当前位置: 仪器信息网 > 行业主题 > >

振波谱成像分析

仪器信息网振波谱成像分析专题为您提供2024年最新振波谱成像分析价格报价、厂家品牌的相关信息, 包括振波谱成像分析参数、型号等,不管是国产,还是进口品牌的振波谱成像分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合振波谱成像分析相关的耗材配件、试剂标物,还有振波谱成像分析相关的最新资讯、资料,以及振波谱成像分析相关的解决方案。

振波谱成像分析相关的论坛

  • 光谱成像技术在刑侦物证鉴定中的应用

    光学技术作为一种无损的检验方法,在物证的发现、记录、提取、检验、鉴定和保全等各个方面都发挥着重要的作用。刑事影像技术方向的主要任务是利用先进的光学技术获取与物证相关的影像资料,通过区分物质的方法得到物证的清晰影像以及深入挖掘能够揭示案件事实真相的物证信息。http://www.zolix.com.cn/filespath/images/20150812153905.jpg 光谱成像技术能够根据不同物质光谱特征准确记录其空间分布状态,为物证鉴定光学检验提供了将形态检验和成分检验相结合的机会。 目前公安部物证鉴定中心有关光谱成像技术的研究已获得5项国家级科研项目资助,1项部级科研项目资助。已经在“十一五"和“十二五"国家科技支撑计划实施阶段,成功实现了科研衔接和可持续性研究态势。基于以上成果及未来的发展趋势,公安部物证鉴定中心与中国工程物理研究院以及卓立汉光旗下的四川双利合谱科技有限公司联合成立多光谱成像侦查技术联合实验室,将进一步促进和推广多光谱成像技术在刑侦领域的应用。基于联合实验室的平台,将逐步的建立光谱成像测试标准以及物证光谱数据库及数据分析网络服务器。http://www.zolix.com.cn/filespath/images/20150812153808.jpg 适用范围: 通过研究证明,光谱成像技术能够应用于痕迹检验、文件检验、微量物证检验、生物物证发现等物证鉴定领域多个专业的工作中。正是由于光谱成像技术适用性强的特点,体现出这项技术深入研究的价值和推广普及的潜力。http://www.zolix.com.cn/filespath/images/20150812153829.jpg 目前,国内技术人员,应用不同波段范围、不同工作原理的光谱成像技术,针对不同检验对象,进行了大量实验研究,均已取得一定的研究进展,具体研究情况整理如下http://www.zolix.com.cn/filespath/images/20150812153847.jpg

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

  • 核磁共振波谱分析

    如何让一个不了解核磁共振波谱分析的人快速了解核磁共振?如何让不了解的人快速掌握?

  • 中国分析测试协会波谱专家组今年评议项目

    中国分析测试协会分析仪器与技术评议波谱组今年的评议项目为: 1.国内新研发的两台 500 兆核磁共振谱仪的介绍与性能评议2.国产教学用小型成像与结构核磁共振谱仪的介绍与性能评议3.对国内新创办核磁共振探头维修公司的介绍与评议4.超导核磁共振谱仪的新设备或配件的功能介绍与性能评议波谱专家组成员名单如下:林崇熙 (组长, 北京大学化学学院), 崔育新 (北京大学医学部), 邓志威 (北京师范大学), 贺文义 (医科院药物所), 郭灿雄(北京化工大学),李立璞 (中科院化学所), 涂光忠 (微量化学所), 向俊锋 (中科院化学所), 颜贤忠 (军事医科科院), 杨海军 (清华大学)

  • 5种质谱成像技术

    [font=&][size=14px]质谱成像(Imaging Mass Spectrometry, IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的“结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: [color=#333333] [/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/406626.jpeg?x-oss-process=image/resize,w_700,h_700[/img][font=&][size=14px]简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。[/size][/font][font=&][size=14px]最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(Vanderbilt University)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。[/size][/font][font=&][size=14px]正如数字图像包括三个通道:红,绿,蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后,得到一张分子特异性的成像图。”[/size][/font][font=&][size=14px]这种方法可用于小分子代谢物,药物化合物,脂质和蛋白,而且,质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体,下面列出五种先进的质谱成像方法。[/size][/font][font=&][size=14px]1、MALDI质谱分子成像技术[/size][/font][font=&][size=14px]在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如,想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。[/size][/font][font=&][size=14px]来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息。同时,可对这些蛋白质分子含量进行相对定量。[/size][/font][font=&][size=14px]MALDI质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/z的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。[/size][/font][font=&][size=14px]通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如,采用4000像素比200像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分,然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后,与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。[/size][/font][font=&][size=14px]2、电喷雾电离技术[/size][/font][font=&][size=14px]一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此,并不适用于即时成像(bed side applications),比如,要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。[/size][/font][font=&][size=14px]一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。[/size][/font][font=&][size=14px]这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如,水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。[/size][/font][font=&][size=14px]DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。[/size][/font][font=&][size=14px]3、APIR MALDI/LAESI技术[/size][/font][font=&][size=14px]了解细胞的内部成分是理解健康细胞不同于病变细胞的关键,但是,直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。[/size][/font][font=&][size=14px]来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但是,活体样本在真空中无法存活。[/size][/font][font=&][size=14px]实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于,基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]。而生物样品也可以直接吸收能量的,比如,2.94mm波长的光能激活水中氢氧键。[/size][/font][font=&][size=14px]因此,Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmosphericpressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。[/size][/font][font=&][size=14px]为了捕捉这些中性粒子,Vertes等人采用了第二种方法:[/size][/font][font=&][size=14px]LAESI(laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。[/size][/font][font=&][size=14px]与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。[/size][/font][font=&][size=14px]4、二次离子质谱技术[/size][/font][font=&][size=14px]质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。[/size][/font][font=&][size=14px]但是,一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的NicholasWinograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。[/size][/font][font=&][size=14px]SIMS早在用于生物学研究之前就已经应用广泛了,比如,分析集成电路(integratedcircuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。[/size][/font][font=&][size=14px]这种技术具有几个优点:[/size][/font][font=&][size=14px]速度快(-10,000 spectra per second),亚细胞构造分辨率(-100nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。[/size][/font][font=&][size=14px]Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。[/size][/font][font=&][size=14px]C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此,这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。[/size][/font][font=&][size=14px]这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。[/size][/font][font=&][size=14px]5、纳米结构启动质谱技术[/size][/font][font=&][size=14px]质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。[/size][/font][font=&][size=14px]来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 [/size][/font][font=&][size=14px]NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 [/size][/font][font=&][size=14px]通过这种方法可以分析很多类型的小分子,比如,脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 [/size][/font][font=&][size=14px]由于,含氟聚合物不能很好的离子化,因此,会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高[/size][/font]

  • 【我们不一YOUNG】+核磁共振波谱仪的应用优势

    [font=微软雅黑][size=16px]核磁共振波谱仪(NMR)是一种重要的科学仪器,它在许多领域中发挥着重要作用。下面我将为大家介绍一下核磁共振波谱仪的应用优势。[/size][/font][font=微软雅黑][size=16px]首先,核磁共振波谱仪在化学领域中具有广泛的应用。它可以用来确定化合物的结构和组成,帮助化学家们研究分子的性质和反应机理。通过核磁共振波谱仪,我们可以获得分子的谱图,从而确定分子中各个原子的类型、数量和化学环境。这对于合成新的药物、开发新的材料以及研究生物分子的结构和功能都非常重要。[/size][/font][font=微软雅黑][size=16px]其次,核磁共振波谱仪在医学领域中也有着重要的应用。核磁共振成像(MRI)是一种非侵入性的成像技术,可以用来观察人体内部的结构和功能。通过核磁共振波谱仪,医生们可以获得人体各个部位的详细图像,从而帮助他们诊断疾病、制定治疗方案。与传统的X射线成像相比,MRI没有辐射,对人体无害,因此被广泛应用于临床诊断和研究。[/size][/font][font=微软雅黑][size=16px]此外,核磁共振波谱仪还在材料科学、环境科学、食品科学等领域中发挥着重要作用。在材料科学中,核磁共振波谱仪可以用来研究材料的结构和性质,帮助科学家们设计新的材料。在环境科学中,核磁共振波谱仪可以用来分析土壤、水体和大气中的污染物,帮助我们了解环境污染的来源和影响。在食品科学中,核磁共振波谱仪可以用来检测食品中的成分和质量,确保食品的安全和质量。[/size][/font][font=微软雅黑][size=16px]总的来说,核磁共振波谱仪在各个领域中都有着广泛的应用。它可以帮助科学家们研究分子的结构和性质,帮助医生们诊断疾病,帮助工程师们设计新的材料,帮助环境科学家们了解环境污染的情况,帮助食品科学家们确保食品的安全和质量。核磁共振波谱仪的应用优势不仅在于其高分辨率和灵敏度,还在于其非侵入性和无辐射的特点。相信随着科学技术的不断发展,核磁共振波谱仪的应用前景将会更加广阔。[/size][/font]

  • 【我们不一YOUNG】+科普核磁共振波谱仪小知识

    核磁共振波谱仪,是指研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时也可进行定量分析。瑞第科普核磁共振波谱仪小知识。 核磁共振波谱仪按工作方式可分为两种: (1)连续波核磁共振谱仪(CW-NMR)射频振荡器产生的射频波按频率大小有顺序地连续照射样品,可得到频率谱; (2)脉冲傅立叶变换谱仪(PET-NMR)射频振荡器产生的射频波以窄脉冲方式照射样品,得到的时间谱经过傅立叶变换得出频率谱。 连续波核磁共振谱仪由磁场、探头、射频发射单元、射频、磁场扫描单元、[k1] [WU2] 射频检测单元、数据处理仪器控制六个部分组成。 频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。 NMR波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。 根据谱图确定出化合物中不同元素的特征结构。有机化合物、高分子材料都主要由碳氢组成,所以在材料结构与性能研究中,以1H谱和13C谱应用较普遍。 除了运用在医学成像检查方面,在分析化学和有机分子的结构研究及材料表征中运用较多。 有机化合物结构鉴定 一般根据化学位移鉴定基团;由耦合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等,因为它们都影响核外化学环境的状况,从而谱图上都应有所反映。 高分子材料的NMR成像技术 核磁共振成像技术已成功地用来探测材料内部的损伤,研究挤塑或发泡材料,粘合剂作用,孔状材料中孔径分布等。可以被用来改进加工条件,提高制品的质量。 多组分材料分析 材料的组分比较多时,每种组分的 NMR 参数独立存在,研究聚合物之间的相容性,两个聚合物之间的相同性良好时,共混物的驰豫时间应为相同的,但相容性比较差时,则不同,利用固体 NMR 技术测定聚合物共混物的驰豫时间,判定其相容性,了解材料的结构稳定性及性能优异性。 此外,在研究聚合物还用于研究聚合反应机理、高聚物序列结构、未知高分子的定性鉴别、机械及物理性能分析等等。

  • 仪器分析:核磁共振波谱法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=26684]仪器分析:核磁共振波谱法[/url]

  • 【我们不一YOUNG】+核磁共振波谱法的试用范围知多少

    [back=transparent] 核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的强有力的工具之一,亦可进行定量分析。本文就是为您介绍[/back][b]核磁共振波谱法的试用范围[/b][back=transparent]。[/back] 一、测定对象元素 NMR波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。根据谱图确定出化合物中不同元素的特征结构。 二、可测试的性能 除了运用在医学成像检查方面,在分析化学和有机分子的结构研究及材料表征中运用较多。 三、有机化合物结构鉴定 一般根据化学位移鉴定基团;由耦合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等,因为它们都影响核外化学环境的状况,从而谱图上都应有所反映。 四、高分子材料的NMR成像技术 核磁共振成像技术已成功地用来探测材料内部的缺陷或损伤,研究挤塑或发泡材料,粘合剂作用,孔状材料中孔径分布等。可以被用来改进加工条件,提高制品的质量。 五、多组分材料分析 材料的组分比较多时,每种组分的 NMR 参数独立存在,研究聚合物之间的相容性,两个聚合物之间的相同性良好时,共混物的驰豫时间应为相同的,但相容性比较差时,则不同,利用固体 NMR 技术测定聚合物共混物的驰豫时间,判定其相容性,了解材料的结构稳定性及性能优异性。 此外,在研究聚合物还用于研究聚合反应机理、高聚物序列结构、未知高分子的定性鉴别、机械及物理性能分析等等。

  • 我的『核磁共振波谱学的基本原理和实验』图书

    我的『核磁共振波谱学的基本原理和实验』图书

    书名:核磁共振波谱学的基本原理和实验作者:原现瑞出版社:河北人民出版社;出版年:2019年;页数:348页;装帧:平装;ISBN:978-7-202-12132-0;内容介绍:核磁共振(Nuclear magnetic resonance,NMR)包括液体NMR、固体NMR和NMR成像(Magnetic resonance imaging,MRI)等内容。液体NMR主要应用于化学,固体NMR应用于材料学,MRI应用于生物学和医学领域。本书论述液体NMR波谱学的基本原理和实验。 本书从量子力学的基础知识出发,介绍NMR波谱学的基本理论,用乘积算符公式分析一些经典脉冲序列和常用的1D和2DNMR实验,并给出NMR谱用于研究有机小分子结构的应用实例。 本书的目的是向这些非物理学专业人员介绍NMR波谱学的基本理论和常用实验,书中所采用的数学和物理的概念、模型或方法以简单介绍为主,数学公式的演算尽可能详细,以方便读者理解。 目前该书没有电子版,仅有纸质版,如有需要请与李润岩联系,电话:13784334153。谢谢!目录:第一章:核磁共振的概念和经典力学的理论解释第二章:量子力学基本知识第三章:量子力学中的算符和力学量;第四章:密度算符;第五章: 单自旋-1/2;第六章:二自旋体系;第七章:二自旋体系乘积算符之间的转化;第八章:一些经典的脉冲序列;第九章:一维NMR实验;第十章:同核二维NMR实验;第十一章:异核二维NMR实验;第十二章: 弛豫动力学;第十三章:用NMR谱研究有机化合物的分子结构;练习题及提示答案附录封面:[img=核磁共振波谱学,690,1064]https://ng1.17img.cn/bbsfiles/images/2020/07/202007151026532286_9904_1267429_3.jpg!w690x1064.jpg[/img]

  • 求购薄层色谱成像系统

    想买一台薄层色谱成像系统,大家推荐一下,哪家产品比较好,性价比高,预算不多,最好推荐国产的。

  • 《分析化学手册》2ed v7 核磁共振波谱分析(下载)

    《分析化学手册》(第二版)第七分册 核磁共振波谱分析简介: 《分析化学手册》是一部比较全面的反映现代分析技术,供化学工作者使用的专业工具舍书。手册第一版自1979午出版以来,在读者中形成了一定的影响.已成为许多分析化验室的必备图书。但由于受编稿时的历史条件所限,加上近20年来是世界和我国的科学技术、包括分析化学学科飞速发展的时期,原手册第一版在内容和编排上己不能全面反映当我国分析化学的发展现状。因此,根据广大读者的要求.我们组织了这套《分析化学手册》的修订二作。 在第一版原有6个分册的基础上,这次经扩充和修订为以下十册:第一分册 基础知识与安全知识第二分册 化学分析第三分册 光谱分析第四分册 电分析化学第五分册 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析第六分册 液相色谱分析第七分册 核磁共振波谱分析第八分册 热分析第九分册 质谱分析第十分册 化学计量学 这是第七分册, 核磁共振波谱分析。我的资料中心免积分下载![em61] [em61]

  • 高光谱成像整个系统配件介绍

    在整个高光谱成像系统中很重要的是各组件的选择以及电控移动台的配合,所选择的各个组件,均需要根据实际使用需要进行优化选择。系统组件选择需要特别考虑所检测的样品的大小,通常情况下,高光谱成像系统的设计针对大小不超过200mm长、200mm宽、100mm高的物体。若使用者对于高光谱成像系统外观及内部结构设计有特别需求,我公司也可根据实际需求,对现有设计进行适当更改,以满足使用者自身高光谱成像系统主要由光源、光谱相机(即高光谱成像仪)、样品移动台等部件组成。高光谱成像系统工作原理(推扫型/推帚型):线光源照射在放置于电控移动台上的待测物体(样品),样品上被线光源照射部分的影像通过镜头被高光谱成像仪捕获,在X轴向上被光谱仪分光,Y轴上直接成像,从而得到一维的影像以及光谱信息,由X-Stage电控移动台带动样品连续运行,从而能够得到连续的一维影像以及光谱信息,所有的数据被计算机软件所记录,可以方便的进行后续分析。

  • 薄层色谱成像系统哪家强?

    各位大神: 哪位的实验室有在使用薄层色谱成像系统呢,有没有推荐的?老大要求进口,国产就不考虑了国外哪些厂家做的比较好,麻烦啦

  • 深度学习算法可用于近红外光谱成像分析领域的哪些方面?

    [font=宋体][font=宋体]卷积神经网络、自适应编码器等可用于特征提取、噪声消除等;此外,卷积神经网络、[/font][font=Times New Roman]LSTM[/font][font=宋体]神经网络等可直接用于模式识别或是定量分析。目前,深度学习算法在农产品近红外成像分析领域的应用尚在探索阶段,比如输入的选取、深度神经网络的拓扑结构设计等。尽管深度学习在图像、视频、音频和自然语言处理等领域展现了无可比拟的优势,但是在光谱成像分析领域,深度学习算法是否一定优于传统方法还有待具体问题具体分析。[/font][/font]

  • 【我们不一YOUNG】+ 质谱成像应用于药物的研究

    [back=transparent]质谱成像是以质谱技术为基础的可视化方法,通过质谱离子源直接扫描生物样本,可以在一张组织切片上同时分析数百种分子的空间分布特征,已成为精确解析药物分子及其代谢产物组织空间分布的关键技术之一,[back=transparent]质谱成像[/back]应用于药物ADME的研究。[/back]一般在生活中肾脏是药物排泄的主要器官。但是药物排泄过程的正常与否关系到药效强度、药效维持时间以及毒副作用。所以,这是我们必须要借助一些科学例如高分辨质谱技术来助力药物。近年来,高分辨质谱成像技术的诞生为定位药物组织分布研究提供了全新的技术和思路。本文将主要介绍TransMIT AP-SMALDI 10高分辨率质谱成像系统如何一步步揭秘伊马替尼在小鼠肾脏组织中的空间分布特征。TransMIT AP-SMALDI 10质谱成像系统是目前少有的集高空间分辨率和高质量精度于一体的质谱成像系统。该系统采用常压基质辅助激光解吸电离技术,通过先进的准直光束聚焦实现了5μm的成像分辨率;质谱端搭载Thermo Scientific? Q Exactive?系列质谱仪,保证了离子分析的高质量分辨率和高质量精度。综上所述,研究成功的揭示了伊马替尼在重要排泄器官肾脏中的组织分布特征,同时也获取了组织中各种内源性化合物的空间分布信息,为研究药物分子的累积和排泄机制提供了可靠的科学依据。TransMIT AP-SMALDI 10质谱成像系统集高空间分辨率、高质量分辨率和高质量精度于一身,不仅成为了药代动力学研究的利器,也应用于肿瘤标志物研究、植物次生代谢物研究、药用植物药效成分研究、微生物和单细胞研究等。未来,期待TransMIT AP-SMALDI 10质谱成像系统为我国药物研发人员和各领域科研工作者带来更多的惊喜,加快研究进程,加速成果转化。

  • 【分享】分析波谱解析软件[分析人员必备]

    【分享】分析波谱解析软件[分析人员必备]

    分析波谱解析软件[分析人员必备]波谱解析图片软件,由于软件太大,共分成11个压缩分卷,全部下载完毕后再解压使用。非常不错的分析波谱解析软件,分析人员,化工研发人员必备资料!极其详细的解析了各种波谱标准图谱及各化合物的特征指标.[img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909040955_169671_1645079_3.jpg[/img]核磁共振图谱解析示意有需要的请到资料中心下载,因为此软件太好了,第一时间上传推荐

  • 【“仪”起享奥运】+探秘核磁共振波谱仪

    [font=微软雅黑][size=16px]核磁共振波谱仪(Nuclear Magnetic Resonance Spectrometer,简称NMR)是一种重要的分析仪器,广泛应用于化学、生物化学、药物研究等领域。它利用原子核在外加磁场和射频辐射作用下的共振现象,通过测定原子核的共振频率和强度,从而获取样品的结构和性质信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪的工作原理基于原子核在外加磁场中的磁矩与射频辐射的相互作用。当样品置于强磁场中时,原子核的磁矩会在磁场方向上产生能级分裂,而射频辐射则能够使原子核从一个能级跃迁到另一个能级。通过测定原子核共振频率和强度,可以得到样品分子的结构、构象、动力学等信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪具有高分辨率、灵敏度高、非破坏性等优点,因此在化学分析和结构表征中得到了广泛应用。在有机化学领域,NMR可以用于确定化合物的结构、判断化学反应的进行情况、研究分子构象等;在生物化学和药物研究中,NMR可以用于研究蛋白质、核酸的结构和相互作用,以及药物与靶标的结合情况等。[/size][/font][font=微软雅黑][size=16px]随着科学技术的不断发展,核磁共振波谱仪的应用领域也在不断拓展,例如在医学影像学中的核磁共振成像(MRI)技术就是基于核磁共振原理的。未来,随着核磁共振技术的进一步发展和完善,相信它将在更多领域发挥重要作用,为人类的科学研究和生活带来更多的福祉。[/size][/font]

  • NMR分析测试-上海(核磁共振波谱仪)

    NMR分析测试-上海(核磁共振波谱仪)

    上海本人在上海高校,现实验室拥有400兆核磁共振波谱仪、为充分实现资源共享,诚意向社会服务(提供分析测试服务),具有测试速度快、科研背景强大,对长期客户将提供更多优惠。欢迎大家前来联系!试剂无氘代试剂也可以进行测试。http://ng1.17img.cn/bbsfiles/images/2016/10/201610181522_614349_3109999_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669286_3109999_3.jpg 目前服务谱图类型,H,C ,F, P,DEPT,B,LI,SI等多核实验,还可以提供变温实验和2D谱等。如有需要请联系黄先生QQ:79265125

  • 【原创大赛】基于高光谱成像技术的包子在线检测研究

    【原创大赛】基于高光谱成像技术的包子在线检测研究

    [align=center][b]基于高光谱成像技术的包子在线检测研究[/b][/align]随着生活品质的提高以及消费者对食品安全意识的不断增强,消费者对包子食品安全问题越来越关注。在实际包子加工过程中,由于生产规模、生产速度、包子馅的加工机械等的影响,包子在生产过程其表面可能会存在污物或包子露馅、包子发霉等问题,因而存在严重的食品安全隐患。成像技术和光谱技术是传统的光学技术的两个重要方向,成像技术能够获得物体的影像,得到其空间信息;光谱技术能够得到物体的光学信息,进而研究其物质属性。20 世纪 70 年代以前,成像技术和光谱技术是相互独立的学科,随着遥感技术的发展,成像光谱技术迅速发展起来,它是一种快速、无损的检测技术,具有光谱分辨率高、多波段和图谱合一的特点,能在大尺度范围内识别地表并深入研究其地表物质的成分及结构。目前,成像高光谱技术已成熟应用于农业、食品、药品、化工产品、刑侦、文物保护等领域,但用于包子的品质检测目前尚未有研究者对其进行开展研究。[b]1. 可见、近红外设备介绍[/b]高光谱图像数据采集采用四川双利合谱科技有限公司的 GaiaSorter高光谱分选仪系统(fx10e)。该系统主要由高光谱成像仪、面阵列相机、卤素灯光源、暗箱、计算机组成,如图1。[align=center][img=,386,355]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281452562204_1516_488_3.jpg!w386x355.jpg[/img] [/align][align=center]图1 GaiaSorter高光谱分选仪[/align]高光谱图像采集软件采用四川双利合谱科技有限公司提供的高光谱成像系统采集软件Specview完成。图像处理采用 ENVI5.3 软件进行处理。在进行图像处理之前,先要对采集的光谱图像进行图像校正,图像校正公式如下:[img=,291,63]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281453117460_190_488_3.jpg!w291x63.jpg[/img] (1)式中,R[sub]ref[/sub] 是校正过的图像,DN[sub]raw[/sub] 是原始图像,DN[sub]white[/sub]为白板校正图像,DN[sub]dark[/sub] 是黑板校正图像,R[sub]white[/sub]为白板的反射率。[b]2. 实验目标[/b]本次实验对包子的混杂金属、混杂玻璃片、混杂塑料片、包子完整情况(是否有馅露出来)、有无包装纸、有何种颜色的包装纸进行了初步的检测,目的是为了分辨出包子中混杂的金属、玻璃片、塑料片,以及是否露馅、是否包含包装纸和用何种包装纸对其进行包装。[b]3. 分析方法3.1 波段选择方法[/b]目前应用比较广泛的最佳波段选取方法有各波段信息量的比较、波段间相关性比较、最佳指数法(O IF)、各波段数据的信息熵和联合熵、协方差矩阵特征值法、波段指数法等。在各种方法中,由美国查维茨提出的最佳指数法( OIF)综合考虑单波段图像的信息量及各波段间的相关性,更接近于波段选择的原则,且计算简单,易于实现,得到广泛的应用。OIF指数的计算公式如下:[img=,261,59]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281453308659_4069_488_3.jpg!w261x59.jpg[/img] (2)其中:S[sub]i[/sub] 为第i个波段的标准差,R[sub]ij[/sub]为i、j 两波段的相关系数。对n波段图像,先统计计算单波段图像的标准差,计算各波段间的相关系数矩阵,再分别求出所有可能的波段组合对应的OIF指数,根据该指数大小来判断各种波段组合的优劣。指数越大,则相应组合影像所包含的信息量就越大。对OIF指数从大到小进行排序,最大O IF指数对应的波段组合即为最佳波段组合。[b]3.2 分类方法[/b]利用see5.0机器学习法进行分类。see5.0机器学习规则软件是美国USGS在完成国家土地覆盖制图(NLCD)项目中开发的一个自动提取分类规则的数据挖掘工具。[b]4. 分析结果[/b][align=center][img=,553,402]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281453511269_6838_488_3.jpg!w553x402.jpg[/img][/align][align=center]图2 塑料托盘上有无包子进行判别分析[/align][align=center][img=,562,414]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281454085302_6251_488_3.jpg!w562x414.jpg[/img][/align][align=center]图3 包子混杂塑料片原图及分类结果[/align][align=center][img=,541,389]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281454249343_7458_488_3.jpg!w541x389.jpg[/img][/align][align=center]图4 包子混杂金属原图及分类结果[/align][align=center][img=,526,387]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281454574305_7671_488_3.jpg!w526x387.jpg[/img][/align][align=center]图5 包子混杂玻璃片原图及分类结果[/align][align=center][img=,547,393]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281455104118_736_488_3.jpg!w547x393.jpg[/img][/align][align=center]图6 包子多种包装纸原图及判别结果[/align][align=center][img=,570,409]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281455437023_7191_488_3.jpg!w570x409.jpg[/img][/align][align=center]图7 包子露馅判别分析[/align][align=center][img=,587,427]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281456093534_9772_488_3.jpg!w587x427.jpg[/img][/align][align=center]图8 包子过程有无包装纸判别分析[/align][align=center][img=,582,425]https://ng1.17img.cn/bbsfiles/images/2019/10/201910281456238943_7757_488_3.jpg!w582x425.jpg[/img][/align][align=center]图9 多种情形下包子品质分析[/align][align=left][b]5. 结论与讨论[/b] 从图2到图9我们可以看出,利用高光谱成像设备可实现包子在线生产过程中可能出现的各种问题,从而避免了有质量问题的包子流向市场。高光谱成像仪在实际生产过程中可快速实时无损地监测每个包子的品质,减少了人工的排查程序,有效地提高了包子的出厂效率。[/align]

  • 新型干涉光谱成像技术研究取得重要进展

    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。  面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限;离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。

  • 国家标准《磁共振成像/波谱仪质量控制方法》发布

    [color=#000000]2024年3月15日,国家标准GB/T 43688-2024《磁共振成像/波谱仪质量控制方法》正式发布,于2024年10月1日正式实施。该标准由TC487(全国光电测量标准化技术委员会)归口 ,主管部门为中国科学院。[/color][color=#000000]该标准主要起草单位:中国计量科学研究院 、北京大学第三医院 、上海联影医疗科技股份有限公司 、中国科学院空天信息创新研究院 、广东省中量检测有限公司 、北京大学 、北京航空航天大学 、北京万东医疗科技股份有限公司 、重庆大学 、中国计量大学 、美的集团(上海)有限公司 、北京印刷学院 、广东省建筑设计研究院有限公司 、广州计量检测技术研究院 、山东第一医科大学 。[/color][color=#000000]本标准从国内外磁共振影像和放疗设备的生产、临床使用情况出发,研究可溯源至国际单位制(SI)的设备性能评价方法并将其标准化。[/color][color=#000000]2013 年底我国MRI 的市场保有量已达到6400台,以目前速度,我国MRI市场容量将在2017 年应可突破万台大关。[/color][color=#000000]国内磁共振企业在规模和技术水平上也逐步得到发展,无论低场,还是高场1.5TMRI 系统都已有自主研发机型生产,并上市销售;生产企业也由原来的少数几家发展到近20家,但国内市场,尤其是中高端市场,仍以通用电器、西门子、飞利浦等公司的磁共振成像产品占据绝对优势。[/color][color=#000000]本标准构筑提升了我国磁共振设备质控的基础,并为其它重大数字诊疗装备质控提供了共性技术支撑。[/color][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 质谱成像技术 从实验台到临床

    原创与否转贴“人类天生就可以收集大量的视觉信息。”范德堡大学医学院斯坦福·摩尔生物化学主任与质谱研究中心主任Richard Caprioli表示,“我们喜欢图样、我们喜欢照片,我们通过一张简单的照片可以获得大量的信息。”在Caprioli看来,这一点解释了质谱成像技术(MSI)为什么越来越受欢迎。尤其是这项技术可以帮助组织学家获得原本需要数年才能掌握的专业知识。“它采用的不是颜色维度,而是分子维度。但这个事实并不是那么重要,只要分子维度有足够的信息量。”他说。质谱成像技术就像是免疫组织化学的高通量版本,只是没有抗体而已。质谱成像技术并没有为组织切片事先染上特殊标记,它使用质谱仪一次性挑选并绘制成百上千种分子的空间排列。研究者无需提前知道哪个分子比较重要,就可以利用该技术进行绘制挑选,而且速度很快。“我们的仪器有激光,每秒可以做5000个质谱。”Caprioli表示,这一速度足以在一个小时之内扫描包括数百个病患活组织在内的组织微阵列整体。但是,质谱成像技术的应用也存在明显的障碍。比方说,图像分辨率随着光点尺寸的减小而升高,但却降低了离子材料的产量。该技术并没有初步分离的步骤,因此可能会只抽取丰度最高的分子。而在计算方面,研究人员面临的挑战则是如何对数据进行分析,特别是如何能够真正理解这些数据。但是不管怎么说,研究人员正在使用质谱成像技术进行研究,无论是确定亚细胞分辨率下组织切片中的药物代谢产物,证实疾病的生物标记,还是鉴别肿瘤的边界等等。他们甚至正在将该技术引入临床,至少是接近于临床研究。质谱成像技术的策略那么,什么是质谱成像技术?就像是一张标准的数码照片,数字成像的色彩是通过红绿蓝3个颜色通道叠加而成的,屏幕上每个小像素的颜色都是由这三个颜色的密度所构成的。现在,想象一张拥有成千上万个颜色通道的图片。这就是质谱成像技术,Caprioli说,每个通道都是你想要展示的那个分子种类或质谱峰。研究人员将这些不同的通道互相覆盖,便可以产生一个针对组织分子构成和空间分布的彩色绘图,无论是对蛋白质、神经肽、代谢分子还是脂类等组织——显然脂类的需求正在增加。研究人员为质谱成像技术设计了几十套方案,但正如2012年的综述中所说的(J. Proteomics, 75:4883, 2012),只有三种是最常见的。Caprioli的基质辅助激光解析质谱成像技术(MALDI-MSI)通过紫外线激光光栅扫描一个基质包膜的组织切片来建立图像。该技术的像素大小一般近似于1到10个微米,意味着它可以达到亚细胞分辨率。但由于它需要使用MALDI基质和真空环境,所以MALDI-MSI不适用于活体样本。同时,基质是用来吸收激光能量并转移到样本上去,但是这种基质可能会很难在样本上操作并产生大量的小分子量的电离物,这会遮蔽生成光谱的代谢区域。宾夕法尼亚州立大学埃文·普名誉化学教授Nick Winograd采用了第二种方法——次级离子质谱法(SIMS)。这种方法通过在样品表面喷镀离子束让样品产生电离作用(比方说,英国Ionoptika公司的带电C60分子或氩团簇束),不使用激光。Winograd称,这种方法有两大优点,第一个是分辨率:SIMS得出的像素约有300纳米,而MALDI充其量只有1毫米。另一个是通过分子深度剖析,研究人员可以使用碰撞而成的坑痕去“深挖”这个样本,通过三维立体化绘制其分子组成物。第三种是电喷雾解析电离技术(DESI),这种(非真空的)电离技术通过喷射溶剂,将溶剂覆盖在未经处理的组织表面上,溶解表面的分子。然后再继续往上滴溶剂,以使溶解物溅到质谱仪上,进行电离和分析。(Prosolia公司对DESI技术进行商业化,该公司由该技术的发明者、普度大学化学家R. Graham Cooks共同创办。)DESI、MALDI、SIMS这三种技术以及他们的变体都采用阿姆斯特丹FOM研究所AMOLF学院Ron Heeren所谓的“微探针”模式,分辨率随着像素尺寸减小而升高。这里面的问题是如何从尽可能小的光点中最大化样品的电离作用。但是较小的光电也就意味着检测到的离子会更少,且不要说成像时间会更长了(因为里面的像素会变多)。Heeren更喜欢“显微”模式。这种模式可以用散焦像素更快成像,再加上像素检测器如CCD,可以有效地一次性捕获262144(512x512)个光谱。“这就像个相机。”Heeren解释道,“就是一点,我们制造的是分子闪光照片。”Heeren认为这个“质谱显微镜”的关键是Timepix探测器,这个探测器是CCD和飞行时间质谱分析器的结合。(Heeren共同创立的Omics2Image拥有Timepix探测器)。他解释,大多数质谱检测装置将探测器视为一个大的像素,将所有到达表面的离子碰撞整合为一个单一的信号。Timepix将这个信号分成262000个空间分辨的点,这样在探测到成像表面分子时,它们可以保持并记录自己的空间定位,成像速度非常快。有多快?Heeren说,MALDI-MSI仪器可以产生每秒钟一个像素,达到一微米的分辨率。因此在一个100x100毫米的区域中,要想生成1万个像素需要花费2.7个小时。但使用质量显微镜和Timepix探测器,“我们可以在一秒钟内得到这些信息。”显微镜上还有物理电子学TRIFT SIMS-TOF系统,上面还有一个MALDI技术,Heeren团队最近正在使用这一技术探索骨关节炎下的生理变化。“我们甚至可以证实,在蛋白质水平和脂代谢水平上的生理变化以及软骨矿化,会导致软骨机械强度的流失。”他说。常态MSI与MALDI和SIMS相比,DESI和激光烧蚀电喷雾技术(LAESI,由Protea Biosciences推出的激光技术)这些正常大气压下的电离技术拥有一些特殊的优势。最明显的优势是,他们不需要进行样品处理,在正常空气中操作即可,不需要真空。因此,他们可以用在活体样本上,甚至可以在患者身上进行操作。“我自己这辈子的追求就是:用未处理过的样品就可以进行质谱分析。”这是Cooks几十年来的目标。作为一个研究者,Cooks的工作是提取并测定植物生物碱的结构。很长的一段时间内,研究都非常艰辛,他只提取了一点“不纯的生物碱,而且也没有做出结构方面的进展”。直到他遇到了从斯坦福大学来演讲的Carl Djerassi。他说,Djerassi把他的材料样品带回了实验室,并收集它们的质谱,十天后又把结构发了回来。“这让我相信质谱分析法的强大。”Cooks说,“同时,我也发现提取方法学中存在的局限性。”从那以后,他开始从那些在生物上不怎么好操作的技术限制中脱出来,进行质谱分析,发展了正常气压下的电离技术,特别是DESI。2011年,由Cooks和哈佛医学院Nathalie Agar共同领导的团队,使用电喷雾解析电离质谱技术(DESI-MS)来存储脑肿瘤组织,使用脂类特征检测结果帮助电脑区分不同形式和组织病理学分级的神经胶质瘤(一种脑瘤)。对于这种分析来说,脂类是一个古怪的选择。的确,脂类对于MSI从业者来说就是无奈之举,但他们必须从中获取最大的价值。在标准的细胞分析中,研究人员可以分离细胞提取物,并去掉不想要的部分,这其中往往就包括脂类。但是在MSI及其他原位应用中,研究人员必须知道自己面前摆着的是什么。他们面前摆着的主要是脂类。但幸运的是,脂类不仅丰度高,非常容易电离,而且信息量也很大。“如果你只看脂类的话,它的组织特征比蛋白质要好得多。”伦敦帝国学院医疗质谱部门研究员Zoltán Takáts这样说。最近,Cooks和Agar将这一方法应用到5个正在进行治疗的脑癌病人的32个手术标本当中。该系统通过逐个像素报告了肿瘤的亚型、分级以及癌细胞的部分。Cooks说,这些数据可以让他们的团队在绘制肿瘤边界时找出不同组织病理学级别的各个区域,补充MRI数据。他还强调,他们使用的是“最便宜的”质谱分析仪器,Thermo Fisher公司的单级(与串联相对)低分辨率LTQ离子阱。但Agar也指出,这还是一个研究项目,团队不能实时将这些结果传递给外科医生,他们在波士顿收集样本,但真正成像却是在印第安纳州。自那以后,她的团队在布莱罕妇女医院的AMIGO手术室安装了Bruker公司利用DESI技术的amaZon Speed离子阱,用来进行脑瘤案例的测试。该手术室是医院的影像引导治疗国家中心。Agar说,很快他们会研制出乳腺癌测试,但是团队仍然不能指导外科医生真正操刀。这种方法首先必须经过验证,“这最终会需要经过临床试验进行验证。”简化数据分析最终,要想把MSI推向临床,就必须要跨越质谱仪专家,让真正需要使用它的人掌握这门技术。然而,没有几个临床医生能够掌握MSI技术、数据处理和信息学的精妙,而且更没有人愿意花时间学习了。在Cooks看来,如果这项技术“又娇贵,而且这项质谱技术需要博士才能掌握”的话,就很难进行推广,“它需要全自动,仪器也不能那么娇贵,必须要可靠而且相对简单。”对于典型的组织病理学应用来说,这不是什么问题,因为这个系统可以配置成智能盒子(turnkey boxes),只有通过特定的生物标记才能打开。全球的各大临床实验室已经在常规地使用非成像质谱仪,包括Bruker公司的MALDI BioTyper和Sequenom公司MassARRA

  • 核磁共振波谱--HMBC谱及其应用

    超导核磁共振波谱仪是重要的分析仪器,尤其在结构解析方面有着独特的优势。解析结构时,我们常应用氢谱、碳谱、COSY、HSQC、HMBC等二维谱图及各种杂核谱。本次课程,介绍了核磁共振波谱中的二维谱图HMBC谱,最常用的

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制