气流量同样能够提高Ca定量的准确度和精确度。 然而,Ca离子的强度可能会受到MgO+、MgOH+、AlO+和AlOH+等多原子离子的干扰,尤其是在USGS BCR-2G样品中钙浓度高的情况下。这些干扰主要影响低丰度同位素42Ca+、43Ca+和44Ca+,并且随着H2气体流量增加,其影响也随之增大。研究指出,在NIST SRM和USGS BCR-2G样品中,较高的氢气流量可能有助于减少Ca+/Ar+比率的差异和K+信号的拖尾现象, 但为何在较高H2气体流量下基于40Ca+的定量结果更为准确仍然不明确, 这项研究不仅展示了LA-ICP-TOFMS技术在测定特定元素含量时的应用潜力,也强调了优化氢气流量在提高测定准确度和精确度中的重要性。通过调整反应池中的氢气流量,可以有效地减少多原子离子的干扰,从而实现更准确和精确的元素定量分析。 在2.5mL/min的氢气流量下,研究对NIST SRM612和USGS BCR-2G样品中多种元素的定量能力进行了测试。选择这一氢气流量是基于它能够有效平衡背景信号的衰减和由于碰撞引起的信号损失。结果表明,在没有氢气流量的标准条件下与2.5mL/min氢气流量条件下,大多数元素的定量结果之间没有显著差异。实验数据显示,在无氢气和2.5mL/min氢气条件下,分别有43%和36%的测试元素的浓度落在NIST SRM612的首选值不确定度范围内。同时,大约70%的元素在两种条件下与NIST SRM612的首选值相对偏差小于5%。对于USGS BCR-2G样品,62%(无氢气流)和69%(2.5mL/min氢气流)的元素浓度落在首选值的不确定度范围内,且在这两种实验条件下,大约62%的元素与USGS BCR-2G首选值的相对偏差小于5%。 然而,对于磷(P)、钾(K)和钪(Sc)等某些元素,随着氢气流量的增加,其定量准确性有所降低。这一趋势在两种标准参考材料中均被观察到。分析光谱数据时发现,31P、39K和
  • “十四五”医疗装备产业发展规划明确重点,Medtec中国展着眼有源医疗装备开辟新展区
    “十四五”医疗装备产业发展规划明确重点,Medtec中国展着眼有源医疗装备开辟新展区2021年12月28日,工业和信息化部、国家卫生健康委、国家发展改革委、科技部等10部门联合发布《“十四五”医疗装备产业发展规划》(以下简称《规划》)。这也是医疗装备领域首个国家层面的产业发展规划。《规划》提出,“十三五”期间,我国医疗装备产业高速发展,市场规模快速扩大,2020年市场规模达到8400亿元,年均复合增长率为11.8%。 未来要加快智能医疗装备发展,推动人工智能、工业互联网、5G、大数据、云计算等新技术嵌入医疗装备,提升CT、MR等传统医疗装备的诊疗水平,推动医疗装备智能化、精准化、网络化发展。重点发展包括有源植介入器械、治疗装备、监护与生命支持装备、诊断检验装备、保健康复装备、妇幼健康装备等在内的7大器械领域。攻克核心零部件及技术、保证产业链供应链安全稳定、创新产品的研发设计突破是关键,Medtec中国展17年深耕于医疗器械行业,对医疗装备产品上下游关键环节和供应链关系有深刻的认知和洞察,致力于服务医疗装备生产制造上下游企业,整合资源减小产业链供应链压力和风险,为中国医疗器械生产厂商提供产品研发、生产、注册所需的设计及软件服务、原材料、精密部件、自动化制造设备、超精加工技术、合同制造、测试和认证、政策法规和市场咨询服务。展会将于今年2022年8月31日-9月2日在上海世博展览馆举办,新增有源医疗装备核心部件区和研发&制造专区等。Medtec中国展现场参观观众络绎不绝新展区新技术新商机,助推智能医疗装备更快发展冬季奥运会在北京如火如荼进行,更快更高更强的精神鼓舞着每一个中国人。17年来Medtec中国展也一直秉承更大更多更强更专精的办展理念,不断开辟紧跟国家政策指向和市场行业需求的展区展品。近年来有源医疗装备频频受到关注,尤其是受到新冠疫情的影响,国家对自主研发高端有源医疗设备并掌握其核心技术与部件提出了要求。Medtec中国展自2016年起布局医疗电子,从最初的电子部件、电机&传动控制展区到2021年首开的高端医疗设备设计与制造专区,一大批高质量展商加盟Medtec,经过多年的积淀,2022年有源医疗装备核心部件展区应运而生,展区将覆盖光学组件,内窥镜部件,激光器,成像解决方案 ,芯片传感,集成电路,连接器线束,电源电机,软件配套等展品和相关企业,目前已经有包括深圳市欧卓斯医疗有限公司、思脉得(嘉兴)医疗科技有限公司、东莞市日臻尚勤电工材料有限公司、江阴市辉龙电热电器有限公司和深圳毕宜医疗科技有限公司等多家企业入驻参展,将携内窥镜模组和手柄线、多功能内窥镜测试平台、内窥镜摄像系统线缆连接器、内镜摄像线、医用等离子电极线缆连接器、骨科动力传输线缆、硅橡胶加热器、厚膜加热器、PI薄膜加热器、脑电事件相关电位、脑电生物反馈仪器等产品到场展示。有源医疗装备核心部件展区还覆盖了体外诊断 IVD,医学康复、居家医疗和医疗美容解决方案,手术机器人设计与制造等行业热点领域和市场赛道,深圳市合盛医疗科技有限公司、深圳市固源塑胶制品有限公司、郑州智捷生物技术有限公司等企业将在Medtec展示新冠核酸采样保存管、移液器吸头、反应杯、试剂条/盒、医疗器械结构件、全自动核酸提取纯化仪、核酸提取或纯化试剂、生物磁珠等。北京卓杰亿品科技有限公司、丰朴医疗科技(上海)有限公司、准源激光技术河北有限公司和广东松博纳米合金管材有限公司等企业也确认参展该展区,他们的展品包括:七轴医疗机械臂、血管造影仪、手术机器人系统、多种康复理疗机外壳、医疗设备研发及样机、激光加工代工服务和美容针头等。点击查看Medtec中国展展品品类报名参展Medtec中国展现场观众观看现场电子类展品医疗创新研发是行业发展的核心驱动力,工业制造技术的快速迭代和敏捷性则是发展的关键点,Medtec十年如一日专注于为医疗器械研发与生产服务,今年整合独家行业资源,聚焦于研发和制造,打造包括“超精密激光加工、机床及增材制造”和“研发设计及软件服务”在内的研发&制造专区。通快、相干、GF(乔治费歇尔精密机床)都是全球领先的激光制造解决方案/加工方案供应商,也是Medtec中国展多年的参展企业。2022年这些企业将再度参展,展示他们的最新产品技术和解决方案——UDI 抗腐蚀打标、焊接工具、成套精密激光切割系统、激光打标系统等。点击了解更多2022参展企业名录新媒体新资源新机遇,Medtec中国展合作近50行业媒体Medtec中国展是Informa Markets旗下的Medtech World全球医疗设计与制造品牌系列展览会在中国的一站,拥有丰富的商业资源和国内外媒体资源。Medtec中国展与《中国医学装备杂志》、《中国医疗器械信息》、《中国医疗器械杂志》、《医疗装备》、《中国医疗设备》、《医疗设备商情》、《EDN电子激光设计》、《洁净室》、《激光世界》、《质量与认证》、《模具制造》、《模具工业》等医疗行业专业期刊有着长期媒体合作关系,与EEworld电子网、3D打印世界、电子发烧友、21IC中国电子网、电子工程网、医谷、荣格工业等数十家知名行业垂直媒体有着多种形式的市场宣传合作;国外行业媒体包括英国、德国、印度、泰国等多国覆盖全球的资源。2022年Medtec中国展根据新展区规划和未来发展目标,不断开发新的合作媒体伙伴,预计将有近50的媒体合作伙伴将同步宣传Medtec中国展,精准触达全球医疗工程师,为中国乃至全球医疗器械生产厂商提供产品研发、生产、注册所需的设计及软件服务、原材料、精密部件、自动化制造设备、超精加工技术、合同制造、测试和认证、政策法规和市场咨询服务。Medtec中国展现场展商和观众亲切交流2022Medtec中国展将于8月31-9月2日在上海世博展览馆1&2号馆开幕。截止目前2022 Medtec中国展展位9成已经全部预订,目前1号馆售罄,2号馆展位仅剩有限席位。Medtec中国展汇聚来自全球27个国家的800多个优质品牌供应商,展品涵盖医疗器械设计与制造全产业链,展会预计将接待来自全球近40,000医疗工程师参观展会。目前优质展位所剩无多,点此抢订优质展位。更多详情请访问Medtec中国展官方网站:www.medtecchina.com,或关注官方微信:Medtec 医疗器械设计与制造,获取最新展会资讯和行业前沿好文。参展报名、参观及媒体合作,请联络: 李娜 电话:+86 10 6562 3308 邮箱:carina.li@informa.com Medtec中国展组委会
  • 三星开发CMOS超光谱图像传感器,有望成为光谱成像的新平台
    光谱仪在材料分析、天文学、食品化学以及医学诊断等许多领域都有应用。市场需求正在迅速增长,但光谱仪的尺寸阻碍了其在更广泛领域的普及。因此,市场急需高性能的紧凑型光谱仪,不断缩小光谱传感器尺寸已成为当前的研究热点。为了使光谱仪小型化,已经进行了各种尝试,例如传统的色散方法、傅里叶变换干涉技术(FTI),以及使用带有随机滤波器阵列和窄带通滤波器的探测器等。与色散和傅里叶变换干涉系统相比,滤波器阵列与探测器的集成,由于无需长光路和光学元件的精确对准来获得高分辨率而具有优势。此外,将滤波器阵列与电荷耦合器件(CCD)或CMOS图像传感器(CIS)等探测器集成,可以通过单次捕捉二维图像实现高光谱成像。特别是,与随机滤波器方案相比,窄带通滤波器阵列的集成无需进行后处理分析。然而,为了获得高分辨率需要大量的信道,意味着更复杂的制造工艺,例如蚀刻和沉积,因为每个信道都需要不同厚度的薄膜。为了解决这个问题,有研究使用组合蚀刻技术来制造多信道。业界对光谱仪中使用的窄带通滤波器的谐振结构进行了研究,但大多数研究仅限于改变电介质多层膜的厚度,以形成不同波长和品质因数的光学腔。这对于器件的大规模生产很麻烦,因为它需要过多的电介质沉积、蚀刻和光刻步骤,尤其是在像素尺寸级别的制造工艺。据麦姆斯咨询介绍,三星高级技术研究所光子器件实验室的Jaesoong Lee及其同事通过将被称为超表面的亚波长纳米结构集成到直接位于CMOS图像传感器顶部的带通滤波器阵列中,开发出了一种紧凑型超光谱(meta-spectral)图像传感器。由于窄带通滤波是通过亚波长光栅结构而不是通过改变层的厚度来调谐的,因此所有信道都可以通过一步光刻工艺制造。这种方案简化了制造,并且与CMOS工艺完全兼容。这种紧凑型超光谱图像传感器具有窄带高效率、与相邻信道的低串扰和高光谱分辨率。利用该器件,研究人员从波长混合图像中获得了高光谱图像。超光谱图像传感器示意图超光谱图像传感器制造研究人员在CMOS图像传感器晶圆(三星S5K4E8)上采用标准的洁净室工艺(包括PECVD和干法蚀刻)制作了超表面带通滤波器阵列。首先,研究人员为底部介质反射器沉积了多层硅和二氧化硅;然后利用电子束光刻定义纳米柱阵列;再使用电感耦合等离子体反应离子刻蚀(ICP-RIE)形成纳米柱阵列,并再次沉积二氧化硅以填充纳米柱之间的间隙;然后进行化学机械抛光(CMP)工艺,以平整二氧化硅顶面;最后,为顶部反射器沉积了一层由硅和二氧化硅制成的多层膜。超光谱图像传感器制造过程示意图高光谱成像为了验证演示其高光谱成像性能,研究人员拍摄了由3 x 5颗多波长LED组成的LED面板的光谱图像。每颗LED可以发射多个波长的组合,这些波长被选择以显示以下大写字母:770 nm显示“S”,810 nm显示“I”,850 nm显示“A”,950 nm显示“T”,如下图(a)底部所示。超光谱成像仪的高光谱成像演示作为概念证明,研究人员拍摄了一张所有LED都打开的面板照片,如上图(b)顶部所示。图像中的所有字母都无法区分,因为面板上的所有LED都已打开。通过将这个组合图像分成20个信道,如上图(b)底部所示,研究人员发现了隐藏的“SAIT”字母。在对应829.1 nm的信道11处,由于810 nm和850 nm LED的宽带发射,“I”和“A”被结合在一起。对于更长的波长(信道12和信道13),研究人员观察到字母“I”变得更模糊,而字母“A”变得更清晰。通过实验结果,研究人员证实了这款超光谱图像传感器具有良好的光谱成像性能。
  • 西安光机所微纳光子学亚波长器件研究取得重要进展
    微纳光子学亚波长器件研究获进展 或让电子学和光子学在纳米尺度上联姻   微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。   金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。   针对此问题,中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室刘雪明研究员及其课题组成员陆华、宫永康等近期开展了相关研究并取得一定成果。到目前为止,已在Optics Express, Optics Letters, J. Opt. Soc. Am. B, Applied Physics B等国际著名光学期刊上发表论文十余篇。最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。   该研究成果引起了美国光学学会(Optical Society of America, OSA)的注意,并于6月27日被选为“Image of the week”。   论文链接
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 1GHZ——超高分辨率光谱仪的新突破
    1GHZ——超高分辨率光谱仪的新突破 --- 基于ZOOM超高分辨率光谱仪 摘要:近日,Resolution Spectra System 公司推出一款超高分辨率光谱仪:1GHZ-ZOOM Spectrometer. 这款光谱仪可以说是目前市场上绝无仅有的一款超高分辨率光谱仪(1GHZ),它具有其他光谱仪无法匹配的优良特性:高分辨率(1GHZ)、 SWIFTS Technology 、30KHZ测量速率、体积小、终生仅需一次校准。 ZOOM Spectrometer 不同于现在市场上的光谱仪,它是第一个也将是仅有的一个采用SWIFTS Technology技术的高性能光谱仪供应商(上海昊量光电设备有限公司-中国代理商),它的核心技术是SWIFTS Technology,即采用目前世界上先进的光波导技术(如图1)来替代传统的光栅元件。这样,光谱仪内部不再包含可移动的元器,也确保了波长的绝对精确性(终生仅需校准一次,可充当波长计来使用)。 图1 SWIFTS 芯片(光波导技术) 此前Resolution Spectra System公司已经相继推出多款高分辨率光谱仪: (1) WIDE Spectrometer(6GHZ) 宽带高分辨率光谱仪 (7-20pm)(2) MICRO Spectrometer(6GHZ) 高性价比超高分辨率光谱仪 (7-20pm)(3) ZOOM Spectrometer (6GHZ、3GHZ) 高速率、高分辨率光谱仪 (5-15pm) 近年来,我们的高分辨率光谱仪得到了众多科研工程师们的青睐,为了满足诸多工程师们对激光器超窄线宽的测量、单纵模激光器的检测、VCSEL激光器测量(图2)、高深度相干断层扫描(图3)等需求. Resolution Spectra System 研制了分辨率高达1GHZ的超高分辨率光谱仪——ZOOM Spectrometer。 图2 VCSEL激光器测量 图3   高深度相干断层扫描图 对于ZOOM Spectrometer –超高分辨率光谱仪,如果您想要更深入的进行了解,可直接联系我们。 您可以通过我们的官方网站了解更多的超高分辨率光谱仪产品信息,或直接来电咨询021-34241962。 激光器 大功率连续半导体/固体激光器(CW)碱蒸汽激光泵浦源(SEOP) 光学部件 体布拉格光栅(VBG,VHG)空间滤波器(spatial filters)频谱合束光栅用于角度选择与放大的透射体布拉格光栅啁啾布拉格光栅多波长激光合束器激光选模/波长锁定用体布拉格光栅光学滤波片/陷波滤波片BPF低波数带通滤光片BNF低波数陷波滤波片 光学/激光测量设备 频谱分析仪630~1100nm频谱分析仪 光谱仪 光纤光谱仪宽带超高分辨率光谱测量仪高性价比超高分辨率光谱仪(7~20pm)高速、超高分辨率光谱仪(0.005nm)
  • MEMS是怎样的技术,哪些已经民用了?
    虽然大部分人对于MEMS(Microelectromechanical systems, 微机电系统/微机械/微系统)还是感到很陌生,但是其实MEMS在我们生产,甚至生活中早已无处不在了,智能手机,健身手环、打印机、汽车、无人机以及VR/AR头戴式设备,部分早期和几乎所有近期电子产品都应用了MEMS器件。MEMS是一门综合学科,学科交叉现象及其明显,主要涉及微加工技术,机械学/固体声波理论,热流理论,电子学,生物学等等。MEMS器件的特征长度从1毫米到1微米,相比之下头发的直径大约是50微米。MEMS传感器主要优点是体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等,是微型传感器的主力军,正在逐渐取代传统机械传感器,在各个领域几乎都有研究,不论是消费电子产品、汽车工业、甚至航空航天、机械、化工及医药等各领域。常见产品有压力传感器,加速度计,陀螺,静电致动光投影显示器,DNA扩增微系统,催化传感器。MEMS的快速发展是基于MEMS之前已经相当成熟的微电子技术、集成电路技术及其加工工艺。 MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。然而,MEMS器件加工技术并非机械式。相反,它们采用类似于集成电路批处理式的微制造技术。批量制造能显著降低大规模生产的成本。若单个MEMS传感器芯片面积为5 mm x 5 mm,则一个8英寸(直径20厘米)硅片(wafer)可切割出约1000个MEMS传感器芯片(图1),分摊到每个芯片的成本则可大幅度降低。因此MEMS商业化的工程除了提高产品本身性能、可靠性外,还有很多工作集中于扩大加工硅片半径(切割出更多芯片),减少工艺步骤总数,以及尽可能地缩传感器大小。图1. 8英寸硅片上的MEMS芯片(5mm X 5mm)示意图图2. 从硅原料到硅片过程。硅片上的重复单元可称为芯片(chip 或die)。MEMS需要专门的电子电路IC进行采样或驱动,一般分别制造好MEMS和IC粘在同一个封装内可以简化工艺,如图3。不过具有集成可能性是MEMS技术的另一个优点。正如之前提到的,MEMS和ASIC (专用集成电路)采用相似的工艺,因此具有极大地潜力将二者集成,MEMS结构可以更容易地与微电子集成。然而,集成二者难度还是非常大,主要考虑因素是如何在制造MEMS保证IC部分的完整性。例如,部分MEMS器件需要高温工艺,而高温工艺将会破坏IC的电学特性,甚至熔化集成电路中低熔点材料。MEMS常用的压电材料氮化铝由于其低温沉积技术,因为成为一种广泛使用post-CMOS compatible(后CMOS兼容)材料。虽然难度很大,但正在逐步实现。与此同时,许多制造商已经采用了混合方法来创造成功商用并具备成本效益的MEMS 产品。一个成功的例子是ADXL203,图4。ADXL203是完整的高精度、低功耗、单轴/双轴加速度计,提供经过信号调理的电压输出,所有功能(MEMS & IC)均集成于一个单芯片中。这些器件的满量程加速度测量范围为±1.7 g,既可以测量动态加速度(例如振动),也可以测量静态加速度(例如重力)。图3. MEMS与IC在不同的硅片上制造好了再粘合在同一个封装内图4. ADXL203(单片集成了MEMS与IC)通信/移动设备图5. 智能手机简化示意图以智能手机为主的移动设备中,应用了大量传感器以增加其智能性,提高用户体验。这些传感器并非手机等移动/通信设备独有,在本文以及后续文章其他地方所介绍的加速度、化学元素、人体感官传感器等可以了解相关信息,在此不赘叙。此处主要介绍通信中较为特别的MEMS器件,主要为与射频相关MEMS器件。通信系统中,大量不同频率的频带(例如不同国家,不同公司间使用不同的频率,2G,3G,LTE,CDMD以及蓝牙,wifi等等不同技术使用不同的通信频率)被使用以完成通讯功能,而这些频带的使用离不开频率的产生。声表面波器件,作为一种片外(off-chip)器件,与IC集成难度较大。表面声波(SAW)滤波器曾是手机天线双工器的中流砥柱。2005年,安捷伦科技推出基于MEMS体声波(BAW)谐振器的频率器件(滤波器),该技术能够节省四分之三的空间。BAW器件不同于其他MEMS的地方在于BAW没有运动部件,主要通过体积膨胀与收缩实现其功能。(另外一个非位移式MEMS典型例子是依靠材料属性变化的MEMS器件,例如基于相变材料的开关,加入不同电压可以使材料发生相变,分别为低阻和高阻状态,详见后续开关专题)。得益于AlN氮化铝压电材料的沉积技术的巨大进步,AlN FBAR已经被运用在iphone上作为重要滤波器组件。下图为FBAR和为SMR (Solidly Mounted Resonator)。其原理主要通过固体声波在上下表面反射形成谐振腔。图6. FBAR示意图,压电薄膜悬空在腔体至上图7. SMR示意图(非悬空结构,采用Bragg reflector布拉格反射层) (SAW/FBAR设备的工作原理及使用范例)图8. 固体声波在垂直方向发生反射,从而将能量集中于中间橙色的压电层中如果所示,其中的红色线条表示震动幅度。固体声波在垂直方向发生反射,从而将能量集中于中间橙色的压电层中。顶部是与空气的交界面,接近于100%反射。底部是其与布拉格反射层的界面,无法达到完美反射,因此部分能量向下泄露。图9. 实物FBAR扫描电镜图实物FBAR扫描电镜图。故意将其设计成不平行多边形是为了避免水平方向水平方向反射导致的谐振,如果水平方向有谐振则会形成杂波。图10. 消除杂波前后等效导纳上图所示为消除杂波前后等效导纳(即阻抗倒数,或者简单理解为电阻值倒数)。消除杂波后其特性曲线更平滑,效率更高,损耗更小,所形成的滤波器在同频带内的纹波更小。图11. 若干FBAR连接起来形成滤波器图示为若干FBAR连接起来形成滤波器。右图为封装好后的FBAR滤波器芯片及米粒对比,该滤波器比米粒还要小上许多。可穿戴/植入式领域图12. 用户与物联网可穿戴/植入式MEMS属于物联网IoT重要一部分,主要功能是通过一种更便携、快速、友好的方式(目前大部分精度达不到大型外置仪器的水平)直接向用户提供信息。可穿戴/应该说是最受用户关注,最感兴趣的话题了。大部分用户对汽车、打印机内的MEMS无感,这些器件与用户中间经过了数层中介。但是可穿戴/直接与用户接触,提升消费者科技感,更受年轻用户喜爱。该领域最重要的主要有三大块:消费、健康及工业,我们在此主要讨论更受关注的前两者。消费领域的产品包含之前提到的健身手环,还有智能手表等。健康领域,即医疗领域,主要包括诊断,治疗,监测和护理。比如助听、指标检测(如血压、血糖水平),体态监测。MEMS几乎可以实现人体所有感官功能,包括视觉、听觉、味觉、嗅觉(如Honeywell电子鼻)、触觉等,各类健康指标可通过结合MEMS与生物化学进行监测。MEMS的采样精度,速度,适用性都可以达到较高水平,同时由于其体积优势可直接植入人体,是医疗辅助设备中关键的组成部分。传统大型医疗器械优势明显,精度高,但价格昂贵,普及难度较大,且一般一台设备只完成单一功能。相比之下,某些医疗目标可以通过MEMS技术,利用其体积小的优势,深入接触测量目标,在达到一定的精度下,降低成本,完成多重功能的整合。以一些MEMS项目为例,通过MEMS传感器对体内某些指标进行测量,同时MEMS执行器(actuator)可直接作用于器官或病变组织进行更直接的治疗,同时系统可以通过MEMS能量收集器进行无线供电,多组单元可以通过MEMS通信器进行信息传输。图13. MEMS实现人体感官功能其他领域投影仪投影仪所采用的MEMS微镜如图14、15所示(Designing MEMS-based DLP pico projectors),其中扫描电镜图则是来自于TI的Electrostatically-driven digital mirrors for projection systems。每个微镜都由若干锚anchor或铰链hinge支撑,通过改变外部激励从而控制同一个微镜的不同锚/铰链的尺寸从而微镜倾斜特定角度,将入射光线向特定角度反射。大量微镜可以形成一个阵列从而进行大面积的反射。锚/铰链的尺寸控制可以通过许多方式实现,一种简单的方式便是通过加热使其热膨胀,当不同想同一个微镜的不同锚/铰链通入不同电流时,可以使它们产生不同形变,从而向指定角度倾斜。TI采用的是静电驱动方式,即通入电来产生静电力来倾斜微镜。图14 微镜的SEM示意图图15 微镜结构示意图德州仪器的数字微镜器件(DMD),广泛应用于商用或教学用投影机单元以及数字影院中。每16平方微米微镜使用其与其下的CMOS存储单元之间的电势进行静电致动。灰度图像是由脉冲宽度调制的反射镜的开启和关闭状态之间产生的。颜色通过使用三芯片方案(每一基色对应一个芯片),或通过一个单芯片以及一个色环或RGB LED光源来加入。采用后者技术的设计通过色环的旋转与DLP芯片同步,以连续快速的方式显示每种颜色,让观众看到一个完整光谱的图像。图16 微镜反射光线示意图MEMS 加速度计加速度传感器是最早广泛应用的MEMS之一。MEMS,作为一个机械结构为主的技术,可以通过设计使一个部件(图15中橙色部件)相对底座substrate产生位移(这也是绝大部分MEMS的工作原理),这个部件称为质量块(proof mass)。质量块通过锚anchor,铰链hinge,或弹簧spring与底座连接。绿色部分固定在底座。当感应到加速度时,质量块相对底座产生位移。通过一些换能技术可以将位移转换为电能,如果采用电容式传感结构(电容的大小受到两极板重叠面积或间距影响),电容大小的变化可以产生电流信号供其信号处理单元采样。通过梳齿结构可以极大地扩大传感面积,提高测量精度,降低信号处理难度。加速度计还可以通过压阻式、力平衡式和谐振式等方式实现。图17 MEMS加速度计结构示意图图18 MEMS加速度计中位移与电容变化示意图打印喷嘴一种设计精巧的打印喷嘴如下图所示。两个不同大小的加热元件产生大小不一的气泡从而将墨水喷出。具体过程为:1,左侧加热元件小于右侧加热元件,通入相同电流时,左侧产生更多热量,形成更大气泡。左侧气泡首先扩大,从而隔绝左右侧液体,保持右侧液体高压力使其喷射。喷射后气泡破裂,液体重新填充该腔体。图19. 采用气泡膨胀的喷墨式MEMS开关/继电器MEMS继电器与开关。其优势是体积小(密度高,采用微工艺批量制造从而降低成本),速度快,有望取代带部分传统电磁式继电器,并且可以直接与集成电路IC集成,极大地提高产品可靠性。其尺寸微小,接近于固态开关,而电路通断采用与机械接触(也有部分产品采用其他通断方式),其优势劣势基本上介于固态开关与传统机械开关之间。MEMS继电器与开关一般含有一个可移动悬臂梁,主要采用静电致动原理,当提高触点两端电压时,吸引力增加,引起悬臂梁向另一个触电移动,当移动至总行程的1/3时,开关将自动吸合(称之为pull in现象)。生物试验类MEMS器件由于其尺寸接近生物细胞,因此可以直接对其进行操作。图20. MEMS操作细胞示意图NEMS(纳机电系统)NEMS(Nanoelectromechanical systems, 纳机电系统)与MEMS类似,主要区别在于NEMS尺度/重量更小,谐振频率高,可以达到极高测量精度(小尺寸效应),比MEMS更高的表面体积比可以提高表面传感器的敏感程度,(表面效应),且具有利用量子效应探索新型测量手段的潜力。首个NEMS器件由IBM在2000年展示, 如图5所示。器件为一个 32X32的二维悬臂梁(2D cantilever array)。该器件采用表面微加工技术加工而成(MEMS中采用应用较多的有体加工技术,当然MEMS也采用了不少表面微加工技术,关于微加工技术将会在之后的专题进行介绍)。该器件设计用来进行超高密度,快速数据存储,基于热机械读写技术(thermomechanical writing and readout),高聚物薄膜作为存储介质。该数据存储技术来源于AFM(原子力显微镜)技术,相比磁存储技术,基于AFM的存储技术具有更大潜力。快速热机械写入技术(Fast thermomechanical writing)基于以下概念(图6),‘写入’时通过加热的针尖局部软化/融化下方的聚合物polymer,同时施加微小压力,形成纳米级别的刻痕,用来代表一个bit。加热时通过一个位于针尖下方的阻性平台实现。对于‘读’,施加一个固定小电流,温度将会被加热平台和存储介质的距离调制,然后通过温度变化读取bit。 而温度变化可通过热阻效应(温度变化导致材料电阻变化)或者压阻效应(材料收到压力导致形变,从而导致导致材料电阻变化)读取。图21. IBM 二维悬臂梁NEMS扫描电镜图(SEM)其针尖小于20nm图22.快速热机械写入技术示意图其他参考文献:1. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger, VLSI-NEMS chip for parallel AFM data storage, Sensors and Actuators A: Physical, Volume 80, Issue 2, 10 March 2000, Pages 100-107, ISSN 0924-4247, VLSI-NEMS chip for parallel AFM data storage.2. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, P. Vettiger, VLSI-NEMS chip for AFM data storage, Technical Digest 12th IEEE Int. Micro Electro Mechanical Systems Conf. MEMS ' 99, Orlando, FL, January 1999, IEEE, Piscataway, 1999, pp. 564–569.3. Fan-Gang Tseng, Chang-Jin Kim and Chih-Ming Ho, "A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops - part I: concept, design, and model," inJournal of Microelectromechanical Systems, vol. 11, no. 5, pp. 427-436, Oct 2002.4. Sensors for Wearable Electronics & Mobile Healthcare5. Martín, F. Bonache, J. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review. Sensors2014, 14, 22848-22863.(ADXL203 精密±1.7g 双轴iMEMS® 加速度计数据手册及应用电路,http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL103_203.pdf)(Andreas C. Fischer Fredrik Forsberg Martin Lapisa Simon J. Bleiker Göran Stemme Niclas Roxhed Frank Niklaus,Integrating MEMS and ICs,Microsystems & Nanoengineering, 2015, Vol.1. Integrating MEMS and ICs : Microsystems & Nanoengineering)
  • 合工大在高灵敏硅基超窄带探测器领域取得重要进展
    近日,合肥工业大学微电子学院先进半导体器件与光电集成实验室的王莉副教授和罗林保教授,成功研发出一种基于单p-型硅肖特基结的超灵敏近红外窄带光电探测器。相关成果以“Ultra-Sensitive Narrow-Band P-Si Schottky Photodetector with Good Wavelength Selectivity and Low Driving Voltage”为题于2023年12月31日作为封面文章在线发表在半导体器件领域的著名杂志IEEE Electron Device Letters上。图1. IEEE Electron Device Letters 2024年第一期封面窄带光电探测器由于仅对目标波长敏感,可以有效抑制背景噪声光的干扰,因此在机器视觉、特定波段成像、光学通信和生物材料识别等领域均具有重要的应用价值。但现有的加装滤波片、电荷收集变窄或热电子效应等窄带探测机制普遍存在着量子效率低的问题。为了提高窄带探测的灵敏度,研究人员通过将电荷陷阱引入有源层进行界面隧穿注入,或者利用场增强激子电离过程来实现器件内的光电倍增效应。但这些机制往往需要几十伏较高的电压才能激发启动,导致窄带探测器的性能易退化和工作能耗高。该研究团队在深入分析了上述问题的基础上,提出并实现了一种可在低驱动电压下工作的高灵敏窄带光电探测器。通过采用双层结构肖特基电极以及增大光生电子和空穴之间的渡越时间差,在保证高波长选择性的前提下实现了器件光电转化效率的大幅提高。该探测器仅在1050nm附近有探测峰,对紫外及可见光几乎无响应。在零偏压下器件的比探测率达∼4.14×1012Jones,线性动态范围约为128 dB。当工作偏压由0 V增加到- 3 V时,器件外部量子效率可以从96.2 %显著提升到6939%,同时探测峰半高宽保持在约74 nm不变。这一成果为实现可在低驱动电压下工作的超高灵敏窄带光电探测器提供了新思路,有望在光电子领域得到广泛应用。图2. (a)器件内光强分布模拟结果,零偏压下(b)器件在不同波长光照下的电流-电压曲线,(c)线性动态范围,(d)不同偏压下器件的外部量子效率随波长变化曲线。上述工作得到国家自然科学基金、安徽省重点研发计划、安徽省自然科学基金、中央高校基本科研业务费专项等项目的资助。论文链接:https://ieeexplore.ieee.org/ d ocument/10312826
  • 德州仪器不做仪器 但也能卡国产仪器的脖子
    为什么说仪器行业离不开德州仪器?以示波器为例。现在的示波器基本上是数字示波器,模拟示波器没有完全绝迹,但已经没有曾经的辉煌。数字示波器与模拟示波器最大的区别就是将输入信号通过ADC芯片(模数转换),对信号进行采样和数字化处理后存入高速缓存,再通过信号处理电路将数据读取出来。采样是ADC的工作,数字处理就要用到DSP了。德州仪器恰好都有这两类芯片,特别是DSP,不是一般的强。数字示波器按照功能,通常将硬件部分分为信号前端放大(FET输入放大器)及调理模块(可变增益放大器)、高速模数转换模块(ADC驱动器、ADC)、FPGA逻辑控制模块、时钟分配、高速比较器、单片机控制模块(DSP)、数据通讯模块、液晶显示、触摸屏控制、电源和电池管理和键盘控制等。下图是一个双通道数字示波器示意图,在这个结构中,决定示波器性能的核心元器件有ADC、DSP和FPGA。话说在输入端,输入信号经前置放大及增益可调电路转换后才能成为符合ADC要求的输入电压,经ADC转换后成为数字信号,放大器PA同样非常重要。双通道数字滤波器结构示意图,公开资料整理,阿尔法经济研究DSP芯片是微处理器的一种,内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,可以用来快速的实现各种数字信号处理算法,可以实时处理数据,也因此成为通信、计算机、军事航天和仪表仪器等领域的基础器件。在仪表仪器中,测量精度和速度是一项重要指标,DSP的快速实时处理的特性刚好也就复合仪表仪器对精度和速度的要求。为什么要选择德州仪器的DSP呢?因为它的响应时间足够低,功耗足够低,性能足够高。德州仪器DSP芯片特性,公司官网,阿尔法经济研究国内开发DSP的企业不多,代表性企业就是华为海思。除此之外,中科昊芯于2021年9月推出了一款基于RISC-V架构的DSP,有了一定的突破。ADC是示波器中的核心元器件,转化过程主要包括采样和量化,其中采样的速率是衡量采样水平的标准,代表ADC可以转换多大带宽的模拟信号,带宽越大对应的模拟信号频谱的频率越大。ADC第二步量化就是转换精度,要求模拟信号转换出的数字信号与原信号差距越小越好,精度以bit衡量,要求是bit越大越好,位数、精度、采样率等指标成为衡量示波器性能的重要指标。当然采样率与精度是相对立的,采样率越高,意味着精度越差,反之亦然。所以在仪器中,怎么选择合适的ADC,还是要根据需求而定。上述提到的核心元器件,ADC厂商就是德州仪器以及更厉害的ADI,DSP有更厉害的德州仪器、稍次的ADI以及因手机业务拉胯而成为笑谈的摩托罗拉。上海汉芯一号的主角就是摩托罗拉的DSP。至于FPGA,目前已被AMD收购的赛灵思一家独大,占据一半以上的市场,英特尔(Altera)与Lattice分居二三位。鉴于Lattice主要精力放在低功耗领域,其他厂商更加弱小,FPGA市场也是AMD(赛灵思)与英特尔(Altera)的二人转。上述芯片,国内发展水平仍然较低,与国外的差距也非常明显,当然也毫无意外地被卡了脖子。仪器厂商普源精电招股书和第一轮问询反馈中均提到有一款DAC产品被列入美国商业管制清单,进口时需要取得许可。普源精电提到,公司已获得可采购3600片的采购许可,有效期至2023年。另一家仪器厂商鼎阳科技也提到,其采购的ADC、FPGA、DSP等均来自美国厂商,德州仪器的四款ADC和一款DAC属于管制清单产品,需要获得BIS的出口许可。综上所述,德州仪器本身不生产仪器,但其芯片却是仪器必不可少的核心元器件。德州仪器卡了ADC、DSP的脖子,也就间接卡了国内仪器的脖子。
  • 应用案例 | 参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池
    近日,来自安徽大学、安庆师范大学、复旦大学、皖西学院的联合研究团队发表了《参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池》论文。Recently, the joint research team from Anhui Key Laboratory of Mine Intelligent Equipment and Technology, School of Electronic Engineering and Intelligent Manufacturing, Department of Atmospheric and Oceanic Sciences, School of Electrical and Photoelectronic Engineering, West Anhui University published an academic papers Parameter-tuning stochastic resonance asa tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell.背景 激光吸收光谱技术已在许多应用中得到证明,如空气质量监测、工业过程控制和医学诊断。测量的精度对这些应用非常重要。尽管激光吸收光谱在敏感检测方面具有许多优点,但仍需要很长的光学路径长度和特殊的测量技术来检测极微量的物质,以实现高检测灵敏度。为了实现这些目的,通常采用具有长光学路径的多程吸收池来增强吸收信号。然而,在吸收信号中经常出现意想不到的干扰光束、热噪声、射频噪声、电噪声和白噪声,严重影响了检测的精度。当使用密集重叠斑点模式的多程吸收池时,这些问题在激光吸收光谱中很常见。因此,从强噪声背景中有效提取弱光电吸收信号具有重要意义。已提出了几种方法来消除噪声的负面影响。传统的弱周期信号处理方法主要包括时间平均法、滤波法和相关分析法。① 时间平均法可以获得信噪比(SNR)较高的信号,因此可以降低噪声的标准差并提高信号质量。然而,这种方法无法完全消除强噪声背景。② 基于硬件和软件的信号滤波广泛用于降噪,其特点是带宽较窄。在实际应用中,期望的信号和噪声通常具有连续的功率谱和宽带宽,但制造与信号带宽相匹配以去除噪声的滤波器相对较困难。如果滤波器的带宽非常小,噪声将大幅衰减。然而,这可能会破坏期望的信号。③ 相关检测方法是通过周期信号的自相关来去除噪声的。其本质是建立一个非常窄的带宽滤波器,以滤除与信号频率不同的噪声。与上述其他弱周期信号检测方法相比,参数调谐随机共振(SR)方法的优势显而易见。即使噪声和信号具有相同的频率,只要它们达到最佳的共振匹配,SR方法就可以将部分噪声能量转化为信号能量,以抑制噪声并增强信号。在这项工作中,我们将SR方法应用于波长调制光谱学(WMS),并使用密集重叠斑点模式的多程吸收池。首先,将进行数值计算以找到合适的参数并评估最佳SR系统的性能,然后通过实验验证SR方法可以有效增强WMS信号。IntroductionThe laser absorption spectroscopy technology has been demonstrated in many applications, such as air quality monitoring, industrial process control, and medical diagnostic. The precision of the measurement is important to those applications. Although laser absorption spectroscopy has many advantages in sensitive detection, it still needs a long optical path length and special measurement technology for detecting a very trace substance, with a high detection sensitivity . For those purposes, a multi-pass cell with a long optical path is usually applied to enhance the absorption signal. However, the unexpected interference fringe, thermal noise, shot noise, electrical noise and white noise, often occur in absorption signals and seriously spoil the detection precision. Those problems are common for laser absorption spectroscopy when using dense overlapped spot pattern multi-pass cell. Therefore, it is of great significance to effectively extract weak photoelectric absorption signals from a strong noise background.Several methods are proposed to eliminate the negative influence of the noise. The traditional weak periodic signal processing methods mainly include time average method, filtering method,and correlation analysis method. ①The signal with a high signal-to-noise ratio (SNR) can be obtained by time average method, so the standard deviation of noise can be reduced and the signal quality can be improved. Nevertheless, the strong noise background cannot be fully eliminated by this method.②The signal filters based on hardware and software are widely used for noise reduction, the characteristic of which is narrow bandwidth. In practical application, the desired signal and noise usually have a continuous power spectrum and wide bandwidth, but it is relatively difficult to manufacture a filter that matches the bandwidth of the signal to remove the noise. If the bandwidth of the filter is very small, the noise will be greatly attenuated. However, this may destroy the desired signal.③The correlation detection method is used to remove the noise by the autocorrelation of the periodic signal. Its essence is to establish a very narrow bandwidth filter to filter out the noise, the frequency of which is different from that of the signal. Compared with other weak periodic signal detection methods mentioned above, the advantage of the parameter-tuning stochastic resonance (SR) method is apparent. Even if the noise and signal have the same frequency, as long as they reach the optimal resonance matching, the SR method can convert part of the noise energy into the signal energy to suppress the noise and enhance the signal.In this work, the SR method is applied to the wavelength modulation spectroscopy (WMS) by using the dense overlapped spot pattern multi-pass cell. first, the numerical calculation will be implemented to find the suitable parameters and evaluate the performance of the optimal SR system, and then it is verified that the SR method can effectively enhance the WMS signal by the experiments.实验装置的示意图如图1所示。海尔欣光电科技有限公司为此研究提供了锁相放大器(Healthy Photon,HPLIA),用于解调来自光电探测器的吸收信号,解调频率为第二谐波信号2f的频率(其中f = 6千赫兹是正弦波的调制频率)。锁相放大器的时间常数设置为1毫秒。解调后的信号随后由一个数据采集卡数字化,并显示在计算机上。A schematic diagram of the experimental setup is shown in Fig. 1. HealthyPhoton Technology Co., Ltd. provides a lock-in amplifier (HPLIA), which is used for demodulation of absorption signal from the photodetector at the frequency of second harmonic signal 2f (where f =6 KHz is the modulation frequency of the sine wave). The time constant of the lock-in amplifier is set to 1 ms. The demodulated signal is subsequently digitalized by a DAQ card and displayed on a computer. Fig. 1. Schematic diagram of experimental device of measurement.Healthy Photon,lock-in amplifier HPLIAFig. 2. 2f SR signal and 2f time average signal.结论参数调谐随机共振(SR)方法可以将部分噪声能量转化为信号能量,以抑制噪声并放大信号,与传统的弱周期信号检测方法(例如,时间平均法、滤波法和相关分析法)相比。本研究进行了数值计算,以找到将SR方法应用于波长调制光谱学(WMS)的最佳共振参数。在随机共振状态下,2f信号的峰值(CH4浓度恒定在约20 ppm)有效放大到约0.0863 V,比4000次时间平均信号的峰值(约0.0231 V)高3.8倍。尽管标准差也从约0.0015 V(1σ)增加到约0.003 V(1σ),但信噪比相应提高了1.83倍(从约25.9提高到约15.8)。获得了SR 2f信号峰值与原始2f信号峰值的线性光谱响应。这表明在强噪声背景下,SR方法对增强光电信号是有效的。Conclusion The parameter-tuning stochastic resonance (SR) method can convert part of the noise energy into the signal energy to suppress the noise and amplify the signal, comparing with traditional weak periodic signal detection methods (e.g., time average method, filtering method, and correlation analysis method). In this work, the numerical calculation is conducted to find the optimal resonance parameters for applying the SR method to the wavelength modulation spectroscopy (WMS). Under the stochastic resonance state, the peak value of 2f signal (a constant concentration of CH4&sim 20 ppm) is effectively amplified to &sim 0.0863 V, which is 3.8 times as much as the peak value of 4000-time average signal (&sim 0.0231 V). Although the standard deviation also increases from &sim 0.0015 V(1σ) to &sim 0.003 V(1σ), the SNR can be improved by 1.83 times (from &sim 25.9 to &sim 15.8) correspondingly. A linear spectral response of SR 2f signal peak value to raw 2f signal peak value is obtained. It suggests that the SR method is effective for enhancing photoelectric signal under strong noise background.参考:Reference: Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell, Optics Express 32010https://doi.org/10.1364/OE.465629
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制