张力控制传感器

仪器信息网张力控制传感器专题为您提供2024年最新张力控制传感器价格报价、厂家品牌的相关信息, 包括张力控制传感器参数、型号等,不管是国产,还是进口品牌的张力控制传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合张力控制传感器相关的耗材配件、试剂标物,还有张力控制传感器相关的最新资讯、资料,以及张力控制传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

张力控制传感器相关的厂商

  • 合肥力智传感器系统有限公司,专门从事传感器、变送器、智能仪器、仪表等方面的科研开发与制造。公司成立十多年来,力智测控以雄厚的技术、科技开发力量及精湛的生产工艺水平,研制、开发、制造上百种力敏传感器、压力变送器、智能仪表及计算机控制系统。广泛应用于冶金、化工、油田、军工、航空航天、各大科研所、院校、汽车、交通、能源、机械制造、建材等行业的计算机和自动化过程控制。产品遍布全国,创新、诚信、奋进为企业精神,坚持以优质的产品,真诚的服务和卓越的信誉,共同创造和见证您我共同的辉煌历程。你的需要就是我们的服务。我们愿和国内外客商真诚合作、共同发展。我们等待着你的到来。
    留言咨询
  • 东莞市张力机电科技有限公司华中办事处成立于2013年,本办事处坐落于武汉市江夏区藏龙岛谭湖一路光谷8号工坊。东莞市张力机电科技有限公司是一家集研发、生产和销售于一体的科技型企业。公司主要生产电子张力器;测力仪表;磁滞制动器、离合器;磁粉制动器、离合器;角度传感器等系列产品。为了满足各类厂商的需求,可为客户量身定制各类张力控制系统,公司同时配套生产部分产品。如陶瓷压力传感器、张力传感器、钨钢线咀、红宝石线咀、防跳线器、陶瓷过线轮等,其性能卓越、价格合理,深受客户好评。公司生产的各类产品被广泛用于纺织、马达制造、电线电缆、光纤、玻纤、造纸、印刷等领域。
    留言咨询
  • 上海鑫杰传感测控科技有限公司位于上海市徐汇区漕河泾开发区,是一家从事传感器和系统工程的研发/生产/及销售的高科技公司,公司专业生产各种称重/压力/扭矩/位移等传感器,变送器和承接与之配套的自动化控制系统。在力敏传感器行业领导数10年。公司主要的产品有:称重传感器,荷重传感器,拉力传感器,悬臂传感器 ,张力传感器 ,压力传感器/变送器,扭矩传感器,位移传感器,起重量限制器,力矩限制器及各类智能数显仪表等。广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。
    留言咨询

张力控制传感器相关的仪器

  • 张力传感器和张力控制器目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。 为了满足不同使用环境的要求,我们可以根据要求提供定制化的解决方案。
    留言咨询
  • 张力传感器和张力控制器目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。 为了满足不同使用环境的要求,我们可以根据要求提供定制化的解决方案。
    留言咨询
  • 瑞士FMS张力测量无线传输主要适合绞线机、束线机、绕包机、管绞机等设备,有以下3个系列:1、RTM X2系统是瑞士FMS公司专门为满足旋转类线缆设备张力控制要求而开发的一类张力控制系统。苏州爱发迈思机电科技有限公司整个系统包括信号发送装置、信号接收装置、张力传感器等部件,系统具有2个信号通道,支持连接2个张力传感器,张力反馈信号以0-10VDC或4-20mA形式提供给PLC进行闭环张力控制,抗离心力和科里奥力干扰。整个张力系统的参数设置可以通过仪表面板上的按键进行,或通过网络采用浏览器进行设定。RTM X2能检测张力超载,也能进行线缆断线检测,能通过继电器信号触发报警和停机的功能。2、RTM(无线传输张力监控)系统设计用于监控旋转设备上每根线缆的张力值。RTM系统采用电池供电及无线传输技术,无需使用电气滑环,能够较为容易地对现有设备进行升级改造,使得老旧设备具有当今先进的张力测量技术。RTM系统可将安装在旋转设备上的每个张力传感器数据经过总线上专门的电子单元、通过无线传输的方式传递给就近的PC机,在操作员端有一个USB蓝牙接口接收信息。各个张力传感器产生的测量值在屏幕上可实时监控,也可存储在硬盘中。RTM无线传输张力测量系统技术特点采用蓝牙传输技术,频率2.4G Hz,高品质数据传输技术张力变送器采用电池供电,无需使用电气滑环基于PC的控制系统,便于张力信息的监控、输出和保存安装和设置简单,无需对已有机械结构进行主要改动RTM无线传输张力测量系统系统构成3、RTM X32 是基于RTM X2的技术研发的。 它的设计理念是允许系统逐个接入4通道的拓展单元,*大可以增加到42通道。它有4种不同的版本,以满足不同客户的要求 :RTM X32: 这是一个可以连接42个张力传感器的标准系统,有42路模拟量输出,可通过网页游览器进行参数设定。RTM X32 PC:可连接32个张力传感器,自带的RTM软件有着数据处理等功能,可以让32路通道的数据直接显示在工控电脑屏幕上。RTM X32 PC and I/Os: 这是和RTM X32 PC有着一样的配置, 但是接收单元有着42路通道模拟量输出。RTM X32 Modbus TCP:可连接42个张力传感器, 在数据接收这边,数据是通过Getway( Modbus TCP – Profibus DP Slave )传输的。
    留言咨询

张力控制传感器相关的资讯

  • 美开发出能使大脑直接控制义肢的光学传感器
    据英国《新科学家》网站10月18日(北京时间)报道,美国科学家研发出一种能接收神经脉冲等光学信号的传感器,可进一步改进人体神经系统与义肢之间的连接,使通过大脑神经直接控制义肢的梦想朝现实迈进了一大步。未来,通过该传感器,大脑能够直接控制义肢的运动,被植入者也可通过义肢感受到压力和热度。   目前,义肢中的神经接口都是电子的,其中的金属零件可能会被身体排斥。而美国南卫理公会大学的马克克里斯滕森和同事正在研发一些可以捕捉神经信号的光学传感器。他们使用的材料——光纤和聚合物与金属相比,不仅不太可能诱发身体的免疫反应,而且也不会被腐蚀。   这种传感器建立在一个聚合物的球壳上,这些球壳同一束光纤偶联在一起,光纤将发送一束光,经过球壳内部。光在这些球壳内“旅行”的方式被称为“回音壁模式”,其灵感源于英国伦敦圣保罗大教堂的回音壁。在圣保罗大教堂,声音可以通过凹形墙壁的不断反射而持续传播,因此传播得更远。   该传感器的设计理念是,与神经脉冲相连的电场会影响聚合物球壳的形状,球壳内部光线的共振也随之改变,因此,神经系统会变为光子电路的一部分。从理论上讲,光线的共振变化能够向仿生手发送指令,比如告诉仿生手,大脑想要移动一根手指等。通过在光纤顶端放置一个反射器,引导一束红外线照射并刺激神经系统,其发出的神经信号也能够被带往其他方向。   研究人员表示,这种传感器目前还处于原型研制阶段,而且尺寸太大,暂时无法安装在人体内,不过,随着尺寸不断缩小,这种传感器将可以在生物体内发挥作用。该科研项目获得了美国国防部高级研究计划局(DARPA)560万美元的资助。研究人员计划2年内将工程样品在猫或狗身上进行试验。在此之前,研究人员需要将这种传感器的大小从几百微米缩小到50微米。   该传感器工程样品在使用前,研究人员还需要将神经连接具体地绘制出来。例如,要求病人试着举起他残缺的手臂,以便将相关的神经连接到义肢上。   克里斯滕森表示,总有一天,这些传感器和光纤可以像“跳线”一样,形成从大脑直到腿部的神经回路,绕开受损的身体组织,最终让脊髓受损患者重新恢复运动能力和知觉。   不过,也有专家认为,这种传感器所使用的材料虽然都具有很大的生物相容性,但它们是否能够完全避免人体的排异反应依然存疑。
  • pH电导传感器为各种领域提供了重要的实时监测和控制
    pH电导传感器是一种广泛应用于工业和科学领域的传感器,用于测量溶液的酸碱度和电导率。pH电导传感器通过测量水溶液中的氢离子浓度和电导率来评估溶液的酸碱性或盐度,为各种领域提供了重要的实时监测和控制。   pH电导传感器工作原理基于溶液的电离和电导原理。首先,pH电极通过浸泡在溶液中,测量溶液中的氢离子浓度。酸性溶液中的氢离子浓度高,碱性溶液中的氢离子浓度低。然后,电导测量电极通过测量溶液中的电导率来评估溶液的盐度。盐度高的溶液具有较高的电导率,而盐度低的溶液具有较低的电导率。   该设备有多种类型和设计,但一般包括一个pH电极和一个电导测量电极。pH电极通常由玻璃电极和参比电极组成,玻璃电极通过与溶液中的氢离子发生反应产生电压信号,而参比电极为其提供一个稳定的参考电位。电导测量电极由两个电极组成,测量溶液中的电导率。   pH电导传感器广泛应用于水处理、环境监测、食品与饮料、制药、农业和化学分析等领域。在水处理中,该设备用于监测水的酸碱度和盐度,以帮助调整和控制水的处理过程。在环境监测中,该设备用于测量土壤和水体中的酸碱度和盐度,评估环境质量。在食品与饮料行业中,该设备用于监测食品和饮料的酸碱度和盐度,以确保产品质量和安全。在制药领域,该设备用于监测和调控药物制剂过程中的酸碱度和盐度。在农业领域,该设备用于土壤监测,评估土壤的酸碱度和盐度,以帮助决定适合种植的作物种类。在化学分析中,该设备用于实验室测量和分析过程中的酸碱度和盐度。   总之,pH电导传感器通过测量溶液的酸碱度和电导率来提供精确的实时监测和控制。它在许多领域都发挥着重要作用,并帮助人们评估和调整过程中的酸碱度和盐度,以确保产品质量和安全,保护环境和改善生活质量。
  • 准确测量,绿色先行:英国Alphasense红外二氧化碳传感器在农业温室气体控制中的角色
    在农业领域,随着全球气候变化的加剧,温室气体的控制与管理已成为实现绿色农业、促进可持续发展的重要一环。其中,二氧化碳作为温室效应的主要气体之一,其浓度的准确测量与控制对于提高农作物产量、优化农业生态环境具有重要意义。英国Alphasense公司研发的红外二氧化碳传感器,凭借其高准确度、高灵敏度的特点,在农业温室气体控制中扮演着不可或缺的角色。一、准确测量,科学指导在农业温室中,二氧化碳是植物光合作用的重要原料。其浓度的适宜与否直接关系到农作物的生长速度和产量。英国Alphasense红外二氧化碳传感器能够实时、准确地监测温室内的二氧化碳浓度,为农民提供科学的数据支持。通过传感器的数据反馈,农民可以及时了解温室内的环境状况,并根据作物的生长需求进行准确调控,如适时补充二氧化碳、调整通风系统等,从而优化农作物的生长环境,提高产量和品质。二、智能控制,节能减排除了准确测量外,英国Alphasense红外二氧化碳传感器还能与智能控制系统相结合,实现温室环境的自动化管理。通过设定合理的二氧化碳浓度阈值,传感器可以自动触发相应的控制指令,如开启通风设备、启动二氧化碳补充装置等,以维持温室内的最佳生长环境。这种智能化的管理方式不仅提高了农业生产的效率,还实现了节能减排的目标,减少了温室气体的排放,促进了农业的绿色可持续发展。三、数据驱动,优化决策随着大数据和物联网技术的发展,英国Alphasense红外二氧化碳传感器所采集的数据还可以被整合到农业大数据平台中,进行深度分析和挖掘。通过对历史数据的比对和分析,农民可以更加准确地预测农作物的生长趋势和产量变化,从而制定出更加科学合理的种植计划和管理策略。同时,这些数据还可以为农业科研提供有力支持,推动农业技术的不断创新和发展。四、绿色先行,带领未来在绿色农业的发展道路上,英国Alphasense红外二氧化碳传感器以其准确测量、智能控制的优势,为农业温室气体的控制与管理提供了有力保障。它的广泛应用不仅提高了农业生产的效率和品质,还促进了农业生态环境的改善和可持续发展。未来,随着技术的不断进步和应用领域的不断拓展,相信英国Alphasense红外二氧化碳传感器将在农业领域发挥更加重要的作用,带领绿色农业走向更加美好的未来。

张力控制传感器相关的方案

张力控制传感器相关的资料

张力控制传感器相关的试剂

张力控制传感器相关的论坛

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

张力控制传感器相关的耗材

  • 传感器,用于849型液位控制器 6.1113.000
    传感器,用于849型液位控制器订货号: 6.1113.000传感器,用于849型液位控制器技术参数:下部杆径(mm)4上部杆径(mm)4电极杆材料Stainless steel (AISI 304)电极杆材料补充DIN 1.4435
  • 13249703 赛默飞光谱配件 传感器控制板
    13249703SSCM SENSOR CONTROL BOARD S传感器控制板1329400Peristaltic pump tubing I??0,254mm or/bl蠕动泵管1330270Jig-Adjustment for Coil炬管工具包1341420Skimmer Cone iCAP Q Ni Cold Plasma镍采样锥1341430Skimmer Cone iCAP Q Pt Cold Plasma铂金采样锥13643601TUBE CTR ALUMINA 1.5MM LOW S L耐氢氟酸1.5mm中心管13650201TUBE SAMPLE HIGH SOLIDS .080 L高盐中心管13650202TUBE SAMPLE HIGH SOLIDS .094 L高盐中心管13683000ASSY TORCH MIX CHMBR L炬管13881000RELAY GENERAL PURPOSE 24V S24V继电器13891300PUMP ASSY PERISTALTIC 4 CHAN L4通道蠕动泵13918400NBLZR CONCENTRIC GLASS EXPAN LIRIS普通雾化器13931600PUMP ASSY PERISTALTIC 4 CART S蠕动泵13966300IRIS II RAD SPRAY CHMBR L垂直雾化室IRIS14027700PERISTALTIC PUMP 4 CHNL ASSY LADVANTAGE4通道蠕动泵14111200KIT TORCH DEM RADIAL L可拆卸垂直炬管14148500FLOW SWITCH 1/2NPT SIRIS水流传感器14149000PUMP CENTRIFUGAL 115V S离心泵14186300NBLZR SEA SPRAY L海水高盐雾化器14189900NEB HF RES CONC L耐HF酸雾化器14324400ASSY SPRAY CHMBR RAD HF S耐氢氟酸雾化室
  • 特制涡流传感器
    特制涡流传感器经常需要对标准的涡流传感器进行修改,特别是修改小型和大型系列。因此,我们将根据您的具体要求修改测量系统,例如:修改电缆,传感器材料和设计,和修改控制器。比如,系统集成商经常要求带内有集成电子的微型箱的传感器,或是特殊的传感器设计。请联系我们,我们很高兴为您提供建议。特制涡流传感器可用选项修改底座距离和测量范围 传感器和控制器的外壳和安装选项 传感器耐压力高达2000bar 单独的电缆长度 微型设计的传感器 具有集成或独立电子元件的传感器 线圈、外壳和电路板的各种制造材料 与用户目的专门协调
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制