当前位置: 仪器信息网 > 行业主题 > >

周围血白细胞计

仪器信息网周围血白细胞计专题为您提供2024年最新周围血白细胞计价格报价、厂家品牌的相关信息, 包括周围血白细胞计参数、型号等,不管是国产,还是进口品牌的周围血白细胞计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合周围血白细胞计相关的耗材配件、试剂标物,还有周围血白细胞计相关的最新资讯、资料,以及周围血白细胞计相关的解决方案。

周围血白细胞计相关的论坛

  • 红细胞与白细胞的重新定向

    白细胞与红细胞在此重新定向。白细胞(WBC)和红细胞(RBC)是血液中的重要组成部分,在生命体延续发展和生物治疗中具有不同的功能。红细胞,又称红血球,含有一种蛋白质称作血红蛋白。当血红蛋白从肺部吸收氧气时,血液呈红色。随着血液流经全身,血红蛋白向人体组织释放氧气。红细胞的生命周期为4个月,其形如圆盘,中间下凹,边缘较厚,呈圆饼状。白细胞,又称白血球,具有更加复杂的功能。白细胞构成了人体抵抗感染的一种防御机制。有多种不同类型的白细胞,其生命周期和功能各不相同。白细胞还能够产生一种特殊的蛋白质,称作抗体,能够识别并吞噬入侵人体的外来异物。 红细胞白细胞物理特征红细胞呈双凹圆盘状,无核。尺寸大约为6-8 μm。白细胞呈不规则性,但有一个核和外缓冲层。生命周期120天。几天,但在健康人体中可存活数天至数年不等。类型:血液中只有一种红细胞在血液中存在许多类型的白细胞,其功能各不相同:嗜中性粒细胞、T淋巴细胞、B淋巴细胞(巨噬细胞)、嗜酸性粒细胞、嗜碱性粒细胞。循环系统:心血管系统。心血管和淋巴系统总计红细胞700:1白细胞男性每立方毫米460-6200万个;女性每立方毫米4200-5400万个。每立方毫米4000 – 11000个功能:向身体的不同部位提供氧气,并负责运送二氧化碳和其它废物。产生抗体,对感染形成免疫力,有些具有噬菌功能。血液中含量:

  • 【讨论】丙酮与白细胞

    今天餐桌上我留意了一个话题,有个从事农药残留检测多年的老前辈说,在实验室里久了,由于经常接触到丙酮,发现体内白细胞数目减少了,不在正常范围内,现在不做实验了,又恢复到4左右(正常范围4000-10000/UL(微升)),她把罪魁祸首指向了丙酮,不知道大家有没有注意过自己体检报告里的这一项呢,丙酮真的能杀死白细胞,天天用到丙酮,还有点畏惧~

  • 脱细胞基质周围神经修复膜在周围神经损伤中的应用分析

    【序号】:1【作者】:叶建勋郭小明于春波【题名】:脱细胞基质周围神经修复膜在周围神经损伤中的应用分析【期刊】:中国卫生标准管理. 【年、卷、期、起止页码】:2022,13(14)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELGGC8N8Ca4bDjQXEtXC7HMjNiJhf3KMrwjTwb1HZ5WM8n4CQuJPUF6H4czuaOmpqUaczlOLoR6pMj0zOiCwBAWcWbDIEfMEg-4WyhhpETKt0RbJhmV4yp4Pcv51w7v11IP3E1SNQZ4pyQ==&uniplatform=NZKPT&language=CHS

  • 做透射电镜的老师,白细胞数值调查?

    一直做电镜,最近发现白细胞低的厉害,不知道是不是有同感的老师?但是发现好像男性影响不大?女老师白细胞偏低的多,看看大家是否都正常。日常如何防护呀,有没有防辐射服可以穿?

  • 河北省血液中心不规则抗体及残余白细胞等试剂耗材采购项目

    [quote][b]项目概况[/b]河北省血液中心不规则抗体及残余白细胞等试剂耗材采购项目 招标项目的潜在投标人应在河北省成套招标有限公司601室获取招标文件,并于2023年02月22日 09点30分(北京时间)前递交投标文件。[/quote][font=inherit]一、项目基本情况[/font]项目编号:HBCT-230115项目名称:河北省血液中心不规则抗体及残余白细胞等试剂耗材采购项目预算金额:34.5100000 万元(人民币)采购需求:01包:不规则抗体检测细胞等试剂;02包:残余白细胞试剂耗材;03包ABO血型、RH血型室内质量控品合同履行期限:合同签订后一年本项目( 不接受 )联合体投标。[font=inherit]二、对本次招标提出询问,请按以下方式联系。[/font]1.采购人信息名 称:河北省血液中心地址:石家庄市和平路299号联系方式:袁女士 0311-870443142.采购代理机构信息名 称:河北省成套招标有限公司地 址:石家庄市工农路486号联系方式:常女士 0311-830869303.项目联系方式项目联系人:常女士电 话:  0311-83086930

  • 【分享】免疫细胞的分离和保存技术

    用体外方法对机体各种具有免疫反应的细胞分别作鉴定、计数和功能测定,是观察机体免疫状态的一种重要手段。为此,须将各种参与免疫反应的细胞从血液或脏器中分离出来。参与免疫反应的细胞主要包括淋巴细胞、巨噬细胞、中性粒细胞等。由于检测的目的和方法有同,分离细胞的需求和技术也异。有的仅需分离白细胞,有的则需分离单个核细胞(mononuclearcell),其中含淋巴细胞和单核细胞(monocyte),有的则需分离T细胞和B细胞以及其亚群。分离细胞选用的方法应力求简便可行,并能获得高纯度、高获得率、高活力的细胞。现用分离细胞群的原则,一是根据各类细胞的大小、沉降率、粘附和吞噬能力加以组分,另一则按照各类细胞的表面标志,包括细胞表面的抗原和受体加以选择性分离。 一、白细胞的分离 (一)血液中红细胞与白细胞比例约600~1000:1,两者的比重不同其沉降速度亦异,通常用两种方法加以分离。 本法是利用血细胞自然沉降率的分离法,采集血液后应及时抗凝,通常选用肝素抗凝法。肝素能阻止凝血酶原转化为凝血酶,从而抑制纤维蛋白原形成纤维蛋白而防止血液凝固。操作原则是将含抗凝血的试管直立静置室温30~60min后,血液分成明显三层,上层为淡黄色血浆,底层为红细胞,紧贴红细胞层上面的灰白层为白细胞,轻轻吸取即得富含白细胞的细胞群,离心洗涤后加入少量蒸馏水或含氯化铵的Gey溶液,经短时间的低渗处理,使红细胞裂解,经过反复洗涤可得纯度较高的白细胞悬液。 (二)聚合物加速沉淀法 本法是利用高分子量的聚合物如明胶、右旋糖酐、聚乙烯吡喀烷酮(polyvinylpyrolidone,PVP)等使红细胞凝集成串,加速红细胞沉降,使之与白细胞分离。本法的细胞获得率比自然沉降法高。

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 激光扫描共聚焦显微镜在细胞生物学中的应用

    激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图像。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na+、Mg2+等影响细胞代谢的各种生理指标,对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。1. 定量荧光测量ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。2. 定量共聚焦图像分析借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。3. 三维重组分析生物结构ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。4. 动态荧光测定Ca2+、pH 及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF 、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。5. 荧光光漂白恢复(FRAP)——活细胞的动力学参数荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。6. 胞间通讯研究动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+、PH和cAMP水平对缝隙连接的调节作用。7. 细胞膜流动性测定ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。8. 笼锁-解笼锁测定许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。9. 粘附细胞分选ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法: ① Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。 ② 激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。10. 细胞激光显微外科及光陷阱技术借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。

  • 黄芪桂枝五物汤治疗糖尿病周围神经病变的研究进展

    随着人口老龄化,糖尿病患病率持续上升,最新数据显示全球大约有5.366亿人患有糖尿病(患病率10.5%),预计到2045年患病人数将达到7.832亿(患病率12.2%)[1]。随着时间的推移,大约50%的糖尿病患者会发展为糖尿病周围神经病变(diabetic peripheral neuropathy,DPN)[2]。DPN是一种以感觉神经病变为主,并累及自主神经系统的神经退行性疾病,表现为远端肢体对疼痛、温度、振动和本体感觉的丧失[3],是下肢截肢和致残性神经病理性疼痛的主要原因[4]。高血糖、血脂异常、微血管损伤、氧化应激、炎症、线粒体功能障碍、晚期糖基化终末产物(advanced glycosylation end products,AGEs)、神经营养因子缺失等在DPN中具有重要作用。目前,治疗DPN的主要目的是缓解症状和疼痛管理[5],针对DPN的疼痛管理,主要应用抗抑郁药物、抗惊厥药物和阿片类镇痛药物,通过抗氧化应激、改善微循环、纠正代谢紊乱、营养神经、缓解疼痛等机制减轻DPN症状。临床上大多数被批准用于治疗DPN的药物如硫辛酸、依帕司他、阿米替林、丙米嗪、加巴喷丁等,虽能有效减轻疼痛,但存在作用途径单一、耐药性差,容易出现头晕、嗜睡、恶心、失眠、视力模糊等不良反应。此外,目前没有新的治疗疼痛性DPN的疗法被批准,临床最有效的一线药物或联合用药尚不清楚[6]。因此,寻找新的治疗DPN的药物刻不容缓。黄芪桂枝五物汤(Huangqi Guizhi Wuwu Decoction,HGD)作为经典名方之一,由黄芪、桂枝、芍药、生姜、大枣组成,具有益气活血、和营通脉的疗效[7],对缓解DPN引起的疼痛、麻木等症状疗效显著,被广泛用于DPN的治疗,具有良好的研究价值和发展前景。本文就DPN的发病机制、HGD治疗DPN的药效基础、临床研究及作用机制进行综述,为HGD治疗DPN的临床应用提供科学依据和理论基础。 1 DPN的发病机制DPN是糖尿病患者常见的严重并发症之一,目前其发病机制尚未完全明确,是由多种病理因素相互作用的结果。以高血糖参与的异常代谢通路为基础,包括多元醇通路、AGEs堆积、己糖胺通路、蛋白激酶C(protein kinase C,PKC)信号通路、内质网应激等[8],这些异常的代谢通路可引起炎症反应、血管内皮增生、神经纤维损伤、破坏线粒体稳态,产生大量活性氧和活性氮自由基,导致氧化应激反应,造成组织损伤。此外活性氧的增加还会激活聚腺苷二磷酸-核糖聚合酶(poly ADP-ribose polymerase,PARP)信号通路,导致神经血管损伤,诱发氧化应激,而氧化应激又会对通路形成正反馈,造成恶性循环。除了高血糖引起的异常代谢通路外,脂代谢异常、神经生长因子(nerve growth factor,NGF)及神经营养不足、胰岛素抵抗等[9]也与DPN的发生发展密切相关。研究发现,糖尿病患者血浆游离饱和脂肪酸的浓度通常会升高,而长链饱和脂肪酸,如棕榈酸酯和硬脂酸酯,会阻碍线粒体的功能及其运输,导致感觉背根神经节的神经元凋亡[10]。脂代谢异常会生成二酰甘油,刺激多元醇通路和PKC通路,细胞内的游离脂肪酸还能够激活核因子-κB(nuclear factor-κB,NF-κB),诱发炎症反应,刺激产生活性氧,破坏线粒体,加剧氧化应激反应[11]。NGF能促进中枢和外周神经元的生长、发育、分化、成熟,维持神经系统的正常功能,加快神经系统损伤后的修复[12]。有研究发现,在糖尿病动物皮肤中,NGF的产生受到抑制[13]。胰岛素信号传导也可能是引起DPN的原因之一,胰岛素不仅是一种激素,同时也是一种具有神经营养作用的神经保护因子[14]。炎症反应主要通过释放炎症因子参与DPN的发生和发展,细胞间黏附因子促进白细胞的迁移和活化,在趋化因子的影响下,单核细胞和巨噬细胞等吞噬细胞到达DPN受损组织并激活,然后分泌包括白细胞介素(interleukin,IL)在内的多种炎性因子,如IL-1β、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等[15]。这3种炎症因子可以影响DPN神经损伤,破坏雪旺细胞与轴突之间的沟通[16-17],DPN的发生和严重程度与TNF-α在内的炎症因子相关联,炎症因子参与疼痛和痛觉过敏的产生,并增加血神经屏障的渗透性,将TNF-α注射到坐骨神经可诱导炎症性脱髓鞘或轴索变性[18]。氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,大量研究表明高血糖可导致氧化应激的产生,并对周围神经中的神经元和雪旺细胞产生损伤[19]。引发氧化应激的原因是活性氧的过量产生,氧化还原平衡被打破导致抗氧化系统失调[20],最终造成组织损伤。高血糖引起的异常代谢通路:多元醇通路、AGEs通路、PARP通路等最终都会引起细胞内氧化应激反应,多元醇通路和PARP通路中消耗了大量的还原性辅酶,导致胞内活性氧清除能力不足,AGEs代谢过程中产生大量活性氧,导致氧化应激反应。综上,DPN的发病机制十分复杂,其病理生理学的核心是神经代谢受损和生物能衰竭[9],高血糖及异常代谢通路、胰岛素抵抗、脂代谢异常、NGF缺失、炎症反应、氧化应激等机制相互影响,造成恶性循环,损伤周围神经组织,最终导致DPN的发生。 2 HGD治疗DPN的方证基础和药效基础2.1 方证基础在中医理论中并未记载DPN病名,但根据其肢体麻木、疼痛等症状可归属于中医“痹证”“痛证”“痿痹”等范畴[21]。《素问奇病论》中提出“此肥美之所发也,此人必数食甘美而多肥也。肥者令人内热,甘者令人中满,故其气上溢,转为消渴。”消渴患者病因多为饮食不节、情志失调等,燥热内盛,煎熬阴液,气血滞而不行。《黄帝内经素问痹论》[22]曰:“病久入深,荣卫之行涩,经络时疏,故不痛,皮肤不营,故为不仁。”消渴日久,但见手足麻木,肢体如冰。DPN病机多因消渴日久,气阴损耗,阴虚邪热内生,精华内涸,导致血气凝滞,络脉不通,不能外输四肢而发病,属本虚标实,瘀血贯穿了疾病的始终。倪青教授认为,该病主要病机可总结为虚、瘀,虚即气阴亏虚,瘀为瘀血阻络,因虚致瘀,虚瘀相兼,虚为本,瘀为标,贯穿DPN的始终[23]。仝小林院士认为DPN属于糖尿病“郁、热、虚、损”4大阶段中的虚、损阶段,脏腑热、经络寒,总以脾虚为本,通补兼施、寒热并用是仝院士辨治DPN的治疗大法[24]。《素问逆调论》[22]云:“营气虚则不仁,卫气虚则不用。”肌肉筋骨失于濡养,故见手足麻木、感觉减退,犹如风痹之状;气阴两虚迁延不愈,阴损及阳,阳虚失煦,故四肢厥冷;气血阴阳俱虚,血行缓滞因热成瘀,痹阻脉络,不通则痛,故见皮肤肌肉刺痛,入夜尤甚;久病肝肾脾胃虚弱,聚湿成痰,痰瘀互结,肢体脉络失荣,故见肌肉日渐萎缩、软弱无力。张仲景在《金匮要略》中对血痹虚劳进行了论述,认为血痹、虚劳都是由于气血不足引起的慢性虚损性疾病,因此,DPN与血痹虚劳具有相关性[25]。HGD出自《金匮要略血痹虚劳病脉证治篇》,是治疗素体营卫不足,外受风邪所致血痹的常用方。方中黄芪补气,为君药。桂枝既能扶助卫阳以祛风邪,又能温通血脉以行血滞,与黄芪相伍,共奏益气扶阳,和血通痹之效。芍药养血,与桂枝相伍,共奏调和营卫,和血通痹之效,2药共为臣药。生姜、大枣养血益气,助芪、芍之力,又能调和营卫,扶阳祛风,共为佐使。诸药相伍,共奏补气温阳,和血通痹之功。2.2 药效基础现代药理实验证明,HGD的主要活性成分为黄酮类和苷类,如毛蕊异黄酮葡萄糖苷、毛蕊异黄酮和刺芒柄花素,可促进胰岛素释放而发挥降糖作用[26]。网络药理学预测HGD可以通过抗氧化应激、抗炎、阻止胆碱能神经信号传递、降低内质网应激水平等[27],直接或间接地发挥保护神经纤维、减轻疼痛、促进能量代谢及神经修复的作用。黄芪性甘,微温,有敛疮生肌、益卫固表、补气升阳的作用[28]。药理实验和临床研究表明,黄芪在抗炎、抗氧化、改善微循环、降血糖、增强免疫等方面疗效显著[29-31]。黄芪皂苷IV是黄芪的主要活性成分之一,《中国药典》2020年版将黄芪皂苷IV确定为黄芪质量控制的重要指标。研究发现,黄芪皂苷IV 24 mg/kg可有效提高DPN大鼠腓总神经运动传导速度,降低血糖浓度和糖化血红蛋白(glycosylated hemoglobin,GHb)水平,减少神经细胞中AGEs的积累,从而有效抑制DPN大鼠有髓纤维面积的减少和节段性脱髓鞘的增加[32]。Yin等[33]通过构建DPN大鼠模型和DPN雪旺细胞损伤模型发现,黄芪皂苷IV 80 mg/kg能够通过增强自噬,减轻雪旺细胞凋亡引起的DPN髓鞘损伤,改善神经功能。Ben等[34]应用黄芪皂苷IV 60 mg/kg连续12周干预DPN大鼠模型,发现黄芪皂苷IV能够改善DPN大鼠背根神经节中线粒体的损伤,显著减少DPN大鼠的机械性异常疼痛,提示黄芪皂苷IV在治疗DPN中有着巨大潜力。桂枝具有散寒解表、温通经脉的功效,临床常用于镇痛、抑菌、抗过敏及促进血管舒张、抗血小板聚集等[35-36]。目前DPN的发病机制被认为与胰岛素缺乏或胰岛素抵抗、高血糖和血脂异常有关[6],桂枝提取物不仅具有降血糖的作用[37-38],还可以减少肠道对胆固醇和脂肪酸的吸收[39]。现代药理研究发现,桂枝主要含有挥发油类和有机酸类化合物成分[40],其中挥发油中的主要药效成分为肉桂醛。Chun等[41]通过构建肉桂醛调控的编码基因对周围神经变性影响的生物信息学分析发现,肉桂醛能够通过影响雪旺细胞氧化应激反应而抑制周围神经变性。背根神经节神经元对高葡萄糖浓度应激的易感性与DPN的发生发展有关,是DPN损伤的靶细胞[42]。Shi等[43]通过构建高糖诱导的背根神经节神经元细胞模型发现,肉桂醛100 nmol/L能够通过抑制NF-κB通路,从而起到保护背根神经节神经元作用,减少细胞凋亡。另有研究发现,肉桂醛20、40 mg/kg可显著降低糖尿病大鼠的血糖水平,逆转糖尿病大鼠的神经炎症反应和神经递质水平的变化,提示肉桂醛在防治DPN方面具有巨大潜力[44]。现代药理研究发现,白芍化学成分主要有单萜及其苷类、三萜类、黄酮类等,具有抗炎、镇痛、抗血栓、抗氧化、降血糖等作用[45-46]。Huang等[47]通过大鼠坐骨神经受损实验发现,白芍提取物能显著增强神经突起的生长及其生长相关蛋白和突触素的表达,有助于促进周围神经再生,提示白芍提取物可能是一种潜在的神经生长促进因子。《中国药典》2020年版中将芍药苷定量控制作为对白芍的含量测定项,表明芍药苷是白芍的重要质量标志物。研究发现,芍药苷100 μmol/L具有显著的抗氧化应激作用,可以通过激活核因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)信号通路保护雪旺细胞免受高糖诱导的氧化损伤[48]。朱晏伯等[49]通过观察芍药苷对高糖环境下雪旺细胞线粒体动力学的影响,发现芍药苷100 μmol/L能促进高糖环境下雪旺细胞线粒体融合,降低分裂,维持线粒体动力学平衡,改善线粒体形态与功能,降低雪旺细胞凋亡。邢琪昌等[50]构建了芍药苷-疾病-靶点网络分析,结果得出芍药苷具有降血糖、抗氧化、减轻神经炎症和疼痛等功效,在治疗DPN中具有潜在的应用价值。生姜是一种广泛使用的药食同源类中药,具有辛温解表、温里散寒的功效[51],现代药理研究表明生姜具有抗炎镇痛、抗糖尿病、增强免疫力等作用[52]。生姜可通过促进外周血葡萄糖的利用,纠正受损的肝肾糖酵解,限制糖异生物质的形成,从而有效地控制组织糖原含量[53]。此外,炎症反应与DPN的发生发展密切相关[54],生姜提取物还能够显著抑制炎性因子IL-6和TNF-α的表达,减轻白细胞浸润或水肿的形成,起到保护神经的作用[55]。Shen等[56]通过构建DPN大鼠模型,并用生姜提取物进行治疗,发现生姜提取物不仅可以减轻疼痛,还可以调节DPN大鼠肠道菌群微生物的组成,表明生姜提取物靶向肠道微生物群可能是治疗DPN的一种新治疗策略。6-姜烯酚是生姜中的重要生物活性化合物之一[57],已广泛用于治疗多种疾病。Nurrochmad等[58]研究发现,6-姜烯酚15 mg/kg和生姜提取物400 mg/kg能够降低血糖,减轻糖尿病神经疼痛小鼠模型的热痛和机械疼痛,减轻坐骨神经微结构受损程度,提示6-姜烯酚和生姜提取物对糖尿病神经疼痛小鼠具有抗痛觉过敏和神经保护作用。大枣具有增强免疫、抗氧化的功效[59]。小胶质细胞激活介导的神经炎症在DPN神经病理性疼痛中起着重要作用[60]。大枣提取物对小胶质细胞的激活有抑制作用,可减轻小胶质细胞一氧化氮释放的增加,同时降低促炎因子IL-6、IL-1β和TNF-α的表达,改善神经性疼痛[61]。另有研究证实,大枣提取物还能促进神经末梢乙酰胆碱释放,刺激胰腺细胞促进胰岛素释放,起到降低血糖的作用[62]。Kaeidi等[63]将大鼠肾上腺嗜铬细胞瘤PC12细胞作为DPN体外模型,研究大枣提取物对PC12细胞中葡萄糖诱导的神经毒性的神经保护作用,发现大枣提取物300 μg/mL可降低高葡萄糖诱导的细胞毒性,并阻止活性氧的生成,抑制神经细胞凋亡,表明大枣提取物具有减轻DPN的治疗潜力。上述研究为阐明HGD是治疗DPN的标准方剂提供了有力证据。药效基础研究发现,5味中药能够通过降血糖、抗炎、抗氧化、修复受损神经、调节肠道微生物群、改善线粒体形态与功能等多种途径防治DPN的发生发展。然而关于HGD全方治疗DPN的研究尚缺乏相关模型的入血成分、药动学分析,因此利用现有中药分析技术明确其药效物质基础,特别是HGD体内外化学成分分析及量效关系研究,在治疗DPN方面具有重要意义。3 HGD治疗DPN的临床研究近年来,临床研究证明使用HGD可有效治疗DPN,通过增减药味,或联合化学药、其他方剂及外用疗法,达到治疗疾病,改善患者生活质量的目标。3.1 原方应用在临床治疗治疗中,因为患者年龄、病程、症状严重程度等不同,所以直接采用原方剂量治疗的案例比较少。胡宗华[64]将90例DPN患者分为对照组和观察组,对照组给予甲钴胺片治疗,观察组给予HGD治疗,结果显示观察组空腹血糖、餐后血糖、血液流变学指标均低于对照组。雷琳丽[65]应用HGD治疗DPN患者发现,HGD组空腹血糖、感觉神经传导速度、下肢振动感觉阈值均优于甲钴胺组,总有效率达93.33%。这2项临床研究表明HGD对于缓解DPN患者的血糖及症状方面效果显著。3.2 复方加减联合化学药HGD加减和甲钴胺联合应用,可明显改善患者四肢麻木、烧灼、疼痛、针刺感等临床症状[66],降低血清TNF-α炎性因子,提高超氧化物歧化酶水平[67]。HGD加减与盐酸法舒地尔注射液组合可以降低DPN患者空腹血糖、餐后2 h血糖、HbA1c、总胆固醇等指标,显著改善感觉神经传导速度和运动神经传导速度[68]。在一项为期12周治疗DPN的研究中[69],HGD、依帕司他、长春西汀注射液三者联合治疗,周围神经传导速度显著提高,中医证候积分较治疗前显著降低且优于对照组,血糖得到明显改善。根据以上临床研究,发现HGD加减联合化学药可有效降低患者血糖水平,抑制炎症反应发生及发展,改善氧化应激,减轻麻木、疼痛等临床症状,进而提升了患者的生活质量。可总结以下用药加减规律:若舌脉以血瘀为主,临床症状以刺痛为主,则加用当归、川芎、桃仁、三七等活血类药物;若患者肢体疼痛以刺痛且有定处为主,则加用鸡血藤、红花、牛膝、丹参等活血祛瘀止痛类药物;若患者肢体疼痛加重,出现入夜痛甚,则加用全蝎、地龙、没药、乳香等以痛经活络消痹止痛;若患者肢体出现水肿,则加用苍术、薏苡仁、木瓜等利水除湿、通络除痹。目前常用的化学药有甲钴胺、依帕司他、阿司匹林肠溶片、盐酸法舒地尔等药物。见表1。图片3.3 复方加减联合其他方剂相比于单独应用和联合化学药应用,HGD联合当归四逆汤、补阳还五汤、桃红四物汤等方剂治疗DPN,也取得良好的疗效。HGD联合当归四逆汤治疗DPN患者后,患者肢体冰冷、疼痛和麻木等临床症状大幅减轻,神经系统反射基本恢复正常[79],患者肢体血流速度得到改善[80]。HGD和补阳还五汤组合治疗总有效率达92%,临床症状明显缓解,神经传导速度增幅较高,密歇根糖尿病审计病变积分明显低于对照组[81]。连珍珍等[82]应用HGD合桃红四物汤加减治疗DPN研究显示,患者治疗前后血糖、HbA1c、中医证候积分、密歇根糖尿病审计病变积分、神经传导速度均有好转。当归四逆汤温经散寒、养血通脉,主治血虚寒厥证。补阳还五汤具有补气、助阳、通络化瘀的功效,主治气虚血瘀之证。桃红四物汤养血活血,主治血虚兼血瘀证。HGD联合补阳还五汤、当归四逆汤、桃红四物汤等方剂治疗DPN,能够有效减轻患者肢体冰冷、疼痛麻木等临床症状,改善神经传导速度,降低血糖。DPN的病因病机复杂多样,但以虚为本、瘀为标,肌肉筋骨失于濡养,致使手足麻木、厥冷、痹阻脉络、不通则痛。因此在临床治疗中,应补气补血补阳、活血化瘀通络。3.4 复方加减联合针灸在临床中,HGD还可以联合针灸治疗DPN。在孟凡冰等[83]的临床研究中,服用HGD,同时联合针灸治疗,血液黏度、多伦多临床评分均下降,神经传导速度也显著提升。赵荣等[84]研究发现,经HGD联合针灸治疗DPN后,患者肢体麻木、疼痛、无力的症状明显好转,中医证候积分量表较治疗前下降,对比患者治疗前后血常规、肝肾功能、心电图指标,差异无统计学意义,表明HGD联合针灸治疗DPN临床疗效确切且安全性较高。相较于单用HGD加减治疗,联用针灸后,临床症状缓解方面疗效更佳。部分穴位如三阴交、太溪和内关穴下有神经走行,针灸针对神经直接刺激后,可明显提高对神经功能的良性调节作用。四肢关节以下的腧穴,如足三里、三阴交、曲池、内关等,能够起到疏通局部经络气血的作用。针对DPN的关键病机,辅以关元穴、肾俞穴、胰俞穴、脾俞穴等,能达到补虚培元、调和脏腑的功效。见表2。图片3.5 复方加减联合其他疗法此外,HGD还可以联合中药足浴、穴位敷贴、高压氧等疗法共同治疗DPN。一项临床实验显示[91],口服HGD联合中药足浴(丹参、艾叶、红花、凤仙透骨草、皂角刺各20 g,肉桂、川椒各10 g),临床疗效优于对照组。HGD配合涌泉穴穴位贴敷治疗DPN后,患者全血高切比黏度、全血低切比黏度、血浆黏度水平均明显下降,有效改善了患者的血糖水平[92]。以上临床实验表明,HGD治疗DPN效果显著,有单独应用、联合化学药、针灸、中药足浴和穴位贴敷等用法,有效改善DPN患者糖脂代谢、血液流变学,降低患者血糖水平、氧化应激指标,抑制炎症反应,降低中医证候积分,提高神经传导速度,减轻DPN患者疼痛、麻木、四肢厥冷等临床症状。4 HGD治疗DPN的机制研究4.1 降低血糖,改善糖脂代谢高血糖是糖尿病前期、糖尿病前期神经病变、DPN的主要危险因素[93],不仅会直接损伤神经,其介导的多种异常代谢途径,如多元醇通路、AGEs通路、己糖胺通路,会通过激活炎症反应、氧化应激、线粒体功能障碍等造成神经屏障破坏、周围微血管损伤,最终累及神经。除高血糖激活的异常代谢途径,最近的研究表明血脂异常也在DPN发生发展中起着重要作用[11]。刘曼曼等[94]研究发现HGD可有效降低DPN患者空腹血糖、餐后2 h血糖、HbA1c,患者肢体神经传导速度、麻、凉、痛等症状得到改善。林云梅等[95]采用HGD治疗DPN患者,检测患者血糖、血脂水平发现,治疗组空腹血糖、餐后2 h血糖、总胆固醇、三酰甘油、低密度脂蛋白胆固醇均显著下降。这2项研究表明HGD能够有效调节DPN患者机体血糖、血脂水平,改善受损神经组织。4.2 抑制异常代谢通路4.2.1 抑制AGEs通路 在糖尿病患者中,神经组织被过度糖化,导致蛋白质、脂质、核酸等与还原糖类发生非酶促反应生成AGEs[96]。糖尿病患者皮肤和周围神经存在大量AGEs,特别是神经元、雪旺细胞、神经内膜和神经外膜微血管中[97]。AGEs与晚期糖基化终产物受体(receptor for advanced glycationend products,RAGE)结合后引起内皮功能障碍、氧化应激和促炎信号的传导[98]。方颖等[99]通过高脂饲养联合ip链脲佐菌素建立DPN大鼠模型,经HGD干预后,发现DPN大鼠血清IL-1β、TNF-α炎症因子的含量显著降低,其作用机制可能与减少AGEs蓄积,阻断AGEs/RAGE/NF-κB信号有关。4.2.2 调节内质网应激,抑制细胞凋亡 高血糖能够扰乱蛋白质稳态并上调未折叠的坐骨神经蛋白[100],而内质网腔内未折叠或错误折叠蛋白的积累会诱导内质网应激[101],最终激活环磷酸腺苷反应元件结合转录因子同源蛋白(C/EBP-homologous protein,Chop)导致细胞凋亡[102]。张岩等[103-104]通过构建DPN大鼠模型发现,经HGD组干预后,DPN大鼠Chop蛋白表达显著降低,HGD可以通过调节内质网应激途径抑制细胞凋亡。此外,HGD还能够显著降低坐骨神经细胞凋亡相关B细胞淋巴瘤-2相关X蛋白和半胱氨酸天冬氨酸蛋白酶-12蛋白的表达,抑制坐骨神经细胞凋亡并改善和修复糖尿病大鼠坐骨神经损伤。内质网应激介导Chop凋亡蛋白的同时,也激活了c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)[105],JNK可以抑制髓鞘蛋白的产生,诱导雪旺细胞去分化,从而导致脱髓鞘和神经损伤的发生[106]。肖凡等[107]研究发现,HGD给药组DPN小鼠神经纤维和髓鞘出现再生,空腹血糖、鼠尾热痛觉敏感程度、坐骨神经传导速度、坐骨神经组织病理状态均显著优于模型组,JNK蛋白表达也显著减少,推测HGD可能通过抑制内质网应激水平来改善DPN大鼠坐骨神经功能、减轻坐骨神经组织损伤。4.3 抗炎镇痛DPN与炎症反应密切相关,炎症标志物的水平可以预测DPN的发生和发展[108]。多项临床研究证明,HGD可以有效降低IL-6、TNF-α等炎症因子水平,改善神经传导速度[109-110]。miR-146a是一种短链非编码RNA分子,miR-146a与糖尿病慢性并发症间存在独立的负相关关系[111],在长期高血糖的情况下,miR-146a的表达下降,NF-κB的抑制减弱,导致IL-1β和TNF-α炎性因子表达水平升高[112]。郭咏梅等[113]研究发现,HGD可以上调DPN大鼠模型miR-146a基因表达,降低DPN大鼠血清中炎症因子IL-1β和TNF-α水平,以及机械痛阈值,提高神经传导速度,推断HGD治疗DPN的机制与抑制炎症反应有关。周雯等[114]研究发现,HGD能够呈剂量相关性降低DPN大鼠血清IL-1β、TNF-α水平,减轻周围神经组织炎症损伤。4.4 抗氧化应激氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,过多的活性氧除造成轴突变性外,还会导致神经纤维的功能减退,与DPN的发生发展密切相关[115]。经HGD干预后DPN大鼠血糖、丙二醛水平显著下降,血清谷胱甘肽水平升高,提示HGD具有抗氧化作用[116]。硫氧还蛋白(thioredoxin,Trx)是一种广泛存在于生物体内的氧化还原调节蛋白,不仅可以通过清除活性氧来抵抗细胞内的氧化应激,还可以作为一种生长因子促进细胞的生长[117],而硫氧还蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)是Trx的生理抑制剂,能下调Trx表达。张文娓等[118]通过研究HGD对DPN大鼠周围神经组织Trx及TXNIP表达的影响,发现HGD可明显提高Trx的表达,降低TXNIP的表达,进一步表明HGD可通过抗氧化应激来治疗DPN。4.5 营养神经修复NGF在外周神经纤维重建和中枢神经系统的营养维持中具有重要作用[119],有研究发现NGF可明显缩短神经再生长和髓鞘再生时间[120]。多项实验研究表明HGD可有效改善DPN大鼠坐

  • 全自动血细胞分析仪——能依靠它们去计数吗?

    全自动血细胞分析仪——能依靠它们去计数吗?库尔特原理库尔特原理指出:悬浮在电解液中的颗粒随电解液通过小孔管时,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。这主要是根据血细胞与稀释剂相比,血细胞是不良导体的特性而提出的。起初,原始的库尔特计数器只能计算和测量红细胞。后来,随着技术的不断发展和设备的不断改进,临床医生还可以利用它来计算和测量白细胞。到20世纪70年代,技术的进一步发展使技术人员能够分离血小板。全自动细胞计数器的演进传统意义上的血细胞计数器是通过研究外周血涂片,使用血细胞仪和白细胞分类计数而手动完成的(也称为100个细胞涂片分类,手动白细胞分类计数或手动计数器)。根据库尔特原理导致了库尔特计数器的发明,随后又开发出了技术先进的全自动血液细胞分析仪。自此,仪器的技术水平得到不断提高。由于技术的进步,一台仪器可以分析越来越多的参数,从而大大提高了血液检测的效率,减少在多台仪器上分析一个样品的情况。现代的细胞分析仪能够测量白细胞(WBC)、白细胞分类(五分类)、红细胞(RBC)、血红蛋白(HGB)、血小板(PLT)、平均红细胞体积(MCV)、平均血小板体积,并且可以自动计算血细胞比容(HCT)、平均红细胞血红蛋白(MCH)、平均红细胞血红蛋白浓度(MCHC)、红细胞分布宽度,血小板比积和血小板分布宽度。自动分析仪的其他重要因素包括它们运行的速度和每批次可以处理的样本数量(大处理容量可以减少周转时间)。即时检验(POCT)即时检验([/

  • 目视法细胞计数的改进方案

    谈到血常规检查,大家马上会想到WBC、RBC计数,虽然现在各种全自动和半自动的三分类、五分类血球分析仪已经普及,但在广大基层单位,条件尚不许可,仍然是一台显微镜加一块计数板,“目视计数法”还有顽强的生命力,及很强的实用价值,即使在仪器铺天盖地,大口吞噬“人工检验市场”的今天,我们依旧需要手工法进行样本复检、机器校正等工作。目视计数法在我们的印象中无非是数数方格,传统的计数法是按操作规程之规定,先找到相应的方格,但老方法中几十年来都一成不变的计数区域用到实际工作中并不让人感觉舒适和便利,当出现细胞数过多,堆得密密麻麻时,更容易视觉疲劳和出错;且动辄采血20μl,有些病人不易采足量(在同时进行多项检验时,更易出现采不到量而必须多次穿刺,增加了病人的痛苦)。因此,改进一下计数区域和采血量,寻找一种人性化的方法就很有其必要性了。对于这个问题,我研究了一套解决方案,并在工作中使用了近十年,一直感觉良好。下面,我就把该方案贴出来,和大家做一交流。一、RBC、PLT计数改进法:1. RBC:取血10μl加入红细胞稀释液3.0ml内混匀充池(即稀释300倍)2. PTL:取血10μl加入血小板计数液0.29ml内混匀充池(即稀释30倍)下面是计数池中间的那部分结构图,以红笔勾出的阴影部分为本法计数区域(两个细长长条区域)http://bbs.labsky.com/uploads/2010-5/2010-05-12_224036.jpg【计算】RBC数 / L = 计数区红细胞总数 / 100 ×10^12 / LPLT数 / L = 计数区血小板总数 ×10^9 / L二、WBC计数改进法:方法1:此法又可称为“盘龙法”,它覆盖面广,可较好的中和细胞不易分布均匀的固有误差,适用于精确计数。【操作】(同原法) 取血20μl加入白细胞计数液0.38ml内混匀充池(稀释20倍) 计数区域见下图所标示(蓝色箭头示意为计数起止方向)http://bbs.labsky.com/uploads/2010-5/2010-05-12_224121.jpg【计算】(亦同原法) WBC数 / L= 计数区白细胞总数 / 20 ×10^9 / L方法2:此法较上法简便而易于操作,采血量少,更不易疲劳和利于连续计数多量标本,且可灵活应对白细胞过低和过高的特殊情况,但准确性和精密度比上法稍差,适用于日常工作。【操作】取血10μl加入白细胞计数液0.29ml内混匀充池(即稀释30倍)(1)当白细胞数在合理区间时的计数区域(即用红线勾出的四个长条形区域):http://bbs.labsky.com/uploads/2010-5/2010-05-12_224324.jpg【计算】WBC数 / L = 计数区白细胞总数 / 10 ×10^9 / L(2)当白细胞数低于4.0 ×10^9 / L时,不必加量采血重做,计数区域:http://bbs.labsky.com/uploads/2010-5/2010-05-12_224506.jpg【计算】WBC数 / L = 计数区白细胞总数 / 20 ×10^9 / L(3)当白细胞数高于80 ×10^9 / L时,亦不必进行二次稀释,计数区域与新法计数RBC或PLT的计数区域相同,请见上面的第一幅贴图【计算】WBC数 / L = 计数区白细胞总数 ×10^9 / L我的这套方法好用与否,大家一试便知。最终的计算公式是怎么推导来的,这里我就不做详细论述,大家可以自己试着推导一下,如果对我的文章有疑异的,可以随时和我联系,欢迎大家批评和指正。我的QQ:59889501 作者:景德镇第二医院检验科 黄知进

  • 【求购】液基细胞保存液

    【求购】液基细胞保存液

    产品简介:保存液快速对脱落上皮细胞、腺细胞、白细胞等进行很好的保存和固定,保持标本采集时的原始细胞形态,防止细胞在保存过程中发生变形、自溶等。并通过制片使细胞均匀涂布在载玻片上制成薄层细胞涂片。染色后细胞结构在显徵镜下清晰易辨,同时把血液、粘液和炎症细胞减少到最底程度,从而易发现和确认异常细胞。更有利于从细胞的形态变化判定细胞的病变程度,使判定结果更加准确可靠,提高异常细胞的检出率,大大提高宫颈癌筛查方法的特异性和诊断的准确率。·产品性能特点::红细胞处理能力强:无需另加裂解液,既可将全部红细胞彻底清除,同时完美保存有诊断价值的各种有核细胞形态,从而对于临床上重度宫颈糜烂病人(或大量血细胞标本)能轻松一次性处理干净·消化分解黏液能力强:充分消化粘黏液,去除标本中普遍存在的黏液等干扰成份,释放具有诊断价值的细胞,保留有价值的诊断背景,有效提高检出率,检测结果准确。·细胞形态:核结构完整,其中核膜、核仁、核染色质颗粒及分布清晰可见,胞浆的嗜染性正常,有利于鉴别细胞的类别及来源。 细胞萃取:采用梯度离心分离萃取及红细胞处理专利技术和黏液消化技术多合一去除液基细胞学标本中的血液、黏液等干扰成份,富集提取细胞及诊断成份。 ·兼容性强:保存的细胞同时可做免疫细胞化学、HPV-DNA和衣原体等病原微生物的分子生物学检测,无需多次采样的烦恼。·应用广泛:细胞保存液临床运用非常广泛,除了运用宫颈细胞学检查外,还有胸腹积液、尿液、滑膜液、支气管冲洗液、脑脊液、针吸穿刺细胞及痰液标本细胞检测。·保存时间长:细胞在保存液中保存30天形态不变,真正保持细胞原始形态,更接近本身的组织学结构,更有利于恶性病变与良性反应性改变的鉴别诊断。·保存液细胞包裹技术,可以使细胞均匀悬浮,保证操作者在涂片标本时的随机性,任意取样涂片都具有代表性。http://ng1.17img.cn/bbsfiles/images/2011/06/201106231241_301155_2324710_3.jpg

  • 基因芯片细胞标本采集操作建议规程

    细胞标本采集操作建议规程 1. 所有样品均应有样品标签(注明样品编号),同时有一张样品登记表,写明样品名称、种类、编号、取样日期、样品处理情况等。2. 一张芯片实验一般要求细胞数在1E+08,建议设计实验和收获细胞时可考虑多收集一些。 3. 贴壁与悬浮细胞培养诱导结束后,去除培养液,保留的细胞用PBS缓冲液洗一下,除去缓冲液,加溶液D*充分溶解细胞,放入液氮运输。样品量以实际得到的total RNA为准。 4. 血液:将白细胞分离出来,加溶液D充分溶解细胞,放入液氮运输。样品量以实际得到的total RNA为准。5. 如果是细胞未经溶液D处理,直接冻入液氮罐(不推荐)。工作人员会对细胞作相关处理,以便为细胞记数。6. 以上提到的均是新鲜细胞,对一些已老化或质量不明的细胞,工作人员有权提出疑义,并要求退回或重新取样 。组织标本采集操作建议规程 取标本所需关键器材和处理要求 铝箔 经DEPC水浸泡过夜,78℃烘干,高压灭菌后烘干 。1.5 ml 微离心管  15 ml 聚丙烯离心管 市场有售RNAase-Free的相应规格离心管   标签纸   记号笔   样品登记表 由客户指定专人填写   液氮罐 应常备液氮罐,并保证液氮的来源   取材部位的病理切片 由客户提供1-2张 注:· 以下步骤1 - 5应在冰上进行且不超过15分钟,超过时间会导致样品的RNA降解。 · 对肿瘤组织的取材,要求尽可能准确地判定肿瘤和正常组织,例如对于手术切除的整个或部分前列腺,可能要根据冰冻切片报告的结果来判定要进行研究的取材部位。 1. 离体新鲜组织,切成多个1cm3小块,剔除结缔组织和脂肪组织。胃、肠组织应剪除外膜;肝、肾、脾应剪除门部血管神经,肿瘤组织应将周围的正常组织切除干净(正常组织也应将周围的肿瘤组织切除干净)。 2. 在RNase-Free 0.9%生理盐水中漂洗样品,以去除血渍和污物。3. 用铝箔包裹组织,或用5ml冻存管装载组织(但最好统一采用铝箔)。用记号笔在铝箔或冻存管外表写明样品编号,并贴上标签,迅速投入液氮冷却。4. 填写样品登记表,写明样品名称、种类、编号、取样日期、样品处理情况等 。5. 将液氮冷却的组织放入样品袋(每个样品袋只保存同样的组织),袋口留一根编号绳,绳上粘一张标签纸(标签上注明:样品名称、编号、日期),迅速转入便携式液氮罐。6. 保留1-2张取材部位的病理切片。

  • 肌肉干细胞促肌肉生长和修复机制

    肌肉能提供干细胞来促进肌肉的生长和受伤肌肉的再生,但肌肉干细胞必须驻留在特殊的部位才能有助肌肉的生长和修复。德尔柏林布吕克分子医学中心(MDC)发育生物学家Dominique Bröhl和Carmen Birchmeier教授已经阐明这些干细胞是如何定植于肌肉干细胞“巢穴”中的。肌肉干细胞也被称为卫星细胞,位于平滑肌细胞的质膜和周围基底层之间。可发育分化为成肌细胞,后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。http://www.bioon.com/biology/UploadFiles/201209/2012091813042153.jpg在本研究中,Bröhl博士和教授Birchmeier表明,小鼠的肌肉祖细胞缺乏Notch信号后,不能定植于干细胞“巢穴”。相反,肌肉祖细胞会定植于肌纤维之间的组织中。发育生物学家认为,这是肌肉弱化的原因。干细胞定植于错误的地方就不再像以前那样拥有多种生物学功能,难以有助于肌肉生长。此外,Notch信号通路在肌肉的发育过程中具有第二大功能。它可以通过抑制肌肉发育促进因子MyoD防止干细胞分化成肌肉细胞,从而确保肌肉中总会存在能保存有修复和再生功能的干细胞“巢穴”。这项工作对肌肉再生和肌肉无力的研究具有重大意义。这实验势必为肌肉严重损伤和肌肉萎缩的患者提供新的希望!多么希望此技术能在中国普及。

  • 增强光散射分辨率,促进多维流式细胞分析

    多维流式细胞仪可同时进行多参数测量,在特定空间内对细胞群进行分析。若要实现该多维空间的合理使用,每个特定参数需提供额外信息来识别细胞群,并确保其动态范围能够最大限度地加以利用。本研究就白细胞的光信号散射情况进行了详细说明,从而促进了多维流式细胞分析的开展。细胞制备技术的提升对获得高分辨率光散射信号至关重要,可以实现粒细胞、单核细胞、颗粒状和非颗粒状淋巴球的完全分离。对搜集前向散射光的角度进行了改进,以提升白细胞的区分度。尽管正交光散射信号能够区分颗粒状和非颗粒状淋巴细胞,但仍无法利用线性或对数函数的形式将分辨率和动态范围显示出来。而在正交光散射信号中应用多项式函数,则可将白细胞全部以高分辨率显示出来。关联前向和正交光散射信号可实现高分辨率光散射与非线性显示的结合,使细胞群呈现等距分布状态。使用这种方式,可将外周血中性粒细胞、嗜酸细胞、嗜碱粒细胞、单核细胞、颗粒状和非颗粒状淋巴细胞等都显示出来,占据与正交和前向光散射相关的不同位置。出人意料的是,嗜碱粒细胞是处在了颗粒状淋巴和单核细胞附近而非中性和嗜酸性粒细胞。流式细胞术中的人体白细胞光散射特性主要应用于区分淋巴细胞、单核细胞和粒细胞。前向光散射信号与细胞的大小和折光率有关,而正交光散射信号则与细胞的粒度有关。一项对正交光散射信号更进一步的分析显示出了淋巴细胞成分的差异,即非颗粒状淋巴细胞的信号比颗粒状的要低。此外,该方法还显示了白血球的正交光散射信号在不同疾病状态下的变化情况。高分辨率光散射要在最佳角度收集散射参数,并对散射光的收集光路进行优化。改进细胞制备方法对最大限度地实现对细胞群的分离至关重要。改变制备流程可能导致细胞群分辨率的提高或降低。通过光散射,可从测量中排除受损细胞和无核细胞的干扰,从而提高细胞群的分辨率。正交光散射信号的动态范围不允许在相同线性尺度上同时观察淋巴细胞群和中性粒细胞。本研究提供了一种新方法,通过对正交光散射信号进行数字信号处理转换,实现了白细胞群在光散射显示中更加均衡的分布。这种转换提升了淋巴细胞分辨率,实现了细胞的可视化,而动态范围的确定对中性粒细胞的观察也十分重要。因此,重新对细胞群在多维空间进行定位可使细胞群在制备过程中实现完美分离。

  • 离心机如何应用于红细胞压积容量测定

    [b]离心机[/b]如何应用于红细胞压积容量测定摘要:红细胞压积(packedcellvolume,PCV)又称红细胞比容(hematocrit,Hct),是指红细胞在血液中所占容积的比值,测定时将抗凝血在一定的条件下离心沉淀,即可测得每升血液中血细胞所占容积的比值。  1原理[b]离心机[/b]  在100刻度玻璃管中,充入抗凝血至刻度,经一定时间离心后,红细胞下沉并紧压于玻璃管中,读取红细胞柱所占的百分比,即为红细胞压积容量(PCV又称压容、比容)。  2.器材  (1)温氏管:管长11cm,内径约2.5mm,管壁有100个刻度。一侧自上而下标有0~10,供测定血沉用,另一侧标有10~0,供测定比容用。如无这种特制的管子,可用有100刻度的小玻璃管代替。  (2)长针头及胶皮乳头:选用长12~15cm的针头,将针尖磨平,针柄部接以胶皮乳头。也可用细长毛细吸管代替。  (3)水平电动离心机:转速能达4000rpm者。  3.方法  (1)用长针头吸满抗凝血,插入温氏管底部,轻捏胶皮乳头,自下而上挤入血液至刻度10处。  (2)置离心机中,以3000rpm的速度离心30~45min(马的血液离心30min,牛、羊的血液离心45min),取出观察,记录红细胞层高度,再离心45min,如与第一次离心的高度一致,此时红细胞柱层所占的刻度数,即为PCV数值用%表示。  4.注意事[b]离心机[/b]项  (1)温氏管及充液用具必须干燥,以免溶血。  (2)此时,离心机的转速必须达3000rpm以上,并遵守所规定的时间。  (3)用一般离心后[b]离心机[/b],红细胞层呈斜面,读取时应取斜面1/2处所对应的刻度数。血浆与红细胞层之间的灰白层由白细胞与血小板组成,不应计算在内。  5.临床意义  (1)红细胞压积增高:见于各种原因所引起的血液浓缩,使红细胞相对性增多,如急性胃肠炎、肠便秘、肠变位、瓣胃阻塞、渗出性胸膜炎和腹膜炎,以及某些传染病和发热性疾病。由于红细胞压积增高的数值与脱水程度成正比,因此在临床上可根据这一指标的变化而推断机体的脱水情况,并计算补液的数量及判断补液量的实际效果。另外。也见于各种原因所致的红细胞绝对性增多,如真性红细胞增多症、肺动脉狭窄、高铁血红蛋白血症等。  (2)红细胞压积降低:见于各种贫血,但降低的程度并不一定与红细胞数一致,因为贫血有小细胞性贫血、大细胞性贫血及正细胞性贫血之分。

  • 荧光显微镜及流式表征西达本胺诱导细胞凋亡并阻滞细胞周期

    荧光显微镜及流式表征西达本胺诱导细胞凋亡并阻滞细胞周期

    荧光显微镜及流式表征西达本胺诱导细胞凋亡并阻滞细胞周期流式细胞术检测到明显的细胞凋亡,随着加药浓度的升高,细胞凋亡数量增多,早期凋亡细胞、晚期凋亡细胞和坏死细胞 的 数 量 都 随 之 上 升 (图 a).测 得 实 验 组 凋 亡 率 分 别 为 12.32% ±0.84% (P 0.05),15.63%±0.91%(P0.001),与对照组相比,有统计学意义(图b).与此同时通过 EdU 实验检测(图c)其细胞周期的变化,随着加药浓度的增高,Hoechst蓝色荧光染色细胞数目减少,即活细胞数减少,药物对细胞杀伤作用显著 EdU 绿色荧光染色细胞数减少,即进入 DNA 复制期的细胞数量减少.表明西达本胺可以明显促进 HCT-15细胞凋亡、抑制其增殖且阻滞细胞周期.[img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302205203559_379_5389809_3.png[/img]

  • CIK细胞的制备方法

    【背景】CIK是“Cytokine-Induced Killer Cells”的缩写,中文全称为“细胞因子诱导的杀伤细胞”。 CIK是单个核细胞在CD3单抗和多种细胞因子(包括IFN-g, IL-2等)的作用下培养获得的一群以CD3+CD56+细胞为主要效应细胞的异质细胞群, 其既具有T淋巴细胞强大的抗肿瘤活性,又具有NK细胞(自然杀伤细胞)的非MHC(主要组织相容性抗原)限制性肿瘤杀伤能力。CIK细胞具有杀瘤活性高、杀瘤谱广,对正常组织毒性低,体外可高度扩增等特点,是目前临床上广泛使用的过继性免疫治疗细胞。【培养原理】CIK培养用细胞因子和抗体:nCD3激发型单抗:T细胞活化的第一信号来自于T细胞表面的受体,即T细胞抗原受体(T cell antigen receptor, TCR)与APC提呈的抗原的特异性结合,也就是T细胞对抗原的特异性识别。TCR是由2条不同肽链构成的异二聚体,在T细胞表面,其与CD3分子通过非共价键结合,形成TCR/CD3复合体。TCR识别特异性抗原后会引起CD3和T细胞表面的辅助受体CD4或CD8分子的胞浆尾部聚集,进而激活与胞浆尾部相连的酪氨酸激酶(Lck, Fyn和ZAP-70等),促使CD3分子胞浆区的免疫受体酪氨酸活化基序(immunoreceptor tyrosine-based activation motif, ITAM)中的酪氨酸(Y)磷酸化。磷酸化的酪氨酸(pY)进一步磷酸化下游含酪氨酸的蛋白,从而引起激酶活化的级联反应(磷脂酰肌醇途径或MAP激酶途径等),最终通过激活转录因子,使其进入细胞核内,结合于调控T细胞增殖和活化的靶基因(如IL-2和IFN-g等),引起基因的表达和转录,T细胞因而由静止状态转为增殖和活化状态。由上可见,CD3分子在T细胞活化信号的转导中起着极其关键的作用。CD3激发型单抗与T细胞表面CD3分子特异性结合后,可引起CD3分子胞浆区ITAM基序中酪氨酸的磷酸化,进而导致T细胞增殖和活化的下游信号的激活,从而使T细胞增殖和活化。也就是说,CD3激发型单抗能够模拟抗原与TCR/CD3复合物的识别和激活过程,从而引起T细胞的增殖与活化,因此是CIK细胞培养中不可或缺的刺激因素。此外,CD3激发型单抗在选用时一定要注意克隆号。研究表明,仅克隆号为OKT-3的CD3激发型单抗可以刺激所有人的T细胞的增殖,而其它克隆号的CD3激发型单抗仅能刺激一部分人的T细胞。因此,在进行CIK培养时,最好选用OKT-3克隆,以保证每个患者的T细胞均能被激活。nIL-2 (白细胞介素-2)IL-2最初发现时被称为T细胞生长因子(T cell growth factor, TCGF),是引起T细胞增殖最重要的细胞因子。IL-2既是自分泌细胞因子,也是旁分泌细胞因子,其通过与T细胞表面的IL-2受体(IL-2R)的特异性结合而促使T细胞活化,并进入细胞分裂状态。此外,IL-2还可刺激NK细胞的生长并增强其杀伤能力。因此CIK细胞培养中须添加IL-2,以促进T细胞的增殖与活化。nIFN-g (干扰素-g)IFN-g 具有上调外周血淋巴细胞表面IL-2R表达的作用,因此会增强T细胞对IL-2促增殖反应的敏感度和强度。在诱导CIK细胞形成的过程中加入IFN- g ,可降低IL-2的用量。研究发现,IFN-g加入的顺序与CIK的细胞毒活性密切相关。先加入IFN- g,培养24后再加入IL-2,可明显提高CIK的细胞毒活性。nIL-1a(白细胞介素-1a)IL-1a也可以介导外周血淋巴细胞表面上调表达IL-2R。当IL-1a与IFN-g和激发型CD3单抗合用时,可以明显提高CIK 的细胞毒作用。【细胞制备】1.外周血单个核细胞的采集1.1用血细胞分离机采集患者自身的外周血单个核细胞50-100mL;1.2淋巴细胞分离液密度梯度离心法进一步纯化单个核细胞(PBMC);1.3无血清培养液洗涤2次,获得纯度在90%以上的PBMC。2.CIK细胞的培养及鉴定2.1将PBMC按1-2 x 106/ml的浓度悬浮于无血清培养液中,加入1,000 U/ml 的重组人IFN-g,37oC,5%CO2培养箱中培养;2.224h 后加入50ng/ml 的CD3 单克隆抗体和300 U/ml 的重组人IL-2,刺激CIK 细胞的生长和增殖;注:此时也可同时加入100 U/ml的重组人IL-1a。2.3每3天半量换液或扩瓶一次,并补加重组人IL-2 300 U/ml;2.4在培养的第14d,收获CIK细胞。2.5CIK细胞质控:2.9.1台盼蓝染色检测:活细胞应在80%以上;2.9.2流式细胞仪检测细胞表面CD3、CD8、CD56等分子的表达:CD3+CD56+细胞的比例应在20%以上。2.9.3细胞杀伤实验:以CIK细胞为效应细胞,以肿瘤细胞(可为原代肿瘤细胞或肿瘤细胞株)为靶细胞,将效应细胞与靶细胞按10 : 1(数目比) 的比例加入96 孔U 型板中,每孔含靶细胞1 x 104个,终体积为200 ml,设3个复孔。培养4h,然后取培养上清,用乳酸脱氢酶(LDH) 试剂盒检测效应细胞对靶细胞的杀伤率。2.9.4收获细胞前,取少量培养物进行细菌、真菌培养,并检测支原体、衣原体,及内毒素(标准:病原学检测阴性,内毒素5 Eu)。【步骤简图】http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873006_small.jpg 【推荐试剂】http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873008_small.jpg 注:Animal Free意为无动物成分。无动物成分的重组细胞因子在生产过程中不会有任何动物源性物质,尤其是牛蛋白的混入,使得最终获得的重组人蛋白中不含任何动物成分。这样可避免动物病原体(如疯牛病,克雅氏病等)的污染及外源蛋白引起的机体异种排斥和过敏反应,因此细胞治疗的体外细胞培养过程中最好使用无动物成分的重组细胞因子。【其它相关试剂】 http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873009_small.jpg【参考文献】 Li R, Wang C, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother. 2012; 61:2125-2133

  • 曹雪涛、邓宏魁当选《细胞》杂志新一届编委

    日前,Cell杂志公布新一届编委名单,编委中第一次出现中国科学家的名字:中国医学科学院曹雪涛院士、北京大学生命科学院邓宏魁教授。据悉,Cell杂志编委们是生命科学领域的一流科学家和学科带头人,曹雪涛、邓宏魁成为Cell杂志新编委,从一定程度上表明中国科学家的工作正在逐步得到国际学术界的认可。Cell杂志是学术界公认的生命科学领域的顶级杂志,自1974年创刊迄今近40年间,其一向以学术严谨、评审严格、以发表具有重要意义的原创性科研论文为主而且发表的论文系统性非常强而著称.2009年Cell杂志编委换届时有4位华裔编委,分别是加州大学伯克利分校教授钱泽南(Robert Tijan),加州大学旧金山分校/伯克利分校联合納米医学中心主任林温德(Wendell Lim)、哈佛大学物理系教授庄小威、耶鲁大学遗传系分子遗传学系副主任许田。这四位华裔科学家均是HHMI研究员,其中,钱泽南教授自2009年起任美国休斯医学研究所HHMI所长,庄小威教授是最年轻的美国科学院院士。目前Cell杂志编委中华人科学家增至6位,曹雪涛教授是著名免疫学家,1964年出生,是国内自主培养出来的学者,1986年本科毕业于上海第二军医大学并于1990年在该校获得博士学位,2005年当选中国工程院院士,今年当选德国科学院院士,目前是医学免疫学国家重点实验室主任、中国医学科学院院长、中国免疫学会理事长、亚洲大洋洲免疫学联盟主席、全球慢性疾病防控联盟候任主席。 在天然免疫、免疫调控与免疫治疗方面取得了系列成绩, 以通讯作者在Cell、Cancer Cell、Nature Immunology等SCI杂志发表论文210余篇。培养的10名博士生获得全国优博论文。邓宏魁教授是著名细胞生物学家,1963年出生,1984年本科毕业于武汉大学,1995年获得美国加州大学洛杉矶分校博士,后于纽约大学DAN LITTERMAN院士实验室从事博士后研究;2001年4月回国后在北京大学生命科学学院建立了细胞分化与细胞工程实验室,主要从事细胞分化、干细胞工程及其再生医学研究。曾经在Cell、Nature、Science等杂志发表过多篇论文。今年7月18日, Science刊登了其研究团队用小分子化合物诱导体细胞重编程为多潜能干细胞,该成果开辟了一条全新的实现体细胞重编程的途径,给未来应用再生医学治疗重大疾病带来了希望。

  • 【原创】超微量细胞自动分析技术

    超微量细胞自动分析技术在常规的细胞学实验中,无论是对于细胞培养中的细胞数量检测,还是药物对于细胞的毒性杀伤作用研究,或者是在下游实验前的细胞密度确认,都需要对细胞进行计数,有些时候还需要以染色的方法进行细胞存活率分析。目前,大部分实验室仍旧采用的是显微镜结合细胞计数板的计数方法,虽然成本低廉,但是操作繁琐,大部分细胞需要先稀释再计数,并且计数结果因人而异,系统偏差较大,另外计数板需要清洗,一旦清洗不够彻底会带来样品的交叉污染,因此,一旦样品较多就会消耗大量时间,影响研究的效率。也有一些实验室购置了能够自动进行细胞计数的仪器,可是当前的细胞计数仪均存在需要专门的试剂清洗以及样品进样针容易被细胞团堵塞等问题,无论是使用成本还是维护成本都居高不下。这些问题的存在不仅影响了自动化细胞计数的普及,同时也继续使细胞计数成为常规研究中的速度瓶颈。一款使用维护成本低,自动化程度高的细胞计数仪成为了许多细胞学研究者的呼声。根据这些用户的需求,GE Healthcare Life Sciences 最新推出了具有革命性进化设计的全自动细胞计数分析仪--Cytorecon,该仪器采用了高分辨率的CCD成像技术及自動軟件分析功能,仪器可以快速完成包括贴壁细胞、悬浮细胞、白细胞、培养细胞、酵母细胞等细胞样品的计数和浓度计算,结合成熟的台盼蓝染色技术,还可以快速完成细胞存活率的分析。除了细胞样品以外,仪器出色的性能甚至支持一些细菌和微生物样品的浓度计算。在进样的设计上,Cytorecon采用了20孔的特制样品盘设计,只需要用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]在样品盘上点上11ul样品,即可直接检测。即使超过107浓度的细胞,也能不需稀释即完成浓度分析。采用样品盘进样不仅通量高,而且一次规避了后续运行需要购买专门试剂、样品需要稀释、进样针会堵塞、不能同时测多个样品等一系列传统细胞计数仪器存在的问题。仪器内置了方便上手的控制分析软件,通过简单的参数设置就可以设定拍摄的样品数量,以及完成细胞大小、对比度和存活性的定义。有了如此方便的帮手,相信细胞计数将会变得无比轻松,您再也无需枯燥地对着显微镜,以损耗视力的代价通过人工逐个逐个进行细胞计数了。

  • 牛奶中的体细胞

    牛奶体细胞数的英文为somatic cell count,SCC。牛奶体细胞数是指每毫升牛奶中的细胞总数,多数是白细胞,通常由巨噬细胞、淋巴细胞、多形核嗜中性白细胞和少量乳腺组织上皮细胞等组成,约占牛体细胞数的95%,其余是乳腺组织死去脱落的上皮细胞。体细胞数反映了牛奶质量及奶牛的健康状况,在正常情况下,牛奶中体细胞数一般在20万~30万个/mL。

  • 牛奶体细胞数

    牛奶体细胞数的英文为somatic cell count,SCC。牛奶体细胞数是指每毫升牛奶中的细胞总数,多数是白细胞,通常由巨噬细胞、淋巴细胞、多形核嗜中性白细胞和少量乳腺组织上皮细胞等组成,约占牛体细胞数的95%,其余是乳腺组织死去脱落的上皮细胞。体细胞数反映了牛奶质量及奶牛的健康状况,在正常情况下,牛奶中体细胞数一般在20万~30万个/mL。

  • 纳米钻石“温度计”测量活细胞温度更精准

    有望提供一种新的治疗癌症的方法2013年08月01日 来源: 科技日报 作者: 陈丹 科技日报讯(记者陈丹)据《自然》杂志网站8月1日(北京时间)报道,纳米钻石可用于量子计算机中处理量子信息,而哈佛大学的研究人员利用纳米钻石的量子效应,将其变为“温度计”,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。 在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。 研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石“温度计”来精确控制。“现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。”参与该研究的哈佛大学物理学家彼得·毛瑞尔说。 他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石“温度计”将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。“你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。”毛瑞尔说。 目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石“温度计”的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该“温度计”的敏感度已经达到0.0018开的温度波动。 总编辑圈点 这样的“温度计”应该造价不菲,好在钻石是纳米级的。而其能够检测出细微到0.05开的温度波动,让其他测量细胞温度的方法难以望其项背,我们有理由相信,这项技术不仅仅只应用于医学领域。目前晶体管已经达到极小量度,在20或30纳米级别,离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,只有掌握这方面的知识,才能真正操控原子级设备,而纳米钻石“温度计”或许能派上大用场。 《科技日报》(2013-08-02 一版)

  • 流式细胞仪检测细胞周期及正常范围

    [b][font=宋体][font=宋体]细胞周期[/font][font=Calibri]cell cycle [/font][/font][/b][font=宋体]是指从一次细胞分裂形成子细胞开始到下一次细胞分裂形成子细胞为止所经历的过程,它反映了细胞增殖的速度。在临床上,有很多研究证明,细胞周期分析对人肿瘤的诊断预后具有很高的价值。[/font][font=宋体] [/font][font=宋体][font=宋体]一个完整的细胞周期包含间期和分裂期([/font][font=Calibri]M[/font][font=宋体]期)两个阶段,间期又分为[/font][font=Calibri]DNA[/font][font=宋体]合成前期([/font][font=Calibri]G1[/font][font=宋体]期)、[/font][font=Calibri]DNA[/font][font=宋体]合成期([/font][font=Calibri]S[/font][font=宋体]期)和[/font][font=Calibri]DNA[/font][font=宋体]合成后期([/font][font=Calibri]G2[/font][font=宋体]期),处于不同时期的细胞的[/font][font=Calibri]DNA [/font][font=宋体]含量存在差异。一般认为,[/font][font=Calibri]G 1 [/font][font=宋体]期细胞具有增殖活性,参与细胞周期循环,是二倍体细胞;[/font][font=Calibri]S [/font][font=宋体]期细胞,[/font][font=Calibri]DNA [/font][font=宋体]含量逐渐增加,从二倍体变成四倍体,随后进入 [/font][font=Calibri]G 2 [/font][font=宋体]期,最终进入 [/font][font=Calibri]M [/font][font=宋体]期。检测细胞周期常用的方法是检测[/font][font=Calibri]DNA[/font][font=宋体]含量,可以选择能与[/font][font=Calibri]DNA[/font][font=宋体]结合的荧光染料(如[/font][font=Calibri]PI[/font][font=宋体]等),再根据细胞各个时期[/font][font=Calibri]DNA[/font][font=宋体]含量不同从而荧光强度不同的方法,分析各个阶段的细胞比例。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=宋体]流式细胞仪[/font][font=Calibri]PI[/font][font=宋体]染色法检测细胞周期的原理[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]由于细胞周期各时相的[/font][font=Calibri]DNA[/font][font=宋体]不同[/font][font=Calibri],[/font][font=宋体]通常正常细胞的[/font][font=Calibri]G1/G0[/font][font=宋体]期具有二倍体细胞的[/font][font=Calibri]DNA[/font][font=宋体]含量[/font][font=Calibri](2N),[/font][font=宋体]而[/font][font=Calibri]G2/M[/font][font=宋体]期具有四倍体细胞[/font][font=Calibri]DNA[/font][font=宋体]含量[/font][font=Calibri](4N),[/font][font=宋体]而[/font][font=Calibri]S[/font][font=宋体]期的[/font][font=Calibri]DNA [/font][font=宋体]含量介于二倍体和四倍体之间。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]PI[/font][font=宋体](碘化丙啶)为插入性核酸荧光染料,能选择性嵌入核酸[/font][font=Calibri]DNA[/font][font=宋体]和[/font][font=Calibri]RNA[/font][font=宋体]双螺旋的碱基之间与之结合,结合量与[/font][font=Calibri]DNA[/font][font=宋体]的含量成正比关系,其荧光强度直接能反映细胞内[/font][font=Calibri]DNA[/font][font=宋体]含量。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]因此[/font][font=Calibri],[/font][font=宋体]通过流式细胞仪[/font][font=Calibri]PI[/font][font=宋体]染色法对细胞内[/font][font=Calibri]DNA[/font][font=宋体]含量进行检测时[/font][font=Calibri],[/font][font=宋体]可以将细胞周期各时相区分为[/font][font=Calibri]G1/G0 [/font][font=宋体]期[/font][font=Calibri],S [/font][font=宋体]期和[/font][font=Calibri]G2/M [/font][font=宋体]期[/font][font=Calibri],[/font][font=宋体]获得的流式直方图对应的各细胞周期可通过特殊软件计算各时相的细胞百分率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]通过定量测定[/font] [font=Calibri]DNA [/font][font=宋体]含量来分析细胞周期是流式细胞术最早的应用之一。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]流式细胞周期([/font][font=Calibri]cell cycle[/font][font=宋体])检测结果分析常用的流式细胞术分析细胞周期的方法是依据细胞[/font][font=Calibri]DNA[/font][font=宋体]含量(横坐标)来分析的:[/font][font=Calibri]G0[/font][font=宋体]期:静止期,有丝分裂完成后,脱离细胞周期暂时停止分裂的一个阶段,胞内[/font][font=Calibri]DNA[/font][font=宋体]含量保持二倍体;[/font][font=Calibri]G1[/font][font=宋体]期:[/font][font=Calibri]DNA[/font][font=宋体]合成前期,从有丝分裂到[/font][font=Calibri]DNA[/font][font=宋体]复制前的一段时期,此期主要合成[/font][font=Calibri]RNA[/font][font=宋体]和核糖体,胞内[/font][font=Calibri]DNA[/font][font=宋体]含量保持二倍体;[/font][font=Calibri]S[/font][font=宋体]期:[/font][font=Calibri]DNA[/font][font=宋体]合成期,在此期,合成[/font][font=Calibri]DNA[/font][font=宋体]及组蛋白,胞内[/font][font=Calibri]DNA[/font][font=宋体]含量介于[/font][font=Calibri]G1[/font][font=宋体]期与[/font][font=Calibri]G2[/font][font=宋体]期之间;[/font][font=Calibri]G2[/font][font=宋体]期:[/font][font=Calibri]DNA[/font][font=宋体]合成后期,是有丝分裂的准备期,合成[/font][font=Calibri]RNA[/font][font=宋体]及蛋白质,[/font][font=Calibri]DNA[/font][font=宋体]合成终止,胞内[/font][font=Calibri]DNA[/font][font=宋体]含量为四倍体;[/font][font=Calibri]M[/font][font=宋体]期:细胞分裂期,胞内[/font][font=Calibri]DNA[/font][font=宋体]含量为四倍体;[/font][/font][font=宋体] [/font][b][font=宋体]流式细胞检测正常范围[/font][/b][font=宋体]流式细胞检测的正常范围通常依赖于被检测细胞或生物粒子的类型以及所测参数的性质。一般而言,正常的细胞数量、细胞大小、细胞形态、细胞内物质的浓度和分布等参数都在一定的范围内。这些正常范围通常是通过对比大量健康个体或样本的流式细胞检测结果而得出的。例如,正常血细胞的计数和比例,各种免疫细胞的分布,以及细胞内的荧光强度等,都有相应的正常范围。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测技术服务[/b][/url],同时还提供完善的[url=https://cn.sinobiological.com/services/platform/facs-b-cell-sorting][b]流式单[/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/services/platform/facs-b-cell-sorting][b]B[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/services/platform/facs-b-cell-sorting][b]细胞分选平台[/b][/url],详情关注:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][font=宋体][font=Calibri]https://cn.sinobiological.com/services/platform/facs-b-cell-sorting[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【分享】细胞凋亡的形态学检测

    http://gene.bjmu.edu.cn/news/ap1.gif   细胞凋亡与坏死是两种完全不同的细胞凋亡形式,根据死亡细胞在形态学、生物化学和分子生物学上的差别,可以将二者区别开来。细胞凋亡的检测方法有很多,下面介绍几种常用的测定方法。 一、细胞凋亡的形态学检测   根据凋亡细胞固有的形态特征,人们已经设计了许多不同的细胞凋亡形态学检测方法。   1 光学显微镜和倒置显微镜   (1) 未染色细胞:凋亡细胞的体积变小、变形,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体。 贴壁细胞出现皱缩、变圆、脱落。   (2) 染色细胞:常用姬姆萨染色、瑞氏染色等。凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割 成块状和凋亡小体等典型的凋亡形态。   2 荧光显微镜和共聚焦激光扫描显微镜   一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。   常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258), DAPI。三种染料与 DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。   Hoechst是与DNA特异结合的活性染料,储存液用蒸馏水配成1mg/ml的浓度,使用时用PBS稀释成终浓度为2~5mg/ml。   DAPI为半通透性,用于常规固定细胞的染色。储存液用蒸馏水配成1mg/ml的浓度,使用终浓度一般为0.5 ~1mg/ml。  结果评判:细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。   3 透射电子显微镜观察   结果评判:凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。

  • 2017第七届国际分子与细胞生物学大会通知

    第七届国际分子与细胞生物学大会将于2017年4月25-27日在西安举行。大会活动主要包括主题报告、科技论坛、专题讨论会、展览展示、海报展示高端人才招募洽谈会等。会议议题包含干细胞、分子与细胞生物学的最新技术、分子细胞生物学、生物医药等。此外本届会议将邀请到国内外著名院士、以及来自世界50多个国家和地区的相关领域学者、企业高管、科研院所的科研专家等领衔主讲高端论坛近40个。为广大的国内外分子与细胞生物学领域嘉宾提供了相互交流的平台。同期将召开第二届遗传学大会和生物技术产业大会。三会联动,一次注册均可参加!大会网站:http://www.bitcongress.com/cmcb2017/cn/default.asp大会主席:尹玉新博士,北京大学基础医学院院长、北京大学系统生物医学研究所所长大会主题论坛演讲人:Martin Banwell 博士,澳大利亚国立大学教授 Christian Patermann 博士,德国欧洲委员会前主任 Robert S. Plumb 博士,英国帝国理工学院教授Dongping Zhong博士,美国俄亥俄州立大学教授Xiang Zhang博士,英国剑桥大学首席顾问,皇家学会会员 著名演讲人(国内)卢灿忠,中国科学院福建物质结构研究所教授罗顺,中国健顺生物科技有限公司总裁许胜勇,北京大学教授范兴明,云南省农业科学院研究员孙凌云,南京大学医学院教授、主任谭砚文,复旦大学教授陈建海,南方医科大学教授谢志红, 安徽医科大学教授华益民,苏州大学教授沈赞明,南京农业大学教授胡颖,哈尔滨工业大学教授刘磊, 北京大学教授郑彩霞,北京林业大学教授邓文生,武汉科技大学教授邓文礼, 华南理工大学教授王雯,首都医科大学教授陈兵, 第三军医大学教授张小莺,西北农林科技大大学杨铁林,西安交通大学教授秦 鸿雁,第四军医大学教授刘毅, 遵义医学院附属医院教授许乃寒,清华大学深圳研究生院教授茅卫锋,大连医科大学副教授张志远,中国国家生物科学研究所研究员蒋晓江,第三军医大学教授,主任医师刘书逊,第二军医大学副教授吴玉梅,第四军医大学副教授著名演讲人(国外):Ying-Jan Wang,台湾国立成功大学教授Julie Kazimiroff,美国艾伯特爱因斯坦医学院主任Samir Ounzain,瑞士洛桑大学博士后科学家Yitzhak Rabin,以色列巴伊兰大学教授Franz E. Weber, 瑞士苏黎世大学教授Christina L. Chang,台湾国立成功大学教授Ivan Robert Nabi,加拿大英属哥伦比亚大学教授Brajendra K. Tripathi,美国国立卫生研究院科学家Stefano Zanasi,意大利佛罗伦萨大学教授Vadim Davydov,俄罗斯国立医科大学教授So Yoon Kim,韩国延世大学教授Kari Keinanen,芬兰赫尔辛基大学教授Yi Wang,加拿大阿尔伯塔大学Yeu-Ching Shi,台湾Indigena Botanica公司Ruben G. Contreras,墨西哥高级研究中心首席研究员Yong Jia,美国诺华研究基金会基因组学研究所高级研究员Dongxia Xing,美国MD安德森癌症中心高级研究科学家Mark A. Birch-Machin,英国纽卡斯尔大学教授 Zvi Naor,以色列特拉维夫大学教授Jia-Ching Shieh,台湾中山医科大学副教授Emmanuel M. Drakakis,英国帝国理工大学教授Kiwon Song,韩国延世大学教授Gregory Lee,加拿大不列颠哥伦比亚大学教授Michael Uhlin,瑞典卡罗林斯卡学院研究员Makoto Fukuda,日本东京医科齿科大学Kwan-Kyu Park,韩国大邱大学教授Yonggui Gao,新加坡南洋理工大学副教授Edith Aberdam, 巴黎第七大学研究工程师Alex Kharazi ,美国Stemedica副总裁Jukka Tuomi,芬兰阿尔托大学研究室主任Charles H. Sherwood,美国阿尼卡疗法有限公司总裁、首席执行官David Trudil,美国NHDetect公司执行总裁Alain Verreault,加拿大蒙特利尔大学教授、首席研究员Susanne Staehlke, 德国罗斯托克大学医学中心研究员 会议议题专题一:细胞生物学的研究前沿论坛1:细胞核结构和功能 论坛2:染色质和表观遗传 论坛3:基因组不稳定性和DNA损伤 论坛4:细胞骨架、粘附和迁移 论坛5:中心粒、中心体和纤毛 论坛6:蛋白质结构和功能 论坛7:膜结构、动态、运输和调控 论坛8:线粒体功能和细胞能量代谢 论坛9:信号转导和信号网络 论坛10:细胞分裂和细胞周期 论坛11:蛋白质稳态、细胞应激 论坛12:细胞坏死与存活 论坛13:叶绿体和光合作用 论坛14:细胞壁生物学 论坛15:发育和形态发生 论坛16:免疫细胞生物学 论坛17:微生物和寄生虫生物学 论坛18:基因表达和转录调控专题二: 干细胞论坛1:胚胎干细胞和成体干细胞 论坛2:间充质干细胞 论坛3:造血干细胞 论坛4:神经干细胞 论坛5:细胞可塑性和重编程 论坛6:干细胞治疗专题三: 分子与细胞生物学的最新技术论坛1:基因组编辑技术 论坛2:高通量/高含量技术 论坛3:分子和细胞成像技术 论坛4:单分子和单细胞分析技术 论坛5:实验室芯片、微流体和微阵列 论坛6:流式细胞术 论坛7:新型细胞分离,分离和培养技术 论坛8:光遗传学专题四: 分子细胞生物学与生物医药论坛1:分子与细胞生物学和转化医学 论坛2:分子药物靶标研究 论坛3:癌细胞生物学 论坛4:细胞神经生物学 论坛5:神经退行性疾病 论坛6:生殖细胞和生殖疾病 论坛7:肌肉细胞和肌肉疾病 论坛8:RNA与疾病和治疗 论坛9:端粒、端粒酶与衰老 论坛10:模式生物和疾病模型 论坛11:组织修复与再生 论坛12:心血管生物学 论坛13:红细胞疾病 论坛14:时间生物学★ 企业展位展览范围 一、科学仪器区 分析测试仪器:光谱仪器、色谱仪器、质谱仪器、频谱仪器、波谱仪器、光学分析仪器、热分析仪器、表面分析仪器、元素分析仪器、成份分析仪器、过程分析仪器、图像分析仪器、射线分析仪器、气相色谱、液相色谱、显微镜、光学影像处理和其他通用分析仪器等。 通用实验室仪器:热量装置、反应装置、剂量称重系统、自动化装置、独立技术、实验室家具、实验室用品、实验室医疗设备、实验室数据系统、实验室图像分析及处理、实验室工艺及设备、输送设备与连接装置、清洁、烘干设备、超洁净环境工程设备等。 生化仪器、生命科学及微生物检测仪器、实验动物设施:多肽合成仪、氨基酸测试仪、DNA合成仪、诊断仪器、生物生化技术设备、生物培养箱、发酵罐、酶标仪、生物传感器、生物工程过程控制与生产工艺装备。行业专用分析仪器与设备:电子光学仪器、生化仪器、生命科学及微生物检测仪器、生物反应器、实验动物设施。二、试剂/消耗品区 通用试剂、仪器专用化学试剂、标准物质、实验室用化学品、电子试剂 、光化学试剂、生化和分子生物学试剂、医学/诊断/检验试剂、细胞/血清/培养基抗体、实验室消耗品。 三、生物医药区

  • 牛奶体细胞数,你真的知道吗?

    [b]牛奶体细胞概念的提出[/b]乳汁中细胞计数或者说是白细胞计数在奶牛乳房炎监测中已运用的大概有百多年的历史。体细胞这一概念是在 1910 年由 Prescott 和 Breed首先提出,当时他们建议用“Body cells”,因为当时认为奶中细胞是从上皮细胞脱落下来的。直到1960 年左右,“Somatic cells”已逐渐被人们所普遍接受。[b]牛奶体细胞的组成[/b] 现今我们通常所说的牛奶体细胞主要指白细胞,包括巨噬细胞、淋巴细胞以及多形核白细胞(PMN)。乳中细胞类型研究表明,腺泡上皮细胞,无论是在干奶期还是泌乳期,在乳中很少,仅占细胞总数的7%以下。所以说泌乳期乳中细胞数的增加不是由于上皮细胞的脱落造成的。巨噬细胞是正常乳中的主要细胞,占细胞总数的 30%~70%。[b]牛奶体细胞出现的原因牛奶体细胞[/b]主要是白细胞对乳腺有重要的作用,它对病原微生物的入侵起监视和杀灭作用。巨噬细胞及PMN具有吞噬功能,可以杀死入侵病原微生物,乳中淋巴细胞包括T淋巴细胞和B淋巴细胞,它们在对入侵微生物的特异性免疫中起很重要的作用,病原微生物一旦通过乳头管进入乳腺并在其中增殖,就会引起一系列的炎性反应。此时乳中的细胞就同病原微生物相互斗争,并且产生一系列的炎性因子,而这些炎性因子将导致一系列的病理变化,这些炎性因子包括补体,前列腺素,白三烯、组胺、5-HT(5-羟色胺)、白介素,TNF(肿瘤坏死因子)、白细胞杀菌素以及一些其他细胞因子,典型的症状包括血管通透性增加,血管扩张,血流量增加,水肿,中性粒细胞转移,以及乳腺合成能力降低,并伴有疼痛,发热。在炎症初期乳腺最主要的防御机制就是 PMN 的迁入,正常情况下,PMN 可自由通过毛细血管,而不黏附或很少黏附在血管壁上,一旦出现炎症,黏附分子被大量表达,从而使得 PMN 黏附、迁移并通过细胞间隙而进入乳腺。乳中白细胞和被损伤的组织释放一些因子能吸引 PMN 大量涌入乳中,在炎症初期乳中细胞 90%以上的是 PMN,有报导表明大量要进入乳腺的 PMN 在腺泡外聚集,甚至在某些腺泡受损较严重的地方,PMN 可通过上皮间隙而进入腺泡,因此 PMN 在感染区的大量迁移是造成[b]牛奶体细胞[/b]SCC 大量上升的主要原因,因而有人认为,PMN 迁入的速率是消除感染乃至决定病情的关键因素。 另外,据报道 PMN 也可在乳头导管、乳头池、乳腺池等处透过基底膜而进入乳汁。因此,这些地方被认为是炎症初期机体作出反应并允许 PMN 通过的地方,乳腺以此来抵御微生物的入侵,值得注意的是,在慢性炎症反应过程中,单核细胞也可透入。因此,SCC 增加也是白细胞迁入造成的。乳中 PMN执行吞噬入侵微生物的功能,但是它也可以吞噬诸如脂滴、酪蛋白这样一些物质,而这些物质被吞入后 PMN 吞噬微生物的功能将降低。即便如此,PMN 仍是乳腺中起关键作用的因素,当然它也可以释放一些物质以增加血管通透性和吸引更多的白细胞到炎性部位。在一些顽固性感染病例中,虽然 PMN 数量会有所波动,但总体上是处在一个高水平上,而且即便是将感染的病原微生物清除后,它仍会维持在高水平上直至乳腺修复。还有报道说:微生物被清除后 PMN 在高水平上仍要维持几天、几周甚至更长一点时间。[b]影响牛奶体细胞的因素[/b]据报道,[b]牛奶体细胞[/b]变化受到很多因素的影响,如年龄、乳期、昼夜、挤奶过程,感染等。近年来报道渐趋于一致即认为,感染是引起变化的最主要因素。[color=inherit]1 )微生物感染的影响[/color] 有研究表明,[b][color=#d92142]体细胞[/color][color=#d92142]S[/color][color=#d92142]CC的主要影响因素就是微生物感染,这不论是在乳区水平、个体还是桶奶水平上都是如此。[/color][/b]有人对感染后的奶牛同其 BTSCC(桶奶 SCC)联系加以分析后认为,BTSCC 之所以发生变化,感染是主要影响因素。感染乳腺的微生物被划分为二大类,即重要微生物及次要微生物,重要微生物一旦感染将使SCC大幅增加,这类微生物包括金黄色葡萄球菌,无乳链球菌及其他一些链球菌,大肠杆菌等;次要微生物包括牛棒状杆菌以及凝固酶阴性的一些葡萄球菌,它们感染后,通常使得感染乳区化正常乳区的 SCC 高出 2~3 倍。现今,许多研究表明,仅用SCC一项来作为衡量乳区感染与否是不可信的,因为常出现假阳性和假阴性的情况。造成这种误差的部分原因可能是感染期间 SCC 的正常波动所致;这种变化在人为用各种病原微生物感染乳腺的实验中得到证实。即在感染的早期阶段数量急剧上升,可以在几小时或几天内达到峰值,(这与感染微生物种类有关)随后由于中性粒细胞的吞噬而适度下降。而 SCC变化范围依感染微生物及转归结果以及牛个体差别而变化很大。有研究表明被感染乳区 SCC 是呈波动态势,在慢性感染乳区,微生物数量及SCC二者均随时间而上下波动,同时未感染乳区SCC也在变化,但始终处在 200,000/mL 以下。另外主要微生物感染后,SCC的变动幅度也由于牛个体不同而不同,所以仅凭 SCC 一项来判别乳区感染与否及微生物种类并不十分可靠。[color=inherit]2 )年龄、乳期对SCC的影响[/color] 研究者普遍认为,牛奶体细胞SCC 随胎次增加及乳期向后延伸而增加,但 Harmon研究却不同,他将牛群中分成感染牛与未感染牛,结果显示:在未感染牛群中,牛奶体细胞 变化都很小,无论是年龄还是泌乳期影响都很小, Sheldrak等人也证实无论是胎次数目增加,还是不同乳期阶段,它对未感染牛群的 SCC影响都很小,有研究显示,在同一乳期中,从分娩35天到205天截止,SCC数目从35天的83,000/mL 逐渐升到285天的160,000/mL,但是相同的时间内金黄色葡萄球感染的乳区中,SCC的数量却从234,000/mL升至1,000,000/mL。当然,在娩后所有乳区SCC均有增加,但那些未感染的乳区和感染了次要微生物的乳区是SCC分娩后35天均很快的下降。Harmon研究也表明,[b][color=#d92142]在微生物未感染的牛群中,SCC受胎次、泌乳乳期的影响不大。[/color][/b][color=inherit]3 )应激对SCC的影响[/color]Wells等报道,各种应激因素都能引起SCC上升。但据 Paape 等人报道,无论将牛只放入可以控制环境条件中的隔离室内,还是给牛注射 ACTH 或者是皮质醇类激素,未感染的牛只其SCC只有很小改变或者说是没有改变。Elvinger调查表明,经受热应激的牛只SCC有大量的上升,他们通过将牛圈在可以控温的房间内或予其他的热刺激,未感染牛与感染金黄色葡萄球的牛的SCC分别是145,000/mL和105,000/mL,分析认为造成这种差异的部分原因可能是由于热应激造成的产奶量下将所致,因热应激造成产奶量下降10%~20%也是很常见的。将牛单独圈起这种应激会不会造成SCC上升,LefcourtA M研究表明这一应激虽可使牛的行为有所变化,但对SCC影响甚微。在法国科学家们进行了一项非常有趣的试验,他们将牛组成二组,一组圈起来,另一组在每天早晨挤奶后走上9.6 km,结果显示:走路的一组中受感染的牛其SCC达185,000/mL,而未感染的牛SCC为47,000/mL,这二者SCC都多于另一组牛的SCC。同时显示运动不仅会使奶牛奶量下降,而且使饲料的摄入量也减少,研究者将已感染和由于剧烈运动损伤乳房而造成感染的牛联系起来分析,认为SCC变动与感染的关系很大,表明[color=#d92142][b]各种各样的应激对受微生物感染牛的SCC影响较未感染牛的大。[/b][/color][color=inherit]4 )季节的影响[/color]据报道,[color=#d92142][b]夏季 SCC 较冬季高,这与夏季临床型乳房炎多是发是吻合的[/b][/color]。研究表明,夏季乳腺对环境中病原微生物易感与牛群中存在大量的大肠杆菌是相一致的。同时也表明了热应激不仅可增加乳腺的易感性而且使得环境中病原微生物的数量也大大增加,热应激本身不能单独使SCC上升,但SCC上升却是由于夏季乳头长时间处于有大量病原微生物的环境中而造成感染和引起临床症状的结果。[color=inherit]5 )其他因素[/color]奶中SCC有一个正常的变化(如昼夜变化),正常挤奶时间所收集的奶与两次挤奶间隔期间收集的奶SCC也有所不同,一般规律是,末期乳中SCC最多,而挤奶前奶中SCC最低,对同一乳区来说,它们相差多达4~7倍,而且挤奶后,高水平的SCC可持续 4 个小时左右后才开始下降。Brolund 报道饲料改变也影响SCC,他认为个体间差别对 SCC 影响有较大的作用,但后来研究表明,这与感染相比影响很小。[color=#d92142][b]牛奶体细胞作为牛群乳腺的健康与否的一个指标,其优势是显而易见的 ,以月为基准测定牛群SCC可以很好地监控奶汁的质量和乳腺的健康程度。但值得强调的是,传染性病原微生物感染后牛奶SCC数量变化比较明显,而条件性病原微生物感染后,由于其感染恢复快,它们感染后,尤其是在管理良好的牛场即便是转归为临床型乳房炎,它们SCC也能维持在300,000/mL以下,在这样一种情况下,SCC 就不能直观地反映出乳腺的健康状况。[/b][/color]也由于这些病原感染后,高水平的SCC维持时间短,而且它们感染率也很低,无论什么时候均小于10%乳区,但以全年经济收入来说,由条件性病原微生物造成临床型乳房炎引起损失还是比较大的。SCC主要影响因素是微生物感染,而其他一些因素只要不影响到乳腺的健康,它的影响就不是很大,而SCC的上升,是乳腺防御微生物入侵而采取的相应措施,应激等可使已感染到乳腺SCC上升,而对于未感染的乳区来说除了昼夜变化对 SCC 有影响外,其他因素影响都非常小。

  • 什么是体细胞数?如何降低生鲜乳中的体细胞数?

    生鲜乳中体细胞数(SomaticCellCount,简称SCC)反应生鲜乳卫生状况和奶牛乳房健康的状态。体细胞通常由巨噬细胞、淋巴细胞、脱落上皮细胞和中性白细胞等组成。当乳腺被感染或受机械损伤后,体细胞会上升,受感染乳区的乳汁中大约99%的细胞是白细胞。  1、高体细胞数对乳制品的影响主要有:(1)牛奶味道变异;(2)牛奶贮存期缩短;(3)乳清量增加、酪蛋白收缩性降低,导致奶酪的产量下降。  2、引发高体细胞数原因有:(1)可能有隐性乳腺炎发生 发生隐性乳腺炎时,感染牛很少有临床症状,肉眼观察乳汁正常,故常常误将感染乳区的乳作正常牛奶处理,造成生鲜牛奶中体细胞的升高。(2)牛群结构偏老 一般而言,胎次越小的牛只体细胞越低。因为老龄牛只长期接触乳腺炎病原菌,免疫功能下降,有更多的被感染机会。  3、降低生鲜乳中SCC,重点应从以下方面着手:(1)减少乳房机械性损伤。牛床、运动场、挤奶厅、饲槽、水槽等奶牛活动区域无尖锐物品,机械挤奶时不可过挤,以避免引起乳房损伤。(2)减少病原菌等生物侵袭。加强环境消毒,及时杀灭环境中的有害微生物。(3)日粮营养充足、均衡,提高机体抗感染能力。(4)定期(至少每月1次)进行牛群隐性乳房炎检测,及时进行乳房炎预防。(5)隔离患有传染性乳房炎的奶牛,淘汰患有慢性乳房炎的母牛等。

  • 细胞周期的测定原理与操作步骤

    一、原理细胞周期指细胞一个世代所经历的时间。从一次细胞分裂结束到下一次分裂结束为一个周期。细胞周期反应了细胞增殖速度。单个细胞的周期测定可采用缩时摄影的方法,但它不能代表细胞群体的周期,故现多采用其他方法测群体周期。测定细胞周期的方法很多,有同位素标记法、细胞 计数法等,这里介绍一种利用BrdU渗入测定细胞周期的方法。BrdU(5-溴脱氧尿嘧啶核苷)加入培养基后,可做为细胞DNA复制的原料,经过两个细胞周期后,细胞中两条单链均含BrdU的DNA将占l/2,反映在染色体上应表现为一条单体浅染。如经历了三个周期,则染色体中约一半为两条单体均浅染,另一半为一深一浅。细胞 如果仅经历了一个周期,则两条单体均深染。计分裂相中各期比例,就可算出细胞周期的值。http://img.dxycdn.com/trademd/upload/asset/meeting/2013/08/27/A1377590583.jpg二、仪器、用品与试剂1. 仪器、用品:同常规细胞培养2. 试剂:BrdU(1.0 mg/ml),甲醇、冰醋酸,Giemsa染液,秋水仙素,2×SSC液三、操作步骤1. 细胞生长至指数期时,向培养液中加入BrdU,使最终浓度为10 μg/ml。2. 44小时加秋水仙素,使每ml中含0.1 μg。3. 48小时后常规消化细胞至离心管中,注意培养上清的漂浮细胞也要收集到离心管中。4. 常规染色体制片。5. 染色体玻片置56 ℃水浴锅盖上,铺上2×SSC 液,距紫外灯管6 cm处紫外照射30分钟。6. 弃去2×SSC液,流水冲洗。7. Giemsa液染色10分钟,流水冲洗,晾干。8. 镜检100个分裂相,计第一、二、三、四细胞期分裂指数。9. 计算:细胞 周期(Tc)=48/(小时)附:(1)BrdU配制: BrdU 10 mg十双蒸水10ml 4 ℃下避光保存。(2)2×SSC配制: NaCl 1.75克,柠檬酸三钠,2H2O 0.88克,加水至100 ml,4 ℃保存。

  • 把细胞铺匀的7个小技巧

    做cell biology实验,细胞铺板大概是最常见的一个实验了。但是有很多人不是很得要领,铺得不是均匀: 要么中间密周围稀,要么周围密中间秃顶。以下是我的一些技巧,希望可以帮助到大家。1. 一般96孔板我每孔是加100微升细胞悬液,从孔的左边靠近底部加入,加完半边板后,将未加的细胞悬液混一下再,继续加剩余的半边板子,都加完后盖上盖子,左手轻轻扶住板的左边,右手轻轻敲击板的右边缘,注意把握力度(我一般轻巧敲三下),太强或次数太多会导致细胞集中成堆,将板顺时针旋转(逆时针效果不好),依次敲击剩余三个边,静置约5分钟,放入37度培养箱。 6孔板12孔板或24孔板,我均采用将第一个孔加入少量无血清培养基,晃动浸润整个孔底,然后用移液枪吸至第二孔,同样方法浸润孔底,其它孔一次类推,这样整个孔底都是湿润的,细胞悬液会平铺在整个孔底,加细胞悬液的时候可以避免加在中间中间细胞多,而加在周边晃匀后周边细胞多中间少的现象,细胞分散较均匀,注意加完细胞悬液后要放工作台静置一下。这个方法就是有点慢,但操作熟练了也不慢。也可以采用轻拍的方式,但力度没有96孔板好掌握,效果没有96孔板好,所以我放弃改用浸润孔底的方法。2.细胞悬液加完后,将细胞培养板抬高,对着灯光,从底部往上看,看细胞有没有抱团。然后从底部敲击,使之分散。3. 如果实验室有平板振荡器的话,我建议用这个仪器稍振荡一下,效果不错,就是振幅小,频率高的那种。4. 细胞要尽量打散,大部分呈单个状态。离心后,要充分悬浮!还有转移到六孔板后,是要晃得!晃的时候最好不要让那个细胞液转圈,不然细胞就全被带到中间去了,就会不均匀!5. 一瓶细胞长满后,正常处理,在培养瓶里吹匀,然后铺6孔板,每孔2毫升,铺完之后不用观察直接用酒精棉擦拭,然后放到培养箱里,轻微的左三圈右三圈 前三圈 后三圈。基本上24小时之后观察 每孔的细胞都会很均匀。6.计算好所需要的全部液体量和细胞量,混匀后,加到六孔板里,六孔板按横8字型晃,显微镜下观察,如果不均匀,按上述方法再晃。如果细胞未计数直接种的话,在种六孔板的过程中,随时晃一下混匀用的瓶子,瓶子我通常是顺时针或逆时针转圈。7.放在水平板面上先上下移动,再左右移动,每个方向5到6次,但关键的是摇完后最好直接放入培养箱中,不要再做过多的运动,例如放到镜下去看,否则很容易就又聚到中间去了。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制