当前位置: 仪器信息网 > 行业主题 > >

原子吸收法分析

仪器信息网原子吸收法分析专题为您提供2024年最新原子吸收法分析价格报价、厂家品牌的相关信息, 包括原子吸收法分析参数、型号等,不管是国产,还是进口品牌的原子吸收法分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原子吸收法分析相关的耗材配件、试剂标物,还有原子吸收法分析相关的最新资讯、资料,以及原子吸收法分析相关的解决方案。

原子吸收法分析相关的论坛

  • 原子吸收光谱分析法课程连载

    第1章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析概述1.1 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]研究的历史1.1.1 对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]现象的初步认识1.1.2 技术突破和在分析化学上的应用1.1.2.1 空心阴极灯的发明1.1.2.2 近代常用技术的出现1.2 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的简单介绍1.2.1 复习吸光光度法的原理1.2.2 分光光度计及其基本部件1.2.3 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计1.2.4 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的结构1.2.5 仪器各基本组成部分作用1.3 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的基础知识和概念1.3.1 光的知识1.3.2 朗伯—比尔定律1.3.3 光谱的分类1.3.4 三种原子光谱分析法的基本光路图对比1.3.5 灵敏度、检出极限、精密度、准确度1.3.5.1 灵敏度1.3.5.2 检出极限CL1.3.5.3 精密度1.3.5.4 准确度1.4 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的优缺点1.4.1 选择性强1.4.2 灵敏度高1.4.3 分析范围广1.4.4 抗干扰能力强1.4.5 精密度1.4.6 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析法也有如下缺点:1.5 近年研究展望第2章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析的基本原理 2.1 原子核外电子结构 2.2 原子能级 2.3 跃迁方式 2.3.1 吸收跃迁 2.3.2 自发发射跃迁 2.3.3 受激发射跃迁 2.4 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的理论分析 2.4.1 吸收光谱的特征波长和吸收线数目 2.4.2 吸收谱线的轮廓 2.4.2.1 自然宽度(Natural width) 2.4.2.2 多普勒变宽效应(Doppler broading)2.4.2.3 压力变宽(碰撞变宽) 2.4.2.4 自吸变宽 2.4.3 吸收谱线的强度 2.5 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的实际测量 2.5.1 吸收线 2.5.2 积分吸收系数和原子浓度之间的关系瓦尔西峰值吸收法 2.5.3 校正线的形状和影响它的因素 2.5.4 实际的测量 第3章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]3.1 概述 3.2 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的类型 3.2.1 单光束系统 3.2.2 双光束系统 3.2.3 双光束双通道 3.3 光源 3.3.1 空心阴极灯 3.3.1.1 空心阴极灯的构造 3.3.1.2 空心阴极灯的发射机理 3.3.1.3 空心阴极灯内的充入气体 3.3.1.4 空心阴极灯的供电 3.3.1.5 空心阴极灯的使用 3.3.2 无极放电灯 3.3.3 连续光源 3.3.3.1 氘灯 3.3.3.2 蒸气放电灯 3.3.4 其它光源 时间分解火花 火焰 3.4 原子化器 3.4.1 原子化器的吸收光路 3.4.2 火焰原子化法 3.4.3 石墨炉原子化 3.4.4 石墨炉原子化反应机理 3.4.5 氢化物发生及其原子化 3.4.6 其他原子化法 金属器皿原子化法 粉末燃烧法 阴极溅射原子化法 电极放电原子化法 等离子体原子化法 激光原子化法 闪光原子化法 应用高频感应加热炉的方法 应用高温炉的方法 l 粉末燃烧原子化法 3.5 样品引入系统 3.5.1 气动雾化器 3.5.2 超声波雾化器 3.6 单色器 3.6.1 立特鲁(Littrow)型和艾伯特(Ebcrt)型光栅单色器 293.6.2 闪耀光栅 3.6.3 单色器的参数指标 3.6.3.1 单色器的色散率 3.6.3.2 单色器的分辨率 3.7 测量和读出装置 3.7.1 检测器 第4章 干扰 4.1 电离干扰4.2 物理干扰 4.3 光谱干扰 4.3.1 在光谱通带内有一条以上的吸收线4.3.2 在光谱通带内有非吸收线存在 4.3.3 谱线重叠 4.3.4 分子吸收 4.3.5 光散射 4.3.6 试样池发射4.4 化学干扰 4.4.1 化学干扰的产生 4.4.2 消除化学干扰的方法 4.4.2.1 化学分离 4.4.2.2 提高火焰温度 4.4.2.3 采用对消干扰效应的方法来消除干扰 4.4.2.4 改良基体 4.4.2.5 加入释放剂 4.4.2.6 加入保护剂 4.4.2.7 加入缓冲剂第5章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的分析技术5.1 样品的预处理 5.1.1 样品的溶解 5.1.2 样品的分离和富集5.1.2.1 萃取法5.1.2.2 螯合萃取 5.1.2.3 离子缔合物萃取 5.1.2.4 离子交换法 5.1.2.5 其它富集方法 5.2 测定条件的选择 5.2.1 分析线的选择 5.2.2 狭缝宽度 5.2.3 空心阴极灯电流 5.2.4 原子化条件的选择 5.2.4.1 火焰 5.2.4.2 喷雾器的调节 5.2.4.3 石墨炉原子化法中原子化温度的确定5.3 分析方法 5.3.1 标准曲线法 5.3.1.1 非吸收光的影响5.3.1.2 共振变宽 5.3.1.3 发射线与吸收线的相对宽度 5.3.1.4 电离效应 5.3.2 标准曲线法 5.3.3 标准加入法 5.3.4 稀释法 5.3.5 内标法 5.3.6 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]间接分析法 5.3.7 试样的污染及预防措施第6章 元素各论 6.1 概述 6.1.1 碱金属6.1.2 碱土金属 6.1.3 有色金属 6.1.4 黑色金属 6.1.5 贵金属 6.1.6 稀有和分散元素 6.1.7 难熔元素 6.1.8 间接[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 6.2 元素各论 6.2.1 铝 6.2.2 锑 6.2.3 砷 6.2.4 钡 6.2.5 硼6.2.6 镉 6.2.7 钙6.2.8 铜 6.2.9 锗 6.2.10 金 6.2.11 碘 6.2.12 铁6.2.13 铅 6.2.14 镁 6.2.15 汞 6.2.16 镍 6.2.17 铂 6.2.18 硅 6.2.19 银第7章 AAS在各个方面的应用 7.1 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析的应用 7.2 在冶金工业中的应用 7.2.1 钢铁分析 7.2.1.1 试样的前处理 7.2.1.2 各元素的测定举例 7.2.2 铜合金 7.2.3 铝合金 7.2.4 铅合金 7.2.5 锆合金7.3 在化学工业中的应用 7.3.1 水泥分析 7.3.1.1 试样的前处理 7.3.1.2 各元素的测定 7.3.2 玻璃分析 7.3.2.1 试样的前处理 7.3.2.2 各元素的测定 7.3.3 石油分析 7.3.3.1 汽油中的铅 7.3.3.2 润滑油中的金属 7.3.4 电镀液的分析 7.3.5 食盐电解液中杂质的分析 7.3.6 聚合物中无机元素的分析 7.3.7 煤灰的分析 7.3.8 大气污染物的分析 7.4 在地球化学中的应用 7.4.1 水质分析 7.4.1.1 陆水分析 7.4.1.2 海水分析 7.4.1.3 废水分析 7.4.2 岩石、矿物的分析 7.4.2.1 试样的前处理 7.4.2.2 各元素的测定举例7.5 在农业中的应用 7.5.1 植物分析 7.5.1.1 试样的前处理 7.5.1.2 各元素的测定举例 7.5.2 肥料分析 7.5.2.1 试样的前处理 7.5.2.2 各元素的测定举例 7.5.3 土壤分析 7.5.3.1 交换性阳离子的测定 7.5.3.2 微量金属 7.5.4 食品和饲料的分析 7.5.4.1 试样的前处理 7.5.4.2 各元素的测定举例7.6 在生物化学和药物学中的应用 7.6.1 体液和组织 7.6.2 体液成分的分析 7.6.2.1 试样的前处理 7.6.2.2 各元素的测定 7.6.3 内脏和其它试样的分析 7.6.3.1 试样的前处理 7.6.3.2 各元素的测定 7.6.4 药物分析 7.6.4.1 试样的前处理 7.6.4.2 各元素的测定

  • 【原创大赛】原子吸收光谱法在水质分析中的应用

    原子吸收光谱法在水质分析中的应用原子吸收光谱法自二十世纪五十年代中期问世以来,在国内、外都得到了迅速的发展,由于其具有方法灵敏、准确、选择性好、抗干扰能力强、快速等优点,而被广泛地应用化学分析的各个领域,并且部分被列为标准分析方法。近年来,原子吸收光谱法在水质检测领域也得到了广泛的重视和应用,众多的基层水质检测部门都已装备了这种仪器,并已成为一种日常惯用的分析手段和方法。水体是河流、湖泊、水库、沼泽和地下水的统称。水质的变化是与污染物在水体、水生物及水系沉淀物之间的分布和迁移转化密切相关。无论生活饮用水、工业给水、农业用水、渔业用水,还是特殊用途用水都有一定的水质要求。在《生活饮用水国家标准》GB5749-2006中,对多种重金属离子限量都有要求。原子吸收光谱法在水质及环境分析中应用广泛,在《饮用天然矿泉水检验方法》GB/T8538-2008中,不少金属离子就是用原子吸收光谱法测定的。如应用于水质及地下水中铜、锌、铅、镉、钾、钠、钙、镁、铁、锰、镍、银、钒、硒、钡等元素的分析。1、样品预处理原子吸收光谱法测定水质样品是否需要采取前处理或者采取何种前处理方法,应该根据样品实际情况而定。例如,对于含较高浓度(ppm级别)的Fe、Mn、Cu、Zn等被测元素的较洁净的水样,可以不进行前处理,将水样直接用原子吸收光谱仪进行测定;对于含较低浓度的Cd、Pb等被测元素的水样,可以进行预富集(如萃取、蒸发等方法)之后测定;氢化物发生器法测定试样中的As、Se、Sn、Ge等元素,所需的氢化物发生过程,可以视为一种样品前处理过程;对于有可能含有某种干扰离子的水质样品,可以加入沉淀剂沉淀该种离子,消除对于其他离子测定的影响。2、测定部分2.1、工作曲线的绘制由于原子吸收法的线性范围窄,因此绘制正确的工作曲线就显的尤为重要。在做工作曲线时要注意以下几点:(1)绘制一条工作曲线至少要取5至7点,并且每一个点要重复测定两次或多次,直到平行样的测定值满足要求后,再进行下一个点的测定。(2)标准样品和待测样品必须使用相同的溶剂系统。(3)工作曲线所选用的浓度范围要包括待测样品的浓度。原子吸收法较理想的线性范围在吸光度的0.1~0.5之内,如浓度再高,标准曲线就显著地弯曲了。所以,原子吸收法只能比分光光度法测定的浓度范围更窄。作为一种补救的方法是在工作曲线开始弯曲的地方多加测几个点,以便绘制正确的工作曲线,也可用一元二次方程绘制工作曲线。2.2、样品稀释原子吸收在水质检测领域中常用到的是火焰原子吸收和石墨炉原子吸收两种分析方法。由于两种方法的灵敏度不同,因此,应根据样品的浓度范围选择相应的分析方法。同一项目不同的仪器其工作范围是不同的。在作样品之前,首先应清楚自己使用的仪器的工作范围。如果,样品的浓度范围不在自己仪器工作范围之内,那么就要考虑稀释样品,使稀释后样品的浓度范围在仪器工作范围之内。值得注意的是:稀释的倍数不易过大,用石墨炉原子吸收进行检测时这一点尤为重要。这是因为石墨炉原子吸收的灵敏度很高,所用的蒸馏水、去离子水及酸中必然含有杂质。 3、结论 总之,利用原子吸收光谱法进行样品分析时,一方面要对仪器的性能有足够的认识;另一方面要在实际中不断总结经验,提高分析技巧。只有这样,才能取得令人满意的分析结果。

  • 新手推荐贴:原子吸收分光光度分析法导学

    弟兄们,好东西与大家共分享哦,好了就顶[color=fuchsia][b]送给刚接触[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的朋友们[/b][/color],下面内容基本上把AAS比较重要的知识都包含了,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度分析法导学一、 基本要求掌握[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的基本原理与特点,元素的特征谱线,描述吸收峰形状的参数,吸收峰变宽的原因,峰值吸收系数与吸收系数。了解基态原子数与原子化温度之间的关系,定量的依据。掌握[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的主要部件及其作用,了解[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计结构、流程及类型。掌握分析条件的选择依据,应用领域,定量分析方法;干扰的类型与抑制方法。二、 基本概念与重点内容A 基本原理1. 共振线 基态第一激发态,吸收一定频率的辐射能量。产生共振吸收线(简称共振线); 吸收光谱 激发态基态 发射出一定频率的辐射。产生共振吸收线(也简称共振线); 发射光谱2。元素的特征谱线 1)各种元素的原子结构和外层电子排布不同, 基态第一激发态: 跃迁吸收能量不同——具有特征性。 2)各种元素的基态第一激发态 最易发生,吸收最强,最灵敏线。特征谱线。 3)利用特征谱线可以进行定量分析。2. 吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。 ¨实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 ¨由:It=I0e-Kvb , 透射光强度 It和吸收系数及辐射频率有关。 以Kv与n 作图:3. 表征吸收线轮廓(峰)的参数: 中心频率nO(峰值频率) : 最大吸收系数对应的频率或波长; 中心波长:λ(nm), 半宽度:ΔnO4. 吸收峰变宽原因(1)照射光具有一定的宽度。 (2)多普勒变宽(温度变宽) ΔVo多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)ΔVL 由于原子相互碰撞使能量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。在一般分析条件下ΔVo为主5. 积分吸收与峰值吸收光谱通带0.2mm。而[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]线的半宽度:10-3mm。如图所示: 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差; 若将原子蒸气吸收的全部能量,即谱线下所围面积测量出(积分吸收)。则是一种绝对测量方法,现在的分光装置无法实现。 谱线的积分吸收与基态原子数目成正比,即与原子浓度成正比。 6.基态原子数与原子化温度7.吸收系数与峰值吸收系数8.用峰值吸收系数k0代替kl的条件B [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的结构与原理1. [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的主要组成部分与结构流程 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计基本上由光源、原子化器、分光系统和检测系统组成。2.锐线光源 什么是锐线光源? [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中为什么要使用锐线光源?3.原子化装置类型 原子化器有火焰原子化器和无火焰原子化器两种。4.火焰原子化器与原子化过程 5.火焰类型:6.火焰原子化器的火焰温度选择: (a)保证待测元素充分离解为基态原子的前提下,尽量采用低温火焰; (b)火焰温度越高,产生的热激发态原子越多; (c)火焰温度取决于燃气与助燃气类型,常用空气—乙炔,最高温度2600K能测35种元素。5.无火焰原子化器的特点与原子化过程6.无火焰原子化过程7.狭缝宽度与通带C [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法实验条件的建立 1.需要选择的分析条件 (1)分析线;(2)狭缝宽度;(3)工作电流;(4)原子化条件的确定;(5)检测进样量。 2.[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的干扰类型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的干扰主要有光谱干扰、物理干扰、化学干扰和背景干扰。3.光谱干扰光谱干扰主要来自光谱通带由多条吸收线参与吸收或光源发射的非吸收的多重线产生干扰和样品池本身的分子发射或待测元素本身的发射线的影响。4.物理干扰物理干扰是由于溶质和溶剂的性质(粘度、表面张力等)发生变化,物理干扰出现在试样在转移、蒸发过程中,主要影响试样喷入火焰的速度、雾化效率、雾滴大小等。使喷雾效率下降,致使出现在火焰原子化器中的原子浓度减小,导致测定误差。 可通过控制试液与标准溶液的组成尽量一致的方法来消除。5.化学干扰化学干扰是指在溶液或火焰气体中发生对待测元素有影响的化学反应,导致参与吸收的基态原子数减少。背景干扰是一种分原子性吸收,多指光散射、分子吸收和火焰吸收。化学干扰效应的消除方法有多种,常用的有:加入缓冲剂、保护剂、稀释剂等或采用预先分离的方法。6.特征浓度(含量)7.检测限8、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法定量分析方法[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的定量分析常用的方法有标准曲线法、标准加入法。 9.标准曲线法 10.标准加入法

  • 火焰原子吸收法分析镍问题,怎么办才好??

    火焰原子同样的母液测镍的浓度总是相差非常大我最近在做镍的反萃,采用火焰原子吸收法分析镍,我的样品是0.03摩尔每升的硫酸镍,稀释2500,本该测得的浓度应为0.7044左右,但是只有用配的样品稀释才能测的0.7左右,过一天稀释再测总是在0.5左右,为什么?请教高手啊 ?我的毕业论文啊!

  • 原子吸收光谱分析四大分析应用领域

    原子吸收光谱分析现巳广泛用于各个分析领域,主要有四个方面:理论研究;元素分析;有机物分析;金属化学形态分析   1. 理论研究中的应用:  原子吸收可作为物理和物理化学的一种实验手段,对物质的一些基本性能进行测定和研究。电热原子化器容易做到控制蒸发过程和原子化过程,所以用它测定一些基本参数有很多优点。用电热原子化器所测定的一些有元素离开机体的活化能、气态原子扩散系数、解离能、振子强度、光谱线轮廓的变宽、溶解度、蒸气压等。  2. 元素分析中的应用:  原子吸收光谱分析,由于其灵敏度高、干扰少、分析方法简单快速,现巳广泛地应用于工业、农业、生化、地质、冶金、食品、环保等各个领域,目前原子吸收巳成为金属元素分析的强有力工具之一,而且在许多领域巳作为标准分析方法。 原子吸收光谱分析的特点决定了它在地质和冶金分析中的重要地位,它不仅取代了许多一般的湿法化学分析,而且还与X- 射线荧光分析,甚至与中子活化分析有着同等的地位。目前原子吸收法巳用来测定地质样品中70多种元素,并且大部分能够达到足够的灵敏度和很好的精密度。钢铁、合金和高纯金属中多种痕量元素的分析现在也多用原子吸收法。 原子吸收在食品分析中越来越广泛。食品和饮料中的20多种元素巳有满意的原子吸收分析方法。生化和临床样品中必需元素和有害元素的分析现巳采用原子吸收法。有关石油产品、陶瓷、农业样品、药物和涂料中金属元素的原子吸收分析的文献报道近些年来越来越多。水体和大气等环境样品的微量金属元素分析巳成为原子吸收分析的重要领域之一。 利用间接原子吸收法尚可测定某些非金属元素。  3. 有机物分析中的应用:  利用间接法可以测定多种有机物。8- 羟基喹啉等多种有机物,均通过与相应的金属元素之间的化学计量反应而间接测定。  4. 金属化学形态分析中的应用:  通过气相色谱和液体色谱分离然后以原子吸收光谱加以测定,可以分析同种金属元素的不同有机化合物。例如汽油中5种烷基铅,大气中的5种烷基铅、烷基硒、烷基胂、烷基锡,水体中的烷基胂、烷基铅、烷基揭、烷基汞、有机铬,生物中的烷基铅、烷基汞、有机锌、有机铜等多种金属有机化合物,均可通过不同类型的光谱原子吸收联用方式加以鉴别和测定。(选自装备制造网)

  • 【资料】浅析原子吸收分析法的干扰因素

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=101657]浅析[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析法的干扰因素[/url]

  • 【原创大赛】火焰原子吸收光谱法的理想分析条件及选择优化简析

    火焰原子吸收光谱法的理想分析条件及选择优化简析 提起火焰原子吸收法,大家都很熟悉,也许大家平常一直在使用火焰原子吸收,但是,不知道同仁们是否考虑过哪些条件是火焰原子吸收光谱法的理想分析条件呢?我们又需要如何选择和优化仪器条件?火焰AAS都存在哪些干扰?等等,我在此做了初步的讨论,顺便总结了一下,希望对大家有帮助,也希望大家交流互动,最终达到共同提高。通过对火焰原子吸收的结构及分析原理了解,有如下十个理想分析条件。一、理想的分析条件 1、溶液中总盐量低于待分析物1% 2、溶液中只有一个元素 3、溶液的物理性质(黏度等)与其水溶液一致 4、待分析物的浓度对应的吸收值的相对误差接近零 5、火焰温度足以分离所有待测组分,无需电离 6、可以使用计量化学或贫燃火焰,以避免燃烧头狭缝处积碳 7、使用主灵敏线进行测定绘制的标准曲线的斜率是最合适的 8、空心阴极灯的发射强度使得它在低电流下能量足够高,这不仅可以增加灯的寿命,还使大多数元素的灵敏度有所提高 9、使用低的负高压或增益,以获得良好的信噪比,降低检出限 10、消解和稀释时使用高纯试剂然而在实际工作中,上述十个理想条件不可能完全实现,尽管我们已经很清楚这些都是理想条件,可我们的工作是现实,这只是理想状况,现实和理想还是有差距的。因此,我们分析人员必须在建立分析方法时,选择仪器条件、样品制备、及整个分析过程中都需要综合考虑这些因素,以此找出最佳的实验条件。二、选择和优化仪器条件 1、谱线的选择。我们的选择一般推荐使用灵敏度最高或信噪比最好的主灵敏线,原因就是我们要测定低浓度样品。然而,测定高浓度样品时,可以用次灵敏线和翻转燃烧头的角度来测定,不管怎么选择,大家的目标都一致,那就是让测定样品的结果满意。 2.狭缝的选择。我们测定的,是通过狭缝进入到 单色器的辐射量,狭缝宽度越大,意味着单色器和检测器可以获得大的辐射量,此时,我们可以通过低增益和低的负高压进行工作,从而在低噪声水平下获取信号,当然狭缝宽度我们可以优化,目的是有好的标准曲线线性和低的信噪比。 3、灯电流的选择。通常每个仪器都给出了推荐灯电流,一般都是最佳电流,但是为了应付日常的检测工作,我们会增加或降低灯电流,目的还是为了好的信噪比和好的标准曲线。 4、负高压和增益的选择。一般增益和负高压的设置是在优化其他条件、调节能量时软件自动可以完成,范围250~450V,超过了450V,信噪比会不好,此时要清洗光路了,因为负高压过高,意味着没有那么多的能量到达检测器了。 5、燃气/助燃气比的选择。尽量使用仪器推荐值,最佳的就是利用仪器上的自动控制和优化火焰功能,让火焰自动优化,此时的燃气/助燃气比就是最佳的比。 6、火焰AAS中的气体和应用火焰的条件。火焰必须将溶液中元素的形态转换为原子云。所以最适宜的火焰必须和各种元素最适宜的温度相互适应。目前我们经常使用的是空气-乙炔火焰;笑气-乙炔火焰,各个元素的火焰选择请参照国家标准或者元素分析手册,当然我们使用的多数还是空气-乙炔火焰。三、火焰原子吸收光谱中的干扰 干扰就是复杂组分对分析结果的影响。在火焰AAS中,常见的就是光谱干扰和非光谱干扰。 1、光谱干扰。原子吸收光谱中的光谱干扰大多数是背景干扰,它是由原子化器中的粒子散射或是被分子吸收引起的,在分析中,我们没有办法躲避,只能通过背景校正来减少干扰即可。 2、非光谱干扰。原子吸收光谱中的非光谱干扰很多,如,传输干扰、空间分布干扰、蒸发干扰、解离干扰、电离干扰等。这种干扰很多,我们在实际测量中,往往根据待测元素的性质结合仪器推荐条件,利用加入基体改进剂和标准加入法等等方法来降低干扰,从而达到好的标准曲线和低的信噪比。四、总结 火焰原子吸收大家经常做,相对于石墨炉原子吸收简单些,但是要做好火焰原子吸收,我们不仅仅要了解自己操作的仪器,熟悉待测元素的化学性质,更重要的是要学会优化最佳条件,让仪器真正成为我们的助手,帮助我们又好又快地分析样品。

  • 原子吸收光谱分析的基本原理

    ?原子吸收光谱分析的基本原理是基于待测元素的基态原子对特定频率的光的吸收?。当有辐射通过自由原子蒸气时,如果入射辐射的频率等于原子中电子由基态跃迁到较高能态(通常为第一激发态)所需的能量频率时,原子就会吸收这份辐射能,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。? 具体来说,原子吸收光谱分析法是利用试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收。吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,从而可以测定试样中该元素的含量。

  • 原子吸收光谱法的优点

    (1)灵敏度高。火焰原子吸收法的灵敏度为10一~10“g/1%吸收,适用于大部分元素微量和常量分析。而石墨炉原子吸收法的灵敏度则高达10一。~10一。g/l%吸收,可与高灵敏度的质谱分析、活化分析相媲美,成为超微量分析的重要手段之一。 (2)选择性好。与发射光谱法相比,原子吸收光谱法具有谱线简单、选择性好和不易受激发条件影响等优点。消除干扰的方法也较为方便,通常无须采用冗长的化学分离步骤。 (3)测定快速。由于选择性好、化学处理和测定操作简便,分析速度较快。应用微处理机自动程序控制,与自动进样器、打印器等相配合,可在半小时内测定50个样品中6个元素的含量。 (4)精密度好。在适宜的测定范围内,一般类型仪器的测定误差可控制在相对标准偏差1%~2%的范围内,性能好的仪器误差则可降至0.1%~0.5%。 (5)应用广泛。空气一乙炔火焰可测三十余种元素,一氧化二氮一乙炔火焰可使测定元素增至70多种。利用间接法还可测定一些非金属元素和有机化合物。除了测定元素多以外,这种方法适宜测定的试样品种也非常广泛,测定的含量范围也较宽,既可用于微量和痕量组分的分析,也可用于常量组分的测定。此外,石墨炉原子吸收法可用于微升级或微克级样品的分析。 (6)操作简便,容易掌握。上述优点使原子吸收光谱法在科研和生产中承担了大量的日常分析任务。不少国家还将其定为标准分析方法。但是,原子吸收光谱法也有不足之处和一定的局限性,如这种方法仅适用于单元素测定,一种元素需要一种光源,且一次仅能测定一个元素,比不上发射光谱法一次多元素分析的优点。尽管如此,原子吸收光谱法仍然是分析化学领域中一种特点突出、用途广泛和大有前途的方法。 资料来源:国家标准物质网资料中心

  • 影响原子吸收光谱定量分析的因素

    影响原子吸收光谱定量分析的因素

    影响原子吸收光谱定量分析的因素原子吸收光谱定量分析涉及两个基本过程:①试样中被测元素转化为自由原子的化学过程;②蒸气相中自由原子对辐射吸收的物理过程。化学过程比物理过程更复杂,影响化学过程的因素比影响物理过程的因素更多。1 原子化过程的影响在推到原子吸收光谱定量分析的关系式A=Kc时,假定了一个基本条件:在确定的实验条件下,蒸气相中的原子数N与试样中被测元素的含量c成正比,N=βc,为此要求被测元素的原子化效率在确定的实验条件下是一定的。准所周知,在实际分析工作中所遇到的试样类型千变万化,即使是同一元素,在不同的试样内,由于基体特性各异和其他共存元素的相互影响,其原子化效率各有不同,有时甚至差别很大。原子化效率对实验条件非常敏感,在原子吸收这类高温动态测量中,实验条件的变动性导致原子化效率的改变,几乎是不可避免的。这是影响原子吸收光谱分析的准确度和精密度的主要因素。由此可以得出这样的结论,测定一种试样中某一元素的最佳条件,未必适用于另一种试样中同一元素的测定,必须针对具体分析对象,寻求某一元素测定的最佳条件。现在商品原子吸收光谱仪器中,厂家为用户所提供的预先储存在数据库内各元素的分析条件,多半都是用纯溶液样品得到的,只能作为选择实际分析样品分析条件的参考。计算机的广泛使用、原子吸收仪器自动控制系统的日益完善以及横向加热石墨炉和STPF技术的应用等,为获得稳定的原子化条件提供了可能性。化学过程是一个复杂的过程,有关影响化学过程的因素。2 辐射吸收过程的影响从光源的发射线考虑,在原子发射线中心频率V0的很窄的△V频率范围内,kv随频率的变化很小,可以近似地认为kv→k0,。当空心阴极灯光源的发射线远小于原子吸收线的宽度时,如下图所示,测得的吸光度可以近似地认为是峰值吸光度。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161143_573671_2352694_3.png随着空心阴极灯的灯电流增大,由于自吸和多普勒变宽效应增强,使光源发射变宽,对于低熔点金属Cd,Zn和Pb等元素空心阴极灯,光源发射线和原子吸收线宽度几乎达到同一数量级,使测得的峰值吸光度明显地降低,导致校正曲线严重弯曲。下图使用不同灯电流时所得到的镉校正曲线。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161144_573672_2352694_3.png在入射辐射中,若含有非吸收辐射,如连续背景辐射、空心阴极灯内稀有填充气体与支持材料以及其他杂质发射的辐射等,它们都可能出现在光谱通带内。当不存在非吸收辐射时,吸光度A=lgI0/I,当存在非吸收辐射i0时,吸光度A’=lg(I0+i0)/(I+i0),A’小于A0。i0在整个入射辐射中所占比例越大,A’比A小的越多。i0和I0比例一定时,I值越小,即吸收介质内分析原子浓度越高,i0的影响越大。非吸收辐射i0的存在,使测得的吸光度减小,校正曲线弯曲。从吸收谱线轮廓考虑,在通常的原子吸收光谱分析条件下,分析原子浓度都很低,共振变宽效应可以忽略不计。但是,当吸收介质的分析原子浓度高时,同种分析原子相互碰撞引起谱线共振变宽,使峰值吸光度减小。随着分析原子浓度增大,对峰值吸光度的影响增大,因此,造成校正曲线在高浓度区弯向浓度轴。这是导致校正曲线非线性化的重要因素。在建立峰值吸收的定量关系式http://ng1.17img.cn/bbsfiles/images/2015/11/201511161141_573669_2352694_3.png时,假定吸收谱线轮廓主要由多普勒变宽效应决定。事实上,吸收谱线轮廓不仅受多普勒变宽效应的影响,还与碰撞变宽,特别是洛伦茨变宽有关。在有些情况下,多普勒变宽与洛伦茨变宽是同一数量级,不能忽略其影响。洛伦茨变宽还引起吸收谱线轮廓的频移与非对称化,使得测定的吸光度不能代表峰值吸收,而是中心波长两侧的吸光度,其值低于峰值吸光度,导致校正曲线的非线性化。谱线的精细结构是影响吸光度测量的又一可能的因素。这些相差很小的谱线精细结构常常是简并的。对于很重和很轻的元素,其波长差超过了线宽,在这种情况下,测定的吸光度是精细结构内各组分的混合吸光度,而非单一纯组分的吸光度,故导致校正曲线的弯曲。当用锐线光源进行峰值吸收测量时,谱线的精细结构对吸光度测定的影响可以忽略不计。下表列出了某些元素共振线的同位素移值。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161145_573673_2352694_3.png从吸收介质内原子浓度考虑,在推到吸收关系式http://ng1.17img.cn/bbsfiles/images/2015/11/201511161142_573670_2352694_3.png时,认为入射辐射密度pv是不变的。很显然,只有在吸收层很薄或分析原子浓度很低时才是这样,这说明原子吸收光谱法主要用于痕量和超痕量元素分析。当被测元素的浓度高时,引起吸光度下降,校正曲线弯向浓度轴。由此可知,原子吸收光谱分析的校正曲线线性范围不会很宽,一般是1-2个数量级。在通常的原子吸收条件下,可以忽略激发态原子和元素电离的影响,但对于低电离电位元素,特别是在高温下,不能忽略电离对基态原子的影响。电离度随温度升高而增大,在一定温度下,随元素浓度增加而减小。元素电离的影响如下图所示,电离效应导致校正曲线弯向纵轴。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161145_573674_2352694_3.png

  • 【转贴】原子吸收分析方法大全

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析方法大全 聚氯乙烯卷材地板-重金属含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法-----------------2楼 变性燃料乙醇—铜含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]石墨炉法------------------3楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法奶粉中钙镁铜铁含量的测定-----------------------4楼 奶粉中钙的测量---------------------------------5楼 橡胶-铅含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法-----------------------6楼 硫化橡胶-锰含量的测定-火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ------------------7楼- 橡胶-铁含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ----------------------8楼 橡胶-铜含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 -----------------------9楼 重整催化剂—锡含量测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 --------------------10楼 分子筛和氧化铝基催化剂—钯含量测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法---------------11楼 FCC平衡催化剂—镍和钒测定—氢氟酸/硫酸分解原子-----------------12楼 焊锡—铅量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法-------------------------13楼 低合金钢-铝含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法---------------------14楼 低合金钢—镁含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 --------------------15楼 低合金钢—砷含量的测定—氢化物发生[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ----------------16楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定中成药中微量元素------------------------17楼 石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定脱水辣根片中的镉含量 -------------------18楼 矿渣硅酸盐水泥─氧化镁的测定─[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ------------------19楼 高岭土钙、镁、钾、钠、锰、铜的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光… -----------------20楼 石英砂―氧化钾和氧化钠的测定―[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法---------------------21楼 石英砂—氧化钙氧化镁的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ---------------------22楼 钠钙硅玻璃—氧化钾和氧化钠的测定—火焰光度法 -------------------23楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法钠钙硅玻璃中铁钙镁钾钠的测定 ------------------24楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测润滑油中的铅 ----------------------------25楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法汽油中铅的测定 -------------------------26楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测锡合金中镉 --------------------------------27楼 锡中铜、锌、铅的测定 -----------------------------28楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定土壤中铜锌铅镉 ---------------------------29楼 金银花中锌、铁、铜、钙、镁含量的测定 -----------------------30楼 微量血锌正常参考值及火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定 ---------------------31楼 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法快速测定芦荟中的钙铁元素 ---------------------32楼 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法测定常通口服液中微量元素锰的含量 --------------33楼 非金属矿(重晶石)—铅的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ---------------34楼 非金属矿(滑石)—氧化钾、氧化钠、氧化钙、三氧化二铁… -----------------35楼 非金属矿(滑石)—酸溶性铁的测定—光度法 --------------36楼 镍精矿—钴含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 ---------------------37楼 水果和蔬菜制品——矿物杂质含量的测定 ----------------38楼 陶瓷制食具容器卫生标准的分析方法 ------------------39楼 测定聚合物中多溴联苯(PBB)与多溴联苯醚 --------------------40楼

  • 原子吸收光谱分析应用指南

    原子吸收光谱分析应用指南

    1、书名:原子吸收光谱分析应用指南2、作者:李蔚,王锡宁,王国玲主编3、出版社:青岛市:中国海洋大学出版社 , 2012.044、图片:http://ng1.17img.cn/bbsfiles/images/2013/05/201305011437_437893_2352694_3.jpg5、介绍:本书以提高原子吸收光谱分析的实际应用能力为目的,较全面、系统地介绍了原子吸收光谱分析的基本原理、仪器结构、干扰消除、化学改进技术、背景校正、测定条件的优化、分析质量控制、常见元素分析、仪器的维护保养、实验室条件和安全事项、测量不确定度评定等内容。6、目录:第一章 绪论第一节 原子吸收光谱研究的历史第二节 原子吸收光谱分析的特点第二章 原子吸收光谱仪的基本构造第一节 光源第二节 原子化器第三节 分光器第四节 检测器第三章 干扰及其消除第一节 概述第二节 干扰的分类与消除方法第四章 化学改进技术第一节 化学改进剂的类型第二节 持久化学改进技术第三节 化学改进剂的作用第四节 化学改进剂的机理第五节 化学改进剂的应用第五章 背景校正技术第一节 背景吸收的特性第二节 连续光源校正背景第三节 用邻近非共振线校正背景第四节 塞曼效应校正背景第六章 分析方法与条件第一节 标准曲线法第二节 标准加入法第三节 稀释法第四节 内标法第五节 原子吸收间接分析法第六节 内插法第七节 仪器工作条件的选择第七章 异常峰形的处理对策第八章 分析质量保证第一节 实验室质量体系的建立与运行第二节 实验室工作条件的质量控制第三节 分析方法的质量评价第四节 分析质量的监控与评价第九章 元素各论第一节 总论第二节 常见元素的分析附录一、原子吸收光谱仪的安装与调试二、标准溶液的不确定度评定三、火焰原子吸收光谱法测量不确定度评定四、原子吸收光谱法测定陶瓷中溶出的镉五、能力验证结果的统计处理和能力评价六、WEEE/RoSH指令简介

  • 如何有效消除原子吸收分析中的背景吸收干扰?

    背景干扰主要有以下几种:1. 分子吸收 2. 光散射 3. 火焰气体的吸收和介质中无机酸的吸收。这两种原子化过程中的背景吸收都具有明显的波长特性,有两种表现方式:一种是连续背景(分子吸收和光散射) ,另一种是随波长而明显变化的结构背景,它主要由分子内部电子跃迁所产生。1.分子吸收当光源辐射通过原子化过程中生成的氧化物,卤化物,氯化物等气体时,会产生分子吸收所引起的干扰。它们通过分子能级的电子振动,转动光谱所组成的带状光谱。不同分子具有不同的吸收带。如CaOH(554nm), SrO(670nm,690nm), 在火焰中可以测得不同的背景吸收曲线,不同波长的背景吸收曲线不同,随波长的不同而有很大的差异,所以具有明显的波长特性。FAAS 中分子吸收取决于该分子是否在火焰中的解离和解离度。如低温火焰中测定容易原子化的元素时,也存在与火焰气体生成难解离的氧化物,氯化物等。在高温下(还原性火焰) ,分子数明显下降,灵敏度提高。所以 FAAS 中背景干扰较少,采用氘灯扣背景就够了。2.光散射光散射背景是指原子化过程中产生的固体微粒对光源辐射光的散射而形成的假吸收。 当基体浓度过大而热量又不足的情况下, 不能使基体物质全部蒸发, 存在固体微粒, 这样产生光散射引起的背景干扰。3.火焰气体吸收FAAS 还存在火焰气体的吸收及溶液介质中各种酸引起的分子吸收,这种干扰在紫外段较大。因此在测定紫外段区元素时采用氩-氢气,空-氢气火焰较好,也可以用空白液调零来消除干扰。FAAS 法中,火焰稳定,时间长,主要以氘灯扣背景较好,在校正背景时要满足以下三点:① 必须在分析线同一波长处测量背景② 测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号时同时测定背景吸收信号③ 要求两个光束完全重叠。

  • 原子吸收分析方法

    一、测量条件优化1. 分析线的选择 通常选共振线(最灵敏线或且大多为最后线),但不是绝对的。如Hg185nm比Hg254nm灵敏50倍,但前者处于真空紫外区,大气和火焰均对其产生吸收;共振线Ni232nm附近231.98和232.12nm的原子线和231.6nm的离子线,不能将其分开,可选取 341.48nm 作分析线。 此外当待测原子浓度较高时,为避免过度稀释和向试样中引入杂质,可选取次灵敏线!2. Slit 宽度选择 调节Slit宽度,可改变光谱带宽(  =S D),也可改变照射在检测器上的光强。一般狭缝宽度选择在通带为4~40Å 的范围内,对谱线复杂的元素如Fe、Co 和 Ni,需在通带相当于1Å 或更小的狭缝宽度下测定。3. 灯电流选择 灯电流过小,光强低且不稳定;灯电流过大,发射线变宽,灵敏度下降,且影响光源寿命。选择原则:在保证光源稳定且有足够光输出时,选用最小灯电流(通常 是最大灯电流的1/2~2/3),最佳灯电流通过实验确定。4. 原子化条件火焰原子化: 火焰类型(温度-背景-氧还环境);燃助比(温度-氧还环 境);燃烧器高度(火焰部位-温度);石墨炉原子化: 升温程序的优化。具体温度及时间通过实验确定。 干燥——105oC除溶剂,主要是水;灰化——基体,尤其是有机质的去除。在不损失待测原子时,使用尽可 能高的温度和长的时间;原子化——通过实验确定何时基态原子浓度达最大值;净化——短时间(3~5s)内去除试样残留物,温度应高于原子化温度。二、测量方法1. 标准曲线法I)讨论高浓度时,标准曲线向浓度轴弯曲的原因!II)标液配制注意事项:合适的浓度范围;扣除空白;标样和试样的 测定条件相同;每次测定重配标准系列。2. 标准加入法:主要是为了克服标样与试样基体不一致所引起的误差(基体效应)。注意事项:须线性良好;至少四个点(在线性范围内可用两点直接计 算);只消除基体效应,不消除分子和背景吸收;斜率小 时误差大。3)内标法优点:消除气体流量、进样量、火焰湿度、样品雾化率、溶液粘度以 及表面张力等的影响,适于双波道和多波道的AAS。

  • 1.1原子吸收光谱分析概述

    AAS(atomic absorption spectroscopy)[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析法(AAS)是一种测量特定气态原子对光辐射的吸收的方法。 [img]http://ng1.17img.cn/bbsfiles/images/2005/02/200502021045_488_1630010_3.jpg[/img][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法和我们以前在分析化学中学过的吸光光度法有很多的相似之处。这里将通过对比的方式,在简单的复习一般吸光光度法的基础上引入[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的概念。 1.1 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]研究的历史人们对光吸收现象的研究始于18世纪初叶。光吸收现象是指光辐射在通过晶体或液体介质后,其辐射的强度和方式会发生变化的现象。通过研究这种光辐射吸收现象,人们注意到:原始的光辐射在经过吸收介质后,能量可以分为三个部分:(1)散射的,(2)被吸收的,(3)发射的辐射。根据粒子从基态到激发态对辐射的吸收原理可以建立各种吸收光谱法,如分子、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析;相反,根据粒子从激发态到基态的光能辐射可以建立各种荧光发射光谱分析,只是在测量方向上和光路垂直。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法发展经历了这样的几个发展阶段: 1.1.1 对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]现象的初步认识 因为太阳光是最普通的光源,所以光谱学和吸收光谱法的历史,与对太阳光的观察是紧密相联的。文献中有记载最早的对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]现象的发现是在1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续光谱时,曾指出在太阳连续光谱中存在着许多条的暗线。几年以后,弗兰霍夫(Fraunhofer)在研究太阳连续光谱时,又独立地再次观察到了这些暗线,并详细地研究了这种现象,所以人们称这些暗线为弗兰霍夫线,但在当时还没有人能阐明产生这种暗线的原因。1832年,研究其它现象的英国人布鲁斯特(D. Brewster) 首先对弗兰霍夫线产生的原因作了基本上是正确的解释。在对白光通过一氧化氮时的谱线吸收现象进行了观察后,他认为弗兰霍夫线是由于太阳外围大气圈中比光源温度低的气体吸收了从光源发出的光的缘故。然而真正对这种吸收现象作出确切解释的还是本生(R. Bunsen)和克希荷夫(G. Kirchhoff)。1860年他们在对碱金属和碱土金属光谱的火焰光谱,以及在这些光谱中所伴生的谱线自蚀现象作系统研究后,证实了钠蒸气发出的光通过比该蒸气温度低的钠蒸气时,会引起钠谱线的吸收。根据钠发射线和弗兰霍夫线在光谱中位置相同这一事实,证明太阳连续光谱中的暗线D线,正是太阳外围大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果,建立了这种吸收的基本原理。。因此可以认为这是历史上用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]进行定性分析的第一个例证。这种现象可用来测定火焰的温度。下图是该经典实验的装置图。 R. Bunsen和G. Kirchhoff研究钠光谱中谱线自蚀的实验装置。连续光源发射的光经透镜L聚焦后通过Bunsen燃烧器B的火焰,并将一小勺氯化钠引入到火焰,光束被棱镜P色散后在屏幕S上进行观察,钠D线以一黑色不连续光谱形式出现在连续光谱的另一端。 [img]http://ng1.17img.cn/bbsfiles/images/2005/02/200502021045_489_1630010_3.gif[/img]图 1这个实验证明:把钠盐送入火焰而发射出的黄色的钠线,相当于太阳光谱的暗D线。这样,D线可能是由于在太阳的气圈中有钠原子存在。他们还得出结论说,观察太阳和某些其他行星的光谱线,可以了解其大气成分。发射和吸收光谱之间的关系已由G. Kirchhoff精确地列出公式。按照克希霍夫定律,所有物质都吸收与其发射光波长相等的光。这个定律具有普遍的正确性,阐明了发射和吸收之间的关系,并说明任何能够发射给定波长辐射的物质都能吸收同一波长的辐射。然而在实际上。它通常只应用于气态物质。1902年,R.. Woodson将钠D2线通过钠蒸气,发现了只辐射D2线的这种共振辐射现象。后来,他又利用从水银电弧发出的波长为253.7nm谱线被水银蒸气吸收这一现象,对空气中的水银进行了测定,为工业上对空气中汞浓度的测定奠定了基础。在G. Kirchhoff工作及其它一些观测的基础上,1900年Planck建立了光的吸收和发射的量子理论。根据这一理论,原子只能吸收某一确定波长(频率)的辐射,即原子只能吸收和释放某一确定的能量??、?和?的特征值视原子而异。 继G. Kirchhoff的工作之后,到1920年左右,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的理论研究方面有了较大的发展,确定了吸收值和某些原子常数之间的关系,阐明了谱线变宽效应以及在这些效应下谱线的形状,制定了[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定方法。但是[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的原理仍然主要被天文学家用来测定星球大气中金属的浓度。这种测定方法,需要有热电离理论(萨哈,Saha,1929年提出)和线吸收系数理论。定量估价原子浓度的一个重要概念称为原子的“振子强度”。测定谱线吸收的实验基础,在于测量不同元素和不同谱线的振子强度。要做到这点,需确切了解吸收介质中自由原子的浓度,这样一来实验方法就比较复杂,以致这些方法不适宜用作化学分析。产生这种情况的主要原因是未能找到一种解决测量[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]系数的实用方法。唯一例外是空气中汞浓度的测定。汞元素广泛用于工业生产,毒性很强,而且在大气中测量它很困难。但由于它的特性,即使在室温下汞也具有足够高的蒸气压,这样,利用它的共振线吸收,AAS很易用于汞的测定。基于此种原理而设计的第一台仪器,在本世纪三十年代早期已经问世。直到1950左右,AAS在分析化学方面的应用,还只限于测定大气中的汞蒸气,它并未引起人们应有的重视。如上所述,虽然G. Kirchhoff早已在1860年就认识了[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的原理,并且此理论基础在以后的几十年中又不断有所发展,但这一方法的实际意义却在很长的一段时间内没有被人们所认识。1.1.2 技术突破和在分析化学上的应用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法作为一个样品成分分析方法出现以后,也经历了一个发展的过程。其中用火焰作吸收介质的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法,是早期发展的主要原子化方法。1.1.2.1 空心阴极灯的发明由于产生气态自由原子的困难,妨碍了[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]在测定其他元素上的应用。随着发射火焰光度法的发展,发现把细散的试样投入火焰,即可获得一个相当简单的和具重现性的方法。在火焰温度下,大部分的化合物蒸发和解离,致使火焰气体含有很多元素的自由原子。尽管有这样众所周知的事实,使用这种火焰于吸收测量的可能性仍未引起重视。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的带宽仅有百分之几埃的数量级。要在如此窄的带宽中,准确测定随频率急剧变化的积分吸收系数,在商品仪器中是难以实现的,也无法保障足够的信噪比。1953年,澳大利亚物理学家沃尔什(A.Walsh) 建议采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]作为一种化学分析法 。但是,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法实际上正式诞生于1955年,Walsh发表了一篇论文“The application of atomic absorption spectra to chemical analysis”, 在他的论文中指出可以用简单的仪器作[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析,提出了峰值吸收测量原理——通过测量峰值吸收系数来代替积分吸收系数的测定。峰值吸收系数与待测原子浓度存在线性关系。他还提出,采用锐线光源是可以准确测定峰值吸收系数的。空心阴极灯是一种实用的锐线光源。这就解决了实际测量的困难。人们很早就对空心阴极灯辉光放电现象进行了光谱研究,为空心阴极灯作为一种稳定的锐线光源提供了理论依据,从而使在二十世纪五十年代提出的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析的蜂值吸收测量,有了实际可能。[img]http://ng1.17img.cn/bbsfiles/images/2005/02/200502021045_490_1630010_3.gif[/img]在文章中,他还强调指出这个方法的优点:[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法和发射法不同,它具有与跃迁激发电压无关,很少受温度变化及其它辐射线或原子间能量交换的影响等优点。这一论文奠定了[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的理论基础,开拓了它广泛应用的前景。另外,在这一年中,阿尔克马德(A1kemade)和米拉兹(Milatz )也独立地发表了几篇文章,建议将[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法作为常规的分析方法。这些文献促使火焰光谱学的分析应用得到人们的重视。在此之后的几年中,主要是Walsh和他在澳大利亚联邦科学和工业研究机构的合作者们将[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]发展成为一种具有高灵敏度和高选择性的定量分析技术,并命名为[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度分析 (atomic absorption spectroscopy)。Walsh不仅在发展该方法的理论基础方面享有声誉,并在实际应用和仪器原理方面也做出了贡献。1960年,在他的文章“Hollow-cathode discharge---the construction and characteristics of sealed-off tubes for use as spectroscopic light source.”中提出使用空心阴极灯作为AAS测定的灯光源,解决了[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的光源问题。与此同时,荷兰的J. T. J. A1kemade也报道了采用火焰的吸收实验。自此以后,不少作者对这一方法的理论和实验作了进一步的研究和探索,并且研制出各种型号性能优良的仪器和元素灯,加速了这一新技术的发展和应用。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法作为一个强有力的分析测试手段开始得到广泛应用与飞跃发展,还是1955年以后的事情。其发展的速度和规模,仅从以下的数字就可以看出来。自1954年在澳大利亚墨尔本物理研究所展览会上展览出第一台简单的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计,到50年代末 PE 和 Varian公司推出了[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计商品仪器,促

  • 原子吸收光谱分析的特点

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析能在短短的三十多年中迅速成为分析实验室的有力武器,由于它具有许多分析方法无可比拟的优点。 ⑴ 灵敏度高 采用火焰原子化方式,大多元素的灵敏度可达ppm级,少数元素可达ppb级,若用高温石墨炉原子化,其绝对灵敏度可达10-10-10-14g,因此,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法极适用于痕量金属分析。 ⑵ 选择性好 由于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]线比原子发射线少得多,因此,本法的光谱干扰少,加之采用单元素制成的空芯阴极灯作锐线光源,光源辐射的光谱较纯,对样品溶液中被测元素的共振线波长处不易产生背景发射干扰。 ⑶ 操作方便、快速 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析与分光光度分析极为类似,其仪器结构、原理也大致相同,因此对于长期从事化学分析的人使用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器极为方便,火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析的速度也较快。 ⑷ 抗干扰能力强 从玻尔兹曼方程可知,火焰温度的波动对发射光谱的谱线强度影响很大,而对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析的影响则要小的多。 ⑸ 准确度好 空芯阴极灯辐射出的特征谱线仅被其特定元素所吸收。所以,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析的准确度较高,火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析的相对误差一般为0.1?/FONT0.5%。 ⑹ 测定元素多 原则上说,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]可直接测定自然界中存在的所有金属元素,火焰原子化中,采用空气椧胰不鹧婵刹舛?/FONT30多种元素,采用氧化亚氮椧胰不鹧婵刹舛?/FONT70余种。 当然,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析也存在一些不足之处,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的光源是单元素空芯阴极灯,测定一种元素就必须选用该元素的空芯阴极灯,这一原因造成本法不适用于物质组成的定性分析,对于难熔元素的测定不能令人满意。另外[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]不能对共振线处于真空紫外区的元素进行直接测定。

  • 【原创】原子吸收分析方法大全

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析方法大全 今后我会陆续给大家上传,,请大家耐心等待。。 聚氯乙烯卷材地板-重金属含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法 变性燃料乙醇—铜含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]石墨炉法 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法奶粉中钙镁铜铁含量的测定 奶粉中钙的测量 橡胶-铅含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 硫化橡胶-锰含量的测定-火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 橡胶-铁含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 橡胶-铜含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 重整催化剂—锡含量测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 分子筛和氧化铝基催化剂—钯含量测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 FCC平衡催化剂—镍和钒测定—氢氟酸/硫酸分解原子… 焊锡—铅量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 低合金钢-铝含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 低合金钢—镁含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 低合金钢—砷含量的测定—氢化物发生[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定中成药中微量元素 石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定脱水辣根片中的镉含量 矿渣硅酸盐水泥─氧化镁的测定─[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 高岭土钙、镁、钾、钠、锰、铜的测定[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光… 石英砂―氧化钾和氧化钠的测定―[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 石英砂—氧化钙氧化镁的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 钠钙硅玻璃—氧化钾和氧化钠的测定—火焰光度法 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法钠钙硅玻璃中铁钙镁钾钠的测定 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测润滑油中的铅 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法汽油中铅的测定 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测锡合金中镉 锡中铜、锌、铅的测定 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定土壤中铜锌铅镉 金银花中锌、铁、铜、钙、镁含量的测定 微量血锌正常参考值及火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法快速测定芦荟中的钙铁元素 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法测定常通口服液中微量元素锰的含量 非金属矿(重晶石)—铅的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 非金属矿(滑石)—氧化钾、氧化钠、氧化钙、三氧化二铁… 非金属矿(滑石)—酸溶性铁的测定—光度法 镍精矿—钴含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 水果和蔬菜制品——矿物杂质含量的测定 陶瓷制食具容器卫生标准的分析方法 测定聚合物中多溴联苯(PBB)与多溴联苯醚(PBDE… 微波消解试样的方法 酸消解沉积物、淤泥和土壤 确定样品处理方法的原则与依据 车间空气中铅的测量方法 茶叶中微量元素分析方法 氢化物法测乌鸡白凤丸中汞的方法 食品中铁镁锰的测定 食品中钾和钠的测定 水质 硫酸盐的测定 水质 钙和镁的测定 玻璃(石英砂)试样分析方法 头发样品的测定 微波消解技术在沉积物样品重金属元素分析中的应用 饲料中镉元素的测定 铝及铝合金中镍的检测 铝及铝合金中铈组稀土的检测 铝及铝合金中锶的检测 铝及铝合金中锂的检测 铝及铝合金中铍的检测 铝及铝合金中钙的检测 铝及铝合金中镓的检测 铝及铝合金中锆的检测 铝及铝合金中钛的检测 铝及铝合金中铬的检测 铝及铝合金中钒的检测 铝及铝合金中铅的检测 铝及铝合金中锡的检测 铝及铝合金中镁的检测 铝及铝合金中锑的检测 铝及铝合金中铜的检测 ROHS&weee 相关指令及检测方法 锌及锌合金中 镧,铈合量的检测方法 铜及铜合金中锰的检测方法 铜及铜合金中钴的检测方法 铜及铜合金中锆的检测方法 铜及铜合金中锑的检测方法 铜及铜合金中锌的检测方法 铜及铜合金中钛的检测方法 铜及铜合金中铝的检测方法 铜及铜合金中硅的检测方法 锌及锌合金中锡的检测方法 铜及铜合金中锡的检测方法 铜及铜合金中磷的检测方法 铜及铜合金中铬的检测方法 铜及铜合金中镉的检测方法 铜及铜合金中铋的检测方法 铜及铜合金中银的检测方法 铜及铜合金中镁的检测方法 饲料中汞的测定 锌及锌合金中硅的检测方法 锌及锌合金中铅的检测方法 锌及锌合金中铝的检测方法 锌及锌合金中砷的检测方法 锌及锌合金中镉的检测方法 锌及锌合金中铜的检测方法 锌及锌合金中铁的检测方法 锌及锌合金中镁的检测方法 锌及锌合金中锑的检测方法 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定测定陶瓷制品铅 、镉溶出量 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定陶瓷制品铅、镉溶出量 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定铜粉中的铁、锌和铅 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93013]地板-重金属含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93014]醇—铜含量的测定—[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]石墨炉法.[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93015][url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法奶粉中钙镁铜铁含量的测定[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93016]奶粉中钙的测量 [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93017]橡胶-铅含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93018] 硫化橡胶-锰含量的测定-火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93019]橡胶-铁含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=93020]橡胶-铜含量的测定-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法 [/url]

  • 【分享】原子吸收光谱分析中的干扰及消除

    虽然[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析中的干扰比较少,并且容易克服,但在许多情况下是不容忽视的。为了得到正确的分析结果,了解干扰的来源和消除是非常重要的。物理干扰及其消除方法 物理干扰是指试样左转移,蒸发和原子化过程中,由于试样任何物理性质的变化而引起的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号强度变化的效应。物理干扰属非选择性干扰。1物理干扰产生的原因: 在火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]中,试样溶液的性质发生任何变化,都直接或间接的影响原子阶级效率。如试样的粘度生生变化时,则影响吸喷速率进而影响雾量和雾化交率。毛细管的内径和长度以及空气的流量同样影响吸喷速率。试样的表面张力和粘度的变化,将影响雾滴的细度、脱溶剂效率和蒸发效率,最终影响到原子化效率。当试样中存在大量的基体元素时,它们在火焰中蒸发解离时,不仅要消耗大量的热量,而且在蒸发过程中,有可能包裹待测元素,延缓待测元素的蒸发、影响原子化效率。物理干扰一般都是负干扰,最终影响火焰分析体积中原子的密度。1.2消除物理干扰的方法 为消除物理干扰,保证分析的准确度,一般采用以下方法: a 配制与待测试液基体相一致的标准溶液,这是最常用的方法。 b 当配制与待测试液基体相一致的标准溶液有困难时,需采用标准加入法。 c 当被测元素在试液中浓度较高时,可以用稀释溶液的方法来降低或消除物干扰。2.光谱干扰及其消除方法 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中的光谱干扰较原子发射光谱要少得多。理想的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],应该是在所选用的光谱通带内仅有光源的一条共振发射线和波长与之对应的一条吸收线。当光谱通带内多于一条吸收线或光谱通带内存在光源发躬垢非吸收线时,灵敏度降低且工作曲线线性范围变窄。当被测试液中含有吸收线相重叠的两种元素时,无论测哪一种都将产生干扰。2.1光谱通带内多于一条吸收线 如果在光谱内存在光源的几条发射线,而且被测元素对这几种辐射光均产生吸收,这就产生干扰。也就是所谓的多重谱线干扰,以过渡元素较多。若多重吸收线和主吸收线波长差不是很小时,通过减小狭缝来克服多重谱线的干扰。但波长差很多小时,通过减小狭缝仍难消除干扰,并且可能使信噪比大大降低,此时需别选谱线。2.2光谱通带内存在光源发射的非吸收线待测元素的非吸收线出现在光谱通带内,这非吸收线可以是待测元素的谱线,也可能是其它元素的谱线.此时产生的干扰使灵敏度降低和工作曲线弯曲。造成这种干扰的原因有几种: a具有复杂光谱的元素本身就发射出单色器难以分开的谱线 b多元素空芯阴极灯因发射线较复杂而存在非吸收干扰; c光源阴极材料中的杂质所引起的非吸收干扰; d光源填充的惰性气体的辐射线引起的非吸收干扰。克服这种干扰常用方法是减小狭缝宽度,使光谱通带小到步以分离掉非吸收线,但使信噪比变坏。这时可以改用其它分析线,虽灵敏度较低,但允许较大的光谱通带,有利于提高信噪比。3 吸收线重叠干扰火焰中有两种以上原子的吸收线与光源发射的分析线相重叠时产生邻近线干扰,这种干扰使结果偏高。当分析元素的吸收线和共存元素的吸收线完全重叠,而分析元素的含量很低时,测得的只是共存元素的吸收信号。当分析元素的分析线中心位置和共存元素的吸收线的中心位置稍有偏离,但仍有相当程度的重叠,此时得于的吸收信号仍有很大一部分是共存元素产生的。当共存元素的吸收线和分析元素的吸收线稍有重叠时,吸收信号中仍有小部分是共存元素产生的。只有分析元素的吸收线和共存元素的吸收线完全分离时,共存元素才不产生干扰。Co253.649对Hg253.652r的干扰是典型的吸收线重叠干扰。理论研究和实验结果表明,干扰的大小取决于吸收线重叠程度,干扰元素的浓度及其灵敏度。当两种元素的吸收线的波长差小于0.03nm时,则认为吸收线重叠干扰是严重的。若重叠的吸收线是灵敏线,即使相差0.1nm,干扰也会明显表现出来。当然这种干扰还和干扰元素的浓度及单色仪的分辨率有关。有一些谱线,在理论上是重叠线,但实验中并没有观察到干扰。有可能是干扰元素在测定条件下原子化效率低而未能产生足够的基态原子,也可能这些干扰元素的吸收线灵敏度很低,所以在通常情况下表现不出来。消除这种干扰一般是选用其它的分析线或预分离干扰元素。

  • 原子吸收光谱分析测定条件的选择

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析测定条件的选择1.分析线选择  通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定这些元素时,不宜选用共振吸收线为分析线。 2.狭缝宽度选择  狭缝宽度影响光谱通带宽度与检测器接受的能量。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中,光谱重叠干扰的几率小,可以允许使用较宽的狭缝。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其它的谱线或非吸收光进入光谱通带内,吸光度将立即减小。不引起吸光度减小的最大狭缝宽度,即为应选取的合适的狭缝宽度。 3.空心阴极灯的工作电流选择  空心阴极灯一般需要预热10-30min才能达到稳定输出。灯电流过小,放电不稳定,故光谱输出不稳定,且光谱输出强度小;灯电流过大,发射谱线变宽,导致灵敏度下降,校正曲线弯曲,灯寿命缩短。选用灯电流的一般原则是,在保证有足够强且稳定的光强输出条件下,尽量使用较低的工作电流。通常以空心阴极灯上标明的最大电流的一半至三分之二作为工作电流。在具体的分析场合,最适宜的工作电流由实验确定。 4.原子化条件的选择 (1)火焰类型和特性:在火焰原子化法中,火焰类型和特性是影响原子化效率的主要因素。对低、中温元素,使用空气-乙炔火焰;对高温元素,宜采用氧化亚氮-乙炔高温火焰;对分析线位于短波区(200nm以下)的元素,使用空气-氢火焰是合适的。对于确定类型的火焰,稍富燃的火焰(燃气量大于化学计量)是有利的。对氧化物不十分稳定的元素如Cu、Mg、Fe、Co、Ni等,用化学计量火焰(燃气与助燃气的比例与它们之间化学反应计量量相近)或贫燃火焰(燃气量小于化学计量)也是可以的。为了获得所需特性的火焰,需要调节燃气与助燃气的比例。 (2)燃烧器的高度选择:在火焰区内,自由原子的空间分布是不均匀,且随火焰条件而改变,因此,应调节燃烧器的高度,以使来自空心阴极灯的光束从自由原子浓度最大的火焰区域通过,以期获得高的灵敏度。 (3)程序升温的条件选择:在石墨炉原子化法中,合理选择干燥、灰化、原子化及除残温度与时间是十分重要的。干燥应在稍低于溶剂沸点的温度下进行,以防止试液飞溅。灰化的目的是除去基体和局外组分,在保证被测元素没有损失的前提下应尽可能使用较高的灰化温度。原子化温度的选择,应以保证完全原子化为准。原子化阶段停止通保护气,以延长自由原子在石墨炉内的平均停留时间。除残的目的是为了消除残留物产生的记忆效应,除残温度应高于原子化温度。5.进样量选择  进样量过小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,在石墨炉原子化法中,会增加除残的困难。在实际工作中,应测定吸光度随进样量的变化,达到最满意的吸光度的进样量,即为应选择的进样量。

  • 【原创】原子吸收分析线和发射线宽度

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析线和发射线宽度指的是空心阴极灯发射出来的谱线宽度和火焰中吸收谱线的宽度吗?请指教!

  • 【资料】原子吸收光谱分析的实验技术

    测定条件的选择 分析线选择  通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定这些元素时,不宜选用共振吸收线为分析线。   狭缝宽度选择   狭缝宽度影响光谱通带宽度与检测器接受的能量。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中,光谱重叠干扰的几率小,可以允许使用较宽的狭缝。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其它的谱线或非吸收光进入光谱通带内,吸光度将立即减小。不引起吸光度减小的最大狭缝宽度,即为应选取的合适的狭缝宽度。  空心阴极灯一般需要预热10-30min才能达到稳定输出。灯电流过小,放电不稳定,故光谱输出不稳定,且光谱输出强度小;灯电流过大,发射谱线变宽,导致灵敏度下降,校正曲线弯曲,灯寿命缩短。选用灯电流的一般原则是,在保证有足够强且稳定的光强输出条件下,尽量使用较低的工作电流。通常以空心阴极灯上标明的最大电流的一半至三分之二作为工作电流。在具体的分析场合,最适宜的工作电流由实验确定。 原子化条件的选择 (1)火焰类型和特性:在火焰原子化法中,火焰类型和特性是影响原子化效率的主要因素。对低、中温元素,使用空气-乙炔火焰;对高温元素,宜采用氧化亚氮-乙炔高温火焰;对分析线位于短波区(200nm以下)的元素,使用空气-氢火焰是合适的。对于确定类型的火焰,稍富燃的火焰(燃气量大于化学计量)是有利的。对氧化物不十分稳定的元素如Cu、Mg、Fe、Co、Ni等,用化学计量火焰(燃气与助燃气的比例与它们之间化学反应计量量相近)或贫燃火焰(燃气量小于化学计量)也是可以的。为了获得所需特性的火焰,需要调节燃气与助燃气的比例。 (2)燃烧器的高度选择:在火焰区内,自由原子的空间分布是不均匀,且随火焰条件而改变,因此,应调节燃烧器的高度,以使来自空心阴极灯的光束从自由原子浓度最大的火焰区域通过,以期获得高的灵敏度。  (3)程序升温的条件选择:在石墨炉原子化法中,合理选择干燥、灰化、原子化及除残温度与时间是十分重要的。干燥应在稍低于溶剂沸点的温度下进行,以防止试液飞溅。灰化的目的是除去基体和局外组分,在保证被测元素没有损失的前提下应尽可能使用较高的灰化温度。原子化温度的选择原则是,选用达到最大吸收信号的最低温度作为原子化温度。原子化时间的选择,应以保证完全原子化为准。原子化阶段停止通保护气,以延长自由原子在石墨炉内的平均停留时间。除残的目的是为了消除残留物产生的记忆效应,除残温度应高于原子化温度。 进样量选择 进样量过小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,在石墨炉原子化法中,会增加除残的困难。在实际工作中,应测定吸光度随进样量的变化,达到最满意的吸光度的进样量,即为应选择的进样量。 标准曲线法  这是最常用的基本分析方法。配制一组合适的标准样品,在最佳测定条件下,由低浓度到高浓度依次测定它们的吸光度A,以吸光度A对浓度C作图。在相同的测定条件下,测定未知样品的吸光度,从A-C标准曲线上用内插法求出未知样品中被测元素的浓度。|分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流!2 标准加入法  当无法配制组成匹配的标准样品时,使用标准加入法是合适的。分取几份等量的被测试样,其中一份不加入被测元素,其余各份试样中分别加入不同已知量C1、C2、C3……Cn的被测元素,然后,在标准测定条件下分别测定它们的吸光度A,绘制吸光度A对被测元素加入量CI的曲线。 如果被测试样中不含被测元素,在正确校正背景之后,曲线应通过原点;如果曲线不通过原点,说明含有被测元素,截距所相应的吸光度就是被测元素所引起的效应。外延曲线与横坐标轴相交,交点至原点的距离所相应的浓度Cx,即为所求的被测元素的含量。应用标准加入法,一定要彻底校正背景。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制