当前位置: 仪器信息网 > 行业主题 > >

原子火焰分析仪

仪器信息网原子火焰分析仪专题为您提供2024年最新原子火焰分析仪价格报价、厂家品牌的相关信息, 包括原子火焰分析仪参数、型号等,不管是国产,还是进口品牌的原子火焰分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原子火焰分析仪相关的耗材配件、试剂标物,还有原子火焰分析仪相关的最新资讯、资料,以及原子火焰分析仪相关的解决方案。

原子火焰分析仪相关的论坛

  • 测金元素,石墨炉原子吸收和原子荧光火焰法的比较

    原子荧光火焰法与原子吸收石墨炉法测定土壤与矿石中微量金的比对研究倪通文 , 范宁云 , 王宁(甘肃省分析测试中心) 摘要: 本文分别采用了原子吸收光谱石墨炉法和原子荧光火焰法对同一土壤与矿石中的微量金进行了检测,比较了两种仪器检测方法的检出限,线性范围,测试速度,测试成本。结果表明,火焰法原子荧光光谱法检出限于原子吸收石墨炉法基本一样,线性范围、分析速度、测试成本都优于原子吸收石墨炉法。关键词:原子吸收石墨炉法;原子荧光火焰法;微量金引言 目前,有关测定化探样品中的微量金及矿石中的常量金文献报道中都是对样品先进行分离富集,再采用质量法、容量法、原子荧光法及原子吸收光谱等方法进行测定。当前在微量金的测试中,仪器分析占有主导地位,而每年进口的分析仪器花费了大量的外汇,国内的仪器比重较小。本文主要对使用了德国耶拿ZEEnit-700P原子吸收光谱仪石墨炉法与国产SK-2003双道原子荧光光谱仪火焰法测定化探样品的微量金及矿石中的常量金两方法进行检出限、精密度、分析速度以及直接耗材比对,以找出两种仪器在测定微量金及常量金的优缺点。1实验部分1.1仪器与试剂SK-2003双道原子荧光光谱仪(北京金索坤技术开发有限公司),高强度空心阴极灯(荧光专用Au 242.8nm 北京曙光明有限公司);耶拿ZEEnit-700P原子吸收光谱仪( 德国耶拿分析仪器股份公司),空心阴极灯(原子吸收专用Au 242.8nm 日本日立公司);马弗炉(KDF- S80日本);盐酸、硝酸、硫脲(均为分析纯);超纯水器(ELGA UVF-MK2英国)18.2МΩ、热源0.005、TOC

  • 火焰原子吸收常规分析性能的判断和要求

    适合火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]常规分析仪器性能应满足如下几个方面:1.精密度:可以通过测定10次最高标准和最低(非0标准)标准浓度溶液的细光度,其标准偏差一般分别不应超过最高标准溶液平均细光度的1.0-1.5%和0.5%即可认为满足要求,2.特征浓度:主要表示方法的灵敏度,在绘制的标准曲线上,取细光度在0.1附近查得吸光度差A为0.1时的浓度改变量C,通过S=C*0.00436/A计算求得,求得的值与仪器提供的不超过25%可以认为满足要求3.标准曲线的线形(弯曲程度):将标准曲线等份为5段,用最高段的细光度差与最低段吸光度差的比值来表示,一般情况只要大于0.7即可认为满足要求。4.方法检出限:表示在该条件下,仪器的最佳检出能力,在仪器使用条件下,用已知质量浓度可以产生0.01吸光度的溶液来测定,在1分钟内记录10次吸光度(每次用0调零),可以通过Xdl=2CS/A来计算,其结果不大于仪器说明书标称值的3倍,即可认为是满意。这个主要是用于制定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析标准用,大家看有没有什么补充。

  • 【分享】-------火焰原子吸收分析最佳条件选择

    一、吸收线的选择在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析中,为获得稳定的灵敏度,稳定度和稳定的线形范围及无干扰测定,须选择合适的吸收线。选择合适吸收线应根据分析目的,待测元素浓度,试样性质组成,干扰情况,仪器波长范围以及光电倍增管光谱特性等加以综合考虑和具体分析。1.灵敏度[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析通常用于微量元素分析。因此,一般选择最灵敏的共振吸收线。而测定高含量元素时,可选用次灵敏线。附录列出了各元素的主要吸收线的灵敏度,供选择时参考。2.稳定度选用不同的吸收线,测定的稳定度会有差别。在灵敏度能满足要求的情况下,应从稳定度来考虑吸收线的选择。3.干扰度选择吸收线,应当避免可能的干扰。当分析线附近有其它非吸收线存在时,将使灵敏度降低和工作曲线弯曲。例如,Ni232.0nm吸收线附近有几条非吸收线和吸收很弱的谱线(如231.98nm、232.14nm、231.6nm),即使使用很窄的光谱通带,也难于将它们完全分辨开,因此有时宁愿牺牲一些灵敏度而选用吸收系数稍低的Ni341.48nm非吸收谱线用于实际测定。在某些情况下,还应该考虑到吸收线重叠干扰问题。吸收线的选择,还会受到背景吸收的限制。例如,测定Pb时,在Pb 217.0nm波长处,背景吸收最大,测定精度较差,目前一般选用次灵敏线Pb283.3nm作吸收线。4.直线性在实际分析中,总是希望获得直线性较好的工作曲线,线性范围宽,能适用于较大的分析区间,且测定精密度较好。选用不同的吸收线,工作曲线的线性和测定精度会有差异。5.光敏性大多数[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的波长范围是190—900nm,并且一般都有一只光电倍增管,它对紫外和可见光光敏性强,具有较高的光谱灵敏度。因此对于那些共振吸收线在真空紫外区或红外区的元素,通常选用次灵敏线作吸收线。例如:测定钾,不用红外区的K766.5nm,而用K404.4nm;测定Hg,不用Hg184.9 nm而采用Hg 253.7nm 。最合适的吸收线的选择,应视具体情况通过实验来决定。实验选择方法是:参考波长表,实地扫描元素的发射光谱,了解有哪几条可供选择的谱线,吸喷适当浓度的标准溶液,观测吸收值大小,稳定度和工作曲线线性范围,根据分析要求和样品性质组成;待测元素浓度及干扰情况加以抉择。二、灯电流的选择[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析要求光源能发射强而锐的共振线,空心阴极灯的发射特性依赖于灯电流,为得到较高的灵敏度和稳定度,就要选择合适的灯电流。从灵敏度角度考虑,灯电流宜选用小些。灯电流小,谱线的多普勒变宽和自吸效应减少,元素灯发射线半宽变窄,灵敏度较高。但是灯电流太小,元素灯放电不稳。当使用较低的灯电流时,为了保证必要的信号输出,则须增加负高压,这样引起噪声增加,使谱线的信噪比降低,读数稳定度降低,测定精密度变差。从稳定度角度考率,灯电流宜用大些。灯电流大,阴极放光稳定,谱线强度高,达到必要的信号输出所需要的负高压较低,因此提高了信噪比,使读数稳定度提高和改善测定精密度。对于常量和高含量元素分析,灯电流宜大些,可提高测定的精密度。因此,灵敏度和稳定度这两个指标,对灯电流的要求是相互矛盾的,故在选择灯电流时应兼顾这一矛盾的两个方面。对于微量元素分析,应在保证读数稳定的前提下尽量选用小一些的灯电流,以获得足够高的灵敏度。对于高含量元素分析,在保证有足够灵敏度的前提下,尽量选用大一点的灯电流以获得足够高的精密度。从维护灯和使用寿命角度考虑,对于高熔点、低溅射的金属,如铁、钴、镍、铬等,灯电流允许用的大些;对于低熔点,高溅射的金属如锌、铅等,灯电流宜用小些。对于低熔点,低溅射的金属,如锡,若需增加光强度,允许灯电流稍大些。三、光谱通带的选择光谱通带的宽窄直接影响测定的灵敏度和标准曲线的线性范围,单色器的光谱通带取决于仪器色散能力和狭缝宽度:光谱通带=线色散率的倒数×缝宽光谱通带的选择,实际上是通过改变狭缝宽度来实现的。光谱通带的选择原则是,在保证只有分析线通过出口狭缝到达检测器的前提下,尽可能选用极宽的光谱通带,以获得较高的信噪比和读数稳定性。对于谱线简单的元素,(如贱金属、碱土金属)宜用较宽的光谱通带,以得到较高的信噪比和分析准确度。对于多谱线元素,(如铁族、稀有元素)和火焰连续背景较强的情况,宜用较窄的光谱通带,这样不仅能提高分析灵敏度,标准曲线的线性也会明显改善。四、燃助比的选择火焰的温度和气氛对脱溶剂、熔融、蒸发、解离或还原过程有较大影响,为了获得较高的原子化效率需选择适宜的火焰条件,实际上是通过选择燃助比来实现的。对于确定类型的火焰,根据火焰温度和气氛,可分为贫燃火焰,化学计量火焰、发亮性火焰和富燃火焰四种类型。对于贫燃火焰燃烧充分,火焰温度较高,燃烧不稳定,测定重线性差,高温区和原子化区域很窄,不具有还原性,通常燃助比(空气/乙炔)在1:6以上,火焰处于贫燃状态。化学计量火焰层次清晰、分明、稳定,噪声少,背景低,适宜于热解离,稍有还原性,在这种火焰状态下测定,具有较高的灵敏度和精密度,其燃助比为1:4。发亮性火焰,带黄色光亮,层次稍模糊,火焰温度较化学计量火焰低而还原性强,燃助比小于1:4。富燃火焰温度低,黄色发亮,层次模糊,还原性强,电子密度较高,其燃助比小于1:3。由此可见,燃助比不同,火焰温度和氧化还原性质也不同,原子化效率也就发生改变,因此影响分析的灵敏度和精密度,应当通过实验选择最佳燃助比。一般是在固定助燃气流量的条件下,改变燃气流量,吸喷测定标准溶液的吸光度,绘制吸光度---燃助比曲线,吸光度大而且读数稳定的燃助比为最佳燃助比。通常情况下,测定高熔点的惰性元素,如银、金、铂、钯、镓、铟宜用贫燃火焰。多数元素宜用化学计量火焰。难解离和易还原的元素,宜用发亮性和贫燃火焰,铬是一个典型。有些元素易原子化,其对燃助比反应迟钝,铜是一个典型例子。对燃助比反应敏感的元素,如铬、铁、钙要特别注意燃气和助燃气的流量和压力的恒定,才能保证得到良好的分析结果。五、观测高度的选择就火焰的结构而言,分四个区域。预热区:燃气经此区域被加热到着火温度。第一反应区:燃烧不充分,发生着复杂的反应,其中有一个兰色的核心。中间薄层区:温度较高,厚度较小,是产生自由原子的主要区域。其厚度因元素性质不同而异。铜、镁、银原子产生后,因再化合速度较慢,则此区较宽。钙、钡、锶原子产生后,在化合速度快,则此区较窄。第二反应区:氧化剂较充分,燃烧充分,反应产物扩散进入大气。由此可见,由于火焰不同区域具有不同的温度和具有不同的氧化性或还原性,因此,火焰不同区域的待测元素自由原子密度及干扰成分浓度也不同。为了获得较高的灵敏度和避免干扰,应选择最佳观测高度,让光束通过火焰的最佳区域。观测高度可大致分三个部位:光束通过氧化焰区。这一高度大约是离燃烧器缝口6---12mm处。此处火焰稳定,干扰较少,对紫外线吸收较弱,但灵敏度稍低。特别是吸收线在紫外区的元素,适于这种高度。光束通过氧化焰和还原焰。这一高度大约是离燃烧器缝口4---6mm处。此处火焰稳定性比前一种差,温度稍低,干扰较多,但灵敏度较高。适用于铍、铅、硒、锡、铬等元素分析。光束通过还原焰。这一高度大约是离燃烧器缝口4mm以下,此处火焰稳定性最差,干扰最多,对紫外线吸收最强,而吸收灵敏度较高,适用于长波段元素的分析。燃烧器高度的选择,通常是在固定的燃助比的条件下,测量标准溶液在不同燃烧器高度时的吸光度进而绘制吸光度---高度曲线,根据曲线选择合适的燃烧器高度,以获得较高的灵敏度和稳定性。

  • 火焰原子吸收法分析镍问题,怎么办才好??

    火焰原子同样的母液测镍的浓度总是相差非常大我最近在做镍的反萃,采用火焰原子吸收法分析镍,我的样品是0.03摩尔每升的硫酸镍,稀释2500,本该测得的浓度应为0.7044左右,但是只有用配的样品稀释才能测的0.7左右,过一天稀释再测总是在0.5左右,为什么?请教高手啊 ?我的毕业论文啊!

  • 【求助】火焰原子吸收分光光谱仪,加个铯灯就可以测铯了吗?

    目前要测铯元素,有一台原子吸收分光光谱仪,但是此光谱仪没有铯灯,请问是加一个铯灯就可以测铯了吗?仪器配置如下:型号是WFX-110,北京瑞利分析仪器公司生产的原子化系统:火焰原子化器光源:空心阴极灯,氘灯分光系统:C-T型单色器波长范围:190--900nm波长准确度:小于等于0.25nm分辨率:锰279.5和279.8两谱线波谷能量值

  • 如何提高火焰原子吸收在分析测试中的灵敏度

    1 富集分离方法2 在线富集流动注射分析(FIA) 在线离子交换法 在线沉淀法3 原子捕集技术(Atontranp,AT)4 氯化物技术5 间接火焰法分析技术前面除氯化物技术外,其他的大家都可以找到资料,因此对其做简要介绍:在一定温度下,金属氧化物或盐类与过量的HCl气体反应,生成挥发性的氯化物,被载气带入火焰,因这种导入是脉冲性及由于氯化物解离能小,因而原子化信号会显著增强,使测定灵敏度比直接火焰法提高1~2个数量级。盐酸发生器中加入浓盐酸,通入空气使之汽化而带入电加热至1000℃的石英管中,HCl气体与样品管中的样品发生气固反应,生成气体氯化物随空气和乙炔气体载入火焰,进行[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定。氯化物技术测定的一些元素灵敏度和检出限见表4。[img]http://ng1.17img.cn/bbsfiles/images/2005/04/200504021443_3187_1633886_3.gif[/img]

  • 火焰原子吸收光谱仪使用中火焰类型的选择原则

    火焰原子吸收光谱仪使用中火焰类型的选择主要从以下2点考虑: 1 火焰种类的选择 在火焰原子化法中,火焰类型和性质是影响原子化效率的主要因素。对大多数元素,多采用空气—乙炔火焰(背景干扰低)。 对低、中温元素(易电离、易挥发),如碱金属和部分碱土金属及易于硫化合的元素 (如Cu、Ag、Pb、Cd、Zn、Sn、Se等)可使用低温火焰,如空气—乙炔火焰。 对高温元素(难挥发和易生成氧化物的元素),如Al、Si、V、Ti、W、B等,使用氧化亚氮—乙炔高温火焰。 对分析线位于短波区(200nm以下)的元素使用火焰原子吸收光谱仪分析时,使用空气—氢气火焰。 2 燃气—助燃气比的选择 不同的燃气—助燃气比,火焰温度和氧化还原性质也不同。根据火焰的温度和气氛,可分为贫燃火焰、化学计量火焰、发亮火焰和富燃火焰四中类型。 燃助比(乙炔/空气)在1:6以上,火焰处于贫燃状态,燃烧充分,温度较高,除了碱金属可用贫燃火焰外,一些高熔点和惰性金属,如Ag、Au、Pd、Pt、Rb等,但燃烧不稳定,测定的重现性较差。 燃助比在1:4时,火焰稳定,层次清晰分明,称化学计量性火焰,适合于大多数元素的测定。对氧化物不十分稳定的元素,如Cu、Mg、Fe、Co、Ni等用化学计量火焰或氧化性火焰。 燃助比小于1:4时,火焰呈发亮状态,层次开始模糊,为发亮性火焰。此时温度较低,燃烧不充分,但其具有还原性,采用火焰原子吸收光谱仪测定Cr时就用此火焰。 助燃比小于1:3时为富燃后台,这种火焰具有强还原性,即火焰中含有大量的CH、C、CO、CN、NH等成分,适合于Al、Ba、Cr等元素的测定。 铬、铁、钙等元素对燃助比反应敏感,因此在拟定分析条件时,要特别注意燃气和助燃气的流量和压力。

  • 【原创大赛】火焰原子吸收光谱法的理想分析条件及选择优化简析

    火焰原子吸收光谱法的理想分析条件及选择优化简析 提起火焰原子吸收法,大家都很熟悉,也许大家平常一直在使用火焰原子吸收,但是,不知道同仁们是否考虑过哪些条件是火焰原子吸收光谱法的理想分析条件呢?我们又需要如何选择和优化仪器条件?火焰AAS都存在哪些干扰?等等,我在此做了初步的讨论,顺便总结了一下,希望对大家有帮助,也希望大家交流互动,最终达到共同提高。通过对火焰原子吸收的结构及分析原理了解,有如下十个理想分析条件。一、理想的分析条件 1、溶液中总盐量低于待分析物1% 2、溶液中只有一个元素 3、溶液的物理性质(黏度等)与其水溶液一致 4、待分析物的浓度对应的吸收值的相对误差接近零 5、火焰温度足以分离所有待测组分,无需电离 6、可以使用计量化学或贫燃火焰,以避免燃烧头狭缝处积碳 7、使用主灵敏线进行测定绘制的标准曲线的斜率是最合适的 8、空心阴极灯的发射强度使得它在低电流下能量足够高,这不仅可以增加灯的寿命,还使大多数元素的灵敏度有所提高 9、使用低的负高压或增益,以获得良好的信噪比,降低检出限 10、消解和稀释时使用高纯试剂然而在实际工作中,上述十个理想条件不可能完全实现,尽管我们已经很清楚这些都是理想条件,可我们的工作是现实,这只是理想状况,现实和理想还是有差距的。因此,我们分析人员必须在建立分析方法时,选择仪器条件、样品制备、及整个分析过程中都需要综合考虑这些因素,以此找出最佳的实验条件。二、选择和优化仪器条件 1、谱线的选择。我们的选择一般推荐使用灵敏度最高或信噪比最好的主灵敏线,原因就是我们要测定低浓度样品。然而,测定高浓度样品时,可以用次灵敏线和翻转燃烧头的角度来测定,不管怎么选择,大家的目标都一致,那就是让测定样品的结果满意。 2.狭缝的选择。我们测定的,是通过狭缝进入到 单色器的辐射量,狭缝宽度越大,意味着单色器和检测器可以获得大的辐射量,此时,我们可以通过低增益和低的负高压进行工作,从而在低噪声水平下获取信号,当然狭缝宽度我们可以优化,目的是有好的标准曲线线性和低的信噪比。 3、灯电流的选择。通常每个仪器都给出了推荐灯电流,一般都是最佳电流,但是为了应付日常的检测工作,我们会增加或降低灯电流,目的还是为了好的信噪比和好的标准曲线。 4、负高压和增益的选择。一般增益和负高压的设置是在优化其他条件、调节能量时软件自动可以完成,范围250~450V,超过了450V,信噪比会不好,此时要清洗光路了,因为负高压过高,意味着没有那么多的能量到达检测器了。 5、燃气/助燃气比的选择。尽量使用仪器推荐值,最佳的就是利用仪器上的自动控制和优化火焰功能,让火焰自动优化,此时的燃气/助燃气比就是最佳的比。 6、火焰AAS中的气体和应用火焰的条件。火焰必须将溶液中元素的形态转换为原子云。所以最适宜的火焰必须和各种元素最适宜的温度相互适应。目前我们经常使用的是空气-乙炔火焰;笑气-乙炔火焰,各个元素的火焰选择请参照国家标准或者元素分析手册,当然我们使用的多数还是空气-乙炔火焰。三、火焰原子吸收光谱中的干扰 干扰就是复杂组分对分析结果的影响。在火焰AAS中,常见的就是光谱干扰和非光谱干扰。 1、光谱干扰。原子吸收光谱中的光谱干扰大多数是背景干扰,它是由原子化器中的粒子散射或是被分子吸收引起的,在分析中,我们没有办法躲避,只能通过背景校正来减少干扰即可。 2、非光谱干扰。原子吸收光谱中的非光谱干扰很多,如,传输干扰、空间分布干扰、蒸发干扰、解离干扰、电离干扰等。这种干扰很多,我们在实际测量中,往往根据待测元素的性质结合仪器推荐条件,利用加入基体改进剂和标准加入法等等方法来降低干扰,从而达到好的标准曲线和低的信噪比。四、总结 火焰原子吸收大家经常做,相对于石墨炉原子吸收简单些,但是要做好火焰原子吸收,我们不仅仅要了解自己操作的仪器,熟悉待测元素的化学性质,更重要的是要学会优化最佳条件,让仪器真正成为我们的助手,帮助我们又好又快地分析样品。

  • 【原创】原子吸收火焰连续分析的优缺点

    目前有耶拿,PE,瓦里安等仪器的火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]可以做到一次进样出多个元素的结果,本人先简单总结一个各自的优缺点,但是想大家更能讨论火焰是否用多元素分析能得到很好的结果、或者使分析过程简单化、各元素的分析条件能否得到最优化等相关因素。讨论多元素分析的实用性,石墨炉能否实现这一功能,如果能:需要什么条件。不能:主要有什么限制。

  • 元素分析仪之 原子吸收分光光度计故障和解决方法

    元素分析仪之 原子吸收分光光度计故障和解决方法 元素分析仪原子吸收分光光度计的特点是灵敏度高、分析速度快、测定元素多、数据准确、操作简便和干扰少,作为金属分析的主要精密仪器发展迅速。不过在使用的时候,或多或少会出现一些故障问题,下面就经常出现的问题原因和排除方法做一些总结,以供参考。  1、样品不进入仪器或进样速度缓慢故障现象   原因分析1:进样毛细管和雾化器堵塞。   排除方法:观察毛细管内气泡提升状态可大致断定进样毛细管或雾化器是否被堵塞,如被堵塞,可更换毛细管或用10%硝酸进行清洗。   原因分析2:空气压力低.   排除方法:检查空气管路的气密性,如有漏气密闭好即可。   原因分析3:样品溶液粘度较大。   排除方法:适当的对样品溶液进行稀释处理,如果故障未能解除,应重新对样品进行处理。   原因分析4:温度过低,喷雾器无法正常工作。   排除方法:元素分析仪仪器的环境温度应在10~30℃之间,若温度过低,低温高速气体将使样品无法雾化,甚至结成冰粒,遇到此故障可提高气温予以解决。   2、火焰异常故障现象   原因分析:燃气不稳或纯度不够。   排除方法:首先要排除气路故障,应检查燃气和助燃器通道是否漏气或气路堵塞。钢瓶中的乙炔是溶解于吸收在活性炭上的丙酮中的,由于丙酮的挥发导致燃烧火焰变红,遇到此故障更换乙炔瓶即可。另外,周围环境的干扰,也会使火焰异常。当空气流动严重或者有灰尘干扰时,应及时关闭门窗,以免对测定结果造成影响。   3、元素分析仪仪器没有吸收或吸光度值不稳定故障现象   原因分析1:空心阴极灯使用时不亮或灯闪。   排除方法:空心阴极灯使用一段时间或长时间不用,会因为气体吸附、释放等原因而导致灯内气体不纯或损坏,导致发射能力的减弱。因此,不经常使用的灯,每隔三、四个月取出点燃2~3h。每次使用时应充分预热灯30min以上,如果因电压不稳导致灯闪,应立即关闭电源以免造成空心阴极灯损坏。连接稳压电源,待电压稳定后再开机使用。如未能解决,应更换空心阴极灯。   原因分析2:工作电流过大。   排除方法:对于空心阴极较小的元素灯,工作电流过大,使灯丝发热温度较高,导致原子发射线的热变宽和压力变宽,同时空心阴极灯的自吸增大,使辐射的光强度降低,导致无吸收.因此,空心阴极灯发光强度在满足需要的条件下,应尽可能的采用较小的工作电流。   原因分析3:雾化系统内管路不畅通。   排除方法:这有可能是吸入浓度较高或分子量较大的测试液造成的,清洗雾化器即可。   原因分析4:样品前处理不彻底。   排除方法:观察样品中有无沉淀或悬浮物,如有沉淀,应重新对样品进行处理。4、燃烧器火焰成V字型燃烧故障现象   原因分析:燃烧器缝口有污渍或水滴导致火焰不连续燃烧。 排除方法:元素分析仪仪器关闭后,可用柔软的刀片轻轻刮去燃烧器缝口的污渍或擦干燃烧器内腔及缝口的水滴。

  • 【分享】原子吸收火焰分析方法推荐

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]火焰分析方法推荐,很有用哦[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=60950][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]火焰分析方法推荐[/url][em01]

  • 【原创】氩氢火焰低温自动点燃装置用于原子荧光分析中的研究

    以下是学习瑞利公司张锦茂老师于1998年3月发表的“氩氢火焰低温自动点燃装置用于氢化物发生-原子荧光光谱分析中的研究”所做的学习笔记,打出来与大家共同分享,并欢迎大家来继续补充。我将其技术及理论优势归纳成几个要点,便于我们记忆。①火焰噪声降低改善信噪比。石英管预加热温度在室温至约300 ℃时, 火焰近于无色难以分辨,信噪比得到了明显改善;随着石英管预加热温度的增加(300~900 ℃) , 由于加热石英管的影响, 火焰的色调由无色渐变为浅蓝色至桔红色, 火焰噪声显著增加。②灵敏度提高。所有被测元素在较低的预加热温度下(室温~400 ℃) 均有较高的分析灵敏度,且比高温石英管(900 ℃) 氩氢火焰自燃条件下灵敏度提高了2~8 倍。由于一般氢化物的分解温度较低, 当氢化物通过较高温度石英管时在形成氩氢火焰之前可能已被部分热分解, 分解产物进入氩氢火焰不再被原子化,基态原子相应减少,原子化效率相对降低。因此石英管预加热温度越高, 原子化效率就越低, 灵敏度也就降低了。③大大减小了记忆效应。高温石英管(900 ℃) 氩氢火焰自燃的氢化物-原子荧光法中,当测定较高浓度的标准或样品溶液后, 产生的记忆效应是比较严重的。一般均认为是氢化物发生系统受到污染造成。因此经常采用清洗水多次清洗发生器或由空白溶液连续多次测定所产生的气体冲洗发生器系统来消除记忆效应的影响。而采用氩氢火焰低温自动点燃装置后,研究结果表明, 石英管预加热温度是影响记忆效应的主要因素。记忆效应的主要来源可能是氢化物在预加热石英管内热分解, 分解产物在高温石英管中被吸附后再释放所致。试验证明, 当采用低温或不加热石英管条件下, 各元素在线性范围内的测定几乎不受记忆效应的影响。④侧面证明了氢化物原子化机理理解上存在的误区。氢化物原子化机理并不是象以前人们认为的氩气氛中热分解而原子化。因为如果氢化物是“热分解”而原子化, 那么, 石英管预加热温度对荧光信号(灵敏度) 就不应该有影响。随着温度的升高“热分解”加剧, 荧光信号反而降低, 原子化效率也减小, 说明这种“热分解”不利于氢化物的原子化。而“热分解”产物再被导入氩氢火焰时, 也不再进一步原子化, 只有还未分解的氢化物才能在氩氢火焰中原子化。通过改变原子化器的高度还表明,虽然氩氢火焰的温度是上部较高,下部较低, 但是几乎所有的氢化物元素在同一观测高度有最强的荧光信号,而与火焰的温度梯度无关。这说明在氩氢火焰中氢化物的原子化过程与“热分解”无直接关系。所以,氢化物在氩氢火焰中的原子化过程,主要与火焰中的氢自由基的存在和碰撞有关。已有文献报道了H2Se 在氩氢火焰中的原子化不是由于热分解,而是由于火焰反应区中产生的H和OH 自由基与H2Se 分子碰撞的结果。我们的试验结果及结论正好支持和证明了这种原子化机理。下面这点是尚未有明确论据的结论,只是对实验结果的其中一种解释。⑤低温预加热比高温石英管的线性下限明显下降, 但出现线性上限弯曲较早。不同的石英管预加热温度对氢化物元素线性动态范围有较大的影响。由于采用氩氢火焰自动点火装置在低温预加热条件下信噪比有较大改善, 原子化效率得到提高, 以及原子化器的优点是温度可控, 使每一个元素都能在最佳的石英管预加热温度下原子化, 因此所有被测元素的检出限显著降低,相应也降低了线性范围的下限, 一般来讲线性动态范围仍可达2~3 个数量级。产生这种差异的原因是在较低预加热温度时, 由于原子化效率较高使氩氢火焰中基态原子密度较大, 致使产生原子荧光再吸收过程。当然, 预加热温度对其它氢化物元素的线性范围上限是否有如此严重的影响, 有待进一步的试验验证。任何技术都会有一定的缺陷和不足,就像马克思说的“绝对真理是不存在的”。氩氢焰低温点燃技术解决的不仅仅是原子荧光光谱仪的应用,更是纠正了对氢化物原子化机理上认识的误区。再补充一点:火焰温度对原子化过程不起决定性作用。最佳的观测高度与被测元素反应所生成的氢气量有关。因此KBH4的质量浓度及加入量需控制一致。(主要是由氢化物原子化理论决定的)

  • 【转帖】火焰原子吸收常规分析性能的判断和要求

    适合火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]常规分析仪器性能应满足如下几个方面:1.精密度:可以通过测定10次最高标准和最低(非0标准)标准浓度溶液的细光度,其标准偏差一般分别不应超过最高标准溶液平均细光度的1.0-1.5%和0.5%即可认为满足要求,2.特征浓度:主要表示方法的灵敏度,在绘制的标准曲线上,取细光度在0.1附近查得吸光度差A为0.1时的浓度改变量C,通过S=C*0.00436/A计算求得,求得的值与仪器提供的不超过25%可以认为满足要求3.标准曲线的线形(弯曲程度):将标准曲线等份为5段,用最高段的细光度差与最低段吸光度差的比值来表示,一般情况只要大于0.7即可认为满足要求。4.方法检出限:表示在该条件下,仪器的最佳检出能力,在仪器使用条件下,用已知质量浓度可以产生0.01吸光度的溶液来测定,在1分钟内记录10次吸光度(每次用0调零),可以通过Xdl=2CS/A来计算,其结果不大于仪器说明书标称值的3倍,即可认为是满意。

  • 原子吸收分析仪操作步骤

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪操作步骤(一)因水溶性及固体废弃物的基质复杂性及变异性,通常必须经过适当之前处理。固体、污泥及悬浮物质在分析前必须先加以溶解,此程序随因待测分析的金属及样品特性的不同而异。(二)所有[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]需执行适当的背景校正。 (三)由于不同厂牌及机型的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]会有差异,详细的使用说明无法格式化以适用于每一部仪器,因此分析人员在使用仪器时必须遵循该厂商的使用说明书。下列为操作应当注意事项: 1.选择适当的灯管后,通常需要先让灯管预热 15 分钟。 2.可利用这段期间调整仪器,将单光器调至正确的波长,选择适当的单光器狭缝宽度,并依照厂商的建议调整电流。 3.点火并调节燃料及氧化剂的流量,调整燃烧头及喷雾器的流速以达到最大的吸收及稳定度,保持光度计的平衡。 4.量测一系列待测元素的标准溶液,绘制吸光度对应浓度建立检量线。 5.吸入样品溶液并直接读出或由检量线测定其浓度。每分析一个或一系列样品时须同时量测一次标准溶液。 (四)检量线制作与确认 1.对于非直接读出浓度的仪器,则制作一涵盖适当浓度范围的检量线。通常亦即制备可产生 0.0 到 0.7 吸收度的空白及标准溶液。 (1)每分析一批次样品时,需制备新的检量线标准溶液。若以当天制备之检量线确认溶液(以下简称 ICV)测试结果在可接受的范围,毋需每天制备检量线标准溶液,只要经由当天制备之 ICV 确认后即可使用。若 ICV 超过可接受的规范,必须重新制备新的检量线标准溶液并重新校正仪器。检量线制备须有一个空白溶液和至少五种浓度的检量线标准溶液,此五种浓度须落在校正曲线直线区域的适当范围内。 (2)配制标准溶液所使用的酸或酸组合的种类及其浓度应与样品处理后之结果相同。 (3)先以空白溶液开始,再由低浓度至高浓度吸取标准品溶液,并记录其读值。 (4)重复多次吸取标准溶液与样品,以确保能得到每一溶液之可信赖的平均读值。 2.检量线必须是线性且相关系数 R 值至少大于 0.995以上。 (1)完成检量线制作后,必须以检量线空白及在中间浓度附近的 ICV 确认检量线。ICV 之测值偏差必须在 10 % 以内,且检量线空白所含的待测物浓度不能高于 MDL,此检量线才可认为有效。若标准曲线在指定范围内无法被确认,则应找出原因并在样品分析前重新校正仪器。 (2)每批次分析结束时 / 或每隔 10 个样品后,检量线必须以检量线空白及检量线中间浓度附近的 CCV 确认。CCV 之测值偏差必须在 10 % 以内,且检量线空白所含的待测物浓度不能高于 MDL,此检量线才可认为有效。若 CCV 测值偏差大于 10 % 以上,则应停止分析样品,找出原因并在样品分析前重新校正仪器,且在最后一个可接受的 CCV 之后的所有样品必须重新分析。 3.重复测量标准溶液的浓度,取其平均值,两次测值的相对差异百分比在 10 %以内。 4.若进行微量分析时,检量线第一点的浓度必须在实验室可定量的范围浓度,假如样品浓度值低于检量线最低点的浓度,此报告只能当成估计值。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪操作要点一般火焰式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]之操作参数包括以下五点: (1)火焰高度的调整: 每一个元素最佳的反应高度并不一样,故必须调整其高度以达到最佳吸收度。图二为铬、镁、银在不同火焰高度吸收度差异。 (2)燃料比例: 每一个元素的操作灵敏度受气燃比之影响相当大,某些元素可能适合氧化焰(Lean,因二次空气的供给,燃烧完全,焰温较高,置于此焰层内之金属多被氧化成金属氧化物。),但有些可能适合还原焰(Rich,此焰层能使含氧化合物还原,例如重金属氧化物,置于此焰中灼烧,会失去其所含的氧,被还原成金属。)。图三为铬在不同火焰操作条件下其吸收度之差异 (3)灯管电流: 电流的大小也会影响吸收度。如果灯管的电流太小,则吸收度会下降,但如果太高则可能因自身吸收效应(Self Absorption Effect)使其吸收度下降。图四为镁在不同灯管电流操作下,吸收度之差异性比较。(电流太强,会导致灯管寿命降低) (4)狭缝宽度: 狭缝太小则使进入的光能量太弱,使吸收度下降,太宽则使进入的光线太多,易造成干扰,故于分析前可参考操作手册之建议条件或是自行测试选择较适当的狭缝宽度。图五为镍在不同狭缝宽度设定下其吸收度之差异性比较。 (5)波长选择: 元素吸收灵敏度与所选择的波长有很大的关系,通常每一个元素多有数个波长可供选择,可依据分析的需求选择适当的波长。 影响仪器之干扰 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法可能面临的干扰可概分六类,(1)光谱干扰(Spectral Interference)、(2)火焰放射干扰(Flame Emission Interference)、(3)化学干扰(Chemical Interference)、(4)基质干扰(Matrix Interference)、(5)非特定性散射(Non-Specific Scatter)及(6)离子化干扰(Ionization Interference)。 (1)光谱干扰:此干扰主要是样品中存在其它元素造成的干扰。此干扰近年来因中空阴极射线技术的提升已很少发生。 (2)放射干扰:此干扰主要来自于样品放射出与欲吸收的波长相同。此干扰可藉由提高电流强度或降低狭缝宽度来解决。 (3)化学干扰:此干扰最常发生于利用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]来分析镁、钙、锶及钡等金属。最常见的干扰物种有硅酸盐、磷酸盐及铝酸盐等化合物。一般解决的方法有两种,一为利用螯合剂(EDTA)与金属错合,二为添加氯化镧与造成干扰的阴离子错合;或者可利用笑气-乙炔来解决化学干扰的问题。 (4)基质干扰:一般此干扰原因有(a)溶液中含有机溶剂而造成吸收度的增加,(b)因溶液的黏滞性较高因雾化效率下降而造成吸收度下降,(c)溶液的盐度较高而造成吸收度下降。 以上四种干扰可藉由标准添加法(Standard Addition)或是萃取法将金属自溶液中萃取出来或者改用其它的分析技术。 (5)非特定性干扰:此干扰来自样品中含有高浓度的盐类,此情形最常发生于波长在250 nm以下,此干扰可用萃取技术及背景校正来克服。 (6)离子化干扰:此干扰最常发生于低游离能元素,如碱金族及碱土族元素。解决的方法可在样品中加入比待测元素更容易解离的化合物,如分析钙时可添加1000 ppm的氯化钾溶液。 [em61]

  • 火焰原子吸收原子化器

    将试样中的被测元素转化为基态原子的过程称为原子化过程,能完成这个转化的装置称原子化器,目前,使用较普遍的原子化器有两类,一类是火焰原子化器,由石墨炉作原子化器的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析法称为石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法(GFAAS)。 待测元素的原子化是整个[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析中最困难和最关键的环节,原子化效率的高低直接影响到测定的灵敏度,原子化效率的稳定性则直接决定了测定的精密度,原子化过程是一个复杂的过程,在后面的章节中作详细介绍。 火焰原子化器实际上就是一个喷雾燃烧器,作为一个性能良好的原子化装置要求其调节方便,单位时间内吸入的试液尽可能多地产生微细雾粒,并能雾珠尽可能地到达火焰进行原子化等到特点。同时,还要燃烧稳定,火焰发射的噪声要小。按照火焰的燃气和助燃气的混合方式和进样方式不同,火焰原子化器又可分为全消耗型原子化器和预混合型原子化器,前者产生的火焰称紊流火焰,后者为层流火焰。 1﹑全消耗型原子化器 这种原子化器结构如下图所示,由于助燃气的高速流过原子化器,在原子化器的出口形成一负压区,使得试液由吸液毛细管抽入火焰中,试液的雾化过程直接在燃烧器口进行,试液被全部喷入火焰,在火焰高温下完成干燥、分解、原子化的全过程。 全消耗原子化器的原了化效率很低,高速运动的雾珠直径较大,大多数雾珠在火焰中还未达到原子化时就飞出火焰,使火焰中基态原子数目减少。此外,由于火焰要将大量溶剂蒸发,火焰温度因而下降,也使原子化效率降低,使用全消耗原子化器,喷雾和燃烧条件不能分别控制,火焰浮喷雾的干扰很大,大颗粒粒子在火焰中产生严重的散射干扰,火焰燃烧不稳定,噪声大,所以,现在的仪器已不使用这种原子化器。 全消耗原子化器的重要优点是使用安全,由于其燃气与助燃气是在燃烧器的外部混合燃烧,所以在工作中允许二种气体以任何比例混合,而不会发生危险。

  • 征集土壤和沉积物中 铁的火焰原子吸收分析方法注意事项

    征集土壤和沉积物中 铁的火焰原子吸收分析方法注意事项1.土壤消解注意事项及其原因。2.原子吸收分析条件、注意事项及其原因。(含基体改进剂)。===========================================越详细越好。目的:某位老师想编写分析方法一书,委托我写这个分析方法。为使自己编写的方法做出的数据准确性好、重复性强,特求助大家。2015年9月份结帖,欢迎各位老师帮助。

  • 【原创】我做火焰原子吸收分析的故事

    最近,我从石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析岗位上来到火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析工作岗位上,前一段时间在用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析Mn时都很正常其空白吸光度可以扣到零,但是今天上午无论怎么操作空白水的吸光度也达不到零,今天用了一下午的时间才找到原因之所在。首先,我们怀疑是高精度雾化器(PE400)有了一定的污染(存在或多或少的记忆效应),吸光度值为0.010-0.001且总是在变化,我们马上将耐腐蚀的全钛燃烧头拆下用随机带来的小刀除掉上面的集碳和其他燃烧残留物,同时将高强度聚合物雾化室用硝酸洗涤然后用去离子水反复洗涤,最后将其安装上,其水的空白值也校正不到零,为此我们又对燃烧头的高度和角度(燃烧头与元素灯光线的夹角)进行了调整均未奏效.资料下载:http://www.instrument.com.cn/download/search.asp?keywords=qzcp&sel=admin_name&SN=&Submit=%C1%A2%BC%B4%B2%E9%D1%AF

  • 原子吸收未来的发展,无火焰原子化。

    众所周知火焰原子一般都是空气乙炔法,虽然现在仪器的安全性能很高,但是一瓶乙炔放在实验室里还是让人心存忧虑。火焰分析,是让空气乙炔是为了提供样品原子化的能量,石墨炉分析是通过电能转换为热能,让样品原子化。那未来的火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],可以用微波提供能量,也让样品原子化,或者其他的无火焰方式,让样品原子化?这个只是一种假想,欢迎大家讨论。

  • 【原创大赛】湿法分析火焰原子吸收法测定大桃中锌

    【原创大赛】湿法分析火焰原子吸收法测定大桃中锌

    湿法分析火焰原子吸收法测定大桃中锌【生活中的仪器分析】活动原创作品:食品安全——果蔬中农药残留及重金属含量检测大桃,果实多汁,而且富含微量元素,深受大家的喜爱,那么桃的微观世界里各微量元素具体是多少,下面有我给大家揭开其中的奥秘,处于生长发育期的儿童、青少年如果缺锌,会导致发育不良。缺乏严重时,将会导致"侏儒症"和智力发育不良;缺锌会导致味觉下降,出现厌食、偏食甚至异食;锌元素是免疫器官胸腺发育的营养素,只有锌量充足才能有效保证胸腺发育,正常分化T淋巴细胞,促进细胞免疫功能,说明锌对于人非常重要,那么果实中锌含量怎么样呢,下面我给大家介绍一下样品分析的全过程。参考国家标准:GB/T5009.14-2003:食品中锌的测定1、制取样品具体过程完全同湿法分析石墨炉法测定大桃中镉2 分析条件标准曲线的配置:Zn:0 0.1 0.2 0.5 1.0μg/mlhttp://ng1.17img.cn/bbsfiles/images/2013/08/201308312308_461471_1601823_3.jpg用到分析仪器http://ng1.17img.cn/bbsfiles/images/2013/08/201308312308_461473_1601823_3.jpgZ-2000型原子吸收仪,仪器稳定。锌测定中。。。。3、分析结果锌的结果分析http://ng1.17img.cn/bbsfiles/images/2013/08/201308312310_461474_1601823_3.jpg大桃Zn的含量还是比较高,相对与苹果(一般2ppm)高多了。4 结论:从小批量抽样结果来看,虽不能代表全体,但也说明一个问题,大桃中锌金属含量比较丰富,对于需要补充微量锌元素,是一个比较好水果。

  • 【原创大赛】火焰原子吸收测定土壤速效钾测定分析

    【原创大赛】火焰原子吸收测定土壤速效钾测定分析

    [align=center][b]火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定土壤速效钾测定分析[/b][/align][align=center]谭冯茂 刘榜城.上海利元环保检测技术有限公司[/align][align=left][b][/b][/align][align=left][b]摘要 [/b]实验发现手动震荡(溶液冲击顶部与底部为一次震荡)震荡10秒,取样量0.5g萃取效率最佳;速效钾测定结果与样品静置时间、是否源样过滤稀释相关;速效钾含量与其他形态钾含量可能是一个动态转化过程,此发现对土壤金属形态研究有一定意义。[/align][align=left][b]关键词:[/b]速效钾测定 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url][/align][align=left]Abstract It was found that manual oscillation (one shock at the top and bottom of the solution shock) oscillated for 10 seconds.The sampling rate is 0.5g, and the extraction efficiency is the best.The results of quick-acting potassium determination are related to the sample standing time and whether the source sample is filtered and diluted.The quick-acting potassium content and other forms of potassium may be a dynamic transformation process, which has certain significance for the study of soil metal forms.[b]Key words:[/b] quick-acting potassium determination flame atomic absorption 土壤速效钾含量大小影响到该地区动植物生长,壤速效钾含量是为重要肥力评定依据。土壤速效钾分析测定是化肥企业对钾肥效果评价重要方法,土壤速效钾的分析方法深入研究对我国农业有重要意义。 目前我国土壤速效钾现行分析方法为NY/T 889-2004[sup][/sup]乙酸铵浸提,火焰光度计测定,但我国经济多年高速增长,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]日渐普及,已有学者[sup][/sup][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法应用于土壤速效钾测定。有学者表示,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定速效钾会产生24%~38%正干扰[sup][/sup],原则上从仪器原理对比,火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]通过光栅筛选特征波长相比火焰光度计滤光片更为精密,本次实验通过多组数据分析发现,速效钾正干扰主因是速效钾与总钾之间存在某种溶解平衡,称样量越大正干扰越小。称样量为0.25g,每秒手动冲击摇晃10秒可萃取出大量钾离子,24h静置稳定后速效钾达到平衡,稀释测定结果准确说明溶解平衡后测定结果准确。传统火焰光度计因线性广采用萃取液直接测定故结果准确,而[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定过程中,其他作者可能未考虑溶解平衡直接稀释导致结果偏大。 本次实验使用比色管上下冲击手动震荡,萃取时间短,占用实验室场地空间小,使用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定对日常分析推广有较大意义。钾自然丰度较高,使用比色管萃取较国标方法250ml锥形瓶更为易于密闭可有效隔离环境污染。当需要快速测定土壤速效钾时,可以取样2.00g定容25ml(50ml比色管)可快速制样测定。[/align][align=left][b]1 实验部分1.1主要仪器和仪器条件[/b]PinAAcle 900T型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url](美国铂金埃尔默仪器有限公司),波长766.5nm,空气10L/min,乙炔2.5L/min。RS-2分液漏斗振荡器(常州浦光物理光学仪器有限公司)[b]1.2 主要试剂[/b]钾标准溶液:GSB 07-1261-2000 500mg/L 钾标准系列工作溶液:1mg/L、2mg/L、3mg/L、4mg/L、5mg/L、土壤有效态成分分析标准物质GBW07458(ASA-7),乙酸铵AR(上海国药集团)。[b]1.3样品实验条件与前处理过程[/b]称取土壤有效态成分分析标准物质GBW07458(ASA-7),加入1mol/L乙酸安溶液(乙酸铵需置于环境温度20-25°至实验室温度)25ml于50ml具塞比色管萃取20-25°萃取最佳[sup][/sup],样品过0.45um滤膜过滤,经火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定。[/align][align=left]如图一,土壤均称取2.000g(精确到0.0001g),加入25ml乙酸铵浸提剂(浸提剂环境温度25°静置3h至环境温度)震荡3分钟。180转/分钟以下浸提效率较低,180~350转/分钟浸提效率开始提升 最大测定值耐然低于证书值0.36±0.02g/kg。因RS-2分液漏斗振荡器阀值为350转/分钟下振幅不够,故加入手工摇晃作为对照参考。1秒摇晃两次(溶液冲击顶部与底部为一次)摇晃3分钟。手动摇晃萃取效果最佳,但其测定结果显著高于证书值。[/align][align=left][img=,535,206]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241556348721_7973_2149469_3.png!w535x206.jpg[/img][/align][align=left][b]2.2取样质量对实验结果的影响[/b]图2 ,土壤样品加入25ml乙酸铵浸提剂(浸提剂环境温度25°静置3h至环境温度)手动重复冲击(1秒上下冲击2次)3分钟;从0.5~2.0g随着取样量增加测定结果越小。取样量为0.50g达到最大峰值。各组数据均大于证书值0.36±0.02g/kg,取样量为2g时0.3745g/kg在范围为最佳;说明取样量对测定结果有显著影响,取样量越大,钾析出的浓度越大。取0.5g左右加入25ml乙酸铵时,为最大萃取效率。[/align][align=left][img=,481,241]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241557140836_4737_2149469_3.png!w481x241.jpg[/img][/align][align=left][b]2.3人员比对与最佳萃取时间[/b]图3,土壤均称取0.500(精确到0.0001g),加入25ml乙酸铵浸提剂(浸提剂环境温度25°静置3h至环境温度)震荡;可知晃动10秒与5分钟测定值均高于证书0.36±0.02g/kg,手动萃取10秒可以达到检测预期目标;人员1人员2对比均大于证书值,不同人员萃取10秒均可以达到最佳萃取效率。手动摇晃萃取效果最佳,但其测定结果显著高于证书值。[/align][align=left][img=,478,230]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241558008041_5481_2149469_3.png!w478x230.jpg[/img][/align][align=left][b]2.4未0.45um过滤样品与测定时间影响[/b]如图四,土壤均称取0.500(精确到0.0001g),加入25ml乙酸铵浸提剂(浸提剂环境温度25°静置3h至环境温度)震荡;分别做时间测定源样(样品不过0.45um滤膜),与稀释样(样品稀释5倍且不过0.45um滤膜),发现源样与稀释样趋势大致一致且稀释样品总体大于源样;静置5小时之前稀释样品测定结果大于源样,说明样品已全部析出但未达到溶解平衡;24h后测定值与源样稀释值一致。说明溶液中土壤颗粒已经静置,土壤中的总钾与速效钾达到溶解化学平衡。[/align][align=left][img=,481,241]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241558347347_9849_2149469_3.png!w481x241.jpg[/img][/align][align=left][b]3结论与讨论[/b] 学者高頔[sup][/sup]等发现25000r/min处理的土壤颗粒显著高于手擀处理、2800r/min(转速越大颗粒越小)说明土壤颗粒越小越容易打破土壤物理晶格,使得其他形态的钾转换为速效钾形态,从物理状态加速了其他形态的钾转化为速效钾,分析速效钾过程中应考虑到样品的物理形态、化学平衡形态转化。 目前现行国标的速效钾分析中NY/T 889-2004乙酸铵浸提火焰光度计测定并未对测定化学平衡因素有相关要求,通过图2可知,称取质量一定时,测定结果与静止一段时间后相同,可知在日常分析过程中根据任务需要确定取样量快速测定速效钾,同时为了准确获取某地区速效钾真实含量,建议静置24h后测定数据更为准确。 目前元素形态研究获得了可观进展,但未见有关测定过程中化学平衡因素影响测定结果相关文章,相信随着元素形态学的研究各重金属元素会获得一定突破。[/align][align=left][b]4参考文献[/b]中华人民共和国农业部.NY/T 889-2004土壤速效钾和缓效钾的测定[s]北京:中国环境出版社,2005. 陈燕、王文美、詹晓珠.应用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定土壤速效钾.分析仪器,2007, 4:57-59. 王敬、王火焰、周建民等.不同仪器测钾性能优缺点比较研究.土壤学报,2017,50(2):340-347.高頔、张清、催运成等.研磨方法对土壤速效钾测定值的影响中国农学通报,2012,28(03):152-156.[/s][/align]

  • 【原创大赛】湿法分析火焰原子吸收法测定大桃中铜

    【原创大赛】湿法分析火焰原子吸收法测定大桃中铜

    湿法分析火焰原子吸收法测定大桃中铜【生活中的仪器分析】活动原创作品:食品安全——果蔬中农药残留及重金属含量检测大桃,果实多汁,而且富含微量元素,深受大家的喜爱,那么桃的微观世界里各微量元素具体是多少,下面有我给大家揭开其中的奥秘,铜元素,大家知道铜是人体健康不可缺少的微量营养素,是人体内血蓝蛋白的组成元素,对于血液、中枢神经和免疫系统,头发、皮肤和骨骼组织以及脑子和肝、心等内脏的发育和功能有重要影响。铜主要从日常饮食中摄入。世界卫生组织建议,为了维持健康,成人每公斤体重每天应摄入0.03毫克铜。孕妇和婴幼儿应加倍。缺铜会引起各种疾病,可以服用含铜补剂和药丸来加以补充。那么果实中铜含量怎么样呢,下面我给大家介绍一下样品分析的全过程。参考国家标准:GB/T5009.13-2003:食品中铜的测定1、制取样品具体过程完全同湿法分析石墨炉法测定大桃中镉2、分析条件标准曲线的配置:Cu:0 0.1 0.2 0.5 1.0μg/mlhttp://ng1.17img.cn/bbsfiles/images/2013/08/201308312301_461467_1601823_3.jpg用到分析仪器http://ng1.17img.cn/bbsfiles/images/2013/08/201308312301_461468_1601823_3.jpgZ-2000型原子吸收仪,仪器稳定。3、分析结果Cu的结果分析http://ng1.17img.cn/bbsfiles/images/2013/08/201308312302_461469_1601823_3.jpg大桃Cu的含量还是比较高,相对与苹果(一般2ppm)高多了。4 结论:从小批量抽样结果来看,虽不能代表全体,但也说明一个问题,大桃中铜金属含量比较丰富,对于需要补充微量铜元素,桃是一个比较好水果。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制