当前位置: 仪器信息网 > 行业主题 > >

万像素相机

仪器信息网万像素相机专题为您提供2024年最新万像素相机价格报价、厂家品牌的相关信息, 包括万像素相机参数、型号等,不管是国产,还是进口品牌的万像素相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合万像素相机相关的耗材配件、试剂标物,还有万像素相机相关的最新资讯、资料,以及万像素相机相关的解决方案。

万像素相机相关的资讯

  • Lumenera发布Lumenera Lt1245R 1200万像素CMOS相机新品
    Lt1245RPregius全局快门CMOS USB 3.1 Gen 1相机产品规格书 工业和科学相机宣传册Teledyne Lumenera Lt1245R采用索尼全局快门CMOS传感器中最大的SonyPregius® IMX253传感器。Lt1245R采用FPGA技术并集成帧缓冲和Teledyne Lumenera先进的图像处理技术,可从小尺寸的相机中提供高分辨率图像。 这使得Lt1245R非常适合机器视觉,生命科学,无人机和ATI应用。Lt1245R相机产品亮点彩色或黑白SONY IMX253 CMOS 1200万像素全局电子快门传感器1.1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS® 全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt1245R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt1245RM 1200万像素黑白相机Lt1245RC 1200万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX253, 彩色, 黑白芯片尺寸:1.1″像素大小:3.45 x 3.45 μm分辨率:4112 x 3008 pixelsROI控制:Yes帧数:30 fps at 4112 x 3008位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 14μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:74 dB满阱容量:~10,500 e-相对响应率:61% @ 530 nm peak color, 68% @ 570nm peak mono读出噪声:~2.41e-暗电流噪声:1.2 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。 产品亮点: 全局快门CMOS CMOS传感器具有类似CCD的性能,并提高了帧速率 P-Iris连接器,用于支持精确的光圈镜头控制 高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍) 高动态范围,高速,低读取噪声?2e- 无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像 容USB3 Vision兼 Windows和Linux SDK Lumenera Lt1245R 1200万像素CMOS相机
  • Lumenera发布Lumenera Lt945R 890万像素CMOS相机 新品
    Lt945RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt945R相机将先进的Teledyne Lumenera技术与SonyPregiusIMX255 CMOS全局快门传感器相结合。它的小尺寸和轻便设计意味着Lt945R非常适合机器视觉,生命科学和无人机的应用。 Lt945R采用FPGA技术并集成帧缓冲,提供快速,可靠的图像传输。Lt945R相机产品亮点彩色或黑白SONY IMX255 CMOS 890万像素全局电子快门传感器1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt945R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt945RM 890万像素黑白相机Lt945RC 890万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX255, 彩色, 黑白芯片尺寸:1″像素大小:3.45 x 3.45 μm分辨率:4112 x 2176 pixelsROI控制:Yes帧数:42 fps at 4112 x 2176位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 15μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:72.7 dB满阱容量:~10,500 e-相对响应率:63% @ 530 nm peak color, 67% @ 560nm peak mono读出噪声:~2.41e-暗电流噪声:1.3 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。产品亮点:全局快门CMOSCMOS传感器具有类似CCD的性能,并提高了帧速率P-Iris连接器,用于支持精确的光圈镜头控制高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍)高动态范围,高速,低读取噪声?2e-无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像容USB3 Vision兼Windows和Linux SDKLumenera Lt945R 890万像素CMOS相机
  • Lumenera发布Lumenera Lt545R 500万像素CMOS相机新品
    Lt545RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt545R相机采用SONY的高性能全局快门CMOS IMX250传感器,以最佳的图像质量和非常快的帧速率输出图像。Lt545R从SONY Pregius® 传感器提供最快的全分辨率图像,加上Teledyne Lumenera久经考验和可靠的USB 3.1 Gen1技术。可以使用硬件或软件触发来同步图像捕获。FPGA支持的性能,以及用于帧缓冲的板载存储器,即使在最苛刻的机器视觉系统中也能确保可靠的图像传输。Lt545R相机产品亮点彩色或黑白SONY IMX250 CMOS 500万像素全局电子快门传感器2/3“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS® 全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt545R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用运动捕捉Motion Capture人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System自动驾驶车辆Autonomous Self-driving Vehicles超快3D扫描Ultra-fast 3D Scanning眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging粒子图像测速Particle Image Velocity Measurement工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt545RM 500万像素黑白相机Lt545RC 500万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX250, 彩色,黑白芯片尺寸:2/3”像素大小:3.45 x 3.45 μm分辨率:2464 x 2056 pixelsROI控制:Yes帧数:75 fps at 2464 x 2056位数:8 bit or 12 bit曝光时间:25μs to 71.6m (snapshot) 14μs to 9.6s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:73 dB满阱容量:~10,800 e-相对响应率:63%@ 530nm peak color, 69%@ 540nm peak mono读出噪声:~2.36e-暗电流噪声:1.5 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。 产品亮点: 全局快门CMOS CMOS传感器具有类似CCD的性能,并提高了帧速率 P-Iris连接器,用于支持精确的光圈镜头控制 高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍) 高动态范围,高速,低读取噪声?2e- 无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像 容USB3 Vision兼 Windows和Linux SDK Lumenera Lt545R 500万像素CMOS相机
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
  • Lumenera发布Lumenera INFINITY5-3 320万像素CMOS显微相机新品
    INFINITY5-3320万像素全局快门CMOS显微相机高性能显微相机,适用于各种应用。具有双输出至HDMI和USB 3Teledyne Lumenera的INFINITY5-3是一款高品质的320万像素显微相机,可在高分辨率下提供高速度。 INFINITY5-3基于可与sCMOS技术相媲美的Sony® Pregius™ 全局快门CMOS传感器。 INFINITY5-3可在高达每秒120帧的高帧速率下快速聚焦,可在各种应用中使用。INFINITY5-3的1/1.8英寸传感器格式可容纳2064 x 1544分辨率,像素为3.45微米。 HDMI接口允许INFINITY5-3同时输出到计算机和HDMI电视或显示器,以用于知识共享至关重要的应用。在计算机和HDMI显示器上同时实时查看通过直接连接到HDMI显示器来操作相机,或通过USB 3将相机连接到PC或Mac进行图像预览和拍摄。无论是否连接计算机,都可使用轻触式响应按钮控制相机。随时准备好INFINITY5-3随时可以使用电缆(USB和HDMI),电源和INFINITY CAPTURE软件满足常规成像需求,包括相机设置调整,实时预览,图像拍摄和视频剪辑。 INFINITY5-3还提供与MetaMorph和Micro-Manager显微软件插件,MatLab系统工程软件,LabVIEW分析软件以及TWAIN和DirectShow接口的第三方互操作性。准确的颜色Teledyne Lumenera的专业算法可确保准确的色彩再现,从而使显示器上的样本预览与显微镜目镜中的视图相匹配。保证质量Teledyne Lumenera为所有显微相机提供行业领先的四年保修。产品亮点Sony Pregius全局快门传感器技术彩色或黑白IMX252全局快门CMOS传感器,1/1.8″光学格式,使用3.45 x3.45μm像素提供2064 x 1544分辨率8位全分辨率时帧速率达120 fps双输出至USB 3和HDMI兼容显示器直观的相机按钮,用于电源,白平衡和图像拍摄可选的8或12位像素数据高速USB 3.1 Gen 1接口,可实现最快的图像传输和简化的连接。支持USB 2.0软件与Windows 10,Windows 8.1,Windows 7,MAC OS X 10.13,32和64位操作系统兼容支持第三方拍摄和分析应用软件:MetaMorph和Micro-Manager推荐的C-mount耦合器:0.5x 或 0.63x推荐的应用明场/暗场/相差/微分干涉相差DIC(Bright Field/Dark Field/Phase Contrast/Differential Interference Contrast)绿色荧光蛋白GFP/荧光原位杂交FISH/近红外NIR/荧光共振能量转移FRET(Green Fluorescent Protein/Fluorescence In Situ Hybridization/Near Infrared/Fluorescence Resonance Energy Transfer)活细胞成像 (Live Cell Imaging)细胞计数 (Cell Counting)电生理学(Electrophysiology)凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)眼底成像 (Fundus Imaging)显微测量 (Microscopic Measurment)半导体检测 (Semiconductor Inspection)组织学/病理学/肿瘤学 (Histology/Pathology/Oncology)金相学/材料学/地质学 (Metallography/Materials Science/Geology)文档编制和归档 (Documentation and Archiving)包装盒中包含INFINITY5-3 320万像素数字显微相机配备3米USB 3电缆LuINFLTSW-CD – 带有INFINITY CAPTURE软件的CD,TWAIN驱动程序和文档La050315 – 电源,5VDC,15W,3A,国际标准La2030HD – 3米HDMI电缆订购选项INFINITY5-3C -320万像素CMOS彩色USB 3.1 Gen 1相机INFINITY5-3M -320万像素CMOS黑白USB 3.1 Gen 1相机LuIAP-2 – INFINITY高级功能包2:包含USB密钥,用于额外的INFINITY ANALYZE许可证+高级功能模块,5年总保修,1次更换产品La050315 – 电源,5VDC,15W,3A,国际标准La2000PAFL – 带引线的GPIO电缆La2030HD – 3米HDMI电缆技术规格图像传感器:SONY IMX252 1/1.8“ CMOS 彩色或黑白芯片尺寸:对角线8.9mm像素大小:3.45 x 3.45 μm分辨率:2064 x 1544 pixelsROI控制:支持帧率:1080P60 (~120 fps at full resolution) in 8-bit位深:8 bit 或12 bit像素合并:2 x 2 for mono增益:1~16x曝光时间:14 μs to 11.9s (video), 38 μs to 59.5min (snapshot)曝光:自动、手动可选白平衡:自动、手动可选灵敏度:Mono: 4.8 DN/(nJ/cm2), Color: 4.4 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:~73dB满井容量:~10,775 e-量子效率:60% @ 530 nm (color), 63% @ 530 nm (mono)读出噪声:~2.35e-暗电流噪声:1.0 e-/s (at 22 oC ambient, 35 oC internal camera)外型尺寸:97.8 x 69.8 x 50.8 mm电源要求:External 5 V DC, 1.2 A, power supply (included)功耗:~4 W工作温度:0°C to +50°C工作湿度:5% – 95%, Non-condensing接口:USB 3.1和HDMI镜头接口:可调节的C-Mount创新点:Lumenera向其显微镜相机系列发布了新的高性能INFINITY5系列 高性能显微镜相机,适用于广泛的应用–具有HDMI和USB3双输出 高性能数字相机和定制影像解决方案的领先制造商和开发商Lumenera Corporation高兴地宣布发布新的Lumenera INFINITY5系列。这些高性能的全局快门CMOS显微镜相机现在提供3.2和5.1兆像素分辨率的彩色和单色版本。 Lumenera总裁Huw Leahy表示:“新的Lumenera INFINITY5系列显微相机延续了客户对我们品牌期望的高质量和高性能。” “这些相机可提供高分辨率和高速度,使其能够在各种应用中运行,并使INFINITY5系列成为几乎任何实验室或研究机构的多功能选择。” INFINITY5系列基于可与sCMOS技术匹敌的Sony® Pregius™ 全局快门CMOS传感器。 INFINITY5-3相机可以以120帧/秒,INFINITY5-5相机可以高达75帧/秒的高帧速率进行快速对焦,因此可以在各种应用中使用。 INFINITY5系列相机配备了HDMI和USB 3的双路输出,允许INFINITY5系列同时连接到计算机和HDMI TV或显示器,以进行知识共享至关重要的应用。相机面板上的软触摸按钮可在连接或不连接计算机的情况下轻松控制相机。 INFINITY5系列相机可随时与INFINITY CAPTURE软件配合使用,满足常规成像需求,包括相机设置调整,实时预览,图像捕获和视频剪辑。 INFINITY5系列还提供了与MetaMorph® 和Micro-Manager显微软件的第三方互操作性,并且在不久的将来还会有其他互操作性。 Lumenera INFINITY5-3 320万像素CMOS显微相机
  • Lumenera发布Lumenera INFINITY5-5 510万像素CMOS显微相机新品
    INFINITY5-5510万像素全局快门CMOS显微相机高性能显微相机,适用于各种应用 – 具有双输出至HDMI和USB 3Teledyne Lumenera的INFINITY5-5是一款高品质的510万像素显微相机,可在高分辨率下提供高速度。 INFINITY5-5基于可与sCMOS技术相媲美的Sony® Pregius™ 全局快门CMOS传感器。 INFINITY5-5可在高达每秒75帧的高帧速率下快速聚焦,可在各种应用中使用。INFINITY5-5的2/3英寸传感器格式可容纳2464 x 2056分辨率,像素为3.45微米。 HDMI接口允许INFINITY5-5同时输出到计算机和HDMI电视或显示器,以用于知识共享至关重要的应用。在计算机和HDMI显示器上同时实时查看通过直接连接到HDMI显示器来操作相机,或通过USB 3将相机连接到PC或Mac进行图像预览和拍摄。无论是否连接计算机,都可使用轻触式响应按钮控制相机。随时准备好INFINITY5-5随时可以使用电缆(USB和HDMI),电源和INFINITY CAPTURE软件满足常规成像需求,包括相机设置调整,实时预览,图像拍摄和视频剪辑。 INFINITY5-5还提供与MetaMorph和Micro-Manager显微软件,MatLab系统工程软件,LabVIEW分析软件以及TWAIN和DirectShow接口的第三方互操作性。准确的颜色Teledyne Lumenera的专业算法可确保准确的色彩再现,从而使显示器上的样本预览与显微镜目镜中的视图相匹配。保证质量Teledyne Lumenera为所有显微相机提供行业领先的四年保修。产品亮点Sony Pregius全局快门传感器技术彩色或黑白IMX250全局快门CMOS传感器,2/3“光学格式,使用3.45 x3.45μm像素提供2464 x 2056分辨率8位全分辨率时帧速率达75fps双输出至USB 3和HDMI兼容显示器直观的相机按钮,用于电源,白平衡和图像拍摄可选的8或12位像素数据高速USB 3.1 Gen 1接口,可实现最快的图像传输和简化的连接。支持USB 2.0软件与Windows 10,Windows 8.1,Windows 7,MAC OS X 10.13,32和64位操作系统兼容支持第三方拍摄和分析应用软件:MetaMorph和Micro-Manager推荐的C-mount耦合器:0.6x 或 0.7x推荐的应用明场/暗场/相差/微分干涉相差DIC(Bright Field/Dark Field/Phase Contrast/Differential Interference Contrast)绿色荧光蛋白GFP/荧光原位杂交FISH/近红外NIR/荧光共振能量转移FRET(Green Fluorescent Protein/Fluorescence In Situ Hybridization/Near Infrared/Fluorescence Resonance Energy Transfer)活细胞成像 (Live Cell Imaging)细胞计数 (Cell Counting)电生理学(Electrophysiology)凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)眼底成像 (Fundus Imaging)显微测量 (Microscopic Measurment)半导体检测 (Semiconductor Inspection)组织学/病理学/肿瘤学 (Histology/Pathology/Oncology)金相学/材料学/地质学 (Metallography/Materials Science/Geology)文档编制和归档 (Documentation and Archiving)包装盒中包含INFINITY5-5 510万像素数字显微相机配备3米USB 3电缆LuINFLTSW-CD – 带有INFINITY CAPTURE软件的CD,TWAIN驱动程序和文档La050315 – 电源,5VDC,15W,3A,国际标准La2030HD – 3米HDMI电缆订购选项INFINITY5-5C -510万像素CMOS彩色USB 3.1 Gen 1相机INFINITY5-5M -510万像素CMOS黑白USB 3.1 Gen 1相机LuIAP-2 – INFINITY高级功能包2:包含USB密钥,用于额外的INFINITY ANALYZE许可证+高级功能模块,5年总保修,1次更换产品La050315 – 电源,5VDC,15W,3A,国际标准La2000PAFL – 带引线的GPIO电缆La2030HD – 3米HDMI电缆技术规格图像传感器:SONY IMX250 2/3“ CMOS 彩色或黑白芯片尺寸:对角线11.1mm像素大小:3.45 x 3.45 μm分辨率:2464 x 2056 pixelsROI控制:支持帧率:1080P60 (~75fps at full resolution) in 8-bit位深:8 bit 或12 bit像素合并:2 x 2 for mono增益:1~16x曝光时间:14 μs to 14 (video), 42μs to 59.5min (snapshot)曝光:自动、手动可选白平衡:自动、手动可选灵敏度:Mono: 4.9 DN/(nJ/cm2), Color: 4.3DN/(nJ/cm2)(Global and channel gains at unity)动态范围:~72dB满井容量:~10,500 e-量子效率:59% @ 530 nm (color), 63% @ 530 nm (mono)读出噪声:~2.30e-暗电流噪声:1.0 e-/s (at 22 oC ambient, 35 oC internal camera)外型尺寸:97.8 x 69.8 x 50.8 mm电源要求:External 5 V DC, 1.2 A, power supply (included)功耗:~4 W工作温度:0°C to +50°C工作湿度:5% – 95%, Non-condensing接口:USB 3.1和HDMI镜头接口:可调节的C-Mount创新点:Lumenera向其显微镜相机系列发布了新的高性能INFINITY5系列 高性能显微镜相机,适用于广泛的应用–具有HDMI和USB3双输出 高性能数字相机和定制影像解决方案的领先制造商和开发商Lumenera Corporation高兴地宣布发布新的Lumenera INFINITY5系列。这些高性能的全局快门CMOS显微镜相机现在提供3.2和5.1兆像素分辨率的彩色和单色版本。 Lumenera总裁Huw Leahy表示:“新的Lumenera INFINITY5系列显微相机延续了客户对我们品牌期望的高质量和高性能。” “这些相机可提供高分辨率和高速度,使其能够在各种应用中运行,并使INFINITY5系列成为几乎任何实验室或研究机构的多功能选择。” INFINITY5系列基于可与sCMOS技术匹敌的Sony® Pregius™ 全局快门CMOS传感器。 INFINITY5-3相机可以以120帧/秒,INFINITY5-5相机可以高达75帧/秒的高帧速率进行快速对焦,因此可以在各种应用中使用。 INFINITY5系列相机配备了HDMI和USB 3的双路输出,允许INFINITY5系列同时连接到计算机和HDMI TV或显示器,以进行知识共享至关重要的应用。相机面板上的软触摸按钮可在连接或不连接计算机的情况下轻松控制相机。 INFINITY5系列相机可随时与INFINITY CAPTURE软件配合使用,满足常规成像需求,包括相机设置调整,实时预览,图像捕获和视频剪辑。 INFINITY5系列还提供了与MetaMorph® 和Micro-Manager显微软件的第三方互操作性,并且在不久的将来还会有其他互操作性。 Lumenera INFINITY5-5 510万像素CMOS显微相机
  • 荣获红点奖!用户需求牵引艾睿130万像素红外热成像仪持续创新
    荣获红点奖!用户需求牵引艾睿130万像素红外热成像仪持续创新经过激烈角逐、层层选拔,“设计界奥斯卡”2023德国红点奖获奖名单于近日揭晓。艾睿光电130万像素红外热成像仪瑶光S1280,凭借独特创意与高品质设计,在高水准参赛作品的角逐中脱颖而出,荣获2023年红点奖产品设计大奖。 一直以来,艾睿光电对产品设计、质量控制都有极为苛刻的要求。“从S1280红外热成像仪本次获奖可以看出,工业产品的设计之美已延伸至众多场景,也展现了艾睿光电致力于提供卓越设计以及坚持创新的理念。“艾睿光电S1280红外热成像仪产品经理说道,“本次获奖,证明我们坚持以用户需求为牵引的创新之路是对的!”130万像素红外热成像仪瑶光S1280探索极致红外世界 ①旗舰级红外热成像仪瑶光 S1280,搭配自研InfiRay® 中国“芯”氧化钒红外探测器,是艾睿光电首款 1280×1024 高性能便携红外热成像仪。②S1280采用 Matrix IV 智能图像算法和 AItemp精准测温算法,可提供更清晰的红外图像和更准的测温精度。③深度定制操作系统、智能化应用与辅助功能、5.5 寸可调整角度显示大屏与可旋转手柄,带来更符合人体工程学的体验。贴心升级,工作更轻松①S1280红外热成像仪支持WIFI无线投屏辐射视频流+FTP/HTTP覆盖PC和移动端,用户可以通过多种方式传输数据。②5.5寸可触摸翻转屏+1920×1080 OLED取景器,用户现场观测可以看得更清晰。③支持OTA升级、QC3.0/PD快充协议、GPS,简化用户操作难度,提升用户使用体验。④镜头重心靠近设备重心,不翻转镜头,只翻转屏幕。屏幕翻转过程中重心稳定,手持舒适。⑤经典单反相机造型,固定镜头设计,可靠性更高,人体工程学更佳。作为非制冷红外芯片领军者,在求新探索的道路上,艾睿光电坚持以用户需求为牵引,直击用户痛点。不断研发符合用户需求的红外热成像仪,引领工业用户操作新体验!
  • 为什么国外生产的接触角测量仪像素跟帧率都高
    为什么国外生产的接触角测量仪像素跟帧率都很高问:为什么国外生产的接触角测量仪,像素跟帧率都很高。答:市场需求和竞争压力:国外市场对高像素和高 帧率的接触角测量仪有较高的需求。制造商为了满足市场 需求和保持竞争力,不断努力提升产品的性能和技术水平,以提供更好的用户体验。需要注意的是,像素和帧率只是评估接触角测量仪性 能的其中两个方面,选择测量仪时还需要综合考虑其他因 素,如测量精度、自动化程度、样品适配性等。最适合的 测量仪取决于实际需求和预算,并非仅仅取决于像素和帧率的高低。 问:接触角测量仪如何进行校验?答:通过专用的校正块,对接触角测量仪进行校准。问:接触角测量仪的分辨率有几种?答:常见的分辨如下:640*480,1280*1024,1440*1080,1920*1200,2048*1536,2448*2048,3088*2064,4024*3036,5496*3672。 问:接触角常见的相机帧率有哪些?答:20帧、36帧、60帧、80帧、200帧、400帧、500帧、800帧、2000帧、3000帧、5000帧等。 问:高校测试文献上要求的水滴弹跳行为分析需要多少帧以上?答:不低于1800帧/s。 问:达因值能通过接触角测量出来嘛?答 : 按 照 1dyn/cm = 1mN/ m ,可以知道达因值跟 表面能的数值是对等的,达因值是使用达因笔在固体表面 进行划过,然后判断固体的表面自由能是低于还是高于用 于测试达因笔数值!不同数值的达因笔,其实对应的是不同数值的表面张力液体。达因笔测试时需要注意:(1)达因笔在固体表面划过时,是达因笔墨水在固体 表面润湿的过程,因此达因值只能是接近固体的表面自由能数值。(2)人为判断,达因笔的润湿情况,除了表面自由能 的影响,还跟固体的表面形貌结构有关系,所以达因值存在一定的人为因素影响。(3)不同品牌的达因笔,以及达因笔存放时间长短、环境,也都会对达因笔的效果造成影响。表面能,达因值, 接触角都是评估固体表面润湿性能的方法,相对来说,接 触角测量仪会更准确,表面自由能会次之,达因笔则快速粗略判断。
  • 索尼推出新型车载CMOS图像传感器,有效像素1742万
    9月12日,日本厚木-索尼半导体解决方案公司(下称“SSS”)宣布推出用于车载摄像头的新型CMOS图像传感器IMX735,像素水平实现突破,高达1742万有效像素。据悉,自动驾驶为了实现系统自主地进行驾驶操作,需要提供覆盖车辆周围360度环境的先进、高精度的检测和识别性能。因此,对于可以帮助实现这一点并支持开发出更先进的车载摄像系统的图像传感器的需求十分可观。新传感器实现的成像示例(1742万有效像素)新传感器实现的放大图像(1742万有效像素)SSS其他产品的放大图像(839万有效像素)该新型传感器具有以下几个主要特点。首先,该新型传感器的有效像素高达1742万像素,像素水平实现突破,可以高清捕捉拍摄物体,识别更远范围的物体,从而更好地支持检测路况、车辆、行人和其他物体。在驾驶过程中及早地检测到远处的物体有助于提高自动驾驶系统的安全性。扫描方向示意图其次,该传感器采用的读出方法是水平方向逐列输出的读出方式,更容易与同样采用水平扫描方法的机械扫描激光雷达同步。这意味着,搭载该产品的车载摄像头输出的信息可以更容易地与激光雷达收集到的信息融合。这将从整体上提高自动驾驶系统的检测和识别能力。同时,该产品采用自研的像素结构和特殊的曝光方式提高了饱和照度范围,同时采用HDR和LED闪烁抑制功能,也能实现106dB的宽广的动态范围。(使用动态范围优先模式时,动态范围可实现高达130dB)。这种设计还有助于减少拍摄移动物体时产生的运动伪影。该产品还可支持网络安全功能,例如通过公钥算法进行摄像头验证,确认CMOS图像传感器的真实性和进行图像验证,从而检测获取的图像是否被篡改,以及进行通信验证,检测控制通信是否被篡改。
  • 低噪声、高分辨、高帧速,滨松推出世界首台光子定量科研级相机
    滨松公司利用独有的设计技术,并采用以最新制造技术新研发出的2D CMOS图像传感器,成功研制出拥有0.27e rms的极致低噪声,且具备940万像素(4.6 μm像素尺寸)的超高分辨科研级相机“ORCAⓇ-Quest qCMOSTM C15550-20UP”。由于光电信号转换时的噪声是决定相机检测极限的重要因素,我们通过将噪声抑制到低于光的最小单位光子(光粒),在世界上首次实现了光子数的准确测量,并对所测到的2D光子数进行成像。这将使我们能够更准确地观察离子和中性原子等的量子状态,有望促进以量子计算机(*)等其他量子技术的研究和开发。本产品将于2021年5月20日(星期四)正式上市。※量子计算机:作为量子的离子和中性原子等可处于“即是1又是0”的重叠状态。利用这种特性可以进行并行处理,是一种有望解决目前在时间和规模维度上无法解决问题的计算机。ORCAⓇ-Quest qCMOSTM 相机 C15550-20UP产品概要该产品采用了新研发的高性能2D CMOS图像传感器,是世界上首台实现光子定量的科研级相机。 滨松公司一直从事研发,生产和销售用于微弱荧光,发光现象成像应用的低噪声科研级相机。这次利用滨松独有的设计技术,优化像素结构的设计,并利用先进的精密半导体制造技术,开发了世界首个具有极致低噪声,且高像素数,高分辨率,并可实现高速读取的2D CMOS图像传感器。此外,利用长年积累的低噪声相机电路设计技术,高精度探测器冷却技术,独有的信号处理技术,有效抑制了2D CMOS图像传感器各像素出现的不均匀现象。由此,我们成功地开发了世界首台可实现光子定量,且可获得高可靠性测定结果,有助于推动科学的进步以及未知领域研发的科研级相机。本产品通过对来自离子,中性原子等的光量进行定量成像,可以准确观察其量子状态,有望加速量子计算机为代表的各种量子技术的研究和开发。此外,由于它可以在宽广视场中对极弱的光现象进行成像,也预计有望应用于天文和生命科学领域。今后,我们将面向国内外大学和企业的研究人员进行销售,并在多个领域中开拓2D光子数识别测量的新应用。发射荧光的中性原子(左)和猎户座大星云(右)的成像图像产品特点1、采用新研发的高性能2D CMOS图像传感器利用滨松独有的设计技术和最新的制造技术,成功研发了世界首个具有极致低噪声的2D CMOS图像传感器。此外,采用沟槽结构,将2D CMOS图像传感器的像素一个一个地隔开,减少像素之间的串扰,且通过背照模式同时实现了高量子效率和高分辨率。再有,在具有940万像素的高像素的同时,其信号的读取速度从原来的约27百万像素每秒到约47百万像素每秒,提高了约1.7倍。2、世界上首台实现2D光子数识别测量的相机利用滨松长年积累的相机低噪声电路设计技术,高精度传感器冷却技术和独有的信号处理技术,通过抑制每个像素的电特性变动,最大限度发挥了2D CMOS图像传感器的性能。 以上种种,我们成功研发了世界首台用于2D光子数识别测量,实现噪音为传统产品约三分之一,仅0.27e rms的极致低噪声科研级相机。研发背景滨松公司自1980年以来一直研发,生产并销售低噪声的科研级相机。目前为生命科学等学术领域以及工厂自动化领域等需要对极弱荧光和发光现象进行成像技术的各种场景提供产品。为满足市场对进一步降低噪声的要求,我们致力研发具备极致的低噪声,并实现了2D光子数字计测的科研级相机。主要规格
  • 低噪声、高分辨、高帧速——记优秀新品滨松ORCA-Quest qCMOS相机
    为了将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户,同时,鼓励各仪器厂商积极创新、推出满足中国用户需求的仪器新品,仪器信息网自2006年发起“优秀新品”评选活动,至今已成功举办十六届。发展至今,该奖项也成为了国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。2022年度“优秀新品”评选活动正在进行中,2022下半年入围名单已公布(详情链接)。值此之际,一起再来回顾下往届年度优秀新品奖获得者们吧! 本期带您回顾的是2021年度“优秀新品”获奖产品:滨松 C15550-20UP ORCA-Quest qCMOS相机。2021年度共有711台仪器参与“优秀新品”奖项评选,在“技术评审委员会主席团”的监督下,经仪器信息网“专业编辑团”初审、“网络评审团”评审、“技术评审委员会”终审,确定12台仪器获奖。其中,滨松 C15550-20UP ORCA-Quest qCMOS相机脱颖而出。滨松 C15550-20UP ORCA-Quest qCMOS相机介绍:C15550-20UP是一款采用qCMOS图像传感器的科研相机,能够使用新开发的专用技术解析光电子的数量,这些特点使得其在定量成像方面有着无可比拟的效果,可应用于离子阱、量子点成像、冷原子、单分子测幅成像等多个领域。ORCA-Quest qCMOS相机特点如下:(1)极低的噪音表现ORCA-Quest qCMOS相机已针对传感器的各个方面(从结构到电子器件)进行了设计和优化,其读出噪声已经最低可达0.27个电子。(2)实现光子数解析(PNR)输出 ORCA-Quest qCMOS相机使用先进的摄像头技术对光电子进行计数,并提供0.27电子rms的超低读出噪声。随着温度和时间变化,其性能依然保持稳定,并且对每个像素值进行单独校准和实时校正。(3)采用背照式结构,具有高分辨率 ORCA-Quest qCMOS相机的传感器具有背照式结构,可实现高量子效率,并且通过沟槽式结构,每个沟槽内只放一个像素,从而来减少串扰。(4)实现大像素和高速读出 ORCA-Quest qCMOS相机不仅可以获取PC级图像,还可以获取9.4兆像素的光子数解析图像。此外,其能够以约47兆像素/秒的速度实现光子数解析成像。滨松科学仪器及学术领域负责人雷震发表获奖感言:
  • 美设计出太赫兹多像素光波调制器
    据《每日科学》网站2009年5月31日报道,美国科学家首次设计出一款多像素太赫兹频率(THz)光波调制器,将来有望广泛应用于生物光谱学和半导体结构成像研究。   太赫兹辐射是指频率从0.37THz到10THz,波长介于无线波中的毫米波与红外线之间的电磁辐射区域,所产生的T射线在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。对太赫兹辐射的正式研究,可以追溯到很多年前,但直到1990年高效生成和检测辐射的方法成为可能后,该研究才变得越来越普遍。   美国莱斯大学物理学家丹尼尔米特尔曼和他在桑迪亚和洛斯阿拉莫斯国家实验室的同事,使用一种特异材料来控制太赫兹波束的流出。之所以称之为特异材料,是因为它包含数组微观分裂的金属环,这些圆环可由附近的电极控制。通过调节圆环的电容来调整辐射水平。也就是说,赫兹光(即T射线)可以通过调制器进行转换,由调制器决定光线能否通过。该调制器由16个像素组成,呈4×4阵列。   米特尔曼称,第一次对太赫兹波束进行电控非常重要。要使光束能够穿过整个平面,而不呈现线性爆裂状态,进而促成光波成像,这是第一步。调制器的切换速度大约为1兆赫,与现今数据传输的最快速率相比并不算快。但他认为,对许多T射线成像任务来说,高带宽并不是必需的。目前他们正在设计一个较大的32×32像素阵。   该研究成果将在2009年激光与电学/国际量子电子学会议(CLEO/IQEC)上提出。该会议将于5月31日至6月5日在美国巴尔的摩召开。
  • 超分辨X光单像素成像研究获进展
    p   X光透射成像/CT作为非侵入式的诊断方式,是目前医学领域最重要的临床检测手段。但由于电离效应X射线对于蛋白质、细胞等会造成相当程度的辐射损伤,据国际放射学会研究报告,每年X射线的医学诊断就会导致相当数量的癌症和白血病患者,因此如何降低诊断所需的剂量至关重要。而自1895年伦琴发现X射线以来,成像的方法并没有根本上的改变,都是采用直接投影到面探测器,通过累计带有物体信息的光子来展现出一定灰度分布的技术,因此这种方式的成像效率很低,不仅难以大幅度地降低成像所需剂量,而且分辨率受光源尺寸及探测设备分辨力的限制,成为制约传统成像方法的两大相互牵制的瓶颈问题。 /p p   针对辐射剂量的瓶颈问题,2018年中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员吴令安和陈黎明合作,首次利用随机调制光强度的简单方法实现了台面式X光“鬼”成像,这种间接的成像方式是基于光场的二阶关联,成像质量取决于探测信号的涨落而非强度的绝对值。以此为基础,团队完成了单光子量级的超低剂量成像,成果发表在Optica 以后受到了广泛关注,被Science 在深度栏目中报道。在Science的报道中,同领域的专家给予了高度评价:“如果应用于医学成像领域,这将是一项革命性的进步”,与此同时也对该工作提出希望:“提高成像的分辨率与质量,以适应医学成像的要求”。基于上述实际需求,物理所研究员吴令安与现上海交通大学教授陈黎明再次合作,开启了解决成像分辨率瓶颈问题的探索。 /p p   近期研究团队中的博士生何雨航和张艾昕(共同一作),利用自主研制的Hadamard金掩模振幅调制板,首次实现了基于真正单像素探测器的非相干X光鬼成像。相比于随机调制的方案,该方法利用了Hadamard矩阵的正交完备特性,因此即使在稀疏采样下也能重构出较好的图像。在此基础上,通过引入压缩感知以及卷积神经网络对原有算法进行了升级,最终利用37 μm源尺寸的X光源,在仅18.75%的采样率下就得到了10 μm分辨率的成像结果,实现了突破源尺寸限制的超分辨成像,足以对癌变组织进行直接判断,达到了临床医学精细成像的分辨率要求。在计算鬼成像的框架下,高性能的算法以及调制板的精细结构保证了超分辨下较好的图像质量,而更低的采样率意味着更短的曝光时间以及更低的剂量,因此有望利用该技术进一步降低剂量。整个实验布局简单,使用方便,单像素探测器的应用也可极大地降低成本。另一方面,应用该方法极大地降低了对放射源的空间相干性和强度的要求,可以大大推进X光鬼成像的实用化进程。 /p p   以上研究成果已在线发表于APL Photonics 5, 056102 (2020)。该工作得到科技部(2017YFA0403301、2017YFB0503301、2018YFB0504302)、国家自然科学基金(11721404、11991073、61975229、61805006、11805266)、中科院(XDB17030500、XDB16010200)有关项目基金的支持。 /p p    img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/81375799-4193-437e-ac4a-8bf796479ffa.jpg" title=" 超分辨X光单像素成像.jpg" alt=" 超分辨X光单像素成像.jpg" / /p p br/ /p p   (a) 物体的3D示意图 (b) 金掩模板扫描电镜图像 (c) 样品的X光透射成像图,曝光时间为5s (d) 经过4096次曝光后利用TVAL3算法重构的图像,对比度/噪声比(CNR)为0.27 (e) 经过768次曝光后利用CH-MWCNN算法重构的图像,CNR为2.65。 /p p   来源:中国科学院物理研究所、中科院之声、光明网 /p p    /p p dir=" ltr" br/ /p
  • 滨松推出高信噪比科研级sCMOS相机ORCA-Fusion
    2018年11月1日,滨松全球同步发布了一款最新的高速、高灵敏、定量sCMOS相机——ORCA-Fusion。冠以了“ORCA”的名号,当然也继承了家族的优良“基因”。承袭前辈ORCA-Flash 4.0,ORCA-Fusion拥有着一如既往的高帧速: 100帧/秒 @470万像素 89.1帧/秒 @530万像素 此外,最为突出的,则是此次在ORCA-Fusion上得以大幅提升的信噪比: 最低0.7e(rms)读出噪声 QE/读出噪声比值高至1.14如何炼成优秀的图像质量? 图像质量是成像中的一个核心关注点,可以通过两个概念予以评价——分辨率和信噪比。ORCA-Fusion具有530万像素(2304x2304),配合6.5um的像素尺寸,可以提供非常出色的分辨率。而信噪比方面要怎样做到提升呢? 关于相机成像的信噪比,主要与4个因素相关: (1)样品信号的强度和显微镜物镜等光学系统对信号的收集能力; (2)曝光时间,一般而言,延长曝光时间会带来信噪比的上升,但会牺牲帧速; (3)量子效率; (4)读出噪声。从相机的角度,量子效率与读出噪声分别对应了信号与噪声,其比值越高,信噪比也就越高。完美的定量相机(Quantitative Camera)一直是滨松孜孜不倦追求的方向,而信噪比的不断提升则是其中的核心——在保证高量子效率的同时,ORCA-Fusion在噪声控制上精耕细作,将读出噪声降低至0.7e rms/0.6e median这样的水平,使得QE/读出噪声比值提升至1.33。这也使得ORCA-Fusion一经面世,就超过之前所有的sCMOS相机前辈,一跃领先。而不同于许多同类产品降低帧速以保障信噪比的做法,滨松不仅做到了行业巅峰的信噪比,在速度上也绝不妥协,ORCA-Fusion的像素读出频率高达470MHz,在2304x2048(470万像素)这样的分辨率下能够做到100帧/秒,选择合适大小的ROI甚至能将帧速提升至41000帧/秒。 以下为新鲜出炉的样片:继续定义“高帧速” 除了信噪比,帧速在许多成像应用(如lightsheet)中也至关重要。上文提到了,ORCA-Fusion作为滨松系列科研相机ORCA家族的新成员,继承了优良“基因”,维持令业界欣羡的高帧速特性。 像素读出速度(即全幅帧速 x 像素数目)高达470MHz,相对CCD相机时代常见的20MHz自然不能同日而语,即使是比主流高端sCMOS相机的420MHz(100帧/秒 @ 2048x2048)也提升了12%。 ORCA-Fusion的全幅帧速为89.1帧/秒 @ 2304x2304;选取合适的ROI(如2304x2048)时能够获得更高的帧速(如100帧/秒)。另外由于Fusion本身具有的高速性能,彻底摒弃了传统sCMOS从两边读出的方式,改掉了ROI开窗位置不同帧速就不同的老毛病,率先做到了“从一而终”的读出方式。一方面,实现了任意位置取相同大小的ROI,帧速均相同;另一方面,大大提高了Lightsheet模式的读出速度。 高分辨率,看清更深处的细节 以上这张图就出自ORCA-fusion,在分辨率提升至2304×2304(530万像素)后,图像变得更加清晰,细节也得以更好的体现。 我们再来看看下面的图片,对同样视野大小拍摄的荧光小球,放大后可以看到更突出的细节,比市面上的背照式sCMOS相机清晰度高出一倍。此外,ORCA-fusion还在一些细节上进行了完善。如为更加方便支撑结构的使用和设计,整体机身的重量降至了1.2kg。
  • 《纳米快报》:新型材料可研制纸张厚度的相机
    研究生雷斯东采用铜铟联硒化合物薄片研制了一个二维三像素相机,声称未来相机可以制造得像纸张一样薄。   腾讯科学讯 据国外媒体报道,目前,美国德克萨斯州莱斯大学科学家最新研制一种超薄成像设备,可使未来相机变得像纸张一样薄。他们采用仅原子厚度的铜铟联硒化合物(CIS)研制电荷耦合器,这是相机的一个重要组成部分。   该研究报告发表在近期出版的《纳米快报》上,这种二维三像素相机设备对光线探测具有独特的优势。   许多现代数码相机的图像传感器叫做电荷耦合器,这种手指甲盖大小的硅芯片包含着数百万个光敏二极管,它能够捕获像素进行拍摄。伴随着电荷耦合器尺寸逐渐缩小,未来可研制体积更小的相机。参与这项研究的研究生雷斯东(音译)说:&ldquo 传统电荷耦合器较厚、较硬,然而铜铟联硒化合物制成的电荷耦合器将超薄、透明、具有一定的弹性,是理想的2D成像设备组成部分。&rdquo   莱斯大学材料科学和纳米工程系资深研究员罗伯特-瓦塔尔(Robert Vajtai)博士称,铜铟联硒化合物对于光线具有较强的敏感性,这是因为捕获的电子消散得非常慢。有许多二维材料可以探测光线,但都不及铜铟联硒化合物如此高效。铜铟联硒化合物比之前我们所见的感光材料有效10倍。   雷斯东认为,未来在医学领域,铜铟联硒化合物可以结合其它2D电子技术应用于生物成像设备,起到实时监控的作用。
  • 新方案 | 沃特世DESI 5μm像素高性能质谱成像方法
    解吸电喷雾电离技术(DESI)现已成为市场上广泛应用的成像技术,可实现更小的像素尺寸和更高的图像分辨率。对单细胞的测定,是现今前沿科学研究的热门方向,使用DESI XS能否进行单细胞的测试呢?今年美国质谱年会(ASMS)上,沃特世展示了如何借助DESI™ XS进行5 μm空间分辨率的成像,从而实现对单细胞层面上的成像。 结论 兼容性与简易性:使用商用DESI XS离子源,无需重大改动即可实现5 μm左右的空间分辨率。高通量:低流量DESI非常稳定,适用于大样本分析(大于20个组织切片)。稳定性强:使用商品化的部件,保证稳定性和数据质量的情况下,进行超过35小时的长时间连续采集。高效率与高质量:在最低300 psi的背压、250 nL/min的流量下,可显著提高图像分辨率。利用HDI(1.8)软件以更高效地进行成像。 方法 使用市售的 DESI 离子源(DESI XS,Waters)分析猪肝、人肾上腺和大鼠脑组织。DESI XS离子源配有高性能喷雾器、加热传输管路(HTL)和μBinary溶剂管理器流体系统(ACQUITY UPLC M-Class BSM)。为进行高分辨率低流量DESI分析,对该系统进行了一些可逆的微小改动:为改善溶剂输送,在溶剂管路中加入了1.7 μm(300 μm x 150 mm)ACQUITY C18色谱柱。 DESI设置如下 溶剂:95:5 MeOH:水 溶剂流速:200-250 nL/min 雾化气体压力:1.35 bar 毛细管电压:0.79-0.85 kV 喷雾头到样品表面的距离: Xevo™ G3 QTof质谱仪采集 负离子和正离子模式,离子源温度为150℃,锥孔电压为80 V,所有其他设置均为默认值。 HDI软件方法设置:使用250 nL/min的低流量设置,先以100 μm像素大小获取初始图像,然后以50 - 5 μm像素大小重新获取选定区域的图像。 研究结果 分辨率高 将溶剂输送流速从典型的每分钟2 μL降低到250 nL,可将喷射束直径从约20-25 μm减小到 图2.HDI 1.8数据驱动显微镜工作流程,A)在模式选项卡中定义并获取低分辨率图像的初始区域。B) 在HDI中处理和检视图像。C) 在分析选项卡中选定感兴趣的区域。D) 将选定区域导入模式选项卡,并以更高分辨率采集。E) 在原始低分辨率图像上处理并显示高分辨率子区域。 兼容性与稳定性强 低流量DESI能在多天采集的多个组织中保持稳定。在标准分析后,可以选定感兴趣的区域进行高分辨率分析。 图3.左图:以50 μm分辨率采集的人类肾上腺癌组织图像。右上图:以5 μm分辨率重新采集的4号组织子区域。右下:Umap/DBscan对所需的5 μm区域进行分割的结果。低流量DESI在高分辨率(10 μm像素大小)下长时间(大于35小时)采集也很稳定。 图4.左图:以10 μm像素尺寸绘制的整个大鼠大脑矢状切面,其扩展部分显示了小脑内部的细节。右图:数据组中与组织最相关20个的单异构离子。 效率与质量兼备 将5 μm像素大小的图像与显微图像中看到的特征进行比较,估计达到的分辨率小于10 μm。图5.A:图4中数据组一小块区域的扩展;B:A的Umap/DBscan分割结果,紫色部分与C中显微图像中的细胞相对应;D:重新采集5 μm处的区域,C中可见的细胞的分辨率有所提高。 后记 解吸电喷雾电离(DESI)质谱技术越来越成熟,应用方向愈加广泛。现阶段来说,已可以朝着挑战单细胞成像的方向发展,如您有希望进行单细胞测试的合作意向,或希望了解更多DESI的应用方向,下载DESI应用文集,可扫描下方二维码告诉我们。 △立即扫码,告诉我们您的需求
  • 飞秒激光照相机可在生物成像等领域广泛应用
    据美国物理学家组织网11月17日报道,美国麻省理工科学家最近研制出一种照相机,能拍摄到来自非正面的目标。这种照相机安装了一个飞秒激光器,当其发出的极短暂光脉冲被某个物体(比如门或镜子)反射后,可在光线返回之前拍摄第二个目标图像,然后利用数学算法将这些像素信息重建,就能获得那些隐蔽景物的图像。   激光照相机由麻省理工教授拉瑞马斯瑞斯卡及其研究小组设计,称为“飞秒瞬间成像系统”(femtosecond transient imaging system)。这种相机能在极短时间内捕获光线,大约是千万亿分之一秒。他解释说,通过不断收集光线,计算每个像素到达照相机的时间和距离,就能按照所处环境生成一种“三维实时图像”。   “这就像不用X射线却有了X射线般的眼睛,”瑞斯卡说,“我们将围绕着目标,而不是通过它。”   这种相机目前仍处于早期研发阶段,研究人员正在探究如何精确合成更复杂的图像。该相机系统将有广泛的应用,比如用于搜救任务,在垮塌或失火建筑中寻找幸存者,也能避免汽车在隐蔽拐角处相撞,在工业上还可用于机械探测以检查隐蔽物体。此外,它和生物医学图像也有相似之处,可让医生用内窥镜观察身体内部被遮住的区域,便携式的内窥镜成像系统再过两年就可能出现。
  • qCMOS vs EMCCD,科研相机迎来“光子定量”新纪元!
    帧速、分辨率、信噪比毋庸置疑,这是科研相机最重要的几项性能,它的发展主线,也始终紧紧围绕着“如何获得更快帧速、更高分辨率以及更优秀的信噪比”来展开。另一方面,光信号究竟有多强?各个像素上究竟收集到了多少光子?相机测得究竟准不准?诸如此类的“定量”需求,也是科研相机应用中一直会被问到的。 5月20日,滨松全球同步发布的ORCA-Quest qCMOS相机,在以上两个问题中都交出了一份突破性的答卷。接下来,工程师将会“掰开了揉碎了”,为大家详解新型定量qCMOS相机的各个“知识点”。鱼与熊掌可以兼得:高帧速、高分辨率以及高信噪比 早期的CCD相机中,像素数目越多(分辨率越高)、帧速越快,相机电路每秒钟需要读出的像素就越多,也就越不容易准确。换句话说,相机的读出速度越快,噪声就越高,继而影响到图像的信噪比和图像质量。针对这个问题,业界给出了两条解决的路子: (1)EMCCD与电子倍增技术当光子在芯片上转换为光电子之后,EMCCD利用电场将这些光电子加速,轰击材料产生更多电子,实现了信号的增益。由于电子倍增过程在数据读出之前,所以信号放大了但读出噪声维持原样——以此大幅提升了图像信噪比。(2)CMOS与极低的读出噪声 sCMOS(包括接下来我们要说的新发布的qCMOS)相机,则走了另外一条技术路线。sCMOS/qCMOS相机直接压制读出噪声——相比之前的CCD相机,sCMOS/qCMOS的读出速度大幅上涨,但读出噪声因为设计工艺的改进却反而下降了。这也是sCMOS在过去十年大行其道的根本原因。 站在2021年的时间关口上,当比较以上两个技术路线的产品,我们发现,CMOS技术路线中的滨松新型ORCA-Quest qCMOS相机,在参数上已经完全超过了EMCCD相机。 按照像素读出计算,ORCA-Quest的读出速度已经高出了EMCCD 1-2个数量级;而在信噪比上,即使在1个光子/像素的信号强度下,qCMOS的表现也已优于EMCCD。量变到质变:低读出噪声与光子定量得到今天这样碾压式的参数,源自于在CMOS势呈井喷的十年间,滨松一直关注更低的读出噪声。从最初Flash 4.0系列sCMOS相机1.4个电子的读出噪声,到Fusion系列sCMOS相机0.7个电子的读出噪声,直至ORCA-Quest qCMOS相机最低0.27个电子。 而当ORCA-Quest相机的读出噪声下降到0.27个电子时,量变终于产生了质变——实现了“光子定量”。 相机成像中,信号中的光子在像素中转化为电子被收集——称之为光电子。光子定量就是通过精确定量光电子的方式得到每个像素所收集到的光子数目。 在光子转换为光电子之后,光电子会在相机芯片中转化为电压/模拟信号。虽然会有一个转换系数存在(例如0.16mV/电子),但是由于读出噪声的原因,当一个像素中有3个光电子时,读出的电压并不一定就是 3e x 0.16mV/e = 0.48mV,而是一个0.48mV左右的一个不确定的电压数值,可能是0.43mV,也可能是0.62mV。 粗略地说,读出噪声越大,这个不确定性就越大。这就意味着,如果读出噪声比较大,当相机芯片中读出0.48mV的时候,对应像素中的光电子可能是3个,也可能是2个,4个,甚至1个,5个。 但如果读出噪声足够小,就不会出现上述情况——当读出0.48mV的时候,我们就能确定对应像素上是3个光电子,而非其他。通过概率理论计算,当RMS读出噪声(Readout noise rms)为0.3e时,这个准确度达到90%以上。 滨松ORCA-Quest qCMOS相机的最低读出噪声为0.27e rms,所以我们在相机中加入了上述“光子定量”(Photon number resolving)功能。用户可以直接读出每个像素中精确的光电子数目,从而获得像素所收集的光子数目。领跑背照的高分辨率:独特的“沟槽结构”芯片技术相机像素中,电子被硅等半导体材料转换为光电子之后,会被相应的电路收集;这些电路结构会阻挡光信号。为了消除这部分信号损失,背照技术中将这些电路结构放到了芯片的背后(如下图)。在理想的情况下,每个像素中的光电子会被本像素的电路通过电场进行收集,但在背照芯片中,由于结构毕竟有一定的厚度,收集光电子的电场可能并不容易将本像素对应的光电子全部收集——一部分光电子会扩散到相邻像素中,造成相机分辨率的下降。这也是为什么一般而言,前照式相机的分辨率会优于对应参数的背照式相机。在滨松ORCA-Quest qCMOS相机中,芯片采用了独特的“沟槽结构”(Trench structure),阻挡了相应的光电子扩散,配合4.6μm的像素大小,940W像素,极大提升了相机的分辨率。此外,EMCCD在近红外成像中存在干涉条纹的问题,而ORCA-Quest qCMOS相机通过特殊的背照芯片结构设计,也解决了这个问题,进一步保障了成像质量。我们对ORCA-Quest qCMOS相机的出现非常兴奋,并将之视为科研级相机“光子定量”纪元的开启。而未来我们也将继续前行,带来更多技术的革新。 滨松相机,从未停止追求巅峰的脚步。
  • 自适应光学波前传感的理想选择—sCMOS 相机
    自适应光学波前传感的理想选择—sCMOS 相机牛津仪器 Andor sCMOS 相机作为自适应光学波前传感的优选设备,拥有高度并行的像素读出产生的高帧频,结合短曝光条件下的低噪声和高量子效率能够获得最佳信噪比图像。在本次技术说明中,我们比较了Andor sCMOS 系列中三款特别适合波前传感的相机: Marana 4.2B-6(具有CoaXpress接口) Zyla 4.2 PLUS(具有CameraLink接口) Balor 17F(具有CoaXpress接口)下表总结了每款相机的关键性能参数。表1 用于波前传感的三款 Andor sCMOS 相机的关键成像参数在第1部分中,我们将详细分析潜在的帧频性能,尤其是 ROI 模式下帧频的提升。在第2部分中,我们将比较三款相机相对“延迟”特性,这是自适应光学应用的一个重要考虑因素,因为它决定了图像在软件中的准备时间,以便作为闭环可变形镜像系统的一部分进行处理。Part 1 | sCMOS 帧频高速帧频性能对于波前传感至关重要,使用(ROI)子阵列能够实现每秒数百帧的图像采集。作为波前传感备选的成像探测器,表2显示了上述三款 sCMOS 相机在不同 ROI 阵列尺寸上的帧频。表 2 的关键成像参数(可用选项): 卷帘快门曝光模式 重叠(100%占空比)模式 16位(全动态范围)模式 中心 ROI 成像 CoaXpress(CXP)接口(Marana 和 Balor) CameraLink(CL)接口(Zyla)表2 三款 Andor sCMOS 相机在不同 ROI 阵列尺寸上的帧频 请注意,在比较 Marana 和 Zyla(均为2048 x 2048阵列)时,尽管 Zyla 能够实现更快的帧频,但 Zyla 是使用前照式芯片,通过在每个像素上使用微透镜来实现高量子效率。Marana 使用背照式芯片,在没有微透镜的情况下可实现高达95%的量子效率。此外,如果 Zyla 的 ROI 没有在垂直方向上居中,帧频将会降低(降低到原来的2倍),而对于Marana 和 Balor,ROI 可在任何区域,帧频的降低可以忽略不计。Part 2 | “延迟”比较科学成像相机用作波前传感器的一个关键考虑因素是“延迟”。由于波前传感成像是 AO 配置闭环系统的一部分,因此软件必须快速采集图像以进行实时处理,以便它能够持续地通知变形镜系统如何在到达科学探测器的过程中对入射波前进行重塑和展平。比较波前传感器相机,我们需要清楚地了解曝光、传感器读出和任何图像传输耗时相关的相对时间。在成像的时序流程中,对于“延迟”的定义可能存在一些主观的变化。为了在当前的比较研究中实现标准化,我们将考虑从曝光开始到软件处理该曝光时间内的完整图像/ROI 的整个端到端时间。我们还将通过假设曝光时间为 10 毫秒(帧频达到100 fps)进行标准化。但是请注意,我们比较的三款相机,这 10 毫秒的曝光对应于不同的 ROI 阵列大小和相应的视野。图 1 和图 2 为 Zyla 4.2 PLUS 与 Marana 4.2B-6 进行比较的时序示意图。sCMOS 相机之间的“延迟”区别如下:Zyla 必须先将整个 ROI 阵列(10 毫秒)读出到组装图像的相机 FPGA,然后再通过 CameraLink 接口传输图像,这里又需要10 ms。由于这些过程是按序发生而不是同时进行的,因此整个端到端处理接近曝光(10 ms)+ 读出(10 ms)+ 通过 CameraLink 的数据传输(10 ms)= 30 ms。注意,Zyla图像必须首先在 FPGA上组装的原因是其复杂的传感器读出,这涉及到同时读出阵列的两半,从中间行开始,向外分别移动到顶部和底部行。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。 Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Marana 具有更直接的传感器读出架构,这意味着无需将图像在相机 FPGA上组装后再传输到主机 PC。相反,一旦读出像素行,它就会由 FPGA 处理并立即通过 CoaXpress(CXP)接口进行传输。这意味着图像传输与图像读出同时发生,而不是顺序发生,从而克服了“延迟”造成的影响。Marana 的整个端到端过程近似于曝光(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。Balor 未在所示的图中具体表示,但具有与 Marana 相似的单向传感器读出架构,区别在于 Balor 通过同时读取每组 4 行的数据来提高速度。因此,如果 Balor 定义了 ROI 阵列,其结果是曝光时间为 10 ms(相应的读数为10 ms),那么 Balor 的整个端到端过程也将近似于曝光时间(10 ms)+ 同时读出/数据传输(10 ms)= 20 ms。因此,相对于 Zyla 固有的“延迟”, Marana 和 Balor 的“延迟”减少了。然而,如第 1 节所示,Zyla 4.2 PLUS 相对于Marana 4.2B-6 可能具有更高的帧速。在为您的装置选择最合适的波前传感成像相机时,应在确切的实验要求范围内考虑这两个因素。图 1 和图 2 的关键成像参数(可用选项): 曝光时间/读出时间 — 10毫秒(需要选择ROI) 卷帘快门曝光模式图1 Zyla4.2 PLUS:表示曝光、读出和图像传输(通过 CameraLink接口)的计时示意图图2 Marana 4.2B-6:表示曝光、同时读出/图像传输(通过Coaxress 接口)的计时示意图。Balor 的实验数据接近Marana 4.2B-6
  • 强悍智能!奥林巴斯DP28和DP23显微镜相机全新上市,实现工业成像简化
    全新DP系列相机具备能够简化工业显微镜成像的一系列智能功能和精确的色彩精确度。具有4K分辨率的DP28相机能够提供无噪点的高分辨率图像,而DP23相机则在全高清分辨率与便捷功能之间实现平衡,几乎对所有工业成像应用均可实现出色的价值。 显微镜相机用于检查制造材料的质量,确保其不存在缺陷。清晰的图像和准确的色彩还原是用户能够发现细微缺陷的必备关键性能。奥林巴斯DP28和DP23相机所具备的出色图像质量和智能功能有助于快速高效执行成像任务。(DP28拍摄)以舒适的方式在屏幕上查看图像DP系列显微镜相机让用户不必通过显微镜目镜观察,而是以舒适的方式在屏幕上观看图像。为了获得平滑、超清晰的4K图像,DP28相机配备了890万像素CMOS传感器和全局快门。640万像素的DP23相机在进行快速样品扫描时能够以每秒60帧的速度拍摄高清图像,并可提供高达FN25的视场,让用户一次即可查看更多样品,并用很短时间就可将小尺寸图像拼接在一起。*智能功能让分析和检查工作得到简化这款相机的功能让普通成像任务更加轻松,用户只需将注意力集中在屏幕上,不必花费时间进行调整。关键功能包括可在长时间曝光成像期间以高帧率在弱光条件下获得出色图像质量的快速实时功能,以及快速识别样品哪些区域处于聚焦状态的聚焦峰值功能。* 高效的远程协作包括图像、注释和分析数据的所有关键数据均可在本地或远程显示和共享。另外这两款相机还可与奥林巴斯Stream™ 2.4.4版软件兼容进行复杂或高级图像分析,从而进一步简化您的工作流程。** 强悍的功能、精确的色彩精确度以及更宽视场的4K(DP28)或全高清(DP23)分辨率让DP28和DP23相机能够提供高质量的图像并快速高效完成常规成像任务。*在与0.35X TV(DP23)配合使用时。**奥林巴斯Stream与远程共享功能不兼容。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • 定量分析更精准,数据捕捉更快速,鑫图背照式sCMOS科研相机Dhyana 400BSI V2.0 升级上市!
    自2018年11月鑫图推出了全球首款6.5微米的背照式背照式sCMOS科学相机——Dhyana 400BSI,得到高端科研市场的广泛关注,掀起全球高灵敏成像技术的又一轮升级热潮。在各家相继推出背照式sCMOS成像方案的近一年时间里,鑫图研发团队从未停止对技术精益求精的探索,如何将背照式sCMOS做成真正意义上的新一代科学相机,成为我们新的挑战目标。2018年9月2日,鑫图宣布完成了相机速度和信号处理等关键性能升级,Dhyana 400BSI V2.0正式上市!虽然Dhyana 400 BSI V2.0不涉及背照式图像传感器芯片G2020BSI的更新换代,也就是说,在像元尺寸、分辨率、量子效率、甚至读出噪声方面相比前代并没有改变,但此次升级涉及的关键技术点依然可圈可点,让人耳目一新!没错,V2.0款外观变化不小。不仅从前脸看外观尺寸缩小了很多,颜色也变成了更酷的深灰黑色,这在一定程度上可以理解为,鑫图机械结构工艺的提高,毕竟尺寸越小,制冷和散热的工艺难度就越大。从后脸看,面板上多了两个高速传输的CameraLink接口,这个重大的变化意味着相机内部硬件电路进行了全面升级改进,Dhyana 400 BSI V2.0最终实现了420万全分辨率下74fps@CameraLink的芯片极限传输速率,以及40fps@USB3.0的接口最高数据传输速率。 而外观和接口变化还仅仅只是Dhyana 400BSI V2.0的开胃菜,空间噪声算法升级才是本次更新的关键。信噪比,在科学成像领域就是灵敏度和图像品质,可以单纯的理解成量子效率和噪声的对决。介绍之前,我们不得不先了解一下背照式sCMOS芯片。Dhyana 400BSI V2.0采用了背照式sCMOS芯片。这颗国产的由长春长光辰芯公司生产的G2020BSI背照式芯片在量子效率方面大幅领先于传统正照式芯片,直接的结果就是:量子效率高多少,灵敏度就高多少。 但上帝是公平的,给谁的都不会太少,给谁的也都不会太多。辰芯G2020BSI这颗背照式sCMOS图像传感器虽然在量子效率方面大胜正照式sCMOS,但是由于工艺的原因,发热量和暗电流噪声较大,读出噪声的控制也不太好;而对于高端科研成像应用来说,如果不能控制好噪声,量子效率带来的优势就会大大缩小。如何扬长避短?这里有必要普及一些噪声的基础常识。 噪声分为像素内噪声(读出噪声、光散粒噪声、暗电流噪声为代表)和像素间噪声(DSNU 、PRNU为代表的空间噪声)。早年CCD一统天下的时候,CCD的像素间噪声很低基本没人关注,所以大家一股脑儿想的是如何降低像素内噪声(读出噪声)。于是就有了第一代的sCMOS,把读出噪声做到了1个电子,大大超越了CCD,引发行业技术升级。此前全球最好的sCMOS相机读出噪声为1.0e-(中值)和1.6e-(均方根值)。Dhyana 400BSI V2.0做到了1.2e-(中值)和1.8e-(均方根值),还差一些些。但是一台科学相机的噪声不仅仅是读出噪声,还有暗电流和像素间噪声。半导体制冷加风冷散热技术早前已经可以做到-10℃(环境温度20℃下)的低温水平,而Dhyana 400BSI V2.0相机的在20℃的室温下已经可以达到更低的-15℃水平,相机的暗电流噪声也由此降低到了0.15e-;对于绝大多数sCMOS成像来说,相比1.0e-的读出噪声,就算长达100毫秒的曝光对应产生的暗电流噪声也要小于0.02e-,几乎达到了可以忽略不计的水平。 随着CCD的退出和sCMOS的崛起,sCMOS像素间噪声(DSNU、PRNU) 偏大的问题开始被推上风口浪尖, sCMOS相机厂商在这两年进行了新一代升级。 之前全球最好的DSNU(暗信号不均一性)值是0.3e-。DSNU值越低代表噪声基线越平。V2.0版本的Dhyana 400BSI与2017款做比较的话,从前代的0.3e-下降到0.2e-。不仅打破了记录,还将业内最好的DSNU噪声下降了33%。 而之前全球最好的PRNU(光响应不均一性)值是0.3% (700e-)。PRNU值就是像素之间对光的响应的偏差率。V2.0版本的Dhyana 400BSI与2017款做比较的话,从前代的1.6%下降到0.3%,做到了目前的最优值。 需要指出的是,还有一种噪声人类世界暂时还奈何不了,它是光散粒噪声,光散粒噪声基于泊松分布的基本物理学原理,随着光子数变多而变大。对于sCMOS级别的科学相机来说,当光子数多于10个以上时,像素内噪声的统治权就交给光散粒噪声了。所以在涉及并非极限弱光的成像应用中,信噪比变成了量子效率与空间噪声 (DSNU/PRNU) 的对决。所以Dhyana 400BSI V2.0的终极目标是“采用最高量子效率的背照式芯片,同时把空间噪声做到最低。”背照式sCMOS芯片发热量大, Dhyana 400BSI V2.0就把制冷温度做得更低,在同样的体积内, Dhyana 400BSIV2.0的暗电流噪声与最好的正照式sCMOS相机旗鼓相当。 背照式sCMOS芯片读出噪声偏大0.2e-,那么Dhyana 400BSI V2.0就把DSNU和PRNU做得更低,失之东隅收之桑榆,这里像素内噪声多了0.2e-,在那里通过像素间噪声少0.1e-,把背照式sCMOS芯片的缺憾补偿了些回来。 当各项噪声指标和全球最优基本相当的时候, Dhyana 400BSIV2.0量子效率的优势就完全凸显了出来。我们不能只看着560nm处95%量子效率比正照式82%提高了15%,如果你做的是近红外光850nm应用,量子效率提高的就是40%,如果你做的是400nm蓝光应用,量子效率的提高甚至超过了60%,所有这种量级的信噪比提高对科学级应用来说,都是相当巨大的。 在光学领域有一种说法是性能提升10%,成本提高100%,那么Dhyana 400BSI V2.0动辄百分几十的灵敏度提高,价格要提升多少呢? 高QE的Dhyana400BSI在超高分辨率显微镜应用----《ACS Nano》 Dhyana 400BSI V2.0更新的力度不算小,但其价格并没有大幅提升,就算全部顶配想要一步到位,比如PC端的高速CameraLink卡、水冷(降温还能低10度)等全部招呼上,价位也同样值得期待。 除了自有的SDK和Demo,Dhyana 400BSI V2.0支持的第三方应用也已经大大扩展,包括Micromanager, Labview, Matlab等,可以为您提供更多应用支持和帮助。定量分析更精准,数据捕捉更快速,鑫图携Dhyana 400 BSI V2.0再次向您致敬,感谢所有的支持与帮助!
  • JAI推出"Flex-Eye" 定义自己独有的Fusion系列多光谱棱镜相机
    p style=" text-indent: 2em text-align: justify " JAI向广大机器视觉用户隆重推出Flex-Eye:一种创新的相机概念,使视觉系统工程师能够自定义基于JAI的Fusion系列2-CMOS或3-CMOS棱镜的多光谱相机中波长的起始范围。 /p p style=" text-indent: 2em text-align: justify " 通过对Flex-Eye进行定制,可以和JAI现有的Fusion系列棱镜相机相结合,便客户能够参与设计多光谱相机。该相机可以查看特定的可见光和近红外光波段,切实地满足用户视觉应用要求。 br/ img style=" max-width:100% max-height:100% " src=" https://www.jai.com/uploads/images/Partner-Section/Hi-Res-Images-and-Thumbnails/Flex-Eye-Launch-Image.jpg" / /p p style=" text-indent: 2em text-align: justify " 这种新方法可以使视觉检测任务或其他多光谱成像应用程序更加高效,因为通过针对目标波段(面向特定应用程序设计)进行微调后的2-CMOS或3-CMOS棱镜相机,可以更精确地显示所需的成像信息,完美屏蔽不需要的波段。 /p p style=" text-indent: 2em text-align: justify " 如果JAI的Fusion系列中现有标准型号的默认波段组合无法完全满足相机用户的特定需求,通过Flex-Eye的定制服务,便可以解决这一问题。 /p p style=" text-indent: 2em text-align: justify " 由于Flex-Eye概念最初是应用于JAI的Fusion系列多光谱模型的,因此,客户可以配置具有2或3传感器棱镜配置的模型,目前其配置为Sony Pregius& #8482 CMOS传感器中160万像素(IMX273)或320万像素(IMX252)两种。在确定传感器之后,再为相机中的每个传感器定义特定的波段位置和区间。 /p p style=" text-indent: 2em text-align: justify " 根据用户的要求,用户所指定的波段可以都位于可见光谱(405-680nm)内,或者也可以放置在整个可见光和近红外光谱的多个位置上,最高可达1000nm。波段的宽度最短可以是25nm,以5nm的增量进行递增。 br/ /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e5c016d8-84d5-4431-aee5-56abc4c1bf9e.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" font-size: 14px " 上图为定制一个3传感器相机的波长示例,其中指定了一个可见光波段(波段1)和两个NIR波段(波段2和波段3)。 每个波段最短可达25nm宽,以5nm的增量递增。 /span /p h3 style=" text-align: justify " Flex-Eye目标用户 /h3 p style=" text-indent: 2em text-align: justify " Fusion系列Flex-Eye相机适用于几种不同应用场景下的用户,多光谱成像技术在这些市场目前已经得到了应用,但是新的波段组合可以带来新的功能效果。这些最常见的应用场景可细分为: /p ul class=" list-paddingleft-2" style=" list-style-type: square " li p style=" text-align: justify " 荧光引导手术,病理学或其他生命科学应用 /p /li li p style=" text-align: justify " 水果,蔬菜,果仁等食品的分选/检查 /p /li li p style=" text-align: justify " & nbsp 农业和植被分析或除草系统 /p /li li p style=" text-align: justify " & nbsp 包装检查,尤其是塑料包装物的印刷 /p /li li p style=" text-align: justify " 多层电子线路板检查 /p /li /ul p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% float: right " src=" https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/surgical.png" / 例如,越来越多的外科手术系统正在利用注入到血管或周围组织中并由激光激发的荧光化合物来辅助进行。荧光显示通过覆盖在外科医生的可见彩色图像上的区域来对病变处进行突出显示,从而起到指导手术的作用。系统是设计成突出显示周围的恶性组织还是血管内血液流动,可能需要使用具有不同波长的不同荧光团进行激发和反射。设计者通过对特定的波段的选择,使其系统在性能上区别于常见的多光谱配置。 /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% float: right " src=" https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/farming.png" / 同样,现代科技农业中,通过对NDVI(归一化植被指数)或NDRE(归一化差异红边)公式建立起来的算法,来进行杂草驱除或作物健康分析的系统,需要农业机械提供可见光波段和NIR波段的数据组合。这需要农业机械能从幼苗中识别杂草,或者从作物中标记需要额外灌溉水或肥料的作物。目前在基于标准波段的标准算法,仍需要不断开发定制新的算法以提高特定作物和环境条件的性能,来适应多种多样的作物生产方面的需求。此时,这些现代农业科技公司,就向JAI寻求特定多光谱波段方面的支持,可以通过定制,以使这些系统更准确,有效地获得所需的结果。 /p p style=" text-align: justify text-indent: 2em " 类似的概念也可以应用于当前许多其他使用多光谱成像的应用程序,包括食品检查,药品,包装,电子产品等。 /p h3 style=" text-align: justify " Fusion Flex-Eye的在线配置器 /h3 p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em " 作为可定制的产品,产品的制作和销售过程与JAI的标准Fusion系列型号或其他相机是不同的。首先客户需要定义自己需要Fusion系列Flex-Eye相机的技术要求,并将其提交给JAI,以从技术角度来确认是否可以完成制作。 /span & nbsp /p p style=" text-indent: 2em text-align: justify " 于是JAI开发了一款 strong Flex-Eye在线配置器 /strong ,可以让客户轻松定义自己的技术要求,它把自定义选择所需波段过程可视化了。通过鼠标逐步点选完成对传感器分辨率,个数,黑白彩色等参数进行选择。直观的GUI界面可以帮助用户在简单的频谱图上进行拉伸或收缩,来完成对波段范围的选择。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f577a45e-37c1-467f-b8a6-0ddf9da4f98d.jpg" title=" 1.png" alt=" 1.png" / /p h3 style=" text-align: justify " 有关Fusion Flex-Eye相机性能的更多信息 /h3 p style=" text-indent: 2em text-align: justify " Fusion系列的Flex-Eye系统订制出的棱镜相机具有与JAI的Fusion系列的标准型号相同的高性能。配备三个320万像素传感器的相机在全分辨率下能高达107fps运行,而两个320万像素传感器的双通道棱镜相机能以123fps的速度运行。对于具有三个160万像素传感器的棱镜相机,全分辨率下的最大速率为212fps,而对于两个160万像素传感器,更是达到了226fps的速度。 /p p style=" text-align: justify text-indent: 2em " 配备集成的自适应技术的10GBASE-T(10GigE)接口支持相机数据的大数据量要求,提供对NBASE-T(5Gbps和2.5Gbps)和传统1000BASE-T(1Gbps)的自动向下兼容低速以太网标准。除了8位输出之外,相机还可以提供10位和12位输出,并在多个传感器上既支持同步又支持非同步的操作模式。 /p
  • 手机变身超高像素显微镜 进行医疗图像观察
    据澳大利亚&ldquo 新快网&rdquo 9月11日报道,在10日晚间悉尼市政厅举行的一个仪式上,Garvan医学研究学院和澳大利亚国立大学的研究人员因为&ldquo 便携手机显微镜片&rdquo 这项科技发明而获得了Eureka大奖。   据报道,仅仅需要一个扁豆大小的镜片即可把你的智能手机升级为超高像素的显微镜,来进行高级别的医疗图像观察。所花费的成本还不足1分钱(约合人民币5分钱),这些镜片有在发展中国家和边远地区为科学和医学革命的潜质。它们能够让传统的大块头显微镜更加便于携带。这也让需要使用显微镜的学校和学生们能够更加便宜地获得该功能。   工程师和物理学家Steve Lee来自澳国立大学,他因为将实验原料留在实验室一个晚上,而不经意间用聚合物制造了一滴水珠。他说:&ldquo 我本来打算将它扔掉,但更加仔细地看过以后,我认为这还可能有用,因为水珠的形状是非常完美的。&rdquo   镜片是因为让聚合物在重力的作用下形成液体水滴的自然形态而制成的。和隐形眼镜、隆胸填充物的材质相同,这种聚合物可以用于密封浴室,而聚合物本身还不易被破坏或者划伤。当被安装在智能手机或者平板电脑上时,搭配闪光灯,这些镜片可以放大160倍,看到4微米的东西。   Garvan研究院临床免疫学者Tri Phan说,在这个科技让设备更小更便携的时代里,将显微镜缩小化也是非常有意义的做法。   他说:&ldquo 传统上来讲,使用显微镜时你需要一个实验室和中心的位置。而这种便宜、有效的方式,可以制造出高质量、高效率的镜片。&rdquo
  • 基于真正单像素探测器的非相干X光“鬼”成像首次实现
    p style=" text-align: justify text-indent: 2em " X光透射成像/CT作为非侵入式的诊断方式,是目前医学领域最重要的临床检测手段。但由于电离效应X射线对于蛋白质、细胞等会造成相当程度的辐射损伤,每年X射线的医学诊断就会导致相当数量的癌症和白血病患者,因此如何降低诊断所需的剂量至关重要。 /p p style=" text-align: justify text-indent: 2em " 而自1895年伦琴发现X射线以来,成像的方法并没有根本上的改变,都是采用直接投影到面探测器,通过累计带有物体信息的光子来展现出一定灰度分布的技术,因此这种方式的成像效率很低,不仅难以大幅度地降低成像所需剂量,而且分辨率受光源尺寸及探测设备分辨力的限制,成为制约传统成像方法的两大相互牵制的瓶颈问题。 /p p style=" text-align: justify text-indent: 2em " 针对辐射剂量的瓶颈问题,2018年中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员吴令安和陈黎明合作,首次利用随机调制光强度的简单方法实现了台面式X光“鬼”成像,这种间接的成像方式是基于光场的二阶关联,成像质量取决于探测信号的涨落而非强度的绝对值。 span style=" text-indent: 2em " 以此为基础,团队完成了单光子量级的超低剂量成像,成果发表在Optica& nbsp 以后受到了广泛关注,被Science& nbsp 在深度栏目中报道。在Science的报道中,同领域的专家给予了高度评价:“如果应用于医学成像领域,这将是一项革命性的进步”,与此同时也对该工作提出希望:“提高成像的分辨率与质量,以适应医学成像的要求”。 /span /p p style=" text-align: justify text-indent: 2em " 基于上述实际需求,物理所研究员吴令安与现上海交通大学教授陈黎明再次合作,开启了解决成像分辨率瓶颈问题的探索。 /p p style=" text-align: justify text-indent: 2em " 近期研究团队中的博士生何雨航和张艾昕(共同一作),利用自主研制的Hadamard金掩模振幅调制板,首次实现了基于真正单像素探测器的非相干X光鬼成像。相比于随机调制的方案,该方法利用了Hadamard矩阵的正交完备特性,因此即使在稀疏采样下也能重构出较好的图像。在此基础上,通过引入压缩感知以及卷积神经网络对原有算法进行了升级,最终利用37 μm源尺寸的X光源,在仅18.75%的采样率下就得到了10μm分辨率的成像结果,实现了突破源尺寸限制的超分辨成像,足以对癌变组织进行直接判断,达到了临床医学精细成像的分辨率要求。在计算鬼成像的框架下,高性能的算法以及调制板的精细结构保证了超分辨下较好的图像质量,而更低的采样率意味着更短的曝光时间以及更低的剂量,因此有望利用该技术进一步降低剂量。整个实验布局简单,使用方便,单像素探测器的应用也可极大地降低成本。另一方面,应用该方法极大地降低了对放射源的空间相干性和强度的要求,可以大大推进X光鬼成像的实用化进程。 /p p style=" text-align: justify text-indent: 2em " strong 文章链接: /strong /p p a href=" https://aip.scitation.org/doi/abs/10.1063/1.5140322" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector /span /a /p p a href=" https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-4-374" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " Tabletop x-ray ghost imaging with ultra-low radiation /span /a /p p a href=" https://science.sciencemag.org/content/359/6383/1452" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " X-ray ‘ghost images’ could cut radiation doses /span /a /p p img src=" https://img1.17img.cn/17img/images/202005/pic/d53291aa-a690-41f5-b8e9-7de2a156552e.jpg" style=" text-align: center text-indent: 0em font-family: sans-serif font-size: 16px max-width: 100% max-height: 100% " / br/ /p p br/ /p p style=" text-align: justify text-indent: 2em " (a) 物体的3D示意图;(b) 金掩模板扫描电镜图像;(c) 样品的X光透射成像图,曝光时间为5s;(d) 经过4096次曝光后利用TVAL3算法重构的图像,对比度/噪声比(CNR)为0.27;(e) 经过768次曝光后利用CH-MWCNN算法重构的图像,CNR为2.65。 /p p br/ /p p br/ /p
  • 如何校准遥感相机
    大多数遥感相机本质上是内置复杂软件的高质量电子数码相机。许多还具有光谱成像功能,允许它们同时在多个光谱带中对场景进行成像。 这些相机性能可以在地面上通过光学校准来验证并增强。 积分球均匀源用于此校准,可提供:用于大型遥感定标应用的孔径为一米的积分球均匀光源。Labsphere 独特的系统利用精密测量技术来满足遥感相机校准的苛刻要求。均匀的辐亮度已知的、稳定的光谱特性具有时间稳定性不改变光谱特性的辐亮度可调性已知的辐亮度均匀的辐亮度精心设计的积分球均匀光源,当从积分球外观察时,呈现出几乎完美均匀的辐亮度——均匀性优于 1%。 当这样的光源校准相机时,相机的输出通常不会那么均匀,主要是因为探测器阵列的像素之间的不均匀性。 但是,这些影响是恒定的,可以通过软件进行校正。时间稳定性通过选择稳定的卤钨灯和稳定的电流控制电源,均匀光源积分球的辐亮度非常恒定。 此外,很容易在积分球上安装一个探测器,该探测器监测相机“看到”的相同辐亮度,因此辐亮度的任何变化,例如由相机的反射光引起的变化,都很容易识别和量化。已知辐亮度相机设计人员了解地面的照明条件以及所观察场景的预期反射系数范围。 因此,他们设计相机以拍摄特定范围的辐亮度水平。 积分球均匀光源可以验证相机是否按照设计对特定的辐亮度水平做出响应。已知、稳定的光谱特征由于许多遥感相机具有光谱成像能力,并且响应过程中都存在光谱变化,因此了解校准光源的光谱分布非常重要。 使用稳定的灯和电源意味着可以在实验室中测量积分球输出,并在相当长的一段时间内保持该光谱特性。 此外,可以使用多个滤光片的监测检测器或者监测光谱仪,连续验证光谱特性。亮度可调通过在积分球中安装多个灯,可以输出多个级别的均匀、稳定的辐亮度。实际上,通过使用附带可变光阑的外部灯以及选择合适功率的内部灯,积分球可以调整到从零到最大的任何亮度水平。一个监测探测器可以连续地检查和报告辐亮度。通过采用积分球光源,摄像机可以在整个动态范围内进行测试。
  • 《自然》:科学家研制出世界最快相机
    新相机每163纳秒就能拍一幅图像     世界最快相机每秒拍610万张照片   北京时间4月30日消息,据美国《探索》杂志报道,光学研究人员已经发明了一种利用红外激光器反射物体上的光线的照相机,他们表示,这项发明将使摄影爱好者不再有技术差异。他们发明的这种照相机,一秒钟内可拍摄610万张照片,快门速度是四点四亿兆分之一秒。在这段时间里,光仅能前进不到一厘米。论文联合作者本田惠介(Keisuke Goda)说:“这是世界上速度最快的照相机。”   常规数码相机利用电荷耦合器(CCD)拍照。电荷耦合器里的半导体芯片在与光线发生反应时,会产生电子。电子读出芯片上的内容后,把它们转变成电子信号,然后通过电子放大,把这些信号编码成数码图像。但是常规数码相机的这个过程存在很大限制。最好的传统相机的最大相速大约是每秒30帧,而最先进的科学仪器大约可以达到每秒100万帧。对本田惠介和他的同事们来说,这种速度还不够高。   为了制造这种连续时间编码放大显微镜(serial time-encoded amplified microscopy,STEAM)照相机,这些研究人员发射一束红外激光,来扩大光脉冲,形成光谱图像。这项研究结果发表在《自然》杂志上。通过视频进行演示,解释了STEAM是如何产生作用的。然后这些研究人员把这种光线照在他们想拍照的物体上。这意味着物体的不同部位被不同波长的光照亮。发射光经过一个特殊的纤维光学电缆,使不同波长的光以不同速度传输。波长较长的光走在前面,而波长较短的光则落在后面。光束被放大后,由一个光电探测器读出来。这个光电探测器记录每种波长的光的到达时间,这种简单数据将被用来重新修改物体的图像。   人们可以利用这种照相机研究燃烧、激光切割和任何改变迅速及无法预测的系统。本田惠介说:“我认为以后每个科学家都会利用这种照相机。”
  • FLIR机器视觉相机经受火星严酷环境考验,记录NASA毅力号着陆全程!
    2021年2月18日15时55分,美国毅力号火星车,安全在火星着陆。本次火星任务是一次实时拍摄航天器的进入、下降和着陆过程,将惊心动魄的7分钟自由着落过程拍摄并传回NASA,今天小菲就和大家一起观看分析下毅力号着陆火星的真实视频!本次毅力号着陆火星,工程师们选择了6台FLIR彩色工业相机,它们完美的完成了使命,从多个角度拍摄了这一事件,记录了着陆过程中所有激动人心的时刻,将登陆过程完整的拍摄输送回来。这些镜头虽然只有几分钟,却足以让工程师们亲眼见证工作成果,让全球数百万观众激动不已!火星车的进入、下降和着陆 (EDL) 可能只有几分钟,但期间发生了很多事情,下面将详细为您介绍可以看到的内容和角度:进入火星大气进入火星大气后,降落伞在离地面 7 英里(11 公里)时打开。该时间点前一刻,三台仰视相机开始记录,拍摄有史以来太空中降落伞以超音速打开的镜头:寻找合适着陆点距地面5英里时,防热罩(在进入火星大气层时保护火星车)掉落,露出火星车上的俯视相机,展示火星车猛烈冲向火星 Jezero Crater 的一些情况:视频中我们能看到,在接近火星表面时,降落伞带着着陆器在频繁的晃动,这就是在主动寻找合适的着陆点。脱离降落伞而后火星车从后壳(及降落伞)脱落。由此开始,其下降过程由一个火箭动力下降阶段(该阶段名为“空中吊车”)管理。这是空中吊车上俯视相机拍摄的火星车图像:成功着陆接下来就是着陆!这是(火星车上的相机)拍摄的火星车开始触及火星地面时,甩飞SkyCrane的瞬间图像:拍摄这个镜头的相机是FLIR Chameleon3系列,包括5个1.3M像素CMOS相机和1个3.2MU口相机。FLIR集成成像解决方案 (IIS) 部门副总裁Sadiq Panjwani 表示:“FLIR机器视觉相机的设计初衷是为了在地球上运行使用,不是专门为外太空制造的,对于NASA用它们来测试让我们感到非常激动。” FLIR Chameleon3系列Chameleon3相机系列结合了USB 3.0的易用性、小尺寸和板级灵活性等多项优势,并配备最热门的CCD和CMOS图像传感器,且价格实惠。NASA 在2015年就开始联系FLIR,与FLIR机器视觉相机专业人士研究讨论适合EDL(进入、下降、着陆)系统的相机。工程师们一直在寻找商业成品组件 (COTS),其重点是低成本和便于系统集成。这趟火星登陆之旅,FLIR机器视觉相机首次经受了极端温度和高重力环境。FLIR所有参与设计和制造的人员都对这次产品的耐用性和性能成果感到震惊。当然,值得骄傲的是,这说明FLIR的产品已经达到了登陆火星的高度。 FLIR机器视觉部门设计、制造并向全球客户分发其相机和相关软件,以建立提高各种流程和产品的效率、质量、分析和安全的系统。通过此次登陆火星事件,也很好地证明了FLIR机器视觉相机的高质量品质。
  • 搭配FLIR机器视觉相机,美国天文摄影师清晰拍摄“太阳黑子”~
    对于“太阳黑子”,古代的时候就有过记载,但是当时人们看到的“太阳黑子”是被理解为一些“神灵现象”。但科技的发展,让我们知道了太阳黑子即太阳表面的低温较暗区域,其每11年爆发一次,数量在太阳极大期增加,在太阳极小期减少,那么它到底长什么样子呢?众所周知人的肉眼不可以直视太阳但使用望远镜配合保护眼睛的特制太阳滤光镜就可以放心观察太阳啦~今天小菲就和大家一起揭秘太阳黑子的模样使用FLIR Grasshopper Express 6.0 MP Mono FireWire 1394b相机,内含 Sony ICX694 CCD 传感器拍摄的图片。Alan Friedman是一位天文爱好者和天文摄影师,他在位于纽约州布法罗市的自家后院中拍下了很多撼人心魄的太阳影像。他一直使用各种型号的相机(像素从30万到600万不等),并与采用氢α滤光镜 (656.3 nm) 的太阳望远镜组合进行拍照。以下照片是由不同曝光次数的太阳影像合并或叠加在一起制作而成,其中的细丝是日珥的最终形态。暗色区域是小太阳黑子,而较亮谱斑(点)是高度磁化区域。使用了以 Sony ICX274 CCD 传感器为特色的FLIR Grasshopper 2.0 MP Mono FireWire 1394b来拍摄大黑子群的拍摄使用了带Sony ICX618 CCD 的 FLIR Flea3 0.3 MP Mono FireWire 1394b 相机太阳黑子特写的拍摄使用了白光太阳滤光片。太阳黑子不是静止不动的,而是会在太阳表面游走,并可能持续数天到数周时间。太阳的这些低温区域具有强磁场,可以向太空发射质子和电子,从而触发地球上的北极光。太阳黑子是由太阳内部出现并通过光球层的强磁场而产生的。太阳黑子往往以相反磁极成对运动,太阳自转周期大约为25天。因此,我们可在大约一周时间内观测到相同的太阳黑子。拍摄到上面这样清晰的影像是非常困难的,因为大气升温造成的光反射还会使星光在夜晚忽明忽暗,因此选择合适的相机非常重要!为了获得如此清晰的影像,Alan拍摄了无数张照片,然后将图像叠加起来进行处理,以便保留到最清晰的图像。Alan拍摄多幅图像,然后再用各种程序进行处理。Alan为太阳望远镜配备了FLIR机器视觉相机,之所以选择FLIR,也是经过多方对比,FLIR相机性能卓越、尺寸小巧、重量轻且功耗低,非常适合天文拍摄。大气的易变性(尤其是在白天)是获得清晰影像的一个主要障碍。为了获得清晰影像,Alan拍摄了90秒流视频,然后从中选取最清晰的帧,最终拍摄到满意的图片。升级款:FLIR Blackfly® S随着FLIR技术的不断创新发展,相应的升级款也研发出来了,它们的性能更好,质量更高,比如FLIR Blackfly® S,它采用业内先进的冰块外形传感器,功能强大,让您可以轻松生成所需的精确图像,并加速您应用程序开发。Blackfly S提供GigE、USB3、套装和板级版本,您可以根据需要随心选择~FLIR Blackfly S USB3FLIR机器视觉相机不仅协助摄像师拍摄太阳黑子还去到火星拍摄过探测器着陆的精彩瞬间
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制