当前位置: 仪器信息网 > 行业主题 > >

通道温度仪

仪器信息网通道温度仪专题为您提供2024年最新通道温度仪价格报价、厂家品牌的相关信息, 包括通道温度仪参数、型号等,不管是国产,还是进口品牌的通道温度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合通道温度仪相关的耗材配件、试剂标物,还有通道温度仪相关的最新资讯、资料,以及通道温度仪相关的解决方案。

通道温度仪相关的论坛

  • 【原创】DT-613 数显双通道温度表

    DT-613是德国E+H的新型双通道温度表,采用数字显示技术,双温输入测量大的背光双显示屏可以显示任何 T1,T2,T1-T2中的温度,温度误差都可以显示出来。而且采用了热电偶温度补偿功能,确保测量的准确性,提供最大值保持和数据保持。储存温度在0-50摄氏度之间。 DT-613双通道温度表采用了国际标准智能化设计,数字化温度及非线性补偿,可带HART通迅协议。在电源保护功能上,采用的是自动关机模式,以延长电池寿命,电池采用的是9V电池,重量仅为400克。广泛应用于冶金、电力、石化、热力、污水等行业。

  • 【原创】PCR仪的核心是温度,Driftcon多通道温度检测系统为你了解你的PCR

    大家在做PCR的时候是不是有出现过同样的东西在同一台PCR里得到的结果却不同,或则是同样的东西在不同的PCR里得到的结果也不同呢?这是为什么呢?大家有没有关注过自己的PCR仪器温度准不准,孔间温差是多少呢?这是PCR实验的至关重要的因素之一。我们有来自荷兰的DRIFTCON 多通道PCR仪温度检测系统,为您解决你的疑问,为完美精确的完成你的实验保驾护航!Driftcon®介绍硬件:外形小巧,方便携带。探头:探头多样,可以检测不同品牌的普通PCR仪和定量PCR仪;探头反应灵敏,响应速度快(2次/秒);多个探头(96/15)同时检测;可以按照ITS-90溯源。 数据接受器:汇集大量信息,现场处理数据,检测完成后可立刻取得报告。软件:界面直观,方便操作,支持检测实时回放。结果:报告权威,已获得世界相关组织的认可;内容丰富,全面展示仪器的温度表现。包括:6个温度点(95℃、90℃、70℃、60℃、50℃、30℃,也可以选择其他程序)温度的准确性,升降温速度,孔间温差,温度过冲,温度保持时间。 我们多年致力于PCR温度检测,为达到良好的PCR温度控制而努力着。欢迎索取免费资料,或致电CYCLERtest中国公司了解详情。13917689578

  • 双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    双通道PID控制器对真空压力和温度的同时控制:在热离子发电转换器中的应用

    [size=14px][color=#ff0000]摘要:本文针对真空型热离子能量转换器(发电装置)中真空压力和温度的关联性复杂控制,提出一个简便的控制方式和控制系统的解决方案,控制系统仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个可调参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个电源的功率即可实现真空室气压和阴极温度的同时控制,由此可大幅减小设备造价且无需使用任何软件。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000][b]一、问题的提出[/b][/color][/size][size=14px] 热离子能量转换器(TEC)是一种将热能直接转化为电能的静态装置,是一种基于热离子发射的转换方法。TEC可分为真空、带有正离子的铯离子和由辅助放电产生的惰性气体(如氩气)等形式。[/size][size=14px] 真空型TEC的简化示意图如图1所示,电极被放置在高真空环境中。阴极与热源热连接,阳极与热沉连接。电极颜色反映了它们温度之间的关系。[/size][align=center][size=14px][color=#ff0000][img=01.真空热离子能量转换器结构示意图,500,373]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931128921_2824_3221506_3.jpg!w690x515.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 真空热离子能量转换器结构示意图[/color][/align][size=14px] 一般情况下,最常见的商用温度控制器都能控制TEC阴极的温度,但如果使用了钡钨分压器阴极,因其氧化性问题则对加热过程有特殊的要求并不可忽视。在使用前,阴极必须烘烤并激活。为了保护阴极免受来自周围结构或焙烤过程中产品的氧化和污染,在真空室中必须保持必要的超高真空水平。此外,为了防止阴极可能被水分永久性污染而造成发射能力降低和钨阴极表面损伤,阴极必须允许浸泡在200~400℃足够长的时间,以允许完全的水蒸气出气。[/size][size=14px] 为了防止上述情况出现,最佳控制指标就是真空压力,即真空室中的压力必须始终小于1.33E-04Pa。因此,在TEC运行过程中,当给阴极加热器通电时,由于出气,温度会升高,真空室压力会增加。如果压力超过1.33E-04Pa,则需要关闭加热器电源,直到压力降到这个水平以下。真空室排气和焙烧后的活化是通过将钨基体中的氧化钡转化为阴极表面的游离钡来实现的。活化速率是真空室清洁度、阴极污染、时间和温度的函数。一般来说,阴极在工作温度或略高于工作温度时被激活。阴极温度不应超过1473K。[/size][size=14px][/size][size=14px] 由此可见,在TEC运行过程中,一个重要前提条件是供电加热和温度控制应确保整个过程的真空压力水平不应超过设定的超高真空度,即在运行过程中,除了温度控制之外,还需控制真空室内的真空度始终不超过额定值,但只有加热功率一个可调装置。[/size][size=14px] 从上述真空型TEC的运行要求可以看出,阴极的加热过程是通过调节一个可控变量(加热功率)来实现两个参数(气压和温度)的同时控制。[/size][size=14px] 为了实现这个特殊的控制过程,文献1采用一种复杂的控制机构,此控制机构基于类似的串级控制方法,使用了一个典型的PID控制器结合一个PXI单元,并编制了专用程序进行整体控制,其控制框图如图2所示。[/size][align=center][size=14px][color=#ff0000][img=02.文献1中使用的控制框图,600,356]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230931510435_9811_3221506_3.jpg!w690x410.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 文献1中使用的控制框图[/color][/align][size=14px] 从图2所示的控制框图可以看出,整个控制装置结构较复杂,还需编制控制软件,整体造价也高。为了实现更简便的控制,本文提出一个更简便的控制方式和控制系统的解决方案,控制系统中仅采用一个双通道高精度PID调节器。方案的核心技术思路是将一个调节参量转换为两个,即将阴极加热电源替换为两个串联形式的小功率电源,分别调节这两个调节小功率电源来实现真空室气压和阴极温度的控制。[/size][size=18px][color=#ff0000][b]二、解决方案[/b][/color][/size][size=14px] 由于在真空型TEC运行过程中只能调节阴极加热温度而同时不能使真空室内的气压超过设定值,这使得整个工作过程只有阴极加热功率一个可调节变量。为了实现阴极温度和腔室真空度的同时控制,解决方案采用了两个串联电源的新型结构,如图3所示。[/size][align=center][size=14px][color=#ff0000][img=03.新型真空压力和温度同时控制系统结构示意图,600,276]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932179007_2110_3221506_3.jpg!w690x318.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 新型真空压力和温度同时控制系统结构示意图[/color][/align][size=14px] 如图3所示,解决方案中采用了一个高精度的两通道PID控制器,此控制器具有两个独立的PID控制通道。第一通道与真空计和电源1组成第一闭环控制回路,第二通道与安装在阴极上的热电偶温度传感器(TC)和电源2组成第二闭环控制回路。这里的第一控制回路提供阴极的基础温度,其主要用于较低温度段的烘烤,并同时起到控制腔室真空度的作用。第二控制回路是在阴极温度达到一定温度后(如600℃)才开始起作用,其主要作用是将阴极温度最终恒定控制在设定的高温温度上。整个过程的真空压力和温度的控制效果基本与文献1所述的图4和图5所示相同。[/size][align=center][color=#ff0000][size=14px][img=04.全温域的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230932441901_8566_3221506_3.jpg!w690x449.jpg[/img][/size][/color][/align][color=#ff0000][/color][align=center]图4 全温域的真空压力和阴极温度的变化[/align][align=center][size=14px][/size][/align][align=center][size=14px][img=05.加热初期的真空压力和阴极温度的变化,690,449]https://ng1.17img.cn/bbsfiles/images/2022/11/202211230933014212_1816_3221506_3.jpg!w690x449.jpg[/img][/size][/align][size=14px][/size][align=center][color=#ff0000]图5 加热初期的真空压力和阴极温度的变化[/color][/align][size=14px] 在实际运行过程中的控制步骤如下:[/size][size=14px] (1)首先抽取腔室真空,使其达到2E-06Pa的超高真空水平。然后运行第一控制回路,真空计采集腔室压力,然后自动调节电源1的加热功率使得阴极温度从室温逐渐升高,其中的压力控制设定值为5E-06Pa。在此控制期间腔室压力始终不会超过设定值,但温度则会逐渐快速升高,且电源1始终有一定的输出功率。[/size][size=14px] (2)当第一控制回路控制中阴极温度达到初级设定温度(如600℃)后,第二控制回路自动开始运行,这使得电源2开始输出加热功率,此时电源1和电源2同时输出,使得阴极温度进一步升高,最终恒定在第二控制回路的温度设定值上。[/size][size=14px] (3)在第二回路工作期间,阴极温度进一步上升,势必会造成腔室气压升高而超出设定值5E-06Pa水平,此时第一回路会自动减小电源1的输出功率,使得阴极温度变化速度放缓。在第二回路运行过程中,第二回路相当于一个正向调节作用,第一回路实际上则是一个反向调节作用,这样既能保证腔室气压不会超出设定值,又能保证阴极温度逐步升高而达到设定的高温温度。[/size][size=14px] 总之,通过上述解决方案及其自动控制,可很便捷的实现热离子能量转换器中真空压力和温度的同时控制,压力水平和阴极恒定温度可根据阴极材料要求任意设定。而且整个控制装置得到了大幅度的简化,且无需进行采用任何软件。[/size][size=18px][b][color=#ff0000][/color][color=#ff0000]三、参考文献[/color][/b][/size][size=14px][1] Kania B, Ku? D, Warda P, et al. Intelligent Temperature and Vacuum Pressure Control System for a Thermionic Energy Converter[M]//Advanced, Contemporary Control. Springer, Cham, 2020: 253-263.[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • CVD和MPCVD法钻石生长过程中采用双通道PID控制器控制真空度(气压)和温度

    CVD和MPCVD法钻石生长过程中采用双通道PID控制器控制真空度(气压)和温度

    [size=14px][color=#ff0000]摘要:本文将针对CVD和MPCVD工艺设备中存在的问题,介绍一种国产的两通道24位高精度多变量PID控制器,此一台控制器可对温度和真空度同时进行控制,大大缩小了仪表占用空间和造价。两通道可一次共接入4个传感器,每个通道可以连接备用的温度和真空度传感器,由此可保障长时间钻石生长的安全性又可满足宽量程测控的需要,同时还可用来进行差值和平均值监测。[/color][/size][align=center][size=14px][color=#ff0000][img=CVD工艺生长宝石,450,295]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291558344977_8369_3384_3.png!w690x453.jpg[/img][/color][/size][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]1. 问题的提出[/color][/size][size=14px]  目前,高等级钻石生长的首选工艺是采用化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(CVD)和微波等离子体CVD(MPCVD)技术,另外CVD和MPCVD工艺还可用于在钻石以外的基材上进行钻石沉积,这为许多行业带来了技术上的进步,如光学、计算机科学和工具生产。在CVD工艺中,通过采用气体原料(氢气、甲烷)在低于1个大气压和800~1200℃的温度下,采用外延生长的方式获得完全透明无色大尺寸金刚石单晶,其成分、硬度和密度等与天然钻石基本一致,而价格远远低于天然钻石。[/size][size=14px]  在采用CVD和MPCVD工艺进行钻石生长过程中,需要严格调节和控制CVD工艺的温度、真空压力和气体成分,这三个变量中的任何一个变化或波动都会影响钻石的生长速度、纯度和颜色。这三个变量在实际工艺中分别代表了温度、真空压力和工作气体的质量流量,即在CVD工艺中一般是在进气口处采用气体质量流量计控制氢气和甲烷以达到设定的混合气体成分,通过温度传感器和加热装置来调节和控制工作腔室内的温度,最后在出气口处通过真空计和电动阀门来调节和控制工作腔室内的真空压力。[/size][size=14px]  目前这三个变量的同时控制,在国内的CVD工艺设备上还存在以下几方面问题:[/size][size=14px]  (1)在气体质量流量和温度这两个变量的测控方面,国内仪表已经非常成熟和可靠,但在真空压力的测控方面,普遍还在使用测量精度较差的皮拉尼真空计及相应的控制器,这会严重影响腔室内工作气压的测控精度,而对钻石质量带来影响。[/size][size=14px]  (2)在CVD工艺设备中,上述三个变量都需要独立的传感器和控制器进行独立操作和控制,由此造成一方面的所占空间比较大,另一方面是设计操作复杂且成本无法进一步降低。[/size][size=14px]  (3)部分CVD工艺设备在真空度测控中采用了成熟的国外产品,但价格昂贵且功能单一,只能进行真空度的测控,同时还需要准确的控制算法来适应温度突变情况下的真空度稳定控制,而且还需配套国产的气体质量流量计和温度控制仪表。[/size][size=14px]  总之,国内的钻石生长市场在近几年发展快速,据统计,2018年,国内自主生产供应的宝石级培育钻石约37.5亿元,相比2016年的0.4亿元,呈现了几何级的增长。然而国内掌握CVD技术,特别是MPCVD技术的厂家并不多,目前依旧是欧美厂家占主导,国内很多大厂家都已经涉足该领域,但量产一直是难点,而量产这一难点的根源在于CVD和MPCVD在真空环境下的控制很难。[/size][size=14px]  本文将针对CVD和MPCVD工艺设备中存在的问题,介绍一种国产的2通道24位高精度多变量PID控制器,此一台控制器可对温度和真空度同时进行控制,大大缩小了所占空间和造价。2通道可一次共接入4个传感器,每个通道可以连接备份用的温度和真空度传感器,由此可保障长时间钻石生长的安全性又可满足宽量程测控的需要,同时还可用来进行差值和平均值监测。[/size][size=18px][color=#ff0000]2. 真空压力上游和下游控制模式的选择[/color][/size][size=14px]  在如图2-1所示的工作腔体内部真空压力控制过程中,一般有上游和下游两种控制模式。上游控制是一中保持下游真空泵抽速恒定而调节上游进气流量的方式,下游控制是一种保持上游进气流量恒定而调节下游真空泵抽速的方式。[/size][align=center][img=典型CVD工艺设备框图,690,366]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291600257733_6411_3384_3.png!w690x366.jpg[/img][/align][size=14px][/size][align=center][color=#ff0000]图2-1 CVD工艺设备典型结构示意图[/color][/align][size=14px]  针对CVD和MPCVD工艺设备中的真空压力控制,国内外普遍都采用下游控制模式,也有个别国外公司推荐使用上游控制模式,这里将详细分析上下游两种控制模式的特点和选择依据:[/size][size=16px][color=#ff0000]2.1. 下游控制模式[/color][/size][size=14px]  (1)在采用CVD和MPCVD工艺进行宝石生长过程中,对气体成分有严格的规定并需要精确控制。因此在CVD和MPCVD工艺设备中,通常会在工作腔体进气端采用气体质量流量控制器对充入腔体内的每种工作气体流量进行准确控制,也就是说对进气端调节控制的是气体流量,而且至少是两种工作气体。[/size][size=14px]  (2)在进气端实现对工作气体成分准确控制后,还需要对工作腔体内的真空压力进行控制。下游控制可通过调节真空泵的抽速快速实现真空压力的准确控制,而且在控制过程中并不会影响工作腔室内的气体成分比例。[/size][size=14px]  (3)在CVD和MPCVD工艺过程中,温度变化会对腔体内的真空压力会给真空压力带来很大影响,由此要求真空压力控制具有较快的响应速度,使腔体内的真空压力随温度变化始终恒定控制在设定值上,因此采用下游控制模式会快速消除温度变化对真空压力恒定控制的影响。[/size][size=14px]  (4)在CVD和MPCVD工艺过程中,工作腔体内的真空压力一般在几千帕左右这样低真空的范围内进行定点控制。对于这种低真空(接近一个大气压)范围内的真空压力控制,较快速有效和经济环保的控制方式是下游控制,在进气流量恒定的前提下,只需较小的抽速就能快速实现真空压力的准确控制,排出的工作气体较少。[/size][size=16px][color=#ff0000]2.2. 上游控制模式[/color][/size][size=14px]  (1)上游控制模式普遍适用于高真空(真空压力小于100Pa)控制,即真空泵需要全速抽气,通过调节上游进气的微小变化,即可实现高真空准确控制。[/size][size=14px]  (2)采用上游控制模式对低真空进行控制,在真空泵全速抽气条件下,就需要增大上游进气量,增大进气量一方面会造成恒定控制精度差和响应速度慢之外,另一方面会带来大量的废气排出。因此,在这种低真空的上游控制模式中,一般还需在下游端增加手动节流阀来减小真空泵的抽速。[/size][size=14px]  (3)在真空压力控制中,一般在流量和压力之间选择其中一个参量进行独立控制,也就是说控制了流量则不能保证压力恒定,而控制了压力则不能保证流量恒定,因此在一般真空压力控制中,上游控制模式在一定范围内比较适用。但在CVD和MPCVD工艺过程中,如果在进气端进行流量调节来实现进气成分比例和真空压力的同时恒定,而且还要针对温度变化做出相应的调整,这种上游控制方式的难度非常大,如果不在下游增加节流阀调节,这种上游控制方式几乎完全不能满足工艺过程要求。[/size][size=14px]  (4)有些国外机构推荐在CVD和MPCVD工艺设备中使用上游控制模式,一方面是这些机构本身就是气体质量流量控制器生产厂家,并不生产下游控制的各种电动阀门,因此他们在气体质量流量控制器中集成了真空传感器,这种集成真空计的气体质量流量控制器确实是能够用来独立控制进气流量或腔室内的真空压力,但要同时控制流量和压力则几乎不太可能,还需下游节流阀的配合才行。另一方面,这些生产气体质量流量控制器的机构,选择使用上游控制模式的重要理由是下游控制模式中采用电动阀门的成本较高,情况也确实如此,国外主要电动阀门的成本几乎是气体质量流量控制器的好几倍,但目前国产的电动阀门的价格已经只是气体质量流量控制器的四分之一左右。[/size][size=18px][color=#ff0000]3. 成分、温度和真空压力三参量同时控制方案[/color][/size][size=14px]  在宝石生长专用的CVD和MPCVD工艺设备中,针对气体成分、温度和真空压力这三个控制参数,本文推荐一种全新的控制方案,方案如图3-1所示。[/size][align=center][img=双通道控制器同时控制温度和真空压力示意图,690,348]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291601353557_9929_3384_3.png!w690x348.jpg[/img][/align][size=14px][/size][align=center][color=#ff0000]图3-1 CVD工艺设备中三变量控制结构示意图[/color][/align][size=14px]  控制方案主要包括以下几方面的内容:[/size][size=14px]  (1)进气端采用气体质量流量控制器进行控制,每一路进气配备一个质量流量控制器,由此实现进气成分的精确控制。[/size][size=14px]  (2)采用双通道24位高精度PID控制器对温度和真空压力控制进行同步控制,其中一个通道用于温度控制,另一个通道用于真空压力控制,由此在保证精度的前提下,可大幅度减小控制装置的空间占用和降低成本。[/size][size=14px]  (3)温度控制通道连接温度传感器输入信号和固态继电器或可控硅执行机构,可按照设定点或设定程序曲线进行温度控制,PID控制参数可通过自整定方式进行优化。[/size][size=14px]  (4)真空压力控制通道连接真空计输入信号和电动阀门,同样可按照设定点或设定程序曲线进行真空压力控制,PID控制参数可通过自整定方式进行优化。为了保证真空度测控的准确性,强烈建议采用薄膜电容式真空计,其精度一般为0.25%,远高于皮拉尼计。最重要的是薄膜电容式真空计内部不带电加热装置,在氢气环境下更具有安全性。[/size][size=14px]  (5)双通道控制器除了具有两路控制信号主输入端之外,还有两路配套的辅助输入端,这两路配套的辅助输入端可用来连接温度或真空压力测控的备用传感器,在主输入端传感器发生故障时能自动切换到辅助输入端传感器继续进行测量和控制,这对较长时间的CVD和MPCVD工艺过程尤为重要。[/size][size=14px]  (6)双通道控制器可连接4个外部信号源,在进行两路独立变量的控制过程中,4个外部信号源的组态形式可为控制和监测带来极大的便利,除上述备用传感器功能之外,还可以用来进行差值和平均值的监测等。[/size][align=center]=======================================================================[/align] [align=center][img=CVD和MPCVD工艺生长钻石,690,269]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291602272138_6714_3384_3.jpg!w690x269.jpg[/img][/align]

  • 辅助通道不加热

    辅助通道不加热

    只是把仪器关机,从市电接回ups,怎么就变成这样了呢。。。正常开关机,其他什么也没碰过。。通道温度,柱流量都是零,柱温,进样口温度都是关闭的。主要是通道温度,柱流量上不去。难道某些电子原件烧坏了吗http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_672388_3042049_3.jpg

  • 【仪器心得】+实验室多通道温度连续监测设备——便携式无纸记录仪 GP10/GP20系列

    【仪器心得】+实验室多通道温度连续监测设备——便携式无纸记录仪 GP10/GP20系列

    [color=black]单位在去年为替代横河MW100温度采集器,购买了一款横河温度记录仪GP10,使用起来更为方便了,今年又提交了采购申请购买了两个GP10。这款仪器性价比很高,有触摸显示屏,可以接30个通道的温度传感器,是计量和检测采集温度数据的利器。下面结合我自己亲身使用经历,来评价一下这款温度记录仪的优缺点,希望大家在选购类似仪器时少走弯路,也希望厂家不断改进仪器来满足用户的需求。[/color][color=black]品牌介绍:[/color][color=black]横河开发测试解决方案已有百年的历史。横河帮助企业从其测量策略中获得最精确的结果。横河拥有丰富的产品线并能提供范围广泛的校准及其他服务。横河测量仪器以高精度和高稳定性著称,能够维持高水平的测试精度,稳定运行时间远超此类设备正常的保质期。横河以产品和质量享誉全球——不断增强新特性以响应客户的特别需求——不断提高技术服务和技术支持的水平,帮助客户设计测量方案,应对最具挑战性的测量环境。[/color][color=black]那么,这边介绍,我们实验室最近买的便携式无纸记录仪 GP10。[/color][color=black] [img=,577,417]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021526118675_7657_2771427_3.jpg!w577x417.jpg[/img][/color][font=宋体]优点:[/font][font=宋体][color=black]1[/color][/font][font=宋体][color=black])方便携带,体积小巧,立方体结构,长高都是288mm,厚度为247.2mm[/color][/font][font=宋体][color=black]2)[/color][/font][font=宋体][color=black]用户界面友好,可以插入外部存储器,记录数据,触摸屏幕[/color][/font][font=宋体][color=black]3[/color][/font][font=宋体][color=black])常规配备三个模块,接30根传感器进行同时连续记录。温度曲线可以显示,看到长时间的温度波动曲线的。[/color][/font][font=宋体][color=black]4[/color][/font][font=宋体][color=black])具备触发报警功能,可设置。[/color][/font][color=black]下面可以看看这个技术说明,便于选择传感器,以及是否符合使用需求。[/color][color=black] [img=,286,386]https://ng1.17img.cn/bbsfiles/images/2022/11/202211021526253120_6931_2771427_3.jpg!w286x386.jpg[/img][/color][font=宋体][color=black]缺点:[/color][/font][font=宋体][color=black]1[/color][/font][font=宋体][color=black])希望可以配套一组无线温湿度传感器模块以及无线压力传感器模块,以便达到良好的组合和兼容。便于现场计量和检测。[/color][/font][font=宋体][color=black]2[/color][/font][font=宋体][color=black])接线端希望可以考虑如果有30根传感器可以做成航空插头或者线束形式,以防线缆松动和折断。[/color][/font][font=宋体][color=black]适用场所:[/color][/font][font=宋体][color=black]实验室检测产品温度,需要监测多点,准确度要求高的等情形;计量试验高低温箱,试验室内工况,多点实时监测记录,后续需要数据处理数据的情形等。[/color][/font][font=宋体][color=black]实际工作举例:[/color][/font][font=宋体][color=black]可以购买铂电阻和湿度传感器,与GP10一起使用,完成环境试验设备温度、湿度参数校准规范为依据的校准项目。[/color][/font][font=宋体][color=black]家电产品检测中,对坐便器座圈的表面温度的检测,按照国标相关标准要求,需要实时连续监测座圈温度,需要同时布点多个,连续记录数据后判定产品是否符合要求。[/color][/font][font=宋体][color=black]总结:[/color][/font][color=black]实验室开展测试、检测和计量工作离不开温度记录设备, 类似以上需求,实验室需要高精度温度采集设备是必要的。测温传感器选择以及采集设备选择都是需要考虑设备准确度(精度),比如上述例子可以采购热电偶配记录仪,需要高精度的,就买铂电阻传感器,如果还需要监测湿度监测,那就要买湿度传感器等。[/color][color=black]后附说明书,细致了解设备具体参数和指标、功能。[/color]

  • 【仪器心得】+ConST685智能多通道超级测温仪使用心得

    【仪器心得】+ConST685智能多通道超级测温仪使用心得

    [font=宋体][color=#222222]实验室采购检测和计量校准仪器设备,涉及压力和温度相关设备的,尤其是在北京企事业研究院所,肯定都知道康斯特公司。[/color][/font][font=宋体][color=#222222]他们的智能全自动压力校验仪、压力仪表以及控制器,还有智能标准槽/炉以及干体炉、过程控制仪器等,都是口碑不错,使用居多的计量检测仪器。[/color][/font][font=宋体][color=#222222]我们实验室现场计量和检测基本使用温度采集器,需要配备笔记本电脑,和20根铂电阻。后来买到了采集器可以蓝牙读取数据,省去了笔记本。去年我们看到了康斯特推出了一款ConST685智能多通道超级测温仪。功能强大到只有你想不到的。作为一名使用康斯特多年的用户,下面来评价一下该款仪器的优势和不足,希望大家在选购仪器设备时少走弯路,也希望厂家不断改进仪器来满足用户的需求。[/color][/font][font=宋体][color=#222222]一、厂家介绍:[/color][/font][font=宋体][color=#222222]北京康斯特仪表科技股份有限公司[/color][/font][font=宋体][color=#222222],专注于为全球用户提供压力、温度及过程仪表的校准及检测技术专业解决方案。康斯特以创新为根本、品质为目标、交付为通道、服务为导向,构建了以北京总部、洛杉矶全资子公司、犹他州分部、欧洲分部为中心的全球24小时快速服务体系,致力于成为具有国际独特地位的高端校准及检测产业集团。2015年,公司于深交所创业板上市,股票代码300445。[/color][/font][font=宋体][color=#222222]公司专家在全国压力计量技术委员会、全国温度计量技术委员会、全国压力标准委员会和全国校准方法标准委员会担任委员。公司实施差异化产品创新战略,持续高比例进行研发投入,专职研发团队占总人数的33%,在美国及欧洲主要国家获得12项专利授权,获得22项国内发明专利和190余项国内专利和著作权, ConST811现场全自动压力校验仪荣获 “改革开放40周年机械工业杰出产品”,ConST685智能多通道超级测温仪荣获德国iF设计奖,多项产品获得了北京市新技术新产品认证。[/color][/font][font=宋体][color=#222222]康斯特的产品广泛应用于电力、石油、化工、计量、冶金、机械、制造等行业。康斯特将继续秉承“让校准测试更轻松”的核心理念,为客户提供校准及测试技术专业解决方案,为您创造更大的价值![/color][/font][img=,306,244]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231156194321_1260_2771427_3.jpg!w306x244.jpg[/img][font=宋体][color=#222222]二、ConST685智能多通道超级测温仪区别于其他产品特点:[/color][/font][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222])8位半温度高精度测量,最高测量准确度可达2mK;[/color][/font][font=宋体][color=#222222]2[/color][/font][font=宋体][color=#222222])最高82通道多路测量及数据自动存储;;[/color][/font][font=宋体][color=#222222]3[/color][/font][font=宋体][color=#222222])可直接控制温度源;[/color][/font][font=宋体][color=#222222]4[/color][/font][font=宋体][color=#222222])无线通信,支持手机远程操作;[/color][/font][font=宋体][color=#222222]三、测温仪在环境温湿度箱计量检测上应用心得:[/color][/font][font=宋体][color=#222222]该设备可依据JJF1101-2019规程进行实验室温湿度场的计量检测,应按照1101规程提供上、中、下三层测试点,最多支持15个温度点和4个湿度点,用户可根据需要选择相应的温度点进行通道配置,温度点选择温度盒对应的通道,湿度点选择过程盒对应的通道,只有完成通道配置的测试点才会在测试运行过程中进行扫描读数,当所需测试点配置完成后输入方案名称和创建者进行保存;[/color][/font][font=宋体][color=#222222]运行测试方案,开始扫描读数,扫描间隔和扫描时间可设置,扫描过程中点击右边按钮可查看实时统计信息和记录数据;[/color][/font][font=宋体][color=#222222]结果信息查看,点击信息按钮查看均匀度和波动度以及平均值。[/color][/font][font=宋体][color=#222222]四、测温仪在恒温源性能计量检测上应用心得:[/color][/font][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222])恒温源性能测试包含波动性测试、干体炉孔间温场测试、干体炉轴向温场测试、恒温槽均匀性测试、管式炉径向温场测试。管式炉轴向温场测试。[/color][/font][font=宋体][color=#222222]2[/color][/font][font=宋体][color=#222222])用中心测试定位管中的标准偶作为固定标准偶,径向测试定位管中的标准偶作为移动标准偶,两标准偶的测量端均处干检定炉轴向中心横截面上,根据移动标准偶的位置选择表格中的记录点,待温度稳定点击读数;将所有位置点温度值记录两次,完成后点击保存。[/color][/font][font=宋体][color=#222222]3[/color][/font][font=宋体][color=#222222])注意选择合适的规格和量程进行测量。[/color][/font][font=宋体][color=#222222]五、常见疑问和总结:[/color][/font][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222])685通道设置中,铂电阻接线方式的默认设置为2线制,而标准铂电阻一般都是3或4线制,此接线方式没设置正确就会引入线电阻,造成标准示值错误。所以通道配置在使用前需要确认设置正确。[/color][/font][font=宋体][color=#222222]2[/color][/font][font=宋体][color=#222222])685识别不了大部分原因是U盘的格式不对,685使用时,需要将U盘格式化为FAT或FAT32格式,685不支持NTFS格式。[/color][/font][font=宋体][color=#222222]3[/color][/font][font=宋体][color=#222222])测温仪应避免在强烈机械振动环境下使用;严禁在任意两个电气插孔之间施加50V以上的电压;严禁使用非指定的电源线供电;严禁在开机状态下直接拔掉电源线;严禁使用液体清洗、擦拭测温仪;严禁使用不符合相应测温仪型号要求的保险丝。[/color][/font][font=宋体][color=#222222]六、总结[/color][/font][font=宋体][color=#222222]市场上[/color][/font][font=宋体][color=#222222]测试仪[/color][/font][font=宋体][color=#222222]厂家很多,有进口的有国产的,各厂家的仪器特点不同,突出的特点也不一样,有的仪器市场占有率较高,与仪器灵敏度,稳定性好,使用方便,售后服务好等有关系。想在市场上占有一席之地,一是不断改进与提高仪器的使用技术,二是满足用户需求,设计出用户满意的[/color][/font][font=宋体][color=#222222]仪表[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222]ConST685[/color][/font][font=宋体][color=#222222]可应用于温度计量检定、高精度温度测量、高精度温湿场测试和直流电信号测量等领域,它既可以在标准温度实验室使用,也可以方便的携带到现场完成各种温度测试任务。在电力、石化、计量、冶金、制药、生物、食品、航空航天及温车制造等行业测试应用。[/color][/font]

  • 【资料】冷库温度记录仪

    一、冷库温度记录仪概述  冷库温度记录仪是一种采用微处理器和5.6英寸TFT液晶显示屏的新一代多功能无纸记录仪。  冷库温度记录仪具有32路模拟量万能输入、4路模拟量变送输出、32路报警输出、32路配电输出,可实现信号采集、显示、处理、记录、积算、报警、配电等功能;采用全中文操作界面和快速旋钮,实现人性化操作;采用RS-232/RS-485通讯接口,可实现远程监控;内置64MB NAND FLASH作为历史数据的存储介质,可通过CF卡实现数据转存。适用于冶金、石油、化工、建材、造纸、食品、制药、热处理和水处理等各种工业现场。二、冷库记录仪使用方法  冷库温度记录仪最多可以连接32通道,即可以同时连接32路温度,记录的数据曲线可以在仪器仪表上显示,也可以通过U盘(CF卡)连接到电脑上,通过电脑上的数据分析软件来分析研究现场数据。 三、冷库记录仪技术指标  通道数 : 最多32 通道,万能信号输入  输入信号类型:  Ⅱ型标准信号:(0~10)mA、(0~5)V  Ⅲ型标准信号:(4~20)mA、(1~5)V  11 种热电偶:B、E、J、K、S、T、R、N、WRe5-26、WRe3-25、EA-2  3 种热电阻:Pt100、Cu50、JPt100  其它非标准信号:(0~20)mV、(0~100)mV、(-10~10)V、(0~10)V、(-5~5)V、(0~1)V 和(0.2~1)V  B型热电偶 : 温度范围 600~1800 ℃  J型热电偶 : 温度范围 -200~1200℃  K型热但偶 : 温度范围 -100~1300

  • LCC6000多通道恒流补偿仪

    [b][font=宋体]概述:[/font][/b][font=宋体]LCC6000[/font][font=宋体]多通道恒流补偿仪简称恒流补偿仪,由恒流源模块、线路切换模块、控制器、液晶显示器、系统软件等几部分组成。设备内置线路切换模块,实现芯体电阻、线路自动切换并显示在液晶屏上,便于用户读取数据,触摸屏操作界面简洁大方,方便简捷。[/font][font=宋体]多模块设计模式,可按客户需求定制,多功能自由切换。[/font][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]通道数量:1-80通道(按需订制);[/font][font=宋体]2) [/font][font=宋体]工作模块:恒流模式、补偿模式(可定制选择);[/font][font=宋体]3) [/font][font=宋体]功能:;恒流源功能;(以实际要求为准)[/font][font=宋体]4) [/font][font=宋体]恒流源输出范围:1mA;1。5mA;2mA; [/font][font=宋体]5) [/font][font=宋体]恒压补偿仪:外部电源提供;[/font][font=宋体]6) [/font][font=宋体]恒流源精度:基础:0.02mA,标准:0.01mA,特优:0.005mA,最优:0.001mA;[/font][font=宋体]7) [/font][font=宋体]阻值:小于30mΩ;[/font][font=宋体]8) [/font][font=宋体]线路电流:最大5A@ 48V; [/font][font=宋体]9) [/font][font=宋体]寿命:最小20,000,000次;[/font][font=宋体]10) [/font][font=宋体]操作频率:典型10ms/次;[/font][font=宋体]11) [/font][font=宋体]控制:全部支持触摸屏操作;[/font][font=宋体]12) [/font][font=宋体]可远程通讯操作,支持:RS232与RS485;[/font][font=宋体]13) [/font][font=宋体]工作温度范围:0 ~ 50°C (32 ~ 122 °F)。[/font][font=宋体] [/font]

  • LCC6000多通道恒流补偿仪

    [b][font=宋体]概述:[/font][/b][font=宋体]LCC6000[/font][font=宋体]多通道恒流补偿仪简称恒流补偿仪,由恒流源模块、线路切换模块、控制器、液晶显示器、系统软件等几部分组成。设备内置线路切换模块,实现芯体电阻、线路自动切换并显示在液晶屏上,便于用户读取数据,触摸屏操作界面简洁大方,方便简捷。[/font][font=宋体]多模块设计模式,可按客户需求定制,多功能自由切换。[/font][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]通道数量:1-80通道(按需订制);[/font][font=宋体]2) [/font][font=宋体]工作模块:恒流模式、补偿模式(可定制选择);[/font][font=宋体]3) [/font][font=宋体]功能:;恒流源功能;(以实际要求为准)[/font][font=宋体]4) [/font][font=宋体]恒流源输出范围:1mA;1。5mA;2mA; [/font][font=宋体]5) [/font][font=宋体]恒压补偿仪:外部电源提供;[/font][font=宋体]6) [/font][font=宋体]恒流源精度:基础:0.02mA,标准:0.01mA,特优:0.005mA,最优:0.001mA;[/font][font=宋体]7) [/font][font=宋体]阻值:小于30mΩ;[/font][font=宋体]8) [/font][font=宋体]线路电流:最大5A@ 48V; [/font][font=宋体]9) [/font][font=宋体]寿命:最小20,000,000次;[/font][font=宋体]10)[/font][font=宋体]操作频率:典型10ms/次;[/font][font=宋体]11)[/font][font=宋体]控制:全部支持触摸屏操作;[/font][font=宋体]12)[/font][font=宋体]可远程通讯操作,支持:RS232与RS485;[/font][font=宋体]13)[/font][font=宋体]工作温度范围:0 ~ 50°C (32 ~ 122 °F)。[/font]

  • XTRM型温度远传监测仪典型型号

    XTRM系列温度远传监测仪型号有:2通道温度远传监测仪:XTRM-2210AG、XTRM-2210PG、XTRM-2215AG、XTRM-2215PG、XTRM-2220AG、XTRM-2220PG;3通道温度远传监测仪:XTRM-3210AG、XTRM-3210PG、XTRM-3215AG、XTRM-3215PG、XTRM-3220AG、XTRM-3220PG;4通道温度远传监测仪:XTRM-4210AG、XTRM-4210PG、XTRM-4215AG、XTRM-4215PG、XTRM-4220AG、XTRM-4220PG;5通道温度远传监测仪:XTRM-5210AG、XTRM-5210PG、XTRM-5215AG、XTRM-5215PG、XTRM-5220AG、XTRM-5220PG;6通道温度远传监测仪:XTRM-6210AG、XTRM-6210PG、XTRM-6215AG、XTRM-6215PG、XTRM-6220AG、XTRM-6220PG。

  • LMC1000多通道补偿校准仪

    [b][font=宋体]概述:[/font][/b][align=center][font=宋体]LMC1000[/font][font=宋体]多通道补偿校准仪简称补偿仪,由线路切换模块、控制器、液晶显示器、系统软件等几部分组成。设备内置线路切换模块,实现芯体电阻、线路自动切换并显示在液晶屏上,便于用户读取数据,触摸屏操作界面简洁大方,方便简捷。[/font][/align][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]通道数量:1-80通道(按需订制);[/font][font=宋体]2) [/font][font=宋体]工作模块:补偿模式;[/font][font=宋体]3) [/font][font=宋体]功能:;电阻补偿功能; [/font][font=宋体]4) [/font][font=宋体]补偿仪:外部电源提供;[/font][font=宋体]5) [/font][font=宋体]阻值:小于30mΩ;[/font][font=宋体]6) [/font][font=宋体]线路电流:最大5A@ 48V; [/font][font=宋体]7) [/font][font=宋体]寿命:最小20,000,000次;[/font][font=宋体]8) [/font][font=宋体]操作频率:典型10ms/次;[/font][font=宋体]9) [/font][font=宋体]控制:全部支持触摸屏操作;[/font][font=宋体]10)[/font][font=宋体]可远程通讯操作,支持:RS232与RS485;[/font][font=宋体]11)[/font][font=宋体]工作温度范围:0 ~ 50°C (32 ~ 122 °F)。[/font]

  • LCC6000多通道恒流补偿仪

    LCC6000多通道恒流补偿仪

    [b][font=宋体]关键词:[/font][/b][font=宋体]恒流补偿仪、多通道、自动化、独立、芯体、电桥、扩展、远程通讯、通信RS232、以太网、操作简单。[/font][b][font=宋体]概述:[/font][/b][font=宋体]LCC6000[/font][font=宋体]多通道恒流补偿仪简称恒流补偿仪,由恒流源模块、线路切换模块、控制器、液晶显示器、系统软件等几部分组成。设备内置线路切换模块,实现芯体电阻、线路自动切换并显示在液晶屏上,便于用户读取数据,触摸屏操作界面简洁大方,方便简捷。[/font][font=宋体]多模块设计模式,可按客户需求定制,多功能自由切换。[/font][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]通道数量:1-80通道(按需订制)[/font][font=宋体]2) [/font][font=宋体]工作模块:1入多出;多入1出;多入多出;[/font][font=宋体]3) [/font][font=宋体]功能:芯体电阻切换功能;恒流源功能;线路切换功能;(以实际要求为准)[/font][font=宋体]4) [/font][font=宋体]恒流源输出范围:1mA;1.5mA;2mA[/font][font=宋体]5) [/font][font=宋体]恒流源精度:基础:0.02mA,标准:0.01mA,特优:0.005mA,特优:0.001mA[/font][font=宋体]6) [/font][font=宋体]阻值:小于30mΩ[/font][font=宋体]7) [/font][font=宋体]线路电流:大5A@ 48V [/font][font=宋体]8) [/font][font=宋体]寿命20,000,000次以上[/font][font=宋体]9) [/font][font=宋体]操作频率:典型10ms/次[/font][font=宋体]10) [/font][font=宋体]控制:触摸屏操作或远程通讯操作[/font][font=宋体]11) [/font][font=宋体]工作温度范围:0 ~ 50°C (32 ~ 122 °F)[/font]功能(1)多通道恒流补偿仪内置线路切换模块,实现线路自动切换并显示在液晶屏上,便于用户读取数据。(2)多种功能自由切换。(具体为实际要求为准)(3)触摸屏操作(4)多通道模式,可按用户需求选择装配。(5)通用的RS232通信模式,与上位机通信。(6)操作界面简洁大方,便于用户操作。[font=宋体]北京莱森泰克科技有限公司[/font][font=宋体]地址:北京市通州区东燕郊留山大街10号13B[/font][img=,520,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101022566890_2366_5627570_3.jpg!w520x516.jpg[/img][img=,520,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101022566890_2366_5627570_3.jpg!w520x516.jpg[/img]

  • 具有双传感器自动切换功能的双通道24位高精度PID控制器

    具有双传感器自动切换功能的双通道24位高精度PID控制器

    [align=center][size=14px][img=双传感器自动切换PID控制器,690,426]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281550092924_2978_3384_3.png!w690x426.jpg[/img][/size][/align][color=#990000]摘要:为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的英国欧陆公司2704系列产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换。采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可使备份传感器成为可能,可有效保证过程控制的连续性和安全性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#990000]1. 问题的提出[/color][/size][size=14px][/size]  在许多工业控制领域中,如真空热处理、冷冻干燥机、高压釜、半导体加热炉、空间环境模拟室等,被控参数的量程往往会很宽泛,为了覆盖全量程范围内的准确测量和控制,往往需要两只不同量程的传感器。[size=14px][/size]  如在温度测控过程中,往往在低温段采用热电偶温度传感器,在高温段采用红外测温仪,有时也会采用两种不同类型的热电偶温度传感器来覆盖宽的温度区间。[size=14px][/size]  如在真空度测控过程中,往往会采用10Torr和1000Torr两只薄膜电容真空计来完成0.1~760Torr全量程范围的真空度准确测量和控制。[size=14px][/size]  对于这种需要双传感器测量和控制的场合,目前普遍还是采用人工判断切换方式,这给实际应用带来很大不便。[size=14px][/size]  国外著名厂商欧陆(EUROTHERM)公司针对上述应用,专门推出了2704系列PID过程控制器,但价格较贵。[size=14px][/size]  为了解决PID过程控制器中双传感器自动切换的难题,降低成本提高性价比,替代昂贵的国外产品,上海依阳实业有限公司推出了单通道和双通道系列的24位高精度PID过程控制器,每个通道都可以实现双传感器自动切换,采用双通道控制器还可以实现温度和真空度的同时测量和控制,温度和真空度测控都可以实现双通道自动切换。另外双传感器自动切换功能还可以使备份传感器成为可能,有利于控制过程中若一只传感器出现故障而自动切换到第二只备份传感器,保证过程控制的连续性和安全性。[size=24px][color=#990000]2. 基本原理[/color][/size][size=14px][/size]  双传感器自动切换的基本原理是在控制器主输入接口的基础上引入了一个辅助输入接口,如图2-1所示为两只传感器切换的情况。以温度传感器为例,高切换点(2-3)是第一只传感器工作的高点,低切换点(1-2)是第二只传感器工作的低点,在这两点之间控制器进行平滑计算。当主输入PV1和辅助输入PV2的测量值连续采样低于下切换点,切换到低温传感器。当主输入PV1和辅助输入PV2的测量值连续采样高于上切换点,则切换到高温传感器。[align=center][color=#990000][img=双传感器自动切换原理,690,452]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281552543835_2273_3384_3.png!w690x452.jpg[/img][/color][/align][size=14px][/size][align=center][color=#990000]图2-1 双传感器自动切换原理图[/color][/align][size=24px][color=#990000]3. 控制器参数设置[/color][/size][size=14px][/size]  双传感器高低量程的切换点数值判断以辅助输入测量值为判断依据,因此当系统采用双传感器测量和控制时,辅助输入接口做为高端量程传感器的信号输入源。[size=18px][color=#990000]3.1. 双传感器切换功能时,输入类型分辨率的设置[/color][/size][size=14px][/size]  (1)主输入接口输入类型为热电偶或热电阻时[size=14px][/size]  此时的温度单位“摄氏度”和“开尔文”设置为0.1度分辨率,温度单位“华氏度”为1度分辨率。即,主输入类型为热电偶或热电阻,温度单位为摄氏度或开尔文时,辅助输入通道小数点设置为1位小数。温度单位为华氏度时,小数点设置为0位小数。[size=14px][/size]  (2)主输入通道的输入类型为模拟信号时(真空度测控情况)[size=14px][/size]  根据小数点设定分辨率,两通道必须相同分辨率,即主输入和辅助输入保持相同小数位数,但相应的量程要根据传感器的实际量程进行设置。如对于10Torr和1000Torr两只真空计,其对应的模拟信号都是0~10V,但显示量程分别要设置为10和1000。[size=18px][color=#990000]3.2. 双传感器切换功能中的上下限切换点设置[/color][/size][size=14px][/size]  在使用双传感器切换功能时,还需在控制器上进行相应子菜单设置,分别设置上限切换点和下限切换点,具体内容详见控制器使用说明书。[size=24px][color=#990000]4. 双传感器自动切换功能的应用[/color][/size][size=14px][/size]  具有双传感器自动切换功能的PID过程控制器可应用于多种场合:[size=14px][/size]  (1)由于双传感器功能能够同时从两个独立的传感器接收输入信号,这就使得控制器可用于测量两传感器之间的差值和平均值,如温差、平均温度、真空压力差和真空压力平均值。[size=14px][/size]  (2)双传感器自动切换功能也可作为备份传感器切换功能使用,即在控制器上连接两只完全一样的传感器,当第一只传感器开路时,当前测量自动切换到第二只传感器测量值进行控制,由此对测量和控制起到保护和保险作用。[size=14px][/size]  (3)由于上海依阳公司的VPC2021-2系列PID过程控制器具有双通道同时测控能力,而每一通道都配备了辅助输入端口,这样就可以同时连接4只传感器。这种4只传感器的接入能力,能带来非常多的组态形式,如同时进行两路不同变量(如温度和真空度)的测量和控制,其中2只传感器同时测控温度和真空度,其他2只传感器用来同时监测其他两个测量点处的测量值变化情况。[size=14px][/size]  (4)在高真空工艺过程中,最常见的是使用扩散泵,并将扩散泵放置在真空炉膛和机械泵(粗真空)之间,而扩散泵和机械泵之间的区域称为前级室。机械泵将前级室气压降低到扩散泵的最大吸入压力以下,扩散泵才能开始正常运行。在典型的单室真空系统中,一般会配备三个真空计:在主真空室(或炉膛)中将安装两个真空计,一个用于低真空(皮拉尼真空计10-3 mbar),另一个用于高真空(有源倒磁控管AIM)仪表10-8mbar。而另一个皮拉真空计被视为单独的输入用来监控前级室气压。在实际应用中需要两个主真空室上的真空计进行自动切换,同时外加一个真空计监测前级室气压和一个温度传感器进行腔室温度测控。两种类型的真空计(每种都需要24V直流电源)提供2~10V直流对数输出,涵盖不同的真空范围。在实际控制过程中,两通道控制器将前级室与主真空室隔离并打开前级泵,当前级室达到设定的真空度时,控制器将改变其联锁装置,使扩散泵能够将炉子抽真空。同样,当炉子达到设定的真空度时,两通道控制器将控制执行设定的温度曲线,同时继续监测是否保持必要的真空度。[align=center]=======================================================================[/align][align=center][img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/07/202107281553360737_7536_3384_3.jpg!w690x349.jpg[/img][/align][size=14px][/size]

  • LMC1000多通道补偿校准仪技术参数

    [b][font=宋体]概述:[/font][/b][align=center][font=宋体]LMC1000[/font][font=宋体]多通道补偿校准仪简称补偿仪,由线路切换模块、控制器、液晶显示器、系统软件等几部分组成。设备内置线路切换模块,实现芯体电阻、线路自动切换并显示在液晶屏上,便于用户读取数据,触摸屏操作界面简洁大方,方便简捷。[/font][/align][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]通道数量:1-80通道(按需订制);[/font][font=宋体]2) [/font][font=宋体]工作模块:补偿模式;[/font][font=宋体]3) [/font][font=宋体]功能:;电阻补偿功能; [/font][font=宋体]4) [/font][font=宋体]补偿仪:外部电源提供;[/font][font=宋体]5) [/font][font=宋体]阻值:小于30mΩ;[/font][font=宋体]6) [/font][font=宋体]线路电流:最大5A@ 48V; [/font][font=宋体]7) [/font][font=宋体]寿命:最小20,000,000次;[/font][font=宋体]8) [/font][font=宋体]操作频率:典型10ms/次;[/font][font=宋体]9) [/font][font=宋体]控制:全部支持触摸屏操作;[/font][font=宋体]10) [/font][font=宋体]可远程通讯操作,支持:RS232与RS485;[/font][font=宋体]11) [/font][font=宋体]工作温度范围:0 ~ 50°C (32 ~ 122 °F)。[/font][align=left] [/align]

  • 速测仪的通道一致性

    速测仪的通道一致性

    农残速测仪一般会有6通道,这6通道做同一样品时会有差异,误差多少为合格,如何调整它的误差?在速测仪的说明书有通道一致性操作,分享给大家2.3.6通道一致性设置一般不需要通道一致性的设置,当从新换比色皿时需要校正,如果校正按以下注意事项中的1进行操作.(三)注意事项1、用户购机后可直接使用本仪器进行测试,不要进入“6. 通道一致性”项目选择。(如果进入按如下操作:先配制空白溶液:在1000ml的容量瓶中加入约800ml的蒸馏水,用移液管吸取2.8ml浓硫酸注入容量瓶,搅拌均匀后定容至刻度。再配标准溶液: 将一包标准物倒入500ml的容量瓶用空白溶液溶解定容至刻度。http://ng1.17img.cn/bbsfiles/images/2016/11/201611161112_616555_0_3.jpg3.6通道一致性校正: 光标在通道一致性行,如“6. 通道一致性”点击确认键,进入通道一致性校正屏,显示:3.6.1测试空白 通道一致性校正必须从测试空白开始,将6个干净无划痕的比色皿装入空白液,放入6个通道,在测试空白行,如“1. 测试空白”,点击确认键开始测试空白,测试结束显示“1. 测试空白 OK”后,方能进行测试标准操作。若未显示“OK”而显示“x?”或“??”,则表明光源亮度降低,需要返厂修理3.6.2测试标准 测试空白正常后,方可进行测试标准操作,否则,自动返回测试空白行。将6个干净无划痕的比色皿装入标准液,放入6个通道,光标在测试标准行,如“2. 测试标准”,点击确认键开始测试标准,进 入标准测试屏,显示:http://ng1.17img.cn/bbsfiles/images/2016/11/201611161112_616556_0_3.jpg显示各通道的吸光度,连续测试,持续抑制率测试时间后自动退出测试标准,显示“2.测试标准 OK”。 点击+、-调整键可以切换测试项目类型:吸光度、光强度、透光度。 在吸光度测试类型,可以比较各通道的吸光度的差异,如果满足通道间一致性的要求(误差≯0.01),就不必校正通道间的一致性,点击返回键退出。反之选择“3.校正”按确定键,当屏幕出现“慎重!关键参数”时再按两次确定键,出现“3. 校正 OK”。即校正完毕点击返回键退出。2、比色前,比色皿要清洗干净,比色皿可用擦镜纸擦干净后放入盒中,比色皿干净与否直接影响比色结果,注意切勿用手触及比色皿上的光学面,也不要用硬纸或布擦其光学面。若比色皿透光面有污物、欠明沏、应用洗涤液浸泡洗净。3、本仪器所带6支比色皿为经过选配配套的比色皿,装入相同溶液,置入对应通道后,其读数误差≯0.01。用户使用时,应注意把不同编号的比色皿放入对应通道内,以保证测定误差降低到最低程度。如用户自行购置比色皿,须检查其配套性,不要用不配套的比色皿比色。如果要用需要校正通道一致性。4、比色皿外如溅有药液,必须用擦镜纸擦干再测,否则会造成光线散射,导致较大测试误差。5、关机时必须检查比色皿槽内比色皿是否取出以免药液洒入槽内造成电路腐蚀损坏。6、测定中注意药液不要溅洒在衣服上,防止某些酸、碱药液烧伤衣物及皮肤,测定工作结束后应洗手,防止某些有毒性药液入口。药品应放在儿童不能触及的地方。

  • 智能化多通道食用油脂检测仪怎么用

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  智能化多通道食用油脂检测仪怎么用,智能化多通道食用油脂检测仪的使用通常遵循一系列标准步骤,这些步骤旨在确保检测的准确性和仪器的正常运行。以下是一个概括性的使用指南:  一、准备工作  检查仪器状态:  确保仪器处于清洁、干燥的状态,无灰尘或油污。  检查电源线或电池电量,确保电源充足且连接正常。  准备样品:  准备好待检测的食用油脂样品,确保样品无杂质、无沉淀,干净且符合检测要求。  如果需要,使用采样器或[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]等工具取适量样品,避免交叉污染。  准备试剂和标准液(如果检测需要):  根据检测项目的需求,准备好相应的试剂和标准液。  确保试剂和标准液在有效期内,并按照说明书正确配制和保存。  二、仪器校准  在开始检测之前,通常需要对仪器进行校准,以确保测量结果的准确性。  根据仪器说明书的要求,使用标准液进行校准操作,并记录校准结果。  三、设置检测参数  打开仪器,按照仪器说明书或显示屏上的提示,设置检测所需的参数。  这些参数可能包括检测项目、检测时间、温度、波长等,具体取决于仪器的型号和检测项目的需求。  四、放置样品  将准备好的样品放入仪器的相应通道中。在多通道检测仪中,每个通道可以独立进行不同的检测项目或不同样品的检测。  确保样品放置正确,且试管或容器与仪器接触良好,以避免漏气或漏液。  五、启动检测  按下仪器上的开始按钮或选择相应的检测程序,启动检测过程。  在检测过程中,仪器会自动进行吸光度、荧光强度等参数的测量,并进行数据处理和分析。  六、等待结果  在检测过程中,需要耐心等待仪器完成检测并输出结果。  检测时间的长短取决于仪器的型号、检测项目的复杂性和样品的特性。  七、读取和记录结果  当仪器完成检测后,会在显示屏上直接显示检测结果。  用户可以根据需要记录或打印检测结果,以便后续分析和处理。  八、维护和保养  使用完仪器后,应及时进行清洁和维护工作。  清洁时,应使用柔软的布擦拭仪器表面和内部部件,避免使用腐蚀性强的化学溶剂。  定期对仪器进行校准和维护,确保其准确性和稳定性。  注意事项  在使用智能化多通道食用油脂检测仪时,务必遵循仪器说明书上的操作指南和注意事项。  对于异常结果或仪器故障,应及时联系厂家或专业维修人员进行处理。  注意仪器的安全和稳定性,避免在潮湿、高温或强电磁干扰的环境中使用仪器。  以上步骤仅供参考,具体使用方法可能因仪器型号和检测项目的不同而有所差异。因此,在使用前务必仔细阅读仪器说明书,并遵循相关操作要求。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407121057403475_1541_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 微通道反应器冷热源恒温控制设备压缩机故障排除办法

    微通道反应器冷热源恒温控制设备是微通道反应器行业使用比较多的控温设备,无锡冠亚针对微通道反应器行业配套生产了微通道反应器冷热源恒温控制设备,微通道反应器冷热源恒温控制设备在运行中压缩机如果发生故障的话,需要及时排查解决。  微通道反应器冷热源恒温控制设备压缩机故障排查的话,先检查微通道反应器冷热源恒温控制设备电路部分,看看微通道反应器冷热源恒温控制设备电源、电压、开关是否正常,看看微通道反应器冷热源恒温控制设备电源是否有电,电压是否正常,开关触点是否良好,电源是否缺相。当微通道反应器冷热源恒温控制设备没有安装电流表、电压表时,可采用万用电表或测电笔检查电源情况。在电源电压过低时会使压缩机起动不了。  微通道反应器冷热源恒温控制设备的压缩机如果采用活塞式的压缩机的话,其连杆大头轴瓦与曲袖是否发生抱轴。这些,可以是以前运行时,由于排气温度过高造成,也可能是润滑油焦化,使气缸与活塞粘结造成,使压缩机不能起动。  检查微通道反应器冷热源恒温控制设备压差继电器和高低压继电器。当压缩机的油压不正常时,能使压缩机停止运行。同时,当压缩机排气压力和吸气压力异常时,均不能起动或已起动后压缩机会很快停止运转。检查冷冻水量、冷却水量、水温是否正常。若水量小、水温高,会引起冷凝压力急剧升高,蒸发温度迅速下降,由于机组保护设施动作,往往很快停机。  检查微通道反应器冷热源恒温控制设备有关的电磁阀、调节阀是否失灵,是否按要求开起或关闭。检查温度继电器的感温包内是否有工质泄漏,或调节有误。  微通道反应器冷热源恒温控制设备在使用之前,相应的准备工作一定要做好,希望微通道反应器冷热源恒温控制设备能够高效运行。

  • HZD-W/L型四通道振动监控仪

    HZD-W/L型四通道振动监控仪

    [b]HZD-W/L型四通道振动监控仪[/b]为双切换的仪表,与SZ-6系列振动速度传感器配套,可以检测振动位移和振动速度。振动值的大小由前面板的表头显示,同时具有标准的电流输出,可与各种DCS、PLC系统配套。当振动值超限时,HZD-W/L型四通道振动监控仪可外接声光报警器以提示现场操作人员采取保护措施,并有报警、危险开关量输出。[b]HZD-W/L型四通道振动监控仪[/b]技术指标[align=center][img=,374,354]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131313_01_3107961_3.jpg[/img][/align]电源电压:220VAC/50Hz±10%输 入 信 号:接受SZ-6系列振动速度传感器的信号 灵 敏 度:20.0mV/mm/s±5% 频 响:5~300Hz 输入阻抗:>100KΩ HZD-W/L型四通道振动监控仪量 程:振动位移0~200um(峰-峰值) 振动烈度0~20.0mm/s(真有效值) HZD-W/L型四通道振动监控仪显 示 显示方式:三位0.5英寸LED数字显示 显示精度:±0.5%满量程 光电管LED指示:报警Ⅰ值、报警Ⅱ值红色LED 电流输出: 4~20mA有源,输出负载≤500Ω 报警设定:0~100%满量程 继电器密封:环氧树脂,节点容量10A/250VAC,常开触点 环境温度:运行时:0~+65℃ 储存时:-30℃~+80℃ 相对湿度:至95%,不冷凝 外形尺寸:160×160×320mm 开孔尺寸:152+1×152+1mm

  • 血液分析仪双通道意义及作用

    血液分析仪的双通道,简单的说就是WBC和RBC分别单独一个通道进行计数,主要是有两个功能,1、计数速度快一倍左右,单通道的一般是30T/H,双通道是60T/H2、因为WBC和RBC的直径不一样,单通道的小孔一般都比较大,这样会对RBC计数造成一些影响,一般好一点的厂家都有相应的软件补偿技术来保证结果准确

  • 仪器通道问题

    问下,大家经常说的仪器有几个通道、几个基体,那是从哪里可以看得出来的,我的仪器室SPEOCTRO MAXx -2009 型号的

  • 速测仪两通道的相对误差是多少?

    用农药快速检测仪对蔬菜中有机磷及氨基甲酸酯类农药进行快速检测,速测仪有6个通道,那么每个通道间的误差是多少?不超过20%是正常的吗?如果同一样品在两个通道间得出的数据相差较大,是到厂里维修还是到质量监督局进行校验呢?

  • ARL仪器通道配置共享!

    大家好,我们公司购买的是ARL3460仪器,我将通道配置信息和质量检验PDF文件传上来,与大家共享,也希望各位能将自己公司的仪器通道配置信息贴上来。该文件在安装目录下,文件名是以C和F 开头的,后面是一串数字。

  • HZD-W-B型六通道振动巡检仪

    hzd-w-b型六通道振动巡检仪,可测量机壳或者结构相对于自由空间的振动,即绝对振动,特别适用于具有滚珠轴承的机器,在这种机器里轴的振动可较多地传到机壳上,故该监测仪可配接磁电式速度传感器,对旋转机械进行连续测量和保护,传感器的安装应特别注意,不会导致传感器振幅减低,以及频率影响被改变或所产生的信号不能代表机器的真实振动,对于电机、压缩机、风机等需要测量大量振动点的情况,该监测仪尤其适用。 HZD-W-B型六通道振动巡检仪功能说明 1、实现智能处理:报警ⅰ值、ⅱ值可通过面板按键任意设置 2、面板按键可调整量程值,无需电位器调整,方便现场调试 3、一分钟不按操作键,可自行回到运行状态 4、报警延时调整范围0.1~3秒,以防止现场干扰引起误报警 5、具有上、掉电检测功能,同时切断报警、停机输出回路,能有效抑制仪表误报警6、后面板上有与振动幅度值成正比的电流输出端子,供记录输出 电气指标: 1、外接电源:220vac 50hz 0.5a 2、输入 信号:接受一个st系列磁电式速度传感器的信号 灵敏度:20mv/mm/s±5% 频响:10~300hz 输入阻抗:100kω 3、量程:0~500μm(峰-峰值) 4、显示 显示方式:三位0.5英寸led数字显示 显示精度:±1 %满量程 光电管led指示:报警ⅰ值、报警ⅱ值红色led 5、输出 电流输出:4~20ma 有源 输出负载:≤500ω 6、报警点设置 范围:0~100%满量程 精确度:±0.5% 7、继电器 密封:环氧树脂 节点容量:2a/220vac或1a/28vdc 节点输出:常开触点 8、rs485通讯接口:用于参数编程组合 波特率:9.6k~38.4kbps HZD-W-B型六通道振动巡检仪环境指标: 温度范围 运行时:0℃~+65℃ 储存时:-30℃~+80℃ 相对湿度:至95%,不冷凝 物理指标: 外形尺寸:160×80×350 mm 安装尺寸:152+1×74+1 mm 重 量:3kg

  • 多通道农残检测仪器设备介绍

    多通道农残检测仪是一种先进的检测设备,用于快速、准确地检测农产品中的农药残留。该仪器采用了多通道技术,可以同时检测多个农药成分,大大提高了检测效率。  多通道农残检测仪的工作原理非常先进。首先,样品经过预处理后加入仪器中,然后通过多通道分析系统进行检测。在分析过程中,仪器会利用多个通道同时检测不同的农药成分,快速得出准确的检测结果。这样的技术优势使得仪器在快速、高效的同时也能够保证检测的准确性,为农产品质量安全提供了有力的保障。  多通道农残检测仪具有许多优点。它可以同时检测多个农药成分,减少了检测所需的时间和资源。其次,它具有高灵敏度和高稳定性,能够从农产品中准确地检测到微量的农药残留,保障了消费者的健康安全。此外,多通道农残检测仪还具有广泛的应用范围,主要用于蔬菜、水果、茶叶、粮食、农副产品等食品中有机磷和氨基甲酸酯类农药残留的快速检测,还可用于果蔬茶生产基地和农贸批发销售市场现场检测,餐馆、学校、食堂、家庭果蔬加工前的安全速测等。  多通道农残检测仪的技术参数方面,一般具有多个检测通道,例如10通道或12通道,通道间差小,透射比重复性和误差都在可控范围内。同时,波长范围和吸光度范围也适应于多种农药的检测。此外,多通道农残检测仪通常还配备有数据储存功能,能够存储大量的检测数据,方便后续的分析和管理。  在功能方面,多通道农残检测仪通常配备有彩色液晶触摸显示屏,操作简便直观。仪器结构设计紧凑,便于携带,适合现场快速检测的需求。此外,仪器还具备多种测量模式,如同时启动和单通道分别启动,用户可以根据实际情况选择适合的测量模式。  总的来说,多通道农残检测仪是一种高效、准确、便捷的农产品质量安全检测设备,对于保障农产品安全和消费者健康具有重要意义。随着科技的不断进步和应用需求的提高,多通道农残检测仪的性能和功能也将不断提升和完善,为农产品质量安全提供更加可靠的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291057518225_6743_4214615_3.jpg!w690x690.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制