当前位置: 仪器信息网 > 行业主题 > >

三维显示虚拟仪

仪器信息网三维显示虚拟仪专题为您提供2024年最新三维显示虚拟仪价格报价、厂家品牌的相关信息, 包括三维显示虚拟仪参数、型号等,不管是国产,还是进口品牌的三维显示虚拟仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三维显示虚拟仪相关的耗材配件、试剂标物,还有三维显示虚拟仪相关的最新资讯、资料,以及三维显示虚拟仪相关的解决方案。

三维显示虚拟仪相关的资讯

  • 当虚拟现实遇见科研产业
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/8ca48239-3f8c-4b57-95ab-95682e17f65b.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 来自德国的VR/AR服务商,我们更懂科研产业 /strong /p p strong br/ /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong VR/AR行业现状 /strong /span /p p   虚拟现实和增强现实(VR/AR)热潮近年来接连在全球范围内引爆。目前,VR/AR技术已成功应用于广告传媒、教育培训、房地产、工业生产、医疗服务、文化旅游、互动娱乐等领域,并为行业带来新的发展机遇和升级机会。 /p p   教育行业VR/AR试点更为广泛,将会有超过500家学校采用VR/AR方案。 /p p   教育行业是 VR/AR厂商关注最多的产业,一方面由于教育行业IT终端产品采购量巨大,另一方面则是因为教育行业对应用新科技产品来提高教育质量需求较大。 /p p   教育部发布《教育部办公厅关于2017-2020年开展示范性虚拟仿真实验教学项目建设的通知》后,多个地方政府也出台虚拟产业鼓励政策,以促进教育行业VR及AR的发展。 /p p   2018年,政策推动加上教育行业VR内容的完善,将促使更多学校采用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/1c227c8e-8a88-4e83-8e38-3602b604c9ec.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 品牌营销对于VR/AR利用将达到新高度 /strong /p p   IDC中国商用渠道和终端用户访谈显示,目前医疗、零售、制造、服务、房地产等行业正在利用VR/AR技术来更好的帮助其产品营销,以更具创意的数字营销手段吸引注意,让消费者身临其境的感受产品特点。 /p p   基于手机的AR技术有望结合LBS地理位置服务以及SLAM同步定位建图,提供更为精准个性的营销方案,提升销售转化。 /p p   现在越来越多的科研产业领域先行者,已经在通过VR技术实现更具现代科技感的营销工具,不断为用户的体验而达到极致。 /p p   技术从来不是万能的,但是这个时代,只有技术能够实现效率的极大提升。领先一步就是商机和优势! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/1de1e7cb-9136-4986-928a-a00e5bb59725.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 优质内容商将成为VR/AR的优势竞争者 /strong /p p   2018年,VR体验店将迎来差异化、精细化以及渠道下沉的运营方向。为实现体验店差异化运营,更多类型的体验店和体感设备将投放市场。高端体验店的服务也将更为精细,将提供更多主题化体验的VR服务。 /p p   在目前市场普遍缺乏优质内容的阶段,一款好的内容有能力驱动一种硬件形态的发展,并因此成为VR/AR行业的优势竞争者。 /p p   2018年,将会有更多优质内容商以及内容与VR/AR设备协同,带动市场向各产业细分应用场景纵深发展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/3ae520b3-5479-4e63-bac2-346e9cd4876b.jpg" title=" 4.jpg" / /p p   而RW1,realworld one, 作为从IKA分拆出来的独立公司,拥有40多名来自全球各地的虚拟现实领域的专业人士,realworld one致力于打造专为工业和仪器设备制造商、高校教育领域以及应用于化工、制药、化妆品及食品等行业的虚拟现实产品和增强现实产品。 /p p   和IKA一样,RW1的优势也在于产品品质,即虚拟现实产品优质内容的精细打造。 /p p   我们拒绝粗制滥造,因为我们的服务对象是科研产业,这是一个比其它任何产业都要讲求精工专业的应用行业。 /p p   我们深懂科研,凭借IKA一百多年的专注,RW1有实力专为科研产业领域提供世界顶级的VR及AR体验。 /p p   而我们的梦想,远不止于此。我们要打造一个国际范围内的VR生态圈! /p p   一睹realworld one的风采,请来这里: /p p   2018年6月,法兰克福阿赫玛大展,RW1将以600平米的超级空间等候您的光临。 /p p   2018年4月15-16日,中国常州,ACCSI,科学仪器行业“达沃斯”论坛,RW1将盛大亮相。或者,您想单独预约体验一下?也是So Easy~ 留个言,剩下的交给我们。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/c34bdf49-e5ce-4906-8804-fdf42343b3b7.jpg" title=" 5.jpg" style=" width: 600px height: 351px " width=" 600" vspace=" 0" hspace=" 0" height=" 351" border=" 0" / /p p span style=" color: rgb(112, 48, 160) " strong 年会介绍 /strong /span :http://www.instrument.com.cn/accsi/2018/ /p p span style=" color: rgb(112, 48, 160) " strong 年会报名 /strong /span :http://www.instrument.com.cn/accsi/2018/Register.html /p
  • 光学分析仪成就虚拟翻书国内尖端技术
    虚拟翻书作为一个新鲜的名词最近已经进入到人们的视线之内。无论是在各大行业的展览展示应用,还是人们的眼前手边,都已经开始发现虚拟翻书这种独特的高科技产品。新颖的模式,别具一格的造型理念,在配合新兴的娱乐互动系统,让虚拟翻书都成为越来越不可或缺的创新产品。   虚拟翻书系统就是虚拟电子书,又叫做虚拟翻页、感应翻书、电子翻书、互动翻书等,虚拟电子书犹如一本打开的书籍,里面可以记载丰富的资料(包括动画、视频、图片)。参观者可以挥动手臂“翻阅”书籍,自左向右或者自右向左,还可以选择章节,快速找到您想翻阅的内容,就像翻阅一本普通的杂志一样,这就是虚拟翻书系统带来的惊喜!这种虚拟翻书形式新颖,视觉冲击力强,给人以神奇感,而且可以展示的信息量大。   互动技术在投影行业已经有了广泛的认知和长足的发展,国内随着投影机的普及新型的技术也打开了局面。   互动投影系统运用的技术为混合虚拟现实技术与动感捕捉技术,是虚拟现实技术的进一步的发展。虚拟现实是通过计算机产生三维影像,提供给用户一个三维的空间并与之互动的一种技术。通过混合现实,用户在操控虚拟影像的同时也能接触真实环境,从而增强了感官性。   互动投影系统奇幻的视觉效果和美妙的动感将吸引所有的顾客、现场观众甚至是路人的驻足停留和互动观看,并通过其互动画面和声音变幻使所有的顾客和观众参与其中,从而提升娱乐和休闲的内在吸引力,促进消费和再消费,特别适合于迪吧、酒店、KTV、酒吧等休闲娱乐场所。
  • 智能“手套”可增强虚拟现实触觉
    据英国《新科学家》杂志网站14日报道,美国科学家发明出一款智能“手套”,可通过向佩戴者手掌中的神经发送电信号,让佩戴者感觉自己在虚拟现实(VR)中抓住物体。  为配合在VR中拿东西的视觉体验,人们经常会佩戴手套,手套会向手掌提供反馈,比如振动或电信号。但手套也会使佩戴者的手指感觉迟钝,使用户在佩戴VR耳机时更难执行灵巧的任务。  芝加哥大学田中雄大团队开发出了一种设备,使用手背和手指上佩戴的电极网来模拟或增强触觉,使手掌和手指不受阻碍地活动。神经刺激会使单个手指感觉好像在触摸什么东西,因为人类的手掌比手背有更多触摸感受器来接收电极发送的电信号。  研究团队在几种VR体验中测试该设备,比如在虚拟攀爬体验中,该设备可让人们在VR中攀爬时能更敏锐地感觉到手掌中的绳索。  团队认为,这种手套在现实的学习任务中也很有用。他们尝试将其用于打碟,在该场景下,这款智能“手套”可提供反馈,指导某人何时将特定的音乐曲目淡入或淡出。  研究人员指出,因为这款手套不会覆盖整个手,所以可一直佩戴,在VR内外使用。他们在2023年计算机系统人为因素会议上介绍了这一最新研究。
  • 心脑血管虚拟内窥镜的研发培育
    成果名称 心脑血管虚拟内窥镜的研发培育 单位名称 北京师范大学 联系人 常崇艳 联系邮箱 changcy@bnu.edu.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 心脑血管可视化研究是针对人体心脑血管的计算机应用技术。通过对数字化的医学影像的智能处理、数据分析、三维建模、数据可视化,虚拟现实,以充分呈现人体血管的形态特征,方便医生洞察医学数据,应用于医学教学、科研、临床,达到对疾病诊断、病灶检测、辅助治疗的作用。 心脑血管是人体血管中的最典型的代表,心脑血管疾病是当前人类健康的最重要疾病。结合信息科学与生命科学特点,运用计算机最新科技方法对血管的研究,是近年来该领域的研究热点。该领域的研究进展和技术突破,对临床医学、生命科学、病症统计学及预防学等领域的发展将带来重要的影响。由于心脑血管在人体组织中所占比例低,血管成像灰度不均匀,形态复杂且个体差异性大,细小血管间多存在缠绕和遮挡,使得对心脑血管的可视化成为计算机图形学领域中的重要问题。本项研究针对心脑血管可视化应用领域,主要解决的问题和关键技术包括: 1. 从医学影像中血管信息的提取技术; 2. 医学体数据中血管的三维可视化实时绘制技术 3. 血管数据的三维建模技术、 4. 血管的虚拟内窥技术 5. 三维血管数据的测量技术 6. 异常血管的疾病监测技术 本项研究应用计算机图形学和人工智能技术,重点突破在基于医学图像序列的影像数据精细分割、大规模体数据的实时精细绘制、复杂血管模型的建模,针对脑血管的分层三维可视化、血管的虚拟内窥等关键技术瓶颈,改进了现有的可视化关键算法,开发了系列软件平台,形成了&ldquo 四层两库&rdquo 的体系结构。本项研究工作得到了6项国家和北京市的科技计划支持,共发表三大检索论文28篇。 该项研究运用信息技术对医学影像的智能处理,更真实的呈现了人体血管的三维形态特征。研究成果可有效的应用于医学教学、科研、临床,其研究意义重大,应用前景广阔。 应用前景: 医学影像检查的结论通常来自图像后处理医生提供的图像和报告,如果所获得的图像质量非常高,图像后处理难度非常小,那么诊断结论就相对简单、诊断准确性也将很高。然而由于患者心率、造影剂的注射参数、扫描参数、伪影以及对比强度不佳等客观因素以及图像重建水平等主管因素的影像往往使得医学影像检查的结论存在一定的误差,因此亟待通过应用高性能、高质量的医学影像工作站进一步提高图像重建的准确程度,为伪影的甄别和处理和病变组织的识别和判断奠定基础。 在实际工作中,大多数情况下主治医生并不能到影像工作科室去实际完成影像的重建,其诊断还是要依赖于重建医生所提供的图像。重建医生在重建过程中所出现的判断错误,主治医生很难识别,即使有所怀疑,也需要对原始的切片图像进行观察和简单处理以后才能确定。但是,在很多医院,受PACS系统承载能力的限制,不可能把大量的切片图像全都上传到图像服务器,这就给整个诊断过程带来了困难,并将对医学影像工作站的使用造成巨大的负载压力。要解决这样的冲突,就必须增加工作站的数量,然而设备厂商提供的工作站价格十分昂贵,并且一般不为用户提供相应软件开发和的接口个性化服务功能,一定程度影响了工作站的推广和使用。因此具有价格便宜、具有满足用户个性化需要、兼容各类影像数据和工作站、功能完整、重建质量高、操作简单、具有可编程开放接口等特点的医学影像工作站将成为未来的发展方向。 知识产权及项目获奖情况: 本项目在多项关键技术中,具有自主知识产权的研究成果 专利与软著情况,形成6项软件著作权,1项专利 6项软件著作权 1、 脑血管医学图像分割系统2、 脑血管分割及医学虚拟内窥检查系统 3、 基于PSO的统计脑血管分割系统 4、 脑血管三维可视化虚拟融合系统 5、 心脑血管数据库管理系统 6、 三维脑血管模型动态压缩处理 1项专利 1、 基于球B样条曲线的三维血管模型构造方法 10项国家、部委、省、市专项计划支持 1、 国家自然科学基金《基于医学图像的数据挖掘技术研究》(60372072)已结题 2、 北京自然科学基金重点项目《虚拟环境中脑血管可视化、导航和监测技术》(4081002)已验收 3、 首都科技条件平台项目《心脑血管虚拟内窥镜的研发培育》(Z131110000613062) 已验收 4、 国家自然科学基金项目《盘B样条和球B样条造型的理论及其应用》(61170170) 在研 5、 国家自然科学基金项目《脑血管兴趣区域提取关键技术研究》(61271366) 在研 6、 国自然面上基金《基于CTA影像数据的3D冠脉狭窄自动检测及其量化评估研究》(61472042) 在研 7、 国自然青基《基于球B样条的Willis环建模、分割及定位关键技术研究》(60803082)已结题 8、 国自然青基《基于统计分割的脑血管三维模型重构研究》(61003134) 已结题 9、 国家重点实验室项目《交互式实时虚拟内窥镜算法研究》(SYSKF0107 》已结题 10、 博士后基金《三维血管的重构技术研究》已结题
  • 293.8万!中山大学智能工程学院虚拟现实技术实验室仪器设备采购
    一、项目基本情况项目编号:中大招(货)[2021]1029号项目名称:中山大学智能工程学院虚拟现实技术实验室仪器设备采购项目预算金额:293.8000000 万元(人民币)最高限价(如有):293.8000000 万元(人民币)采购需求:1、标的名称:虚拟现实技术实验室仪器设备2、标的数量:序号设 备 名 称数 量单位单价限价(元)1数据手套60双78002高清图像渲染集中处理平台1台10000003虚拟现实头盔60个45004虚拟现实高清图像处理工作站(核心产品)60台180005无线追踪器60套2000注:投标报价不得超过本项目最高限价及单价限价。3、简要技术需求或服务要求: 本项目不允许产自中华人民共和国关境外的进口货物投标,具体内容及要求详见用户需求书。 4、采购标的对应的中小企业划分标准所属行业为工业。合同履行期限:合同签订后且收到发货通知45个日历天以内安装完毕。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目3.本项目的特定资格要求:3.1投标人应具备《政府采购法》第二十二条规定的条件,提供下列材料: ①供应商必须是具有独立承担民事责任能力的在中华人民共和国境内注册的法人或其他组织或自然人,投标时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。 ②.供应商必须具有良好的商业信誉和健全的财务会计制度(提供2020年度经第三方会计师事务所审计的财务状况报告或近一年内基本开户行出具的资信证明)。 ③.有依法缴纳税收和社会保障资金的良好记录(提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。如依法免税或不需要缴纳社会保障资金的,提供相应证明材料)。 ④.具备履行合同所必需的设备和专业技术能力(提供书面承诺或按投标文件格式填报设备及专业技术能力情况)。 ⑤.供应商参加政府采购活动前三年内,在经营活动中没有重大违法记录(按照投标函格式作出相关承诺)。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(较大数额罚款按照发出行政处罚决定书部门所在省级政府,或实行垂直领导的国务院有关行政主管部门制定的较大数额罚款标准,或罚款决定之前需要举行听证会的金额标准来认定) ⑥.供应商必须符合法律、行政法规规定的其他条件(按照投标函格式作出相关承诺)。3.2供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以代理机构于投标截止日当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。3.3 本项目不接受联合体投标。3.4 已购买本项目招标文件。三、获取招标文件时间:2021年11月12日 至 2021年11月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:广东省机电设备招标中心有限公司网站(http://www.gdebidding.com)方式:网上购买招标文件——供应商登陆广东省机电设备招标中心有限公司网站(http://www.gdebidding.com)购买招标文件(详见网上购标操作指南),供应商完成网上购买招标文件后,在本条款规定的时间内,由采购代理机构将纸质标书包邮寄给供应商。 标书款支付方式:支付方式为电汇或网上支付,不接受现金(开户名称:广东省机电设备招标中心有限公司;开户行:建设银行广东省分行;账号:44001863201053034613)。注:我中心只开具对应金额电子增值税普通发票。”售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年12月02日 09点30分(北京时间)开标时间:2021年12月02日 09点30分(北京时间)地点:广州市海珠区新港西路135号中山大学南校园415栋生物楼3楼301室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中山大学     地址:广州市新港西路135号        联系方式:柯老师 联系电话:020-84115085-803      2.采购代理机构信息名 称:广东省机电设备招标中心有限公司            地 址:广州市越秀区东风中路515号东照大厦5楼            联系方式:赵工、黎工 电话:020-66341732、66341771            3.项目联系方式项目联系人:赵阳阳电 话:  020-66341732
  • 三维体扫描大型成像显示器亮相世博
    世博会徽标、招手的海宝、迎客的茶壶……在一个高2.8米、直径1.3米宛若水帘洞的圆柱体空间内,一件件上海世博会标志物栩栩如生地展现在人们眼前。没有观看角度的限制、无须佩戴特制眼镜,人们惊喜地体验到360度全景观看这些三维立体影像的璀璨感受。日前,由华东师大信息科学技术学院教授刘锦高课题组研发的“三维体扫描大型成像显示器”正式亮相,即将在世博会重大活动中使用。这一精准同步的光、机、电一体化高科技产品将引领人们感受真正的三维立体效果。   首创“旋转真三维”显示系统   真正的三维立体效果,是将物体的长度、宽度、深度(厚度)直观地进行再现。由于条件限制,多数三维立体效果在深度的展示上都有所欠缺,即使是观看3D电影,有时还是会受到观察角度的限制,无法完全享受身临其境之感。然而,华东师大研发的这套全新的三维体扫描电子系统的核心部件由数十枚32位CPU组成,它们的运算能力远胜一般的多核计算机。它将立体对象提取出不同的切面、切片进行显示,利用扫描在三维空间的体像素构成了立体图像,展示了一个最接近真实物体的立体画面。这套拥有水平与垂直视角的全角光场立体显示器,满足了水平视差与垂直视差的观看要求,再现人们观察世界的真实感受,并获得高亮璀璨的显示效果,从而带给人们质感的3D影像。   刘锦高课题组此次研制大型体扫描显示器仅用了短短几个月的时间,克服了一系列困难。目前,课题组已成功研制了一套大型显示系统及一套备份系统。显示器的首度公开亮相,标志着一种全新的大型立体显示方式的诞生。它突破了以往裸视三维立体显示技术(例如LCD、PDP技术等)需要借助二维平面来展现三维影像的瓶颈,通过对物体进行旋转扫描,将图像置于一个真实的立体空间,实现了真正意义上的三维立体显示。该研发工作得到了上海市科委的大力支持。   刘锦高表示,此套系统是我国自主研发的产品,属世界首例,拥有完全的自主知识产权。   探索计算机图形学新领域   “目前的计算机图形学主要基于平面光栅扫描理论。而这套新系统的研发为计算机图形学向三维体扫描方向的发展奠定了基础。”刘锦高告诉记者,三维体扫描大型成像显示器的研制成功,突破了传统计算机图形学理论,为图形扫描理论和技术的发展开辟了新的研究方向,并提供了有力的实例论证。   他表示,目前,体扫描计算机图形学还处于探索阶段,仍有许多问题需要进一步细化研究。“这对于我们科技工作者来说,意味着新的一轮挑战。”   力拓技术应用的崭新境界   这套显示系统在军事训练、医疗诊断、数据可视化、工程产品设计、景观建筑、视频游戏、虚拟现实、多媒体教学等方面具有广阔的应用前景。   “就以医疗诊断来说,我们通过CT、核磁共振获取的人体或器官扫描影像本来可以提供三维数据,但由于三维成像显示技术尚未成熟,目前只能以胶片或其他介质的二维形式来显示,需要有经验的医学专家才能判读,增加了诊断的难度。若将这些数据通过三维体扫描显示器来再现,就会有超乎想象的突破。再如,关于航天飞机的设计,我们可以在任何部件的设计改进之后马上显示其整体效果。”刘锦高如数家珍般给出不少例子。
  • 手持三维扫描仪助力文物保护,重塑古建筑风采
    手持三维扫描仪采用激光测距、结构光或者相机阵列等技术,通过捕捉物体表面的反射光线或纹理信息,实现三维数据的获取。这种设备具有便携、高效、精度高等特点,能够在短时间内完成复杂文物的三维建模,为后续的保护和修复工作提供详实的数据支持。  手持三维扫描仪在文物保护中的应用  文物数字化存档:手持三维扫描仪可以将文物表面的纹理、形状等详细信息转化为数字模型,实现文物的数字化存档。这样,即使文物受到损坏或遗失,也能通过数字模型进行还原,为后世的研究和修复工作提供依据。  文物修复辅助:通过手持三维扫描仪获取文物的三维数据,可以在虚拟环境中进行修复模拟。修复人员可以在不直接接触文物的情况下,进行预先的修复方案设计和效果预览,从而提高修复工作的精度和效率。  虚拟展览和展示:手持三维扫描仪可以将文物转化为数字模型,为虚拟展览和展示提供丰富的素材。观众可以通过虚拟现实技术,在虚拟环境中近距离观赏文物,感受其独特的艺术魅力。  重塑古建筑风采的实践案例  以某古代宫殿为例,该宫殿因年久失修,部分建筑构件出现损坏。为了保护和修复这座古建筑,文物保护部门引入了手持三维扫描仪。首先,通过扫描仪对宫殿进行全面扫描,获取其详细的三维数据。然后,在虚拟环境中进行修复模拟,设计出合理的修复方案。然后,根据修复方案对宫殿进行实际修复。经过这一系列工作,宫殿的风貌得到了有效恢复,重现了其昔日的风采。  以上就是关于“手持三维扫描仪助力文物保护,重塑古建筑风采”的具体介绍,如需了解更多关于手持3D扫描仪的信息,可联系赢洲科技。
  • 病理学数字化——介绍虚拟显微镜以及要问的问题
    • Katharina Eser病理学实验室作为一个机构正在发生变化。即使有一段时间的滞后,这门至关重要的医学学科也正在转向数字化:实验室正在变得虚拟。这个过程的一部分也是虚拟显微镜,它支持向数字病理学的转变。许多病理学家仍然通过模拟显微镜观察,同时决定作为切片制剂位于他们面前的一小段组织是否注入了肿瘤细胞。在其他实验室,这项任务已经由一个自动化系统完成,该系统将切片制剂独立放置在扫描显微镜下,扫描样本,最后由人工智能识别、标记和计数肿瘤细胞。要采取这一步骤,你不仅需要合适的设备,还需要实验室中的新工作流程和经过培训的人员。本文将有助于强调这一过程中的挑战和出现的问题。全球病理学家短缺如今,癌症发病率正在上升,同时,能够治疗和检测癌症的人数正在减少。世界上许多地方的医疗服务不足,但即使在最富裕的国家,也缺乏病理学家等专家。造成这种情况的原因包括医学院期间的教育和广告太少,以及在实验室工作是孤立的情绪因素,与患者的接触往往仅限于观察他们的组织。但也有一个事实是,大多数疾病观察的时间越长,就会变得越复杂。人类无法提供识别某些相关性所需的数据量。因此,病理学实验室的数字化带来的可能性是无限有吸引力的。病理学的一个重要支柱是在显微镜下观察组织样本。虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。为此,显微镜制剂被数字化,因此可以在以后的屏幕上查看和处理,而不考虑位置和/或工作站。这些数字制剂可以存储在数据库中,并与无限数量的用户共享。为了生成样本的数字图像,可以使用配有额外摄像头的模拟显微镜。然而,病理学的发展趋向于使用数字显微镜。根据模型的不同,这些显微镜通常不仅可以产生标本的实时图像,还可以对其进行扫描。数字显微镜不仅可以显示单个视场,还可以扫描整个标本。数字化显微镜载玻片可以称为虚拟载玻片、扫描或全载玻片图像。这些术语描述了完全数字化的显微镜标本。为了产生数字图像,该仪器逐片扫描载玻片上的整个样本。该软件将生成的高分辨率单个图像合并为一个完整的图像。这个过程叫做缝合。在电脑上,用户可以浏览样本,放大并分析。图1:虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。©Precision股份有限公司试样质量至关重要与所有显微镜手术一样,标本的质量在虚拟显微镜中也起着重要作用。样品必须尽可能均匀地切割,因为软件在扫描过程中会自动设置焦点。过大的高度差异可能导致平面跳跃和完成扫描中的模糊区域,并且无法校正。样本也必须在仪器的固定扫描区域内。样本必须均匀染色,以正确表示所有细胞结构。此外,应避免样品出现气穴、重叠和其他污染。在特殊情况下,样本的性质会退隐到背景中。例如,在肿瘤手术过程中,通常会在手术过程中对切除的组织进行切片,即所谓的冷冻切片。然后在显微镜下只观察样品的某些区域。数字样本的质量也取决于所用相机的质量。模拟显微镜上的相机附件通常不能提供高质量,因为这些系统不是为数字化过程设计的。数字显微镜是为这一过程设计的,除了扫描功能外,它还具有实时视图,因此可以在屏幕上实时观察样本。纯幻灯片扫描设备为用户提供了在速度和分辨率之间进行选择的可能性。较高的扫描速度会导致图像质量的损失。然而,由于这些设备是自主操作的,因此也可以通过调整扫描仪的工作时间来调整时间损失,例如在晚上。为了充分利用显微镜扫描,需要合适的图像查看软件。根据图像格式的不同,只有非常专业的程序才能处理病理切片的图像。所谓的查看软件也提供了评估图像的不同可能性。例如,使用不同的注释工具,可以绘制直线和圆,也可以附加书面注释。此外,还可以将人工智能集成到此类程序中。在集成人工智能的帮助下,对某些结构或细胞的自动评估成为可能。理想情况下,可以根据图像来存储注释和评估。可以将查看软件集成到云中。这样一来,扫描不仅可以通过网络服务器与其他用户共享,还可以直接在平台上查看。此外,通常可以提供关于图像的特定信息。在大多数云服务中,图像存储、图像共享和图像查看设施都是可用的。任何终端设备都可以查看扫描结果。不管是大屏幕、智能手机、平板电脑还是笔记本电脑。然而,屏幕的性质对于再现的图像质量是决定性的[1]。表1:拥有数字工作流程可以使病理实验室的工作更快、更高效,并为创新腾出空间。©Precision股份有限公司今天的病理学是手工工作目前,在大多数情况下,需要在病理学实验室进行检查的样本都会带着一张提交单到达,上面会手工注明如何处理。这些信息由工作人员传输到实验室信息系统。在病理学家对组织进行宏观检查后,医疗技术人员准备样品进行进一步检查。这些标本有时需要大量的手工制作、切割、在煤油中固定,并使用各种组织化学和免疫组织学技术进行染色;它们被切割,安装在载玻片上,并用玻璃覆盖。然后将标本分类到文件夹中,并提交给病理学家进行检查。在某些情况下,标本也会被扫描。为此,还必须手动插入样本并进行登记。如果存在质量缺陷,则必须重复该过程。这个工作流程在这里只是粗略地概述,涉及许多手册和小规模的工作步骤,其中有许多错误来源。在向完全数字化病理学实验室发展的另一端,大量切片制剂的自动扫描、诊断的数字提供以及临床数据以及数字报告文本生成即将到来。该系统可以在输入样本注册后对订单进行优先级排序和处理,并处理质量控制。此外,人工智能用于支持组织病理学诊断。此外,该系统可以将分析的图像数据和分子信息集成到工作流程中。与此同时,几个研究项目正在接近实现这一愿景,揭示了这一理论的实际机遇和挑战。图2:有了数字样本,算法就有可能取代昂贵的计数和注释工作。©Precision股份有限公司算法打开了广泛的可能性尽管数字图像有很多优点,但它并不能解决用户的许多问题和要求。然而,数字化为使用算法进行图像分析开辟了广泛的可能性。经典算法可以检测和计数定义明确的结构,如肿瘤细胞。这使得病理学家能够通过具体的测量值进行量化。在这样做的过程中,算法有效地进行并且没有偏差。压力或时间压力以及影响人类的视错觉的影响等因素在这里不会发生。现在市场上有许多产品可以用于不同的分析方法。这些程序可以快速有效地找到预定义的结构,并可重复地对其进行量化。有许多研究描述了算法在不同器官和各种疾病的组织学制备中的应用[3]。通常,对这些算法进行训练,以便专家在组织学切片中标记定义的结构。该算法用一系列类似的部分进行训练,直到它自己识别出标记的结构。市场上常见的程序通常专门针对特定的疾病模式;他们的任务是识别和量化预定义的结构。一个算法只能和它所训练的数据集的质量一样好[4]。所寻求的结构的数量越多,变化越大,评估就越好、越可靠。这就是目前正在世界各地建立的生物库发挥重要作用的地方。这些不仅提供了许多物理样本,而且还提供了许多已经数字化的样本。下一步是专门针对用户的应用需求进行训练的算法。在这里,一系列有趣的产品也在开发[2]。挑战在于将获得的数据集转换成什么格式,以及如何最终将其整合到实验室信息系统和相关部门的系统中。当然,还有实验室人员和工作流程的问题。图3:正确的样品制备是虚拟显微镜的关键。©Precision股份有限公司结论病理学实验室向数字化病理学实验室的转变只能循序渐进。该过程的开始是所有过程的文档化和可视化,必须根据各种参数(如人员、机器和开发程度)以及IT和过程支持级别对其进行分析。由此可以产生有意义的转型规划。其中一部分是虚拟显微镜、满足要求的设备以及支持这项工作的算法。现在有许多公司专门帮助实验室进行这种转变。这是一项非常明智的服务,因为这种转变很复杂,需要时间和金钱,而且还必须在人员方面得到很好的支持才能发挥作用。References[1] Brochhausen C. et al (2015) A virtual microscope for academic medical education: the pate project. Interact J Med Res. 4: e11. [2] Li Z et al. (2021) Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images – The ACDC@LungHP Challenge 2019. IEEE J Biomed Health Inform 25: 429-440[3] Mun SK et al. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28 7:614258. DOI: 10.3389/fmolb.2020.614258 [4] Cui, M., Zhang. D.Y. Artificial intelligence and computational pathology. Lab Invest 101, 412-422 (2021). DOI: 10.1038/s41374-020-00514-0 .关于作者Katharina Eser在学习艺术史之前曾在一家日报担任编辑。2021年,她加入PrecisPoint,担任业务创新经理,现在是该公司的自由职业者。来源:Going digital in pathology——Introducing Virtual Microscopy and what questions to askMicroscopy Light Microscopy Lab Automation Image Processing , 17 May 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 重大科学仪器开发专项三维数字彩色成像测量仪项目启动
    p   9月11日,国家重点研发计划重大科学仪器设备开发重点专项“三维数字彩色成像测量仪”项目启动会在广东深圳举行,该项目旨在提升我国科学仪器设备的自主创新能力和装备水平,进一步推动3D和虚拟现实产业跨部门、跨行业、跨区域研发布局和协同创新。 /p p   这一重大专项由国内3D扫描打印和VR/AR领域的领军企业易尚展示牵头,联合清华大学、北京航空航天大学、深圳大学、南京理工大学、河北工业大学、中航工业长城计量所等国内光学领域顶尖研究院所,针对三维测量仪器设备技术和产品的迫切需求,以关键核心技术和部件的自主研发为突破口,研制技术国际领先、具有自主知识产权、质量稳定可靠、核心部件国产化的结构光三维数字彩色成像测量仪。项目将在赶超国际一流“三维数字彩色成像测量”技术、进行产品迭代升级等方面形成良好的契机和优势,并在树立行业创新标杆方面发挥积极作用。 /p p   项目实施后,能大幅提升我国三维数字化科学仪器设备的可持续发展能力和核心竞争力,极大推动我国3D扫描打印产业和虚拟现实产业的发展,为我国博物馆文物三维数字化提供核心装备,加速推动3D虚拟电商发展,提升国内3D创客教育领域的整体装备水平。 /p p /p
  • 三维扫描仪新品全球发布——思看科技NimbleTrack灵动式三维测量系统
    新品全球首发!思看科技NimbleTrack灵动式三维扫描系统!2024年4月9日,思看科技(SCANTECH) 正式发布NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量,领跑工业计量“无线”新时代!灵动式三维扫描系统NimbleTrack,轻巧身型,自在随行,集全无线、多功能等超凡性能于一身,精准驾驭中小型测量场景,成就绝妙之作。其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。整套系统巧妙融合了思看科技的自研生态圈,多种功能形态随心变幻,万般场景灵活应对,以极致技术成就极致性能。轻装上阵 即开即扫NimbleTrack超轻型机身,以极致细节重构性能想象,解锁性能美学的超然进化实力。跟踪器仅重2.2kg,身长57cm,恣意穿梭于各类场景,轻装上阵;扫描仪仅重1.3kg,单手掌控游刃有余,轻松完成长时间测量任务。标配一体式便携安全防护箱,兼顾轻型化与紧凑型,容纳万象,灵动出鞘,带上它,即开即扫,尽显轻盈畅快之感。一体成型 稳如堡垒扫描仪采用全新的碳纤维框架一体成型技术,兼备轻量化和高强度性能,在加工工艺上颠覆了传统组装式框架的装配技术,实现了超高结构稳定度和超强温度稳定性,使得一次校准即可长时间内保持良好的精度范围,让每一次扫描都尽在掌控。双内置电池 真正全无线全栈无线三维扫描系统,无线数据传输、零线缆供电,可满足无电、用电不便等应用场景,开启工业计量无线新时代。扫描仪隐藏式电池仓设计,优雅无束缚;跟踪器双循环电池仓设计,供电不间断,无线转站更顺畅。双边缘计算 性能狂飙扫描仪和跟踪器均搭载新一代高性能边缘计算模组,运算效率跃升至全新高度,解锁120 FPS高帧率流畅测量体验,每一帧都行云流水,驾驭自如。扫描时无需外接电源、贴点,与市面上现有的手持式三维扫描仪相比,整体扫描流程大幅简化,复杂场景更显从容,是当之无愧的效率担当。计量基因 精益求精 依托思看科技计量级产品成熟强大的系统架构和自研算法,最高精度可达0.025mm,在标准跟踪范围内,体积精度可达0.064 mm,精准有实力,还原肉眼可见的细微处。万般场景 挥洒自如NimbleTrack三维扫描系统小巧灵动,轻盈穿梭。面对狭小空间或视角遮挡处,扫描仪可无线单独使用,实现最高0.020 mm的高精度扫描。面对大范围测量场景,跟踪器即刻化身远距离红外标记点扫描利器,精准把控全局精度。智能边界检测模块可选配智能边界探测模块,利用高性能灰阶边缘算法,自动采集孔、槽、切边等特征的三维数据,快速获取高精度的尺寸和位置度信息。i-Probe500 跟踪式测量光笔面对隐藏点或基准孔等难以触达之处,可选配便携式测量光笔i-Probe,设备支持有线或无线传输,为精密测量提供全方位的数字化解决方案。多台跟踪器级联支持多台跟踪器级联工作,大幅扩展扫描范围,有效应对大型工件扫描场景。搭载自动化设备 搭载全新定制化三维扫描仪,为自动化解决方案量身定制装夹方式,使其更加适配各类型机器人;360度均匀分布的标记点岛结构,实现全方位精准跟踪,打造高效的自动化批量检测系统。拓展应用生态NimbleTrack是工业级三维扫描领域真正实现全无线测量的产品,凭借智能无线、不贴点、高精度、高便携性等优势,适用于各类应用场景,尤其是尺寸在40mm-2000mm之间的中小型工件,如汽车四门两盖、内饰座椅、压铸件以及新能源电池盒等。在航空飞行器检修和文物数字化等不适宜贴点的情况下,NimbleTrack表现出色。此外,它也非常适合于车间现场,特别是那些无法方便连接电源或电缆的环境,比如野外测量石油管道的腐蚀情况以及高空作业等。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 先临三维新品发布 | 开拓高精度三维扫描之疆域,赋以用户实际之所需
    3月31日,先临三维2022春季新品发布会成功举办,本次发布会以“扫描扩界,精彩可见”为主题,发布两款产品:→ 面向工业级用户的天远品牌FreeScan UE Pro多功能激光手持三维扫描仪→ 面向专业级用户的全新系列Transcan C可变分辨率彩色3D扫描仪高精度三维扫描体验再升级!先临三维持续以精益求精的态度和不断迭代升级的活力,和用户一起在3D数字化时代浪潮中携手并行,一往向前。 “精”——计量水平,精益求精工业级设备,为您提供可靠的工业测量结果 工业级产品新成员—— 天远FreeScan UE Pro多功能激光手持三维扫描仪 FreeScan UE Pro作为天远FreeScan UE系列的新成员,在保持FreeScan UE高精度、稳定的重复性精度以及轻量化设计的同时, → 其独特优势在于:三种扫描模式1.高速扫描,26条交叉激光线,210万点/秒的扫描速度,快速获取样件的整体数据;2.精细扫描,5条平行激光线,加上高分辨率相机,完整抓取工件细小特征;3.深孔扫描,1条单线激光线,获取深孔数据,获取深度达深孔直径的3倍左右。 内置双目摄影测量系统无需布置编码点,快速锁定大场景目标框架空间位置,实现大体积物体三维扫描全局精度控制。- 高速扫描 -- 扫描细节数据 -- 深孔扫描 -- 路亚艇(长6.38米,宽2.46米)三维扫描数据 -由此,FreeScan UE Pro实现了一扫俱全,小大由之,小到空气开关外壳装配孔,大到飞机,均可帮助客户快速获取准确、完整的高精度三维数据,为用户提供可适用于不同尺寸扫描场景的应用方案。 “在工业级三维扫描应用中,我们拥有天远FreeScan系列、OKIO系列等高精度三维扫描仪以及DigiMetric® 摄影测量系统,能够为客户提供针对不同应用需求的三维扫描技术支持。同时,我们发现,在一些应用场景中,客户需要将这些功能融合于一台设备,来高效地完成作业,基于此,我们研发了FreeScan UE Pro,支持多功能使用 。同时在设计中,我们采用的是双目摄影测量的方式,无需编码点,减少了客户的准备时间,帮助客户提高工作效率,享受良好的应用体验。”——FreeScan UE Pro研发经理 李经理 “彩”——彩色纹理,须眉毕现专业级设备,为您准确还原彩色三维数据 专业级产品新成员—— Transcan C可变分辨率彩色3D扫描仪 Transcan C是由先临三维基于高精度3D数字化技术研发的一款主打“可变分辨率”的彩色3D扫描仪。高品质彩色三维数据,可用于产品设计、虚拟展示、数据存档等多个应用领域。 → 其独特优势在于:1200万像素彩色专业相机,高度还原物体色彩纹理信息可调节扫描范围,灵活切换扫描范围,匹配不同物体扫描需求可变混合分辨率,高中低三种模式自由选择,重现物体精致细节“2021年是‘元宇宙’元年,这也预示着下一阶段互联网将走向3D图形化,但想要拥有极高的沉浸式体验,就需要构建一个无限逼近现实世界的虚拟场景。专业级的三维扫描作为这一应用的底层技术,也需要不断升级,以获取更好的实物彩色三维数据。基于此,先临三维研发Transcan C,拥有1200万像素彩色专业相机,能够帮助用户获取更好的色彩纹理信息。在研发过程中,研发人员为了提升设备的易用性,设计了多范围自由切换和可变混合分辨率,帮助客户能够更加灵活、高效地应用。”——Transcan C产品经理 何经理 先临三维专注3D数字化技术10余年,致力于高精度3D数字化技术的普及化应用。不管是工业级还是专业级设备,先临三维不断丰富自身产品线的同时,始终将“为用户创造价值“放在首位。这两款产品,是先临三维基于客户实际使用需求设计研发,满足了不同领域用户对于三维扫描仪功能特征以及应用场景的多样化需求。FreeScan UE Pro 预约通道Transcan C 预约通道扫描扩界,精彩可见。先临三维也将持续升级设备,完善产品线,以稳定高性能的设备+全球本地化服务+细分领域的深入推广,让更多的客户能够更好地使用高精度3D数字化技术!
  • 中国虚拟仪器之父应怀樵:攻克十大世界性难题
    5月24日,北京东方振动和噪声技术研究所名誉所长应怀樵在第十五届北京科博会“2012中国战略性新兴产业发展论坛”上,作题为《云智慧时代第三次工业革命正在走来——“从软件制造仪器”到“软件制造一切”》的主题演讲。   科学无国界,而科学家是有国界的,这句话在“中国虚拟仪器之父”应怀樵身上,就是近半个世纪的岁月里,他始终以“砍柴樵夫”般的坚韧与顽强,跋涉在为中华崛起而奋斗的科学高峰上,即使古稀之年,面对“3次中风、4次心梗、7次至阎王殿”的生命挑战,依然以超人的毅力、坚定的信念,战胜病魔,执著奋进在创世界一流的“虚拟仪器”科研阵地上。   而支撑他的则是中国科学界应为人类文明进步作出更大贡献的使命感与荣誉感!正是怀着振兴中华、造福人类的理想追求,他数十年如一日,呕心沥血,将全部精力投入虚拟仪器(VI)科学研究之中,自主创新112项新技术,攻克十大世界性难题并填补国内空白,特别是对“传递函数的测试及实时控制和反演关键技术”的成功突破,为提高虚拟仪器测量精度和范围开创新途径,被认为“可与‘光纤之父’诺奖得主高锟教授的‘光纤通信’成果相提并论”,使中美两国同步创造的虚拟仪器达到可问鼎诺贝尔物理学奖的,具有世界性重大意义的成果,是中华民族继四大发明之后,对人类文明有重要意义和影响的现代发明之一。   生命熔铸:“虚拟仪器之父”是怎样炼成的   1941年7月,应怀樵出生于浙江绍兴,这里人文底蕴深厚,而无论是早年受笃信佛教的母亲的熏陶,还是得益蔡元培曾担任校长的小学优良的教学传统,都使他从小树立了为民族崛起而读书的远大理想。   1959年,应怀樵就读浙江大学理论物理专业,后应国家需要全班调整为应用力学专业。1964年,大学毕业后,他被分配到中国铁道科学院,致力于高速列车风洞课题研究,并到清华学习风洞测试分析技术。1965年,他参与我国核爆炸防护工程研究,接触到震动噪声和频谱分析,开始了虚拟仪器科研生涯,而早年五次转换专业,则练就他扎实的学术功底和多学科交叉研究课题的优势。更重要的是,科技水平对国家命运的深刻影响更使他深感责任重大。成为世界一流的科学家,为国争光成为他深埋心中的梦想。而他也毫不讳言对诺奖的钟情,在他看来,诺奖不仅是一种崇高的荣誉,更是激励创新、造福人类的精神泉源。   在他看来,以“四大发明”为标志,中华民族曾为人类科技进步作出重要贡献,然而近代以来却落伍了,应怀樵认为,伴随中华民族的伟大复兴,中国科学家理应在高科技领域取得原创的重大突破,向诺奖冲刺。这不仅是一个科学家的荣誉,更是中华民族屹立世界民族之林的时代要求。   正是怀着这样一份强烈的使命感和荣誉感,应怀樵走过了一条不平凡的科研探索之路。要成为世界一流的科学家,首先要有敏锐、超前发现重大课题的科研能力。应怀樵介绍说,所谓“‘虚拟仪器’其实并非是传统的仪器,它是指集数据采集和信号调理器、信号处理技术与PC机技术于一体的软件制造仪器”。事实上,1965年他参加国防核爆炸防护工程课题——地下铁道核爆炸震动噪声与动力学测试分析的研究,当他遇到地铁道床的下沉残余位移(OHz)用硬件无法获得的难题时,就萌生了虚拟仪器的大胆构想——“用数字算法和软件取代硬件”,1973年他尝试用数字计算机的软件数字积分取代传统硬件模拟积分的方法解决上述难题,1979年获得成功,成为虚拟仪器的最早成功范例。同年于杭州召开的国防科委核试验全国防护工程学术会上,他提出虚拟仪器的核心概念——“软件制造仪器”,获得主持会议的中科院力学所所长郑哲敏院士、清华大学副校长张维院士、同济大学校长李国豪院士的赞扬和支持,比美国NI公司“软件是仪器”的概念提出早7年。   成为世界一流科学家,还要有瞄准国际前沿,不断自我超越的创新意志。据了解,科学仪器与实验技术发展至今已走过模拟式、数字式、智能式三个阶段,从1983年~1986年,开始出现第四代仪器即虚拟仪器(简称VI)。而应怀樵的研究始终走在国际前列。1979年,他编撰的具有该领域应用成果的国内首部专著《振动测试和分析》出版发行,并不断自我超越:1982年《CZ测震仪与测振技术》出版发行,1983年出版了具有中国虚拟仪器早期构思实例框图的《波形和频谱分析与随机数据处理》。1985年他自筹资金创建东方振动和噪声技术研究所(简称东方所),开始系统从事虚拟仪器库、移动实验室技术研究,提出“把实验室拎着走”的目标,正式立题“DASP虚拟仪器库—振动噪声、模态分析移动实验室技术”研究,为此,他自立课题、自筹资金开始研究“PC卡泰”(PCCATAI)—微机卡式自动采集测试分析仪器。他还是国内外最早提出“用软件制造仪器”、“用软硬件相结合”来取代传统仪器的学者。此后,依靠持续创新,他带领团队突破了虚拟仪器的核心技术,开发出适合便携机和笔记本使用的小型数采卡和大容量数据采集分析(LCAS)软件,研制成功台式和笔记本式大容量智能数据采集和信号处理系统以及DASP“达世普”虚拟仪器库系统。这是我国最早研制成功的虚拟仪器产品,实现“把实验室拎着走”的目标。   1988年9月16日,中国虚拟仪器应用于火箭激振钱塘江大桥模态实验圆满成功。1993年3月,该仪器参加北京新技术展览会,并远赴加拿大参展获一致好评。1995年用于“长三捆”火箭全箭模态实验,1996年用于神舟载人飞船移动发射平台模态实验。2004年用于航天员超重训练设备臂架系统模态分析。2007年,在第二届全国虚拟仪器学术交流大会上,东方所的卓越贡献受到高度评价,应怀樵被誉为“中国虚拟仪器之父”。   产业报国:让DASP虚拟仪器库运行在每个实验台   伴随经济全球化及信息时代的来临,如何在世界高科技领域拥有一席之地,如何将中国的高科技产品行销全世界,正成为中华民族是否真正崛起的重要标志。   数十载春秋,对十大世界性难题原创性的解决让其成为具有中华民族自主知识产权关键技术的经历为应怀樵平添几分豪迈与自信。   一是基于平台式设计的VI库技术。用软件制造仪器,软硬件结合取代传统仪器,这一具有里程碑式划时代意义的新路线对仪器制造业和测试技术界产生巨大影响,代表了我国在VI研发方面的最高水平。   二是变时基(VTB)传递函数(导纳)测量分析方法。达到国际领先水平,获国家发明专利。已完成神舟飞船750吨移动发射平台、“长三捆”大型运载火箭、航天员超重训练机模态实验等数十项国家重点项目,效果优良。   三是高精度频率、幅值、相位和阻尼测量技术。东方所原创的高精度频率计和幅值计,比国外常规方法提高精度100万倍,具有重大国际影响力。   四是超低频信号快速测量技术,达到国际领先水平。   五是原创倒熵熵、倒熵富、倒富熵等三种倒熵谱分析方法,达到倒谱分析的国际领先水平。   六是FFT/DFT分析方法,成为目前频谱细化主要方法之一,达到国际领先。   七是振动全息AVD“一入三出”实时测试分析创新技术,原创性地提出了全程微积分方法,实现AVD“一入三出”振动全息实时动态连续测量,达到国际领先。   八是自动化模态分析方法。一般人员通过简单操作即可获得专家级的模态分析结果。   九是24位“双核”变幅基A/D高精度超量程160dB数采仪技术达到国内首创,国际领先。   十是突破传递函数的测试及实时控制和反演关键技术为提高仪器测量精度和范围开辟新途径。此技术是一项世界难题,可极大扩展仪器的频率测试范围,提高测试精度,极具国际竞争力。   仅仅拥有一流的成果还远远不够,在应怀樵眼里,诺贝尔不仅是一位杰出的科学家,还是一代企业家,对科学及人类进步事业的热爱,和凭借巨额财富设立的诺贝尔奖,使他成功激励了一代又一代热爱科学与进步的杰出人物,为人类文明的进步作出不可磨灭的贡献。为此,当虚拟仪器技术攀上科学顶峰的时候,应怀樵直面7次与死神擦肩而过的生命危机,依然没有停止探索与奋进的脚步,开始积极思考中国虚拟仪器的产业化之路,树立起“让INV系统走进每一个实验室,让DASP软件运行在每个实验台上”的宏大目标。   为此目标,他在建所之初就提出“勤奋、创新、坚持、自强、和谐”的十字座右铭和完全自由的判断与讨论的“玻尔所”精神和“六要三不要”的处事准则等基础上,发展成为涵盖精神追求、道德情操的18条共336字法则及幸福六大原则的企业文化,加强了东方所的文化凝聚力。   以此为纽带,东方所不断加强人才队伍建设,一方面加强与全国重点高校合作,为国家培养出大批专业急需人才,以及行业高端人才,该所研究团队也扩大到40余人,拥有博士、硕士数十名,成为虚拟仪器领域一支重要力量。同时他还成功组织和主持了23届全国振动与噪声高技术学术会议,1997年至今主编《现代振动与噪声技术》九卷等十多部专著及《倒熵谱研究》等150多篇论文报告。同时,不断创新软硬件研发,推出CPCI式INV3020和LAN以太网式INV3060、USB式INV3018系列新产品,无线INV9500、手持式INV3080等硬件新产品和DASP的最新软件版本,积极推动产品市场化。   “软件制造仪器,软硬件结合取代传统仪器”能省掉大量昂贵和笨重的硬件材料和人力物力、设备、厂房和能源,便于生产和携带。这是一条划时代的新途径,是科学仪器和测试领域的一次突破和革命,是21世纪的仪器的重要发展方向,是中华民族原创的具有自主知识产权的重大发明之一。中国虚拟仪器DASP软件和INV移动实验室系统是与美国NI同步并行研发的,其中自主创新112项新技术,其中20多项达国际领先水平,是研发最早且核心技术搞得最好的科研成果。   截至目前,该成果产品累计销往2000多家用户,经济效益超过1亿元,打破了此类仪器长期依赖进口的局面,为国家节省外汇数亿美元。目前,已广泛用于国防军工、航天航空等许多部门,参与完成上百项国家重大工程项目测试。若在国内全面推广,其经济价值按我国2007年仪器产值估算,按软件取代硬件30%到一半计算,将产生600亿元到1000亿元/年的巨大价值,为促进技术变革和推动新兴产业形成,造福国计民生发挥重大作用。   面对激烈的国际竞争与广阔的国际市场,应怀樵认为中国虚拟仪器产业化之路任重道远,“达到世界普及”,这是一个目标,更是一种信念!以领先的科技与执著的信念支撑,应怀樵和他的虚拟仪器产业化之路必将迎来胜利曙光!而作为科学家,应怀樵瞄准国际前沿的战略思考从未停止,随着“云计算”和“物联网”时代的到来,他又在国内外率先提出实验室网络云时代——“云智慧仪器实验室”与“云智慧故障诊断中心”和“智慧仪器”的构想,提议国家尽快开展相关研究。   正如诺奖的创立者曾经践行的,科学精神与产业之路的生命熔铸将带给人类更加美好的未来!或许,这正是以不竭的生命激情与创新意志跋涉于科学与产业化之路的“中国虚拟仪器之父”应怀樵教授所真正钟情的。
  • 湖南首届虚拟仪器大赛举办 9所高校20多支团队参赛
    湖南省首届虚拟仪器大赛今天在湘大举办。来自中南大学、湖南大学、湘潭大学等省内9所高校20多支团队参赛。湘潭大学副校长廖永安、省仪器仪表学会副理事长李学军出席比赛开幕式,并现场观看了作品展示。  “只要伸出手比划一个‘不’的手势,电脑就能隔空‘读懂’!”展台入口处,湘潭大学爱科技爱创意团队的“魔幻手语”汇聚了很高人气,团队成员、2015级物理与光电工程学院的刘韬边用心地演示,边耐心地向评审专家和参观师生解说作品的创意灵感,“良好的人机交互需要识别手势所表达的含义,这个有比较好的应用前景,目前很火的VR项目,就需要用到手势识别。”  经过作品展示、答辩和专家评审,湘潭大学S-creator团队的“基于My-RIO的智能垃圾桶”、 湖湘梦之队的“无线数显角度测量仪”,南华大学低调奢华有内涵团队的“车载安全监控系统”,中南大学三点一线小太阳花小队“基于NI myRIO的智能购物车机器人”获得一等奖 湖南师范大学众创LabView小组“LabView大学物理仿真实验套件”、湘潭大学爱科技爱创意团队“魔幻手语”、湖南大学87仪器团队“基于LabVIEW的多功能噪声测量分析管理系统”等6个团队获得二等奖,另有9个团队获得三等奖。  李学军认为,本次比赛融科学性、实用性、趣味性和观赏性为一体,学生通过参加这样富有创意性的科技竞赛,能够初步体会一个工程性的研究开发项目从设计到实现的全过程,可以有效培养他们综合运用知识的能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能力。  廖永安表示,参加学科竞赛,不但可以培养学生的科学兴趣、锻炼综合素质、展现创新能力,同时也可以不断提升教师教学综合能力和人才培养质量。希望通过湖南省首届虚拟仪器设计大赛,促进与兄弟院校的技术交流,共同提高,共同进步,争取在虚拟仪器这个领域以赛促学,为培养新一代卓越工程师而努力。  本次大赛,湘潭大学物理与光电工程学院LabVIEW学生创新俱乐部推荐的10个团队全部获奖,并取得了2个一等奖、4个二等奖的好成绩。团队指导老师李旭军曾连续3届带领学生团队入围国内虚拟仪器顶级赛事“全国虚拟仪器大赛”决赛,拥有丰富的大赛指导经验,“这次比赛从作品展示、作品答辩到作品评审等环节都参照国赛模式,学生通过展示作品、作品答辩,可以切磋技艺、交流心得,是一次很好的锻炼。”  据了解,虚拟仪器技术(Virtual instrument)是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用技术,适用范围非常广泛。目前,区域性与省级虚拟仪器设计大赛在全国各地已经形成了常规赛事。在我国,“全国虚拟仪器大赛”是国内虚拟仪器方面的顶级赛事,自2011年开赛以来,每两年举办一届,每届都吸引了全国近200多所高校1000多支代表队参加,参赛队伍涵盖本科、研究生各层次,湘潭大学物理与光电工程学院连续3届都有学生团队参赛并入围决赛。
  • 广州市第一人民医院借助智能数字技术实现下肢复杂畸形微创、三维精准矫正
    下肢畸形临床较常见,患者不仅下肢功能受到严重限制,晚期还会造成关节退变引起骨关节炎。而且影响患者外观和步态异常等造成患者心理压力、影响患者心理健康,因此需要早诊断、早治疗。21岁的钱小姐,正值花样年华却遭受此病痛烦扰,由于双下肢的严重畸形,且已错过最佳诊疗时机,不少医院同行都表示束手无策,不敢妄下决断。但是钱小姐经介绍找到了华南理工大学医学院教授、广州市第一人民医院关节外科丁焕文主任医师,在计算机技术、3D打印、虚拟仿真、XR技术以及白光三维扫描等医工结合高新技术的配合运用之下,解决了钱小姐的人生厄运,为她开启了美好的全新人生篇章。钱小姐治疗过程中广州市第一人民医院进行了临床决策和手术具体实施。国家人体组织功能重建工程技术研究中心辅助完成了手术导板、个性化外固定支架和钙磷基植入体3D打印。华南理工大学医学院解剖教研室虚拟解剖应用研究团队辅助进行了手术虚拟仿真,完善和优化了手术方案。诺曼数字医疗科技有限公司辅助完成了手术三维设计、手术导板三维设计和医学3D模型平面三维渲染显示。广州联睿智能科技有限公司采用XR技术进行了患者畸形状态、手术方案、手术效果预测等3D显示,辅助医患沟通、病例讨论和术前讨论过程。先临三维科技股份有限公司辅助进行了术前、术中、术后下肢外观白光三维扫描,术前白光扫描了解下肢畸形状态,术中白光扫描引导手术导板精准安放,术后白光扫描评估患者下肢畸形矫正情况和引导矫形过程。治疗经过病例简介:21岁女性。因双下肢畸形、跛行步态7年余就诊。体查:患者身高148cm,双下肢严重畸形,左侧明显(图1)。右膝关节屈曲挛缩,右膝活动度120°-25°-0°。2019年10月行左股骨、胫骨截骨矫形+术后缓慢撑开延长术(图2)。2020年11月23日行右股骨、胫骨微创截骨三维精准矫形+外固定术(图3)。术后1年余左股骨、胫骨正侧位片显示左股骨延长区域愈合、胫骨延长区域有明显骨痂生长(图4),左下肢延长12cm,遗留左小腿外旋畸形,(图5),采用3D打印个性化外固定支架非手术矫正(图6)。新兴科技助力诊疗,术前精准定量诊断树蚁智能数字精准外科云服务系统团队在获得患者CT数据之后即刻进行了三维重建(图7),借助3D虚拟模型,更细致了解患肢在三维层面的畸形程度。同时对下肢的解剖参数精确测量,建立了以下三维数字化定量精准诊断:1.右下肢严重畸形:①双股骨前倾角增大1.7144°②右股骨远端关节面后倾32.2495°③右股骨远端内翻股骨角88.3453°④右胫骨远端外翻,胫骨角92.1646°⑤右胫骨扭转角减少-3.6716°⑥右下肢短缩畸形。2.左下肢矫形术后明确患情后丁焕文教授带领广州市第一人民医院临床研究团队制定了以下治疗计划:1.右股骨、胫骨微创截骨三维精准矫形外固定+术后缓慢撑开延长术2.左小腿个性化外固定架更换遗留外“八”字畸形矫正术手术三维设计和虚拟仿真优化手术方案为更好的解决钱小姐右下肢畸形、短缩问题,丁焕文教授带领树蚁智能数字精准外科研究团队开始紧锣密鼓的进行手术三维规划,由于右下肢存在不同程度的短缩、外翻畸形和股骨远端关节面后倾造成膝关节不能伸直等问题,丁焕文教授团队在左下肢矫正基础上再次对右下肢进行个性化手术三维设计,依次从右股骨头对齐、确定右股骨髁上截骨位置,将股骨进行矫形(图8-9),包括恢复了股骨远端的前倾角和后倾角,同时对远端内翻畸形等进行进行全方位精准矫正。完成右股骨矫形之后,进一步对右胫骨进行三维精准截骨矫形设计,包括截骨位置的选择,矫正恢复下肢力线(图10),再利用CAD软件进行外固定架置钉与截骨导板的设计与3D打印制作(图11)。最后华南理工大学医学院虚拟解剖应用研究团队进行了双下肢畸形三维精准矫形手术虚拟仿真,优化和完善了手术方案。VR科技术前引热议所有术前准备妥当之后在手术当日交班现场,丁焕文教授还拿出了一项吸引眼球的新兴科技,那就是虚拟仿真技术,丁焕文教授与树蚁精准外科云辅助系统、广州联睿智能科技有限公司联合攻关建立了医学3D模型XR显示系统,一排VR眼镜摆在交班室的会议桌上,各位医生护士争相观看,在该系统辅助下VR远程显示病变状态、手术方案和手术效果等。在VR眼镜系统里镶嵌了钱小姐完整的手术设计过程,借助VR眼镜进行了一次完美的术前讨论。(图12)白光扫描术中放异彩术中为了将设计的置钉定位导板安装妥帖,丁教授使用先临三维白光三维扫描技术——EinScan Pro 2X Plus多功能手持三维扫描仪对患者腿部进行扫描(图13),EinScan Pro 2X Plus采用非接触式白光扫描技术,扫描幅面大,细节精度高,因此可以无创、快速高效的获取患者腿部表面高精数据(图14),形成相应的文件。然后利用3D数据在电脑上进行畸形状态评估、术中辅助手术导板快速匹配和精准安放,评估术后畸形矫形手术效果和引导术后矫形过程。术中AR配准引导手术导板精准定位为了进一步验证术中导板与体表的贴合位置,丁焕文教授术中放置手术导板后将正侧位外观照片网上传送给华南理工大学自动化学院李彬教授实验室,进行手术导板术中AR即时配准(图15),通过这种跨越空间的远程交流,进一步体现了创新科技的优越性,进行了远程医疗创新形式的探索,也成功让手术导板能够更准确的贴合患肢,提高了外固定置钉精准度,防止截骨位置发生偏差。个性化手术导板引导完成微创截骨与三维精准矫形手术在王迎军院士领衔的国家人体组织重建工程技术研究中心赵娜如教授、刁静静博士等辅助下,完成了个性化磷酸钙可再生修复体、手术导板和个性化外固定架的CAD设计和3D打印。借助这一系列新兴科技手段,钱小姐的手术按时顺利完成,导板引导外固定螺针(图16)准确打入股骨与胫骨,截骨位置选择十分准确,通过短于2cm的小切口完成微创截骨,安装外固定架后完成矫形。遗留部分畸形采用个性化外固定架非手术矫正(图17)。术后三维评估针对左下肢术后残留的外”八“字畸形和轻微小腿向内成角畸形(图18),CAD设计和3D打印个性化外固定进行非手术矫正,使患者避免了再次手术(图19)。就这样一台复杂疑难下肢畸形矫正手术得以精准、安全和轻松解决。外固定架矫形成功,下肢延长未来可期在手术完成的第二天钱小姐精神状态良好,还在麻醉中的双下肢也没有丝毫不适。进行术后的X线片与CT扫面以及三维重建评估,都提示下肢矫形效果很好。为了下肢功能更好康复,指导、鼓励其积极进行床边、床旁运动。身高148cm的患者术后摇身一变成为160cm的窈窕淑女。术后三维评估患者双下肢解剖参数完全恢复(图20)。END文章源自于广州市第一人民医院 丁焕文教授团队
  • 向新领域迈进:从仪器设备拓到虚拟现实技术解决方案——ACCSI2019视频采访IKA中国Managing Director Stalder Stephan
    p    strong 仪器信息网讯& nbsp /strong 2019年4月18日,中国科学仪器行业的“达沃斯论坛”——2019第十三届中国科学仪器发展年会(ACCSI2019)在青岛银沙滩温德姆至尊酒店召开,1200余位高端人士与会。在会议间隙,仪器信息网编辑有幸采访到了IKA中国Managing Director Stalder Stephan先生,听他谈谈IKA近年来所发生的变化以及未来的发展计划。 /p p   IKA成立于1910年,经过100多年的发展壮大成为一家全球化的集团公司,在全球4大洲上拥有10家子公司,其产品和技术服务于全球160多个国家的客户。自2000年进入中国市场以来,IKA也是为数不多的最早开始在中国设立本地生产中心和本地研发中心的外国厂商之一。当前,IKA在中国拥有超过200名全职员工,致力于为中国本地客户提供最合适的解决方案包括各种客制化方案。可以说, IKA非常了解中国本地的客户需求,且本地的研发中心也能够根据本地客户的实际需求,提供快速有效的响应。 /p p   2018年,IKA在全球开设了3个全新子公司,分别位于波兰、英国和东南亚,主要负责当地区域的销售,使当地的业务层面获得了很大的进展。此外,IKA集团还拆分出专注于虚拟现实解决方案的独立公司realworld one,可以向客户提供除实验室仪器设备、分析仪器设备和工业设备以外的虚拟现实技术解决方案,实现随时随地让客户享受诸如在线培训等过去难以想象的技术服务,是IKA近年来所取得的卓越成就之一。 /p p   在去年的德国ACHEMA上,IKA一口气推出60多款新产品,如STARVISC系列扭矩测量仪等,并在随后的上海analytica上也进行了这些新产品的展示。2019年,IKA的工作重点除了巩固新产品的发售之外,会更多关注新产品相应配套配件的研发,以更好地支持这些新产品,同时也是对过往产品的一些技术提升。此外,一些新的产品系列也将陆续发布。· /p p   更多详细内容请见视频! /p script src=" https://p.bokecc.com/player?vid=FD9A1BABA2D2D9879C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p br/ /p
  • 三维表面模型可视化软件Vayu 1.0发布
    包括古生物学在内,众多科研领域已经在前所未有的精度和广度上大规模应用X射线计算机断层扫描以及三维重建技术,随之对生成的三维表面模型的可视化效果方面也提出了更高的需求。目前大部分三维重建处理软件在处理三维表面模型方面能力较弱,已有的三维表面模型软件通常未对生物学三维表面模型数据作相应的优化,且在使用上往往存在上手困难,操作复杂,无法处理大数据文件等问题。 Vayu 主界面与部分案例展示针对以上问题,为了提升化石和现代生物成像数据的可视化效果,中国科学院古脊椎动物与古人类研究所卢静研究员团队自主研发了专门用于处理三维表面模型的新的免费软件Vayu 1.0,并在《古脊椎动物学报》上详细介绍了该软件的基本功能、操作流程以及相关案例展示。Vayu 1.0主要针对化石及现代生物成像数据可视化需求进行优化,可以广泛应用于古生物、生命科学、医学、考古等多学科领域三维表面模型的可视化乃至虚拟空间交互等方向。Vayu 1.0软件提供了一整套针对三维表面模型的编辑、渲染、标注、分析等可视化工具,同时自带VR模式以及快捷的动画制作方法,让使用者能在最短时间内掌握对三维表面模型进行快速渲染和动画制作,为三维表面模型的可视化提供了新工具。Vayu 1.0还包含虚拟现实(VR)模式和一站式动画制作平台等多种可视化工具,为各领域的三维表面模型渲染与可视化提供了新发展方向和思路。除此以外,Vayu 1.0在博物馆科普教育与学校教育等领域也可以提供广泛的应用场景。 Vayu 三维可视化渲染动画展示Vayu 现代鲨鱼身体内部三维结构VR动画该研究得到了中国科学院院战略性先导科技专项(B类)、国家自然科学基金优秀青年基金等项目的资助。论文链接:http://www.vertpala.ac.cn/CN/10.19615/j.cnki.2096-9899.221020软件下载链接: http://admorph.ivpp.ac.cn/download.html
  • 475.6万元!蔡司中标中科院物理所微米X射线三维断层成像仪采购项目
    近日,中国科学院物理研究所微米X射线三维断层成像仪采购项目发布中标公告,卡尔蔡司以475.6万元中标。一、项目编号:TC220805G(招标文件编号:TC220805G)二、项目名称:中国科学院物理研究所微米X射线三维断层成像仪采购项目三、中标(成交)信息供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 卡尔蔡司(上海)管理有限公司 微米X射线三维断层成像仪(X射线显微镜) Zeiss Xradia 515 Versa X射线显微镜 1 4756000 四、招标技术规格1.1 设备用途:设备可对对各类锂电池材料(软包电池,电池极片)、金属材料、油气地质及半导体样品(失效分析)进行高分辨无损三维成像及组织表征。设备采用闭管透射式X射线源、独特的二级放大架构、独有的衬度技术、配合机器的三维数据采集、控制、重构及可视化软件以三维立体图像及二维虚拟切片的形式,清晰、准确、直观地展示各类样品内部的亚微米级及以上的组织形貌(包括样品内部组织结构、内部孔隙、微裂纹等均可清晰展示)。1.2 工作条件:(1)电源:单相 220V(±5%)、50Hz、15A(2)温度:10~25℃, 温度波动<2℃(3)环境湿度:≤70%,无凝结*2.1 分辨率2.1.1 最高空间分辨率:最高三维空间分辨率≤700nm,需提供标样的测试结果,否则视为不响应;2.1.2 最小可实现的体素(Voxel Size)≤300 nm,需提实际样品的测试切片照片,否则视为不响应;2.1.3 能够满足大样品高分辨得测试需求,须具备对锂电池材料中的软包电池实际样品局部进行高分辨率扫描成像,针对≥5cm 宽的软包电池样品的中心位置,可实现≤ 1μm 的体素分辨率的扫描成像能力,以满足采购人单位的科研需求。2.2 三维组织表征及重构2.2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷;#2.2.2 能够自动对样品多个(20)不同区域进行 3 维成像扫描和重构;#2.2.3 具有吸收衬度和可调节相位传播衬度两种衬度模式,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。能够清楚区分样品内的不同组织;2.2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据;具有支持宽视场模式的物镜探测器,具备更宽的视野;*2.2.5 2000 张投影,重构 1k × 1k × 1k 图像的时间少于 5 分钟;2.2.6 支持 180°+Fan 扫描模式,从而实现快速扫描成像。2.3 光源与滤色片及支架*2.3.1 高功率微焦点 X 射线源:采用密封式透射 X射线源,功率≥10W,机器可以不间断连续扫描样品时间达 1 周以上(即 7 x 24 小时)。在用户日常使用过程中无需更换光源灯丝。最大电压≥155kV,最低电压≤30kV,连续可调;2.3.2 配备滤色片转换支架,包含不低于 10 个适用于不同能量段扫描的滤片。2.4 探测器*2.4.1 探测器规格为高对比度平板探测器或更高级的探测器系统,可实现二维有效探测面积≥200mm×200mm,需提供测试方案和样品测试结果,否则视为不响应。像素数量≥2000(长)×2000(宽);2.4.2 具备大视场≤0.4X 光学放大模式,能够实现大视野宽场模式;2.4.3 探测器可移动范围不小于 290mm。2.5 样品台及样品室#2.5.1 全电脑软件控制高精度 4 轴数控可编程马达样品台,具备超高的样品移动精度;#2.5.2 样品台 X 轴运动范围 50mm;Y 轴运动范围 100mm;Z 轴运动范围 50mm;2.5.3 样品台旋转运动范围:360 度旋转;*2.5.4 样品台最大承重≥10kg(X 射线能穿透的情况下);*2.5.5 样品台可承受样品尺寸≥100 cm2;*2.5.6 为了防止 X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品;*2.5.7 系统具备样品自动防撞装置,系统通过快速获取样品轮廓信息,设定硬件工作极限位置,防止因为操作不当样品和探测器、源相撞,避免损坏硬件和样品。2.6 仪器控制与数据采集、重构、可视化及分析系统*2.6.1 具备三维数据采集及控制软件,可编程软件系统,支持三维重构,具备快速抓拍功能;2.6.2 全数字化仪器控制,计算机控制工作站;2.6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量等;2.6.4 可以进行基本图像测量,如图像计算、滤镜等;#2.6.5 具备快速三维数据重构软件,软件界面友好,采用先进的解析算法以保证重构时间快;2.6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释;#2.7 数据处理工作站不低于以下配置Microsoft Windows10 Pro 操作系统Dual Eight Core CPUCUDA-enabled 3D GPU12 TB(4×3 TB)硬盘容量,RAID-532GB 内存可刻录式光驱24寸液晶显示器。2.8 样品座及标样2.8.1 对中和分辨率测试标样;2.8.2 针钳式样品座;2.8.3 夹钳式样品座;2.8.4 夹持式样品座;2.8.5 高铝基座样品座;2.8.6 高精度针钳式样品座。2.9 其他硬件2.9.1 人体工学操作台;2.9.2 四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器;2.9.3 大移动范围、高精度花岗岩工作台。2.10 可扩展功能与双束系统、场发射电镜的数据相互关联,可将 CT 所获得的数据文件格式如 CZI, RAW,TIFF,VTK,DICOM 等格式的二维图像和 TXM 3D X-ray volumes 体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。
  • 环境噪声信源分析与特征辨识虚拟仪器系统研发
    针对传统的环境噪声监测与分析仪器功能单一化,提出了环境噪声连续实时监测与同步时频分析一体化的设计思想,自行开发了环境噪声信源特征分析与辨识虚拟仪器系统。其检测前端采用半球型电容声压传感器阵列,以PC机及其自带声卡为硬件,在LabVIEW软件平台上通过二次开发,实现环境噪声信号采集、参量计算、时频分析、声源类型判定多功能一体化。该虚拟仪器系统定位最大相对误差4.13%,测量声级分辨率0.01dB。 环境噪声信源分析与特征辨识虚拟仪器系统研发_乔佳乐.pdf
  • 大连化物所预算869万元采购1台高分辨三维重构X射线显微镜
    近日,中国科学院大连化学物理研究所公开招标,预算869万元采购1台高分辨三维重构X射线显微镜。招标项目详情如下:项目编号:OITC-G240270123项目名称:中国科学院大连化学物理研究所高分辨三维重构X射线显微镜采购项目预算金额:869万元(人民币)最高限价(如有):869万元(人民币)采购需求:高分辨三维重构X射线显微镜 1 台/套 (允许进口产品)技术要求:1 分辨率及成像架构 ★1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm1.2 当 X 射线源距样品旋转轴 50mm 时的最佳空间分辨率≤1.0μm 1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤ 40 nm ★1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求。2 三维组织表征、重构及成像2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷。 ★2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像。 2.3 2000 张2k×2k投影重构图像数据(重构972 张Slice 图像)时间≤2.2分钟。2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据2.5 具备定位放大扫描功能2.6 具备样品移动自适应矫正、温度移动矫正、图像比对位移参照矫正等功能2.7 具备吸收衬度成像和基于边缘折射传播的相位衬度成像功能2.8 应具备硬件+软件的自动防撞机制, 可通过可见光扫描快速获取样品形状和实际轮廓,根据样品形状和轮廓,自动对源、探测器位置进行限位,以保证硬件和样品安全 。3 光源与滤波片★3.1 高能量微聚焦闭管透射式X射线源3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调3.3 最大功率不小于25W3.4 Z轴可移动范围不小于190 mm 3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处)★3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片4 探测器4.1 能够实现二级放大的16 bit噪声抑制闪烁体耦合探测器, 探测器能够实现2048×2048以上的像素成像和三维重构★4.2 包含0.4X物镜探测器,实现2048×2048像素成像和三维重构4.3 包含高对比度,低分辨率的4X物镜探测器4.4 包含高对比度、高分辨率的20X物镜探测器4.5 探测器可移动范围不小于280mm★4.6 包含高分辨率40X物镜探测器5 样品台及样品室★5.1 全电脑控制高精度4轴马达样品台,具备超高的样品移动精度★5.2样品台X轴运动范围50mm;Y轴运动范围100mm;Z轴运动范围50mm 5.3 样品台旋转运动范围:360度旋转5.4 样品台最大承重范围:25kg5.5 样品台可承受样品尺寸范围:300mm★5.6 为了防止X 射线辐射泄漏、保护仪器操作人员,设备须采用全封闭式铅房设计,不能留有观察玻璃窗。样品室内配备可见光相机,确保操作人员无需通过观察玻璃窗即可监控和操作样品。5.7 配置原位台接口,可后期升级原位台。5.8 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。6 仪器控制与数据采集、重构、可视化及分析系统6.1 全数字化仪器控制,计算机控制工作站★6.2 具备三维数据采集及控制软件, 并提供1次免费升级服务。6.3 支持原始数据查看,图像标准特征显示(如亮度、对比度、放大等)、注释、测量6.4 可以进行基本图像测量,如图像计算、滤波等6.5具备快速三维数据重构软件6.6 具备三维数据可视化软件,展示三维重构结果,包括虚拟断层,着色、渲染、透视等,并实现基本分析功能和注释(3D Viewer)★6.7 专业的三维数据分析软件(一套):可进行高级三维重构后视图展示与三维高级数据处理与分析包括定量分析与统计分布、切片配准与图像滤波、三维图像数据分割与特征提取、多模态融合与分析、三维模型生成与导出,几何特征计算等(如可以实现三维数据处理,对样品三维数据结果进行相分割,孔隙率计算,裂纹及孔的尺寸统计与空间分布)并且可与其它三维软件兼容, 厂家自带软件全部功能开放7 三维X射线显微镜控制主机(须内附三维X射线显微镜控制单元)Microsoft Windows10操作系统、符合或优于Dual Eight Core CPU 、 CUDA-enabled 3D GPU,12TB(3×4 TB)硬盘容量、32GB内存、RAID-5可刻录式光驱、24寸液晶显示器;额外再配置一台数据处理工作站,要求不低于以下配置:Microsoft Windows 10及以上正版操作系统、双10核CPU、Nvidia RTX A6000GPU、6TB硬盘容量、512GB内存、RAID-5可刻录式光驱、24寸显示屏。8 样品座及标样8.1 配备对中和分辨率测试标样1套,配备针钳式样品座、夹钳式样品座、夹持式样品座、高铝基座样品座、高精度针钳式样品座。9 可拓展功能★9.1 可与双束系统、场发射电镜的数据相关关联,可将CT所获得的数据文件格式如CZI, ZVI, TIFF, MRC等格式的二维图像和TXM 3D X-ray volumes体量数据,导入到电镜或者双束系统的软件中,实现亚微米级到纳米级的数据关联以及数据处理。10 其他硬件10.1 人体工学操作台,大移动范围、高精度花岗岩工作台,四门式防辐射安全屏蔽罩,配备辐射安全连锁装置和“X-ray on”指示器 潜在投标人需于2024年06月11日至2024年06月18日,上午9:00至11:00,下午13:00至17:00(北京时间,法定节假日除外),登录东方招标平台www.oitccas.com注册并购买招标文件,并于2024年07月02日09点30分(北京时间)提交投标文件。联系方式:1. 采购人信息名称:中国科学院大连化学物理研究所地址:辽宁省大连市中山路457号联系方式:王老师,0411-843797072. 采购代理机构信息名称:东方国际招标有限责任公司地址:北京市海淀区丹棱街1号互联网金融中心20层联系方式:窦志超、王琪 010-682905233. 项目联系方式项目联系人:窦志超、王琪电话:010-68290523附件:采购需求.pdf
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 教育部批准100个国家级虚拟仿真实验教学中心
    p   各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局,中央军委训练管理部: /p p   根据我部开展2015年国家级虚拟仿真实验教学中心建设工作的有关要求,经高等学校申请,省级教育行政部门、军队院校教育主管部门推荐,中国高等教育学会组织遴选和网上公示,现决定批准北京大学考古虚拟仿真实验教学中心等100个实验教学中心为国家级虚拟仿真实验教学中心。 /p p   有关高校要高度重视实验教学与信息化的深度融合,大力加强虚拟仿真实验教学中心建设工作,支持鼓励校内外、本地区及更广范围内的实验教学资源开放共享。要进一步完善虚拟仿真实验教学管理共享平台,优化虚拟仿真实验教学中心管理体系,提升虚拟仿真实验教学队伍教学和管理能力,提高实验教学管理信息化和支持服务信息化水平。 /p p   地方和军队教育行政部门应进一步加强对所属高校实验教学信息化和虚拟仿真实验教学中心建设工作的指导,建立健全激励和支持机制,积极组织所属高校学习借鉴国家级虚拟仿真实验教学中心建设的优秀经验,充分开放共享优质实验教学资源特别是优质虚拟仿真实验教学资源,全面提升实验教学信息化水平。 /p p style=" text-align: center " img title=" 1_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/1fbd4e1e-0d87-449d-a0e0-46fec6e45a47.jpg" / /p p style=" text-align: center " img title=" 2_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/17794cfb-d7e8-4dcc-bdbc-407bad707496.jpg" / /p p style=" text-align: center " img title=" 3_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/a678669d-d6d1-4e46-bdd5-ead33f0de172.jpg" / /p p style=" text-align: center " img title=" 4_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/3941abb1-bc25-4afa-b005-ee2ed349f281.jpg" / /p p style=" text-align: center " img title=" 5_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/c58fc7ea-d21b-4acb-99b3-c21bae5ad219.jpg" / /p p style=" text-align: center " img title=" 6_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/69f5777f-120c-48a6-a514-11658ad4caab.jpg" / /p p style=" text-align: center " img title=" 7_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/ac844ba9-5ec3-470f-8622-a7b8c218ef75.jpg" / /p
  • 东方电子虚拟电厂项目入选“2022年度双碳科技创新典型案例”
    12月19日,由中国能源报、中国能源经济研究院发起的2022年度“双碳科技创新典型案例”,经综合评审,名单正式公布,共有18个案例获此殊荣。东方电子研发实施的“粤能投”虚拟电厂管理平台位列其中。“双碳科技创新典型案例”主要面向国内能源领域企事业单位、科研院所的低碳零碳负碳技术创新,聚焦清洁能源化利用、新能源、储能、低碳工业流程再造、固废综合利用、绿色建筑节能及生态固碳增汇等领域,以科技创新成果实力护航“碳达峰 碳中和”目标的实现。东方电子研发实施的“粤能投”虚拟电厂管理平台,作为南方电网第一个实用化负荷聚合虚拟电厂和广东首个虚拟电厂商业性运转平台,聚合光伏、储能、充换电站、空调、工商业负荷等各类用户侧可调控负荷资源参与广东省交易中心市场化需求响应市场,盘活用户侧可调控资源,实现多方共赢。此外,中国能源报、中国能源经济研究院还发起2022年度“碳中和绿色品牌影响力共建单位”,经综合评审,名单正式公布,共有15家机构/企业获此殊荣。东方电子实力上榜!能源行业绿色转型、节能降碳,离不开企业的先锋力量。“碳中和绿色品牌影响力共建单位”,是根据近年来在能源领域转型升级、绿色发展、布局优化、技术创新以及社会责任等方面表现突出的企事业单位,通过选树典型企业,借鉴并推广其在“双碳”建设中的先进经验和典型做法,助力“碳达峰、碳中和”。东方电子立足“双碳”目标新发展阶段,以“构建数字化企业,赋能数字化社会”为发展愿景,以精进管理体系为依托,制定双碳产业发展布局,充分发挥贴近用能市场、服务渠道畅通高效等优势,综合应用云、大数据、物联网等新技术,持续做大做强做优综合能源服务相关产业,推动全社会碳减排,为“碳达峰、碳中和”国家战略早日实现做出应有的努力和贡献。
  • 2018滨松虚拟光子展全面上线,360度全景展示带您畅游6大展区
    Photon Fair(滨松光子展或光子展),是由滨松集团主办的每5 年1 届的光子技术综合性展览会每隔5年,滨松集团都会举办 “光子展” ,该展会由滨松集团全资筹办,旨在展示滨松集团对于未来的愿景以及光子技术是如何在这一愿景中发挥作用的。1980年,滨松独立主办的第一届Photon Fair2018年11月初,“2018滨松光子展”在日本滨松市圆满落幕,有上千种产品及DEMO展出,除了滨松电子管、固体、系统、激光四大事业部的最新技术(包括大量面向未来的在研技术)以外,滨松中央研究所的诸多研究成果,也首次展现在了公众面前。活动累计5000位专业观众注册,超过10000人次参加参观。为了让更多人体会到光子技术的魅力,了解滨松近年的最新技术成果,“2018滨松虚拟光子展”如今在全球全面上线。通过本虚拟观展系统,您可以在“汽车”、“生活”、“医疗和生命科学”、“环境”、“制造”和“科学研究”六个主题展区,进行360度全景线上参观。每个展区您都可以逐个浏览展出的产品,以及相关的中文技术介绍、样本资料等。本系统将持续开放至2019年4月。可以通过关注滨松微信微信号,在微信号中回复“光子展”,即可进入“2018滨松虚拟光子展”参观,欢迎前往浏览!
  • 高性价比!先临三维推出万元内专业级3D扫描仪Einstar
    随着元宇宙、数字孪生、数字藏品等行业的快速发展,世界的呈现方式逐渐从二元结构向三元结构进阶,更高维度的信息逐渐成为刚需,需要海量的三维数据作为基本信息载体。而三维扫描,作为三维数据获取的重要手段,也需要更加普及化的设备,来下沉服务更多的用户。2022年9月20日,三维视觉科技企业先临三维举行全球新品发布会,推出一款在专业级三维扫描仪普及之路上具有里程碑意义的产品——Einstar手持3D扫描仪。数字万物,由此开启!Einstar是先临三维基于多年的三维视觉技术积累,结合市场需求,自主研发的一款超高性价比的普及化专业级手持3D扫描仪。Einstar具有快速流畅的3D扫描体验,优良的数据品质,简便快捷的使用模式,超强的场景适应性。其核心在于让用户以更低的购买成本、学习成本、使用时间成本等,获取高质量的3D数据,进一步推动专业级三维扫描仪的普及,真正实现数字万物。应用范围广泛,助力多种3D应用场景多样应用,领域宽广:支持多种数据格式输出,智能兼容各类3D设计软件和3D打印设备,提升3D建模品质和效率,为3D设计、虚拟展示、数字化存档、可视化交互等应用提供3D数字化解决方案。具有优良的数据获取能力超小点距,细节丰富:能够高清细腻地还原实物立体形态和几何特征,3D点云数据最小点距可达0.1mm。真彩扫描,栩栩如生:搭载专业彩色纹理相机,真实还原物体色彩信息。超强适应,不限场景:配备3组高品质VCSEL红外投射器和3个相机,捕捉图像清晰稳定;场景兼容性强,即使在户外,也能稳定工作;材质兼容性强,即使黑色和反光物体,也能轻松驾驭。操作简便,易于新手使用智能色谱,数据高质:设计了模型质量色谱,用户能够通过颜色区分扫描数据的完整度,直观简便,可以更好地指导扫描工作,新手也可获取高质量数据。广角视野,丝滑体验:扫描流畅,速度可达14帧/秒;工作距离及扫描幅面自适应性强;数据智能跟踪,高速拼接。由此大大降低扫描难度,新手也能快速上手使用。轻巧便携,简单易用:硬件的操作简单便捷,软件的功能强大丰富,且采用引导式操作,如同普通的家用电器,简单查看说明书即可使用。人眼友好,无光扫描:采用红外不可见光,投射时人眼安全、舒适。先临三维3D数字化事业部执行总经理杨扬表示:“先临三维一直致力于推动高精度三维视觉技术的普及应用,针对不同的专业/工业应用场景,研发了具有不同特点的设备。Einstar手持3D扫描仪是先临三维全新推出的普及化专业级产品,我们基于自主研发的核心技术,将具有优良性能的专业级三维扫描仪做到了万元内,这是专业三维扫描领域的一次重大突破。我们希望将来我们的三维扫描仪可以像笔记本电脑一样普及,让人们能够随时随地用它服务于大家的工作和生活。”作为专业级三维扫描仪,先临三维Einstar定价在7999元,可谓专业级性能,入门级价格,性价比拉满。据悉,未来先临三维将继续把“为用户创造价值”放在首位,持续精益求精,以稳定高性能的设备+全球本地化服务+细分领域的深入推广,让用户能够更好地使用高精度三维视觉技术,唱响数字化时代的最强音!
  • 3D打印显微镜nSPEC 3D可捕捉纳米级三维图像
    2014年10月14日,世界上技术最先进的纳米成像(nanoimaging)技术解决方案开发商,Nanotronics Imaging宣布推出其最新的计算机控制显微镜&mdash &mdash nSPEC 3D。该公司是在田纳西州Nashville美国化学学会2014年国际橡胶会议上公布这一消息的。   nSPEC 3D配置了带先进的计算机模式识别算法的高品质光学镜头,定制化的3D打印硬件,具备人工智能,只需点击一下鼠标或做个手势即可捕捉纳米级的三维图像。   Nanotronics Imaging公司首席执行官Matthew Putman:&ldquo 我们的解决方案将使许多行业,包括工业材料、半导体、甚至是生物制药等,获得复杂的成像技术,可以提升他们的制造能力和快速、高效地操纵先进材料的能力。&rdquo 据了解,该公司开发nSPEC 3D的初衷就是为了解决工厂在对复杂材料进行高通量成像时所面临技术挑战&mdash &mdash 即无法捕捉3D图像中可重复的测绘图型及自动诠释功能。   与传统的实验室仪器不同,这款nSPEC 3D是由Nanotronics团队与纽约著名设计师Mari Kussman和Francis Bitonti合作设计的。通过将成像技术与3D打印技术相结合,可以以低得多的成本获得和使用纳米级图像。   Flow Polymers是领先的化学分散剂和加工助剂生产商,该公司首席执行官Michael Ivany称:&ldquo 我们对Nanotronics公司开发的nSPEC 3D兴奋不已,因为这款仪器有帮助行业优化产品的性能、使用寿命和稳定性。到现在为止,我们还没有找到一种仪器能够充分量化混合质量。&rdquo   在这次会议上,Nanotronics将利用Oculus公司虚拟现实技术与 Leap Motion的手势控制现场演示如何操作由 nSPEC 3D拍摄的纳米级3D景观展。
  • 我国研制成功新型三维图像悬浮显示装置
    一种新型三维图像悬浮显示装置,近日在中科院长春光机所研制成功,通过该装置,观众可以360度环绕欣赏立体图像,获得意想不到的感官效果。 在中科院长春光机所新技术研究室,记者见到了该装置的原理样机。在一个用玻璃做的倒金字塔中,悬浮的立体图像不断变幻。无论从周围哪个角度观看都十分清晰逼真。 科研人员介绍,这项新成果全称是“基于单源光路的三维图像多方位悬浮显示装置”,它的可观看视角达到360度。该装置采用高亮度投影光源,即便经过视差障栅亮度损失,显示的立体图像也能保持较高的亮度,甚至在普通的光照环境下也清晰可见。依靠这种装置,观众不需要借助任何助视仪器,就能够多人同时围绕显示区域,多角度观看三维图像,视点完全不受限制。 据了解,目前国内市场上大多数三维显示产品,虽然能给观众带来丰富的视觉享受,但其影像效果仅能在显示屏正前方的一定范围内得以保证,而且视场角有限,图像亮度不够。丹麦兰博公司研制的一套类似系统,放映的图像悬浮在显示装置中央,做到了多方位观看,但观看者看到的图像没有视差,因此这种三维图像只有心理景深而没有视觉景深。 中科院光机所的该项研究成果,有效解决了真实三维物体全方位悬浮显示的技术问题。随着其工艺日益成熟,有望在广告、展厅、游戏等领域得到广泛应用,为观看者提供更高质量的观看体验。
  • 三维扫描,守候徽派百年老宅经典传承
    本次程氏三宅的的三维扫描项目,受到了国家文化和旅游科技创新工程项目《面向中国传统纹样当代呈现的3d打印技术体系研究(项目编号2019-006)》的资助,在黄山市程氏三宅古民居博物馆的配合下,由项目承担单位浙江传媒学院和项目合作单位先临三维科技股份有限公司共同实施,目的是获取程氏三宅建筑装饰的三维数据,后期将在获取原始数据的基础上开展再设计和3d打印制作。随着三维数字化技术的不断发展,文物数字化逐渐成为文物保护的大趋势。三维扫描技术为文物及古建筑的三维数字化工程提供了高效坚实的技术力量,不仅可以作为文物/古建信息存档,便于后期的学术研究和维护修缮,同时还可以作为文物/古建的宣传展示、文创衍生等。程氏三宅徽派建筑是中国古建筑最重要的流派之一。徽派民居将南方干栏式建筑和北方四合院相结合,形成了高脊飞檐、粉墙黛瓦、错落的马头墙和精美的砖木石雕等风格特征。流行于徽州(今黄山市、绩溪县、婺源县)及严州、金华、衢州等浙西地区。徽派建筑集徽州山川风景之灵气,融中国风俗文化之精华,风格独特,结构严谨,雕镂精湛,不论是村镇规划构思,还是平面及空间处理、建筑雕刻艺术的综合运用都充分体现了鲜明的地方特色。在安徽黄山屯溪区柏树街,有三处历经数百年的风雨洗刷,至今依然保存完好明代古建筑,分别位于屯溪柏树东里巷6号、7号、28号,三处住宅均为明代成化年间所建,因主人都姓程,故命名为“程氏三宅”。程氏三宅是最典型的明代南方居住建筑,是徽派建筑发展鼎盛时期的遗物。无论是窗棂、月梁上的奇秀木雕,还是门楼上富于变化的石雕、砖雕等,都展现出其精妙之处,不仅是研究明代徽派建筑重要的标准物,同时也是具有很高的科研价值和观赏价值。现场采集数据在黄山市程氏三宅古民居博物馆的配合下及浙江传媒学院胡浩老师的指导下,先临三维技术工程师使用einscan pro 2x plus 2020多功能手持3d扫描仪对古宅里的石雕、木雕及砖雕进场扫描,获取了窗棂、月梁和门楼上的传统雕刻纹样高质量完整数据。三维数据展示木雕传统纹样数据石雕传统纹样数据砖雕传统纹样数据程氏三宅古建雕刻纹样三维数据的采集是国家文化和旅游科技创新工程项目《面向中国传统纹样当代呈现的3d打印技术体系研究(项目编号2019-006)》的一个重要环节,目前3d打印研究项目还在进行,后续项目成果,我们也将会持续关注。历史文物和遗迹都是前人智慧的结晶,然而由于文物/古迹本身的脆弱性和独一无二性,如何准确获取、保护、修复、重建、传播展示、传承这些文物/古迹就成为需要待解决的重要问题。在文物/古建装饰数字存档过程中,传统数字记录方式只有通过影像进行的数字记录,复杂的几何外形无法表现出来,只能再配合平面图或剖面图人工建模制作出文物的三维模型。这种传统记录方式,建模需要花费大量的人力、物力及时间,且制作的文物三维模型精确度也是不够的,无法为文物修复/修缮、复制保护、衍生开发等提供原始数据基础。相较于传统方式,三维扫描技术可根据需求记录文物/古建装饰更为真实、全面的形态特征。通过计算机重构其三维数据,真实快速地再现文物/古建装饰原貌,在原始数据的基础上进行文物数字存档、三维展示、保护复制、修复及衍生品开发。项目主持人胡浩浙江传媒学院设计艺术学院副教授,硕士生导师研究方向包括传统建筑装饰虚拟仿真与3d打印、传统纹样生成式设计等。
  • 697万元!蔡司中标中科院新疆生地所三维X射线扫描成像系统采购项目
    近日,中国科学院新疆生态与地理研究所三维X射线扫描成像系统采购项目发布中标公告,卡尔蔡司以US$1,031,000.00(折合人民币约697万元)中标。一、项目编号:OITC-G220300354(招标文件编号:OITC-G220300354)二、项目名称:中国科学院新疆生态与地理研究所三维X射线扫描成像系统采购项目三、中标(成交)信息供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 新疆汇意达进出口有限公司 三维X射线扫描成像系统 卡尔蔡司Xradia515 Versa 1台 US$1,031,000.00 四、招标技术规格1. 工作条件1.1 电源:380V和230V±10%,AC(交流),50/60Hz1.2 环境温度:15-27℃(最优:18~21℃)1.3 相对湿度:20-80%2. 技术要求:*整机要求:提供的设备为成熟的型号和配置,不接受后期改造或定制开发。2.1 分辨率及成像架构#2.1.1 最高空间分辨率:最佳三维空间分辨率≤0.5μm;2.1.2 当X射线源距样品旋转轴50mm时的最佳空间分辨率≤1.0μm;2.1.3 最小可实现的体素(最大放大倍率下样品的体素大小)≤40nm;#2.1.4 系统必须采用几何+光学两级放大的架构,以满足我单位对大样品进行局部高分辨率的成像需求;#2.1.5 具备当X射线源距样本旋转轴50mm中心位置时的最佳空间分辨率≤1.0μm;(应以厂家官方发布或者第三方发布的国际文献中数据或结论为有效证明文件);2.1.6 在不破坏样品的情况下直接对直径≥20mm样品(如植物秆茎、试管边缘或高分子材料等)的侧边缘位置(即样品的旋转半径和工作距离不小于20mm)实现体素分辨率(voxel size)≤1μm的清晰扫描三维成像。2.2 三维组织表征、重构及成像2.2.1 无损伤地对样品进行三维组织表征,可获得样品的三维组织形貌及不同角度、不同位置的虚拟二维切片组织形貌信息。不需制样或只需简单制备,不需真空观察环境,不会引入人为缺陷;2.2.2 利用吸收衬度原理和相位传播衬度原理,可以对包括高原子序数和低原子序数在内的各种材料都能获得高衬度图像;2.2.3 基于CUDA的GPU加速重构,由1600张投影重构1K×1K×1K图像时间≤2.1分钟;#2.2.4 支持纵向拼接技术,通过纵向拼接扫描结果获得更高视野的数据,数据重构及纵向拼接需集成在数据采集软件,数据采集-三维重构-纵向拼接自动化,不依赖第三方软件或者离线软件;2.2.5 具有支持宽视场模式的物镜探测器,具备更宽的视野。2.3 光源与滤波片*2.3.1 高能量微聚焦闭管透射式X射线源;2.3.2 最高电压≥160kV,最低电压≤30kV,电压在最低和最高之间连续可调;2.3.3 最大功率≥10W;2.3.4 Z轴可移动范围≥190 mm;2.3.5 X射线泄露≤1μSv/hr(距离设备外壳25mm以上处);2.3.6 带有单过滤波片支架,12个适用于不同能量段扫描的滤波片。2.4 探测器2.4.1 能够实现二级放大的16bit噪声抑制闪烁体耦合探测器, 探测器能够实现≥2048×2048像素成像和三维重构;#2.4.2 具备1个大视场0.4X 物镜探测器,实现≥2048×2048像素成像和三维重构,支持宽视场模式;2.4.3 包含高对比度,低分辨率的4X物镜探测器;2.4.4 包含高对比度,高分辨率的20X 物镜探测器;2.4.5 包含高对比度,高分辨率的40X 物镜探测器;2.4.6 探测器可移动范围≥290mm。2.5 样品台及样品室2.5.1 全电脑控制高精度≥4轴马达样品台,具备超高的样品移动精度;2.5.2 样品台X轴运动范围≥45mm;Y轴运动范围≥95mm;Z轴运动范围≥45mm;2.5.3 样品台旋转运动范围:360度旋转;#2.5.4 样品台最大承重范围:≥25kg;2.5.5 样品台可承受样品尺寸范围:≥300mm;*2.5.6 样品室内配备可见光成像设备,通过电脑操作即可实现样品的扫描位置对中,并可实时监控舱室内样品情况。并且要确保系统整体运行安全和封闭性,不可为开窗设计,防止X射线辐射泄漏;#2.5.7 系统应具备智能防撞系统,可根据样品尺寸设定源和样品的范围,保障在实际成像过程中不会发生样品和源、探测器的碰撞损坏设备或样品。2.6 仪器控制与数据采集、重构、可视化及分析系统2.6.1 全数字化仪器控制,专业计算机控制工作站,应满足或优于以下配置:Microsoft Windows10 Pro 及以上操作系统、双8核 CPU、CUDA-enabled 3D GPU,硬盘容量≥12 TB、内存≥32GB、液晶显示器≥24寸,带可刻录式光驱;2.6.2 具备三维数据采集及控制软件,可实现三维断层扫描图像重构及3D视图;2.6.3 支持多种格式的CT数据和CT图像输入/输出,预览,裁剪以及格式转换;2.6.4 具有图像处理方法,实现数据图像、CT图像的降噪、锐化、增强等;2.6.5 具备自动拼接功能,具备可变曝光功能,具备导航式扫描功能;2.6.6 具备图像伪影校正等功能,确保采集图像的真实性;2.6.7 具有ROI选择功能,用户可根据需要选择区域进行局部重建;2.6.8 支持对ROI进行量化分析,可得到选定结构的体积占比、每个单元的体积、表面积、形状比、等效直径等信息;2.6.9 支持对三维数据体进行旋转、平移、缩放、斜切视图、亮度/对比度、伪彩色等操作;2.6.10 可实现标记点、标尺、角度、路径、箭头、区域(矩形/椭圆/多边形/自由绘制)、三点拟合圆等测量和标注操作;2.6.11 支持二维、三维图像不同分辨率图像的输出,且能导出二维图像序列、逐层动态视频和制作三维视频动画;2.6.12 使用阈值分割、2D笔刷进行图像分割,实现3D感兴趣区的提取或修改;2.6.13 可转化3D感兴趣区为mesh模型,支持显示效果调整和导出STL、PLY、OBJ、VTK、IVW格式文件,方便客户后续分析或逆向;2.6.14 可对量化结果进行筛选、编辑,导出文件。3. 安全防护3.1 辐射防护箱体(用于屏蔽X射线,防止泄露,保证人身安全);#3.2 安全屏蔽室需采用铅钢全封闭,不能留有可视透明窗口,设备内部样品和工作情况通过机台内部可见光相机清晰观察;3.3 双联锁X射线安全门,紧急停止开关,设备运行过程中,任何可开启之处被外力开启时,X射线立即停止;3.4 经用户授权可开通远程预警性技术服务,系统可以通过网络传输将运行数据传递给生产厂商的售后部门,实现线上的设备状态监控。4. 附件及零配件4.1离线工作站:应满足或优于以下配置:Microsoft Windows10专业版操作系统、至强4210R处理器CPU、GeForce RTX2080Ti 11G显存 GPU,硬盘容量≥6 TB、内存≥128GB、液晶显示器≥23.8寸,带可刻录式光驱;4.2 标定球样品,1个;4.3 分辨率测试卡,1个;4.4 标准样品夹持器,1套;4.5 设备维护专用工具,1套;4.6 文档资料(设备操作手册、培训资料等)。
  • ACS Nano出版 “北京大学的纳米科技研究” 北京大学百廿校庆虚拟专刊
    p & nbsp /p center img alt=" " src=" https://mmbiz.qpic.cn/mmbiz_gif/qfMmVoEgEk0OsftkduUlo0jyuM6aqjz7twklTic93sSgzLVPrDnic9D55ft9XR095Vic6hbibTt2RVcniae3DNBwrHg/640?wx_fmt=gif& tp=webp& wxfrom=5& wx_lazy=1" height=" 221" width=" 640" / /center p   为庆祝北京大学百廿校庆,在国际纳米科技领域具有重要影响的权威学术期刊ACS Nano出版了 a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" https://pubs.acs.org/page/ancac3/vi/pku120.html?ref=ancac3Feature" span style=" color: rgb(0, 176, 240) " “北京大学的纳米科技研究”虚拟专刊 /span /a ,并于北京时间5月3日上线。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/bc350080-e131-4487-bcd7-6dc2302abefa.jpg" title=" 00.jpg" / /p p   该虚拟专刊选编了来自北京大学的研究者们发表在 ACS Nano上的四十篇文章,从一个侧面反映了近年我校在纳米科学与技术研究方面的辉煌成就。此刊也是ACS Nano近期计划推出的一系列基于研究机构和地区的虚拟期刊的第一期。为配合虚拟专刊的出版,李彦(ACS Nano副主编、我校化学与分子工程学院教授)、朱星(我校物理学院教授)、Paul Weiss (ACS Nano主编)还联合撰写了一篇编者按,介绍我校纳米科技的发展。 /p p   纳米科学与技术一直是我校重点发展的一个研究领域,在校本部、医学部、深圳研究生院等的多个院系和单位都有从事相关研究的团队。早在上世纪九十年代,北京大学就在国内率先成立了跨学科的纳米科学与技术研究中心。近年来,在国家和学校的支持下,我校纳米科技研究的发展更是突飞猛进。从2007年创刊以来,ACS Nano共发表了北京大学的研究者独立或合作完成的文章二百余篇,这些工作引起了国际同行的普遍关注。北京大学已居于纳米科技领域最有国际影响力的研究机构之前列。 /p p   化学与分子工程学院刘忠范教授(ACS Nano顾问编委)迄今已在ACS Nano上发表了27篇文章。他带领的团队在石墨烯研究中取得了一系列突破性研究成果,如发展了基于光化学的石墨烯氯化修饰方法(ACS Nano 2011, 5, 5957),成功制备了有多种重要应用前景的石墨烯玻璃(ACS Nano 2016, 10, 11136)等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/f76b31b7-625b-49ec-88c9-efaf8b50de6f.jpg" title=" 02.jpg" / /p p style=" text-align: center "    strong 石墨烯触屏 (ACS Nano 2016, 10, 11136) /strong /p p   北京大学不同院系的多个研究组在ACS Nano发表的一系列有关碳纳米管 (制备、表征、物性、器件、应用等)的研究工作引起了广泛的兴趣和关注。早在2008年,李彦教授课题组提出了离子液体分散碳纳米管的新机制(ACS Nano 2008, 2, 2540),2017年该课题组又报道了高纯度 (14,4)碳纳米管的选择性制备(ACS Nano 2017, 11, 186),这类单一结构的半导体性碳纳米管样品对碳纳米管器件的发展具有重要意义。 /p p   信息科学技术学院彭练矛教授(ACS Nano顾问编委)领导的碳纳米管器件研究团队在ACS Nano报道了他们一系列的重大研究进展。2009年,他们率先用远少于硅基技术的加工步骤制备出了n型和p型功能对称的碳纳米管集成电路(ACS Nano 2009, 3, 3781) 近期,他们又实现了目前国际上最复杂的基于纳米沟道材料的集成电路(ACS Nano 2017, 11, 4124)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/71f8c37c-bce5-4ade-9523-a8c41e891cfc.jpg" title=" 03.jpg" / /p p style=" text-align: center " strong 碳纳米管集成电路 (ACS Nano 2017, 11, 4124) /strong /p p   北京大学的稀土纳米材料研究独具特色,严纯华教授领导的团队在稀土纳米材料生物医学应用方面的研究产生了深远的影响。他们首次利用钕离子敏化的双光子发射使荧光成像能在更长的激发波长下实现(ACS Nano 2013, 7, 7200),还成功地将荧光成像、光动力治疗、核磁成像有机地结合到了一个体系中(ACS Nano 2016, 10, 2766)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/de2ed9ca-d321-4591-9ba8-600eea2d954e.jpg" title=" 04.jpg" / /p p style=" text-align: center " strong 稀土纳米粒子成像、治疗多功能体系 (ACS Nano 2016, 10, 2766) /strong   /p p   我校的纳米科技研究已经取得了丰硕的研究成果。我们相信,在国家和社会的支持下,经过相关学科师生的共同努力,未来我校的纳米科学与技术研究必将更上层楼,涌现出更多原创性研究,并产生更多具有自主知识产权的应用型成果,推动我国科技事业的发展,并造福全人类。 /p
  • 喜报 | 先临三维多功能手持3D扫描系统获智能产品创新优秀奖
    10月16日,由杭州市政府主办的2020“市长杯”杭州高价值知识产权智能产品创新创意大赛在杭州国际博览中心圆满落幕。本次大赛以“高价值智能知本,高质量杭创未来”为主题,参与企业均来自全国实力雄厚的人工智能产品相关企业,报选项目共155项 (创新组项目69项,创意组项目86项),总计涉评2112件国内专利和766件国外专利。大赛评委会将奖项分为创新组和创意组,评选范围包括:项目知识产权情况、项目创意、项目产业化程度、项目的社会效益等方面。图片源于2020杭州高价值知识产权智能产品创新创意大赛官网先临三维自主研发项目《多功能手持3D扫描系统》,经评委会全面评选后,获2020年杭州高价值知识产权智能产品创新创意大赛-创新组-优秀奖图片源于2020杭州高价值知识产权智能产品创新创意大赛官网多功能手持3D扫描系统本次获奖的多功能手持3D扫描系统是先临三维自主研发项目。该项目开创性地通过主体硬件辅以多种功能模块,配套多种扫描算法,将包括正弦条纹测量、数字散斑测量、多根平行直线测量等多种测量模式融合到一个系统中,实现多模式、低成本、高效率、高精度的3D数据获取,使一台设备同时满足不同应用领域或场景的使用需求。该套扫描系统兼容多种扫描模式与多种拼接方式,具有如下特色及优势:1)数据细节丰富,高度还原实物表面立体信息2)图形算法先进、交互流程直观高效3)材质、尺寸适应广泛,更大程度扩展扫描应用边界4)扫描流畅,数据采集传输不卡顿5)精度高,数据尺寸误差低6)模块化设计,兼容多种扫描模式和拼接模式多功能手持3D扫描系统是高效获取高品质3D数据的利器,其对于三维模型的精度、细节等的表现令其成为设计师、工程师、艺术家、医疗工作者以及科研工作者工作及学习的得力助手。目前已应用于汽车、船舶、轨道交通、航空航天、虚拟展示、家居消费、雕塑文保、教学科研、医疗健康等领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制