仪器:安捷伦5975出现问题:CI源,当温度设定为150℃时,可以很快达到,并稳定下来;但是把离子源温度调为300℃时,稳定了4个小时都没有达到,温度显示一直在200-N/A波动。是温度传感器出现问题了吗?离子源温度稳定不了,调谐无法进行 ,如何解决呢?请各位帮帮忙啦~
传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。
荧光光纤温度传感器传感探头采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,而且测温探头尺寸小,柔韧性好,耐高温,可实现探头直径0.2mm~3mm,弯曲半径最小到5mm以下,使得荧光光纤测量技术可以应用在不同工作的情况下,尤其微小功能系统中和电磁干扰下的测量;测温探头可以互换,测温探头替换后不需要校正。 荧光光纤温度传感器既可以采用接触式的测量方式,也可以采用非接触式的测量方式,并可远距离传输,使传感器的光电器件脱离测温现场,避开了恶劣的环境。由于采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,荧光光纤温度传感器不仅限于物体表面的定向测量,其探头还可以插入固体物质中、浸入液体中或导入设备中,到达特定区域。 传感器温度探头被安放在光纤的顶端内部。使用时将光纤传感器探头直接永久安装在变压器需要测量温度的位置。传感器光纤具有高抗电流击穿和抗化学腐蚀的特性,还具有非常强的机械特性。 荧光光纤温度传感器传感探头&光纤定制考虑因素:1)测温范围;2)测温精度;3)距离(长短);4)芯径;5)光纤及探头类型
超低温、高精度型温度传感器是我们的强项,欢迎来电咨询,13585791751 .[sub]?[url=WWW.SENMATIC.COM]点击打开链接[/url][/sub][img=,268,232]https://ng1.17img.cn/bbsfiles/images/2022/01/202201121337188777_532_5521199_3.png!w268x232.jpg[/img]
温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。 由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。 由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。 温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。
一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电
温度是一个基本的物理现象,它是生产过程中应用最普通、最重要的工艺参数,无论是工农业生产,还是科学研究和国防现代化,都离不开温度测量及温度传感器。它是现代测试和工业过程控制中应用频率最高的传感器之一。然而,温度的准确测量并非轻而易举,即使有了准确度很高的温度传感器,但是,如果测量方法选择不当或者测量的环境不能满足要求,则都难以得到预期的结果。 温度测量的最新进展 当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。 光纤温度传感器 光导纤维(简称光纤)自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明它具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视。光纤传感器是一种将被测量的状态转变为可测的光信号的装置。它是由光耦合器、传输光纤及光电转换器等三部分组成。目前已有用来测量压力、位移、应变、液面、角速度、线速度、温度、磁场、电流、电压等物理量的光纤传感器问世,解决了传统方式难以解决的测量技术问题。据统计,目前约有百余种不同形式的光纤传感器,用于不同领域进行检测。可以预料,在新技术革命的浪潮中,光纤传感器必将得到广泛的应用,并发挥出更多的作用。 特种测温热敏电缆 热电偶是传统的温度传感器,用途非常广泛。近年来,又发展出了一种新的测温技术,能在火灾事故预警中有独特的应用。这种新型温度传感器称为特种测温热敏电缆,又被称为连续热电偶ConTInuous Thermocouple)或寻热式热电偶(Heating Seeking Thermocouple)。 热敏电缆利用电偶热电效应,但测量的不是偶头部的温度,而是沿热电极长度上最高温度点的温度。由于这种独特功能,最初被发达国家作为高精技术设备铺设在航空母舰、驱逐舰的舰舱以及军用飞机等军事设备中。目前,已被广泛应用到各个领域来预防和减少因“过热”引起的事故和损失。 热敏电缆的主要性能 目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。 材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。 外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。 工作温度 FTLD为-40~200℃,CTTC为-40~899℃。 石英温度计 分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。 弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。 随着生产及科学技术的发展,各部门对温度测量与控制的要求越来越高,尤其对高精度、高分辨率温度传感器的需求越来越强烈,普通的传感器难以满足要求。 石英温度计的特性 高分辨率分辨率达0.001~0.0001℃。 高精度在-50℃~120℃范围内,精度为±0.05℃。普通温度计的精度为±0.1℃。 误差小热滞后误差小,响应时间为1s,可以忽略。 性能稳定它是频率输出型传感器,故不受放大器漂移和电源波动的影响,即使将传感器远距离(如1500m)设置也不受影响,但是抗强冲击性能较差。 石英温度计的应用 石英温度计既可用于高精度、高分辨率的温度测量,又可作为标准温度计进行量值传递,也可以在现场稳态温度场合下进行精密测温或用于恒温槽的精密控温,还可用作远距离多点温度测量等。[/
圆形水浴氮吹仪采用水浴恒温,传热性好、均匀,利于快速加热和温控。造型美观大方,人性化斜面式操作面板、防水按键,圆形结构,360度转动自如,方便样品支架进出水浴,使用操作简单方便。JWT-12圆形水浴氮吹仪主要适用于:制药药检:如中药制药、药物筛选等环境分析:如饮用水、地下水、污染水等生物分析:如血清、血浆、血液、尿液等食品饮料:如牛奶、酒、啤酒等农残分析:如蔬菜、水果、谷物、植物组织等水浴氮吹仪特点:1.水浴氮吹仪造型美观大方,人性化斜面式操作面板、防水按键,安全可靠。2.样品位数:12位,弹簧试管夹固定定位,每个样品位都有数字编码;3.兼容性强,适用于试管(直径10~29mm)、锥形瓶、离心管,样品容量1-50ml;4.控温精度高、控温范围广、温度数控数显、校准方便;5.圆形结构,360度转动自如,方便样品支架进出水浴,使用操作简单方便;6.内置液位传感器,防干烧蜂鸣报警;7.自由升降的针型阀管,可调的针型阀能管控每个样品气针气体流量;8.所有部件抗腐蚀性耐有机溶剂,经久耐用,且便于清洁;9.在浓缩有毒溶剂时,整个系统可置于通风柜中;10.采用水浴恒温,传热性好、均匀,利于快速加热和温控。
周末去一个朋友实验室参观,他们的技术员正在修理温度传感器。。那传感器扭曲得严重,只见那技术员拿个铁锤朝弯的部分很大力锤,据说他们以前也这么修的,还可以继续用。大家的温度传感器都可以经受如此“修复”吗?
智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。 能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化 目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计 传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。 为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。 LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。 为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。 最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器 虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器 网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统 单片系统(
1、温度传感器DS18B20介绍 DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。 DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。 2、系统硬件结构 系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。 系统各模块分析如下: 2.1DS18B20与单片机的接口电路 DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。 2.2键盘及显示 键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。 2.3报警电路 当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。 3、软件设计及流程 3.1下位机软件 系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。 3.2上位机软件 系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。 4、结论 本系统具有如下特点: a.结构简单,成本低廉,维护方便。 b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。 c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。 d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。 e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。
一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准
哪个大侠对温度传感器很了解,谁能给接收一下?有没有分辨率达到0.005K的温度传感器,有的话,推荐一下。谢谢
10月份我们实验室的微波消解仪的温度压强传感器由于我们使用不当导致温度传感器异常,之后拿去供货商那里校准可以用了,之前的问题是1号罐的外管温度比内管温度高,现在温度是正常的,但是压强升不上去,直接导致温度升不上去,但是温度传感器是正常的,所以现在很郁闷啊,只有把温度压强传感器寄到总部请求帮忙,所以大家以后使用温度压强传感器的时候一定要小心使用,以免出现故障
S型拉力传感器是传感器中最为常见的一种传感器,主要用于测固体间的拉力和压力,通用也人们也称之为拉压力传感器,因为它的外形像S形状,所以习惯上也称S型拉力传感器,此传感器采用合金钢材质,胶密封防护处理,安装容易,使用方便,适用于吊秤,配料秤,机改秤等电子测力称重系统。 传感器基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 这种形式的拉力传感器的安装形式为固定式底座传感器的安装形式,安装时将传感器放置在无线吊钩秤三颗固定档柱内。因此要求使用在温度变化范围不大的场合,其优点是能提高秤体的稳定性,而且安装调试方便。在称重传感器安装时还应注意: 1、为防止大电流流经传感器,应在传感器之间加装短路片,以防偶然的大电流流过而将其烧坏。即使如此,在需要进行大从焊接时最好还电子检重秤是将压式传感器卸下,待几作结束后再将称重传感器安装好。 2、滚珠等移动部件应保持滑动自如,不应有卡死、锈蚀等现象。 3、压头应由20mm厚的铬钢制成,压头的底面应加工成圆弧,其半径应为传感器圆顶半径的3倍以上,并应进行热处理以增加压头的硬度。固定板应用45号钢制成,其厚度不得小于20mm,安装时的水平度不应超出±0.5°。
液体的腐蚀性、黏稠程度以及温度等会影响光电水位传感器检测吗?光电水位传感器检测到液位时,必须与液体接触。当液位到达传感器位置,此时液体覆盖光电水位传感器的探头时,传感器的发光二极管发出的光会在液体中折射,而光敏接收器只能接收到少量光或没有光。相反,正常的接收光是无水的。[align=center][img=,622,]https://uploader.shimo.im/f/5FF8s49cfE82qMHt.png!thumbnail[/img][/align]当需要光电传感器检测时,必须与液体接触。水的脏污程度和水温等是否会影响水位传感器的检测?传感器用于检测液位,应用范围广泛,可检测各种液体清水、强酸强碱液体。应用领域如饮水机、热水器、洗鞋机、洗碗机、饮料机等行业。[align=center][img=,320,]https://uploader.shimo.im/f/ZmnouMNWVcEsjU23.jpg!thumbnail[/img][/align]光电水位传感器可靠性高,受液体因素影响小,稳定性强。但是,如果液体的粘度很高,会导致液体粘在传感器的探头上可能造成误判。当然可以根据应用情况找寻其他方案解决这个问题。温度对光电传感器影响不大,并不会造成误判,但不同厂家生产的光电水位传感器存在局限性。比如有的厂家的水位传感器可以检测到80℃以下的液体,有的可以检测到100℃的液体,能点科技的高温款可达到110°。液体的污染程度过高会影响到传感器的检测,如液体中的杂质、漂浮物、底部的沉淀物等,但是可以根据实际的结构,应用情况进行方案设计,避免对传感器的影响。强酸、强碱或其他腐蚀性液体不会影响水位传感器的检测,如柴油、机油等,这类液体具有腐蚀性。如果光电水位传感器是用普通材料制成的,就不能长期使用。但是如果探头是PSU或者PPSU耐腐蚀材质的话,就不会腐蚀掉传感器综合来看,光电水位传感器的应用环境非常广阔。
1.什么是线性NTC温度传感器? 线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通以工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。 2.线性NTC温度传感器的主要特点是什么? 这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。 3.线性NTC温度传感器的测温范围是如何规定的? 就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路的温度补偿之用。 4.延长线的选用应遵循什么原则? 一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。 5.基准电压的含义是什么? 基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。其计算公式为:V(T)=V(0)+S×T示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。这一点正是线性温度传感器优于其它温度传感器的可贵之处。 6.温度系数S的含义是什么? 温度系数S是指在规定的工作条件下,传感器的输出电压值的变化与温度变化的比值,即温度每变化1℃传感器的输出电压变化之值: S=△V/△T(mV/℃)。温度系数是线性温度传感器做为温度测量元件的物理基础,其作用与热敏电阻的B值相似,这个参数在整个工作温度范围内是同一值,即-2mV/℃,而且各种型号的传感器也是同一值,这一点传统的热敏电阻温度传感器是无可比拟的。 7.互换精度这一参数有什么意义? 互换精度是指在同一工作条件下(同一工作电流、同一温场)对于同一个确定的理想拟合直线,每一只传感器的电压V(T)—温度T曲线与该直线的最大偏差,这个偏差通常按传感器的温度—电压转换系数S折合成温度来表示。由于传感器的输出线性化及温度—电压转换系数相同,即在测温范围内全程互换,所以互换精度表示了基准电压值的离散程度,即用基准电压值的离散值折合成温度值的大小来描述整批传感器之间的互换程度。一般分为三级:I级的互换偏差不大于0.3℃;J级不大于0.5℃;K级不大于1.0℃。 8.线性度的意义是什么? 线性度是描述传感器的输出电压值随温度变化的线性程度,实际上也就是传感器输出电压在工作温度范围内相对于理想拟合直线的最大偏差。一般情况下,其线性度的典型值为±0.5%,很显然传感器的线性度越高(其值越小),对于仪表的设计就越简单,在仪表的输入级完全不必采用线性化处理。 9.为什么说线性温度传感器是规范化输出? 所谓规范化输出,就是在0℃温度点上传感器在规定的工作条件下,输出的电压值仅限于某一小范围内,即使不互换,其基准电压值仅限定在690-710mV之间,这样在电路设计时,易于在宏观上把握传感器的输出情况,不论在桥路设计还是温度补偿,只要在690-710mV之间考虑,在调试中稍加调整即可。而不象普通的热敏电阻由于型号不同,其阻值也不同,针对不同的型号,需进行不同的设计计算。所以线性温度传感器的规范化输出,可以使仪表电路实现规范化设计。 10.用户如何检验线性温度传感器? 用户在购买传感器后,可在恒流的条件下,依温区的大小,采用两点或三点测试,以检验互换精度、线性度和温度系数。一般情况下,最简单的检验方法只要检验基准电压值即可。而所有电气参数,在交货时均有随货参数表(合格证),以提供该批传感器的详细参数指标。对测试条件有如下要求:恒流源:100μA±0.5%;恒温温场:波动度:≤±0.05℃;测试仪表:41/2或51/2数字电压表。 11.实际使用温度传感器是否一定要采用恒流源供电? 一般情况下是不必要的,桥路恒压供电完全可以(参见图1、图2)。这是因为在100μA左右的电流条件下,传感器的温度—电压转换系数变化量很小,可以给一个实测数量级的概念:在100μA时 S=-2mV/℃在40μA 时 S=-2.1mV/℃在1000μA时S=-1.9mV/℃而在实际的桥路恒压供电时,其电流变化不会有如此大的幅度。恒压供电时,传感器负载电阻值如何确定? 恒压供电时,负载电阻接在电源与传感器正极之间,信号从传感器正极与负极之间输出,设计电阻值R时,以在0C时使传感器工作电流为100μA即可。如传感器的基准电压为V(0)(mV),恒压源为VDD(mV),则R=(VDD-V(0))(mV)/0.1(mA)。对于计算出的电阻值R,如果实际的电阻没有这种阻值,可就近阻值选用,对测温精度没有影响。 12.线性温度补偿元件做为电路温度补偿有什么优越性? 这主要考虑热敏元件的输出规范化及温度系数的一致性,便于设计。另外,由于温度系数与晶体管电路中的晶体管基、射极电压的温度系数相同,做为稳定晶体管电路的工作点的基极偏流元件是非常合适的。而将几只元件串联使用,可以通过并联电位器方式,通过电位器的调节出不同的温度系数,以实现精确的温度补偿作用(参见图3)。这种温度系数可调的补偿元件,无须繁杂设计,对元件的工作电流也无严格要求,这也是这种线性热敏元件用于温度补偿的一大优点。 13.稳定性的含义是什么? 稳定性是指传感器的基准电压值年漂移量,这个漂移量再按温度—电压转换系数折合成温度值,即稳定性=±△V/S/年。线性温度传感器的稳定性为±0.05℃/年。这一参数描述了传感器在各种使用条件下保持原有特性的能力。 14.长线传输对传感器信号是否有影响? 应当说影响不大,一般情况下传输距离可达1000米以上。如果距离再远,可以考虑将传感器输出的信号在当地转换成数字量,这样可以方便地实现更远距离的传输。
热电偶是最常用的测温器件之一,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。因为热电偶温度传感器具有测量范围宽、精度高以及响应时间快等优点,所以得到广泛的使用。本篇文章主要探讨插入深度对热电偶温度传感器的影响。 热电偶测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶温度传感器与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些,陶瓷材料绝热性能好,可插入浅一些。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。
德国TMG WV 22-1013157电阻温度传感器,由德国Temperaturmesstechnik公司精心研发并生产,是一款高性能、高精度的温度测量设备。以下是对该产品的详细介绍: 一、品牌与产地 Temperaturmesstechnik作为德国知名的温度测量设备制造商,以其高品质、高性能的产品和解决方案在全球市场上享有盛誉。这款TMG WV 22-1013157电阻温度传感器正是由该公司制造,产地为德国,确保了产品的高品质和可靠性。 二、产品特点 高精度测量:该传感器采用先进的电阻测温原理,具有高精度和高稳定性的测量性能。其测温范围广泛,能够满足不同温度测量场合的需求。优质材料:传感器采用混合物材料作为感温元件,具有优异的物理和化学性能。同时,其外壳采用金属封装,具有良好的密封性和抗干扰能力,能够在恶劣环境下保持稳定的测量性能。模拟信号输出:传感器输出模拟型信号,方便与各种测量仪表和控制系统进行连接和通信。这种设计使得传感器能够轻松融入各种测量系统中,实现温度数据的实时监测和控制。易于安装:传感器结构紧凑、体积小,安装方便。其设计有标准的安装接口和连接端子,能够简化安装过程,提高工作效率。 三、技术规格 型号:TMG WV 22-1013157品牌:Temperaturmesstechnik输出信号:模拟型感温元件:热电阻材料物理性质:导体材料晶体结构:多晶(或单晶,根据具体型号有所不同)测温范围:通常为0~150℃(具体范围可能因型号而异)阻值:10Ω(或其他阻值可选)电阻稳定系数:1%/℃精确度:高达99%(具体精度可能因型号和测量条件而异)灵敏度:1%线性度:1%封装:金属 四、应用领域 该传感器广泛应用于工业自动化、机械制造、化工生产、科学研究以及能源领域等多个行业。其高精度、高稳定性的测量性能以及易于安装的特点,使得它成为各种温度测量场合的理想选择。 五、总结 德国TMG WV 22-1013157电阻温度传感器以其高精度测量、优质材料、模拟信号输出、易于安装以及广泛的应用领域等特点,在温度测量领域占据了一席之地。无论是在工业自动化生产线、机械设备制造还是化工生产等场合,它都能够提供稳定可靠的温度测量数据,为各种系统的稳定运行提供有力保障。
国民经济的持续快速发展和城市化水平的提高,给中国的食品工业发展创造了巨大的需求空间,食品消费总量将不断增加,商品性消费日益取代自给型消费,工业化食品比重逐步增长,并为食品工业发展提供了巨大的市场空间。在食品工业中,工艺流程自动化程度越来越高,比如自动化技术在包装生产线中已占50%以上,大量使用了电脑设计和机电一体化控制,目的是提高生产率,提高设备的柔性和灵活性。传感器作为自动化系统的关键核心,也已经大量应用在食品工业中。[img=,535,359]https://ng1.17img.cn/bbsfiles/images/2018/12/201812040940078010_3529_3332482_3.jpg!w535x359.jpg[/img]FISO微波辅助化学和微波食品解决方案摘要:目前在食品工业领域中涉及新产品开发、食品包装、微波食品加工、、MW 食品测试、 MW 烤炉设计和测试、新材料研究、MW 和RF 相关应用等,而在研究开发过程中对重要参数—— 温度及压力的测量一直是个难题,具调查了解国内现阶段大都采用热电偶或红外测温仪测量温度,由于热电偶容易受电磁、微波、射频等干扰,所以不能实现时实测量,采集的温度数据可用性不高,而红外测量虽然能时实测量,但是它是非接触测量受很多因素干扰(特别是水蒸汽),而且测量精度也不满足研究要求,所以两种方法都不能很好的解决温度测量问题,给研究工作带来很多不便。 加拿大FISO公司的光纤传感器很好地解决了温度及压力测量问题,FISO传感器完全抗电磁、 微波、射频等干扰,多通道在线时实监测微波中食物内、外各个部位温度差异与变化,给研究食物在不同温度下的成分及含量提供可靠准确的数据,同时通过RS232与计算机连接由软件控制可 以很直观地观察温度、压力曲线变化。 光纤测试系统的构成: 加拿大FISO公司的光纤测试系统主要由探头、光纤延长线、信号解调器、附件四部分构成。原理:1.F-P原理:采用法布利-比罗特(Fabry - Perot)腔为感应物理参量的器件,对温度、压力、应变、位移等物理参量进行测试,通过光纤把相关的测试信号传输出去,与信号解调器相连采用工业标准的“SC”连接头。温度光纤传感器:[img=,301,300]https://ng1.17img.cn/bbsfiles/images/2018/12/201812040940225936_8428_3332482_3.jpg!w301x300.jpg[/img]FISO光纤传感器采用干涉原理,非常适合在食品工业环境和电介质传感器无法工作的环境。FISO传感器与其相应的信号调理器可以组成一个完整的光纤传感系统。干涉测量传感器(FPI)一般由两面相对的镜子组成,分割两面镜子的空间称为空腔(或空洞)长度。反射到FPI中的光是经波长调制的,并与空腔长度完全相同。由精确设计的FPI将应变、温度、位移或压力转变成空腔长度的函数。FISO传感器的原理是:当光束到达光纤尽头后进入一契形介质,在上下表面产生反射,进而导致光的干涉。反射发生的位置不同,相应的光程差亦不同。当契形介质的横向移动表明位移变化的时候,此位移变化将被FP腔探知并转化为。由于FISO传感器完全抗电磁、微波和射频等干扰,多通道在线实时检测微波中的食物内各个温度的差异与变化,给研究食物在不同温度下的水分及含量提供了可靠准确的数据。这里主推工采网从加拿大进口的光纤温度传感器 - FOT-L-BA/SD,这是一款非常适合在极端环境下测量温度的光纤温度传感器,这种极端环境包括低温、核环境、微波和高强度的RF等。FOT-L集所有您期望从理想传感器器身获取的优良特性于一体。因此,即使在极端温度和不利的环境下,这类传感器依然能够提供高精度和可靠的温度测量。
红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。 我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。 在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为: ΔT=ΔL/L(α1-α2) 其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。 红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。 由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。 从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。
德国TMG温度WT WO 30.9-M 1xPt100 B级长款温度传感器是一款在工业自动化和温度测量与控制领域中备受推崇的高性能传感器。以下是对该温度传感器的详细介绍: 一、产品概述 这款温度传感器由德国TMG公司精心研发,凭借其出色的温度测量精度、稳定性和可靠性,赢得了市场的广泛赞誉。它采用Pt100 B级热电阻作为测温元件,具有高精度、宽测量范围和良好的线性特性,能够满足各种复杂环境下的温度测量需求。 二、核心特性 高精度测量:采用Pt100 B级热电阻,其温度与阻值变化关系稳定可靠,能够提供高精度的温度测量。这种热电阻的测温范围广泛,通常在-200℃~+850℃之间,能够满足大多数工业应用的需求。长款设计:该温度传感器采用长款设计,使其能够更深入地插入被测介质中,从而更准确地测量介质的内部温度。同时,长款设计也增加了传感器的使用寿命和稳定性。B级精度:Pt100 B级热电阻的精度等级较高,符合国际电工委员会(IEC)的相关标准。这意味着该传感器在测量过程中具有较小的误差和更高的准确性。稳定可靠:德国TMG公司以其卓越的产品质量和先进的技术水平著称。这款温度传感器采用高品质的材料和先进的生产工艺制造而成,具有出色的稳定性和可靠性。它能够在恶劣的环境下长时间工作,并保持高精度的测量性能。易于安装和维护:该温度传感器的设计考虑了用户的实际需求。它采用标准化的接口和连接方式,使得安装和维护变得更加简单方便。用户可以根据实际需求选择合适的安装方式,如插入式、法兰式等。 三、应用领域 德国TMG温度WT WO 30.9-M 1xPt100 B级长款温度传感器广泛应用于工业自动化、温度测量与控制、医疗设备、食品加工等领域。特别是在需要高精度温度测量的场合中,如热处理炉、注塑机、化工反应釜等,该传感器表现出色。它能够实时准确地监测被测介质的温度变化,为系统的正常运行提供有力保障。 四、总结 德国TMG温度WT WO 30.9-M 1xPt100 B级长款温度传感器以其高精度测量、长款设计、B级精度、稳定可靠和易于安装维护等特点,成为了工业自动化和温度测量与控制领域的重要选择。无论是在复杂多变的工业环境中,还是在需要高精度温度测量的场合中,该传感器都能够提供稳定可靠的测量性能,为用户的生产和工作带来便利和效益。
[color=#000000]光电式水位传感器的检测液位时是必须要接触液体才能进行检测的。当液体覆盖光电式水位传感器的探头时,传感器内的发光二极管发射出去的光线会折射在液体中,而光敏接收器只能接收到少量光电或者接收不到光线。反之正常接收光线则是无水状态。[/color][color=#000000][img=,566,314]https://ng1.17img.cn/bbsfiles/images/2018/09/201809101521252546_8210_3397320_3.jpg!w566x314.jpg[/img][/color][color=#000000]那么需要光电式水位传感器侦测时必须要接触液体,那么液体的脏污程度及温度等会影响水位传感器检测吗?[/color][color=#000000]水位传感器是用来侦测液位的,而应用的范围广泛,检测各类的液体净水、污水、柴油、机油、强酸强碱液体。例如饮水机、热水器、刷鞋机、洗碗机、饮料机、柴油机、汽车里的动力电池的冷却液等。[/color][color=#000000] [/color][color=#000000]光电式水位传感器可靠性高、稳定性强,受液体因素影响较低。但如果液体传感器粘度很高,在探头上遗留了水珠,那么光线就会折射在液体中,会有可能造成误判影响。当然也有不受影响的光电式水位传感器。[/color][color=#000000] [/color][color=#000000]温度对于光电式水位传感器的影响倒是不大,光电式水位传感器可以检测高温度的液体等。温度并不会导致光电误判,只是不同厂家所生产出的光电水位传感器所能检测的温度的限制。如有的厂家的水位传感器最高可以检测80摄氏度的液体,有的可以检测100摄氏度的液体,有的200摄氏度以内的也可以检测。[/color][color=#000000] [/color][color=#000000]液体的脏污程度其实也并不会影响光电式水位传感器,光电式水位传感器可以检测污水,包括脏污程度比较高的,如液体中有杂质、漂浮物、底部有沉淀物等都不会影响,因此光电式水位传感器的应用范围很广。[/color][color=#000000] [/color][color=#000000]而强酸强碱或者其他有腐蚀性液体也不会影响水位传感器检测。如柴油、机油、化学用剂等,这些类型的液体具有腐蚀性,如果是普通材料的光电式水位传感器则不能长久使用,如探头是PC材料的,而如果采用PSU材质的那么就不受影响。当然同时成本也会增加。[/color][color=#000000] [/color]综合下来我们可以看出光电式[url=http://www.eptsz.com][color=#000000]水位传感器[/color][/url]的应用环境还是很广的。
请问红外遥感温度传感器有哪些厂家?我们想让它自己测量,比如安装在某个海面,一直观测海水的温度..
在[b]高低温环境测试箱[/b]中只有一个温度传感器,主要作用就是感应温度的变化,并转变成可输出的数字信号 关于高低温环境测试箱的温度传感器显示精度问题,主要是体现在安装和使用的环节上:[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/06/202106091647210732_1415_1037_3.jpg!w469x469.jpg[/img][/align] 1、传热系数导入的偏差,因为电偶的传热系数使仪表盘的标示值落伍于被测温度的转变,在开展迅速精准测量时这类危害尤其突显。因此应当尽量选用热电级偏细、电缆保护管直径较小的热电阻。 2、高低温环境测试箱传热系数偏差高溫时,假如电缆保护管上带一层粉煤灰,浮尘附在上边得话,则传热系数提升,阻拦热的传输,这时候溫度量程会比被测温度的真值要低。应维持热电偶保护管外界的清理,以降低偏差。 3、如高低温环境测试箱安裝不那时候导入的偏差,热电阻不可以装在太挨近门和加温的地区,插进的深层至少应是电缆保护管直径的8~10倍 热电偶保护管和炉壁孔中间的间隙运用发泡聚氨酯,或石绵等隔热化学物质阻塞,以防热冷气体热对流而影响温度测量的精准性。 4、绝缘变差而引入的误差如热电偶绝缘,保护管和拉线板污垢或盐渣过多,会致使热电偶极间与炉壁间绝缘不良,在高温的情况下会更为严重,这不仅会引起热电偶的损耗而且还会引入干扰。
德国TMG测量温度传感器/热电偶/电阻温度计WH29是一款高性能、多功能的温度测量仪器,以下是对该产品的详细介绍: 一、产品概述 德国TMG作为电子温度测量技术的专业制造商,自1990年成立以来,已发展成为德国乃至国际市场上的温度测量技术领域的专家。WH29作为其旗下的一款经典产品,结合了热电偶和电阻温度计的优点,具有高精度、高稳定性和广泛的应用范围。 二、产品特点 高精度测量: WH29采用了先进的测温元件,能够确保高精度的温度测量。其测量范围广泛,通常可达-35℃至+400℃(具体范围可能因产品规格而异),满足各种温度测量场合的需求。该产品符合EN 60751 A级或B级标准,确保了测量的准确性和可靠性。 多种测温原理: WH29不仅支持电阻温度计测温原理,还兼容热电偶测温原理。用户可以根据实际需求选择合适的测温方式,以获得更准确的测量结果。热电偶测温原理基于塞贝克效应,其敏感部分由两种不同材料的导体结合而成,能够测量更广泛的温度范围。 易于安装和维护: WH29设计有标准的螺纹接口和连接电缆,方便用户进行安装和连接。其紧凑的结构和较小的体积也使得维护过程更加简便快捷。该产品还提供了多种过程连接方式,如螺纹、法兰、可调螺钉等,以适应不同的安装环境。 可靠性强: WH29采用了高质量的材料和先进的制造工艺,确保了产品的稳定性和可靠性。其内部结构和元件均经过严格筛选和测试,能够在各种恶劣环境下保持稳定的测量性能。该产品还具有良好的密封性和抗干扰能力,能够防止外部干扰对测量结果的影响。 广泛应用: WH29适用于各种工业领域,如制药、食品、机械、设备工程、玻璃、熔炉工业、发电厂和能源技术等。在制药和分析技术中,该传感器特别适用于灭菌、包装、高压灭菌以及一般过程控制。在晶圆生产中,热处理过程中的温度场控制至关重要。了解烘箱内的准确温度条件以及控制过程的选项对产品质量具有决定性的影响。因此,WH29也广泛应用于晶圆生产的温度测量和控制中。 三、工作原理 德国TMG测量温度传感器/热电偶/电阻温度计WH29的工作原理基于电阻和热电效应的变化来测量温度。当温度计暴露在温度变化的环境中时,其内部的测温元件(如铂电阻或热电偶)的电阻值或热电压会随之变化。通过测量这些变化量,可以精确地得到温度值。 四、总结 德国TMG测量温度传感器/热电偶/电阻温度计WH29以其高精度测量、多种测温原理、易于安装和维护、可靠性强以及广泛的应用范围等特点,在温度测量领域具有显著的优势。无论是在制药、食品、机械还是晶圆生产等工业领域,它都能为用户提供准确、稳定的温度测量服务。
如何看待温度传感器的作用PH和EC都应该有的我今天看下了EC接不接 数值没变化http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif温度传感器说有什么温度补偿功能我怎么没体会到
[color=#cc0000] 摘要:本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,同时考虑单样品和双样品两种测量模式,设计计算了防护热板法装置对温度不平衡传感器的灵敏度要求,并最终给出设计指标和相应的技术改进。[/color][color=#cc0000] 关键词:防护热板法,温度不平衡,传感器,灵敏度[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000] 1. 概述[/color][/b] 针对不同被测材料类型,防护热板法导热仪一般分为单样品和双样品两种测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232126417209_8902_3384_3.png!w690x255.jpg[/img][/align][color=#cc0000][/color][align=center]图1-1 防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align][align=center][/align] 防护热板法的测量原理就是采用护热手段保证计量板发出的热量全部通过被测样品而达到一维稳定状态,因此护热手段是保证防护热板法导热系数测量准确的核心。防护热板法中的护热基本上采用的都是等温绝热原理,即各种护热板的温度要与计量板温度一致,从而减少计量板上的热量以各种传热方式进行散失。 温度不平衡传感器是检测计量板与各个护热板之间温度差的探测装置,传感器探测到的温差传递给控制器,控制器控制护热板温度变化使得温度不平衡传感器的输出值最小,从而构成闭环控制回路形成有效的护热控制。温度不平衡传感器的输出值越小,说明护热板与计量板之间的温差越小,护热效果就越好。 由此可见,温度不平衡传感器的灵敏度是防护热板法装置护热效果好坏的重要评判依据。由于诸如安装和可靠性等诸多因素的影响,植入在计量板和护热板之间的温度不平衡传感器不可能无限制提升灵敏度,灵敏度需要根据防护热板法导热系数测量范围和测量精度要求、所用控制器和数据采集器的分辨率以及测试温度范围等因素进行优化和设计,以选择合适的温度不平衡传感器灵敏度。 本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,来设计计算防护热板法测试中温度不平衡传感器的灵敏度要求,并同时考虑单样品和双样品测量模式下防护热板法装置对温度不平衡传感器的要求,最终给出设计指标和相应的技术改进。[b][color=#cc0000]2. 建模[/color][/b] 针对图1-1所示的防护热板法导热系数测试结构,首先进行了建模。无论是单样品还是双样品模式,防护热板法装置都是圆形或正方形的轴对称结构,所以建模只考虑了正方形结构。另外为了便于更直观的进行分析和说明问题,本文只描述了上海依阳实业有限公司的部分建模分析内容,即仅介绍了基于导热传热的建模分析,在实际建模分析中还需要针对对流和辐射传热进行建模,分析模型如图2-1所示。 在图2-1所示的护热分析模型中,同时兼顾了单样品和双样品测量模式。当隔热材料更换成样品,底部护热板温度控制在冷板温度时,则是双样品测量模式。 在图2-1所示的护热分析模型中,只考虑了侧向护热和底部护热所引起的漏热问题,而温差探测器的指标设计也只要依据这两方面的考虑,并未考虑狭缝处样品内的传热漏热影响。在双样品测量模式中,只考虑侧向护热时狭缝中温度不平衡传感器技术指标。而在单样品测量模式中,还需另外考虑底部护热板与计量板之间的温度不平衡传感器技术指标。[align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132159957_5150_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132165728_1784_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132168894_1769_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132173004_918_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132177185_3520_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132182949_3584_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132187076_4077_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132191686_5352_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132196851_8619_3384_3.png!w690x975.jpg[/img][/align] (5)在无法提高仪表测量和控制分辨率时,可以设法增大热电堆中的热电偶数量,如将8对热电偶增多到16对热电偶构成8对的温差热电堆,温度不平衡精度可以提高到0.5℃,但这种改进效果十分有限,同时也带来其他严重问题。目前上海依阳实业有限公司已经开发出新型的温度不平衡传感器,可以将现有传感器的灵敏度提升到40~50的水平,比现有热电偶式热电堆的灵敏度搞出2个量级,由此可以用五位半控制器很轻易的实现0.01℃和更高水平的温度不平衡精确控制。 (6)另外一个提高和保证测量精度的途径,就是降低侧向护热的热交换面积,采用薄加热器形式。这种思路经美国橡树岭国家实验室针对多层辐射隔热材料和真空绝热板进行的测试验证了可行性,由此相继建立了A-S-T-M C1044和A-S-T-M C1114标准等。但由于薄加热器很难制作应用到高温,薄加热器形式的防护热板法设备主要应用于温度不高的导热系数测试。 (7)需要特别指出的是,目前国内绝大多数大热阻和超低导热系数的测试,很多都是采用稳态热流计法这种相对法,而热流计法导热仪中的热流计在超低导热系数测试中的低热流测量时误差巨大,而且还无法对热流计进行校准以及采用超低导热系数的标准材料进行校准,而真正的热流计校准则是采用防护热板法设备,由防护热板法提供精确的可控热量。[b][color=#cc0000]5. 参考文献[/color][/b] (1) Zarr R R, Flynn D R, Hettenhouser J W, et al. Fabrication of a guarded-hot-plate apparatus for use over an extended temperature range and in a controlled gas atmosphere. Thermal Conductivity, 2006, 28: 235. (2) Zarr R R. Assessment of uncertainties for the NIST 1016 mm guarded-hot-plate apparatus: extended analysis for low-density fibrous-glass thermal insulation. Journal of research of the national institute of standards and technology, 2010, 115(1): 23.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
[align=left]微型传感器是一个将被测量的装置,如位移、变形、强制、加速度、湿度、温度和其他物理量转换成电阻值。主要是电阻应变型、压阻型、热阻、热阻、气敏、湿敏电阻传感器器件。[/align]微型传感器中的应变仪具有金属的应变效应,即在外力作用下的机械变形,因此电阻值相应地改变。应变仪主要是金属和半导体。金属应变仪是线型、箔型、薄膜型。半导体应变片具有高灵敏度(通常是线型、箔型的几十倍)、的小横向效应。压阻式微型传感器是根据半导体材料的压阻效应通过半导体材料的衬底上的扩散电阻制造的器件。衬底可以直接用作测量传感元件,并且扩散电阻器在衬底中以桥的形式连接。当基板通过外力变形时,电阻值将改变,并且电桥将产生相应的不平衡输出。用作压阻式微型传感器的基板(或隔膜)主要由硅晶片和钽制成。由敏感材料制成的硅压阻传感器受到越来越多的关注,特别是在测量压力时。并且固态压阻式微型传感器应用的速度是通用的。微型传感器的滞后特性表征前进(输入增加)和反向(输入增加)冲程输入特性曲线之间的不一致程度。通常,使用两条曲线之间的较大差ΔMAX。满量程输出FS的百分比表示滞后可能是由微型传感器内部元件中的能量吸收引起的。微型传感器变化很大,甚至不同工作原理的微型传感器也可用于相同类型的测量。因此,必须使用合适的传感器。(1)微型传感器的测量条件如果错误选择微型传感器,系统的可靠性将会降低。为此,从系统的整体考虑,要清楚地了解使用目的和使用传感器的需要,永远不要使用不合适的微型传感器和不必要的传感器。测量条件如下:测量目的,测量量的选择,测量范围,输入信号的带宽,所需的精度,测量所需的时间以及过量输入的发生频率。(2)微型传感器性能选择微型传感器时,请考虑传感器的以下特性,即精度,稳定性,响应速度,模拟信号或数字号,输出及其电平,被测物体特性的影响,校准周期以及过度 - 反保护。(3)微型传感器的使用条件微型传感器的使用条件是设定位置,环境(湿度、温度、振动等),测量时间,显示器之间的信号传输距离,与外围设备的连接,电源容量。微型传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨压电薄膜传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]微型传感器https://mall.ofweek.com/2071.html[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]光纤传感器丨超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨[/color][color=#333333]流量传感器[/color][color=#333333]丨[/color][color=#333333]电流传感器丨[/color][color=#333333]光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨传感器https://mall.ofweek.com/category_5.html丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]
在高温下使用的热电偶温度传感器,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶温度传感器,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。