当前位置: 仪器信息网 > 行业主题 > >

药物融变时限仪

仪器信息网药物融变时限仪专题为您提供2024年最新药物融变时限仪价格报价、厂家品牌的相关信息, 包括药物融变时限仪参数、型号等,不管是国产,还是进口品牌的药物融变时限仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合药物融变时限仪相关的耗材配件、试剂标物,还有药物融变时限仪相关的最新资讯、资料,以及药物融变时限仪相关的解决方案。

药物融变时限仪相关的方案

  • Exactive Plus EMR 高分辨质谱仪实现非变性状态ADCs药物的分析
    采用Exactive Plus EMR质谱仪,直接进样方式,突破了传统的RPLC/MS平台无法进行cysteine-linked ADCs分析的瓶颈,建立了cysteine-linked ADCs的精确分子量测定方法,为cysteine-linked ADCs 单抗药物研发和生产检测提供了高效、快速的分析平台。实验结果表明Exactive Plus EMR质谱仪凭借其超高的分辨率、超快的扫描速度、超高的质量精度、超高的灵敏度以及拓展的质量范围,极大地完善和推动了ADCs药物的鉴定分析。
  • 基于双三元液相高通量在线除盐技术与 Orbitrap高分辨质谱联用在合成类多肽药物杂质鉴定中的应用
    Orbitrap高分辨质谱仪具有高灵敏度、高分辨率、高准确度和高稳定性的优势性能,与液相色谱联用可实现对多肽药物氨基酸序列的确证、氨基酸修饰的定性和定量,多肽药物杂质的鉴定和定量,以及多肽药物的动力学研究。本实验采用在线多组分中心切割二维除盐方法,一次进样完成了多目标杂质的在线除盐,显著的改善了分析效率,与Orbitrap高分辨质谱联用,强强联合,提高了杂质鉴定的通量和准确度。
  • 不同高分辨定量方式在药物分析中的应用
    药物中含有杂质会降低疗效,影响药物的稳定性,有的甚至对人体健康有害或产生其他毒副作用,因此加强对药物杂质的分析与控制已成为国内外药品生产企业共同关注的话题,随着对药物杂质的不断认识和法规要求的日益严苛,需要有更高灵敏度的检测手段来应对此类挑战。Q Exactive Focus结合了高性能四极杆和Orbitrap高分辨质量分析器,具有媲美高端三重四极杆的灵敏度和极佳的重现性,本应用利用Q Exactive Focus的多种高分辨扫描模式,对中重度至重度阿尔茨海默型痴呆治疗药物盐酸美金刚片中杂质N-(二甲基金刚烷)甘氨酸进行了不同方式的定量,获得了远优于进口药品注册标准中的液质定量效果,表明Q Exactive Focus作为高分辨液质,不仅能胜任定性工作,同时也能够完美的应用于杂质定量研究,Fullscan、SIM和PRM三种扫描方式更可满足杂质定量的广泛性、灵敏度和专属性需求。
  • μFLUX应用于药物溶解/透膜吸收曲线的测定
    无论是现如今正在进行的仿制药一致性评价工作,还是新药研发工作,找到具有体内外良好相关性的仪器或模型,来开展药物的通透性实验工作至关重要。μFLUX创造性地将原位光纤检测和PAMPA人工仿生膜相结合,实现药物溶解和透膜吸收的同时监测。Budapest 大学利用μFLUX,实时监测某药物API溶出/透膜过程,探讨了影响药物溶出和透膜的影响因素,十分有借鉴意义
  • Q Exactive Focus不同高分辨定量方式在药物分析中的应用
    药物中含有杂质会降低疗效,影响药物的稳定性,有的甚至对人体健康有害或产生其他毒副作用,因此加强对药物杂质的分析与控制已成为国内外药品生产企业共同关注的话题,随着对药物杂质的不断认识和法规要求的日益严苛,需要有更高灵敏度的检测手段来应对此类挑战。Q Exactive Focus结合了高性能四极杆和Orbitrap高分辨质量分析器,具有媲美高端三重四极杆的灵敏度和极佳的重现性,本应用利用Q Exactive Focus的多种高分辨扫描模式,对中重度至重度阿尔茨海默型痴呆治疗药物盐酸美金刚片中杂质N-(二甲基金刚烷)甘氨酸进行了不同方式的定量,获得了远优于进口药品注册标准中的液质定量效果,表明Q Exactive Focus作为高分辨液质,不仅能胜任定性工作,同时也能够完美的应用于杂质定量研究,Fullscan、SIM和PRM三种扫描方式更可满足杂质定量的广泛性、灵敏度和专属性需求。
  • PerkinElmer:使用功率补偿式DSC对药物多晶型进行高分辨表征
    由于多晶型现象既对于有效成分进入血液循环的速率有很大的影响,又会影响到药物的储存期,因此多晶型检测是非常重要的。PerkinElmer公司生产的功率补偿型DSC 8500既可以提供药物多晶型测试所需要的极高灵敏度,又可以提供非常卓越的分辨率。其的小炉体设计可以提供很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在本研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC 仪器无法检测到。
  • 使用功率补偿式 DSC对药物多晶型 进行高分辨表征
    PerkinElmer公司生产的功率补偿型DSC 8500既可以提供药物多晶型测试所需要的极高灵敏度,又可以提供非常卓越的分辨率。对于药物研发和生产行业来说,多晶型检测都是非常重要的,因为多晶型现象对于有效成分进入血液循环的速率有很大的影响,也会影响到药物的储存期。功率补偿式DSC的小炉体设计可以提供很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在本研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC仪器无法检测到该样品的多晶型现象(结晶过程)。
  • 基于Obitrap超高分辨质谱平台的 多肽药物特立帕肽的定量分析
    多肽药物是介于大分子蛋白/抗体类药物和小分子药物之间的一类重要的药物分子,因其生物活性高、靶向专一性高、选择性高、毒副作用低等优点而被广泛应用于疾病治疗领域[1]。ThermoObitrap因其超高的分辨率,质量轴稳定性,已经广泛应用在了多肽药物结构表征中。Obitrap 作为高分辩还具有极高灵敏度和线性范围,因此也被越来越多的应用到药物的定量研究中。PTH 是甲状旁腺主细胞分泌的由84个氨基酸组成的多肽类激素,其对于维持钙磷代谢的稳定起着至关重要的作用。特立帕肽(SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF,4117.7 Da)是一种人工重组合成的人PTH 1-34多肽,是第一个被美国食品药品监督管理局(Food and DrugAdministration,FDA)批准的抗骨质疏松性骨折的骨合成药物。
  • 应用气相色谱高分辨质谱联用技术分析 药物原料中的杂质
    • 本文评价了 Thermo Scientific Q Exactive GC Orbitrap 质谱仪针对用于药物活性成分生产的起始和中间原料中所含有的杂质进行定性和定量的测试能力。• 应用 TraceFinder 软件进行自动峰检测、谱图解卷积和推测杂质化学结构分析。最重要的是,本次实验中化合物的化学结构鉴定在参考 NIST 谱图库的碎片离子合理化匹配度评分之外,还采用了精确质量信息推测化合物的元素组成。• 绝佳的系统灵敏度结合宽动态范围的特性,使得 Q ExactiveGC 质谱仪可同时检测低浓度和高浓度水平的杂质,同时实现亚-ppm 级质量精度常规化,准确推算未知化合物的元素组成。除了以上性能特征,实验人员还可通过 MS/MS 测试进一步确认样品中检测到的杂质的化学结构。• 扫描速度完全符合气相色谱峰的要求,即使是在最高质量分辨率120,000 条件下,仍可不受高化学背景噪音干扰,实现良好的质谱峰提取,并对化合物进行可信的定量分析。• Q Exactive GC 系统作为一种通用型分析工具可快速完成 EI和 PCI 测试,这使得本分析平台在制药工业的研究和开发领域具有强大的应用优势。
  • 用于药物杂质分析的高分辨率采样 二维液相色谱--隐藏在 API 峰下的相对浓度杂质的检测
    分析与活性药物成分 (API) 有关的低浓度杂质对原料药的质量控制来说至关重要。当杂质与 API 的化学结构相似且浓度差异较大时,色谱分离与检测将变得困难。Agilent 1290 Infinity II 二维液相色谱解决方案可实现全二维液相色谱(LC × LC)、多中心切割二维液相色谱 (MHC) 以及高分辨率采样二维液相色谱 (HiRes 2D-LC) 之间的轻松切换。在本应用简报中,使用高分辨率采样二维液相色谱实现两种紧邻洗脱的化合物的分离,其中一种化合物浓度极低且隐藏在其他高浓度化合物峰下。以氯二氟苯甲酸和脱酰胺胰岛素分别作为标准物质和实际样品进行分析。
  • 药物杂质鉴定新流程——QExactiveFocus结合CompoundDiscoverer实现泮托拉唑杂质谱分析
    任何影响药物纯度的物质统称为杂质。人用药物注册技术要求国际协调会(简称 ICH)对杂质的定义为药物中存在的,化学结构与该药物不一致的任何成分。药物中含有杂质会降低疗效,影响药物的稳定性,有的甚至对人体健康有害或产生其他毒副作用。因此,检测有关物质,控制纯度对确保用药安全有效,对保证药物质量非常重要。质谱技术因其快速、高灵敏度和高专属性的分析能力,已经被药物杂质鉴定新流程— Q Exactive Focus 结合 CompoundDiscoverer 实现泮托拉唑杂质谱分析周哲赛默飞世尔科技(中国)有限公司AN_C_LCMSMS_10_201507Y图 1. 基于 Q Exactive Focus 和 Compound Discoverer 的杂质鉴定流程广泛的应用于药物杂质鉴定,Orbitrap TM 静电场轨道阱高分辨质谱具有超高的分辨率和长期稳定的高质量精度,可获得高质量的一级和多级高分辨质谱数据,保证了鉴定结果的可靠性,被越来越多的应用于定性分析中。本文采用Thermo Scientific TM 高效液相色谱-四极杆静电场轨道阱Q Exactive™ Focus 高分辨质谱联用技术对药物泮托拉唑进行了全面的杂质数据采集,利用高性能四极杆对目标化合物进行高专属性选择,HCD 高能碰撞池进行二级碰撞碎裂,Orbitrap静电场轨道阱采集一级和二级高分辨质谱数据。结合 Thermo新一代的智能小分子化合物分析软件 Compound Discoverer™ ,以高度灵活的自定义方式制定了泮托拉唑杂质分析工作流程
  • 摄入药物的毛发的纵横两截面的高空间分辨率质谱成像
    毛发有时被比作记录用药历史的磁带,但具体的药物摄入机制尚未阐明。毛发内所含药物的可视化是法医学和法医毒理学面临的主要且最为困难的主题之一。此外,为了在微观尺度上可视化隐藏在复杂基质中的微量药物,以高空间分辨率和高灵敏度检测药物是很重要的。如前所述,使用iMLayer和iMScope进行的高空间分辨率MS成像可以轻松且清晰地观察药物在毛发样品的纵截面和横截面中的定位。该方法不仅可以应用于法医学领域毛发中的药物分析和兴奋剂检测等,还有助于保持并改善头发发质以及用于健康程度分析,例如各种护发产品的开发和评估。
  • 岛津全自动前处理-LC/MS/MS系统分析人血浆中抗心律失常药物-苄普地尔
    本文使用该全自动前处理-LC/MS/MS 系统,对6种抗心律失常药物实现快速、同时分析。一般血浆样品的前处理,采用有机溶剂沉淀蛋白后,离心除去沉淀并分离上清。而全自动前处理LC/MS/MS系统,在设置采血管后,即可全自动的进行上述前处理,并连续进行LC/MS/MS分析。下一样品的前处理也可以与LC/MS/MS分析同时进行,可大幅缩减单个样品分析时间。在本文中,使用自动化前处理-LC/MS/MS对6种抗心律失常药物以及代谢产物进行同时分析,实现了每个血浆样品的前处理和分析仅7分钟
  • 抗体药物的层析纯化工艺及HPLC质量控制方法
    抗体是一种结构复杂的生物大分子,由多个氨基酸组成。即便是天然的抗体,其结构也是各不相同。抗体药物中使用到的单克隆抗体(IgG)在生产工艺(细胞培养、分离纯化)与保存过程中易发生不均一性的变化,包括抗体蛋白的二聚体、多聚体、脱酰胺化、末端氨基酸突变以及糖链部分的结构差异。这些不均一性会使药物的药效、安全性方面受到影响。 而随着生产工艺及分析手段的进步,单克隆抗体类药物的质量控制将更加严格。高效液相色谱(HPLC)作为一种分离技术,在蛋白质、抗体等生物大分子的分离分析方面已得到越来越广泛的应用。近年来,东曹生物的科学家们一直致力于在生物药分离领域开发具有革新性的色谱分离介质,基于尺寸排阻、离子交换色谱等多种HPLC分离技术实现了对抗体多聚体、各种抗体异构体的高效分离,在抗体药物的质量控制方面提供了有效地监控手段。
  • 使用超高灵敏度三重四极杆质谱仪实现水中药物和个人护理用品(PPCP) 的高通量检测
    本文采用安捷伦三重四极杆液质联用系统,建立了测定环境水中药物和个人护理用品(PPCP) 的分析方法。文中利用直接进样方式,应用动态 MRM 采集模式实现了同时对环境水中 377 种PPCP 快速准确的筛查和定量分析,多数化合物的检测限 (LOD) 低于10 ng/L,无需进行样品富集。该方法线性关系良好,在添加浓度为 100 ng/L 时,超过63% 的化合物的回收率在 80%-120% 之间,超过 78% 的化合物的 RSD 20%,重复性和回收率良好,完全满足环境领域监测需求
  • 赛默飞色谱与质谱:Q Exactive Focus 高分辨液质药物杂质分析解决方案
    药物杂质因其可能对药品质量、安全性和有效性产生影响,目前已成为国内外药品监管机构的重点关注内容之一。药物中含有杂质会降低药物疗效,影响其稳定性,有的甚至对人体健康有害或产生其他毒副作用。因此,检测有关物质,控制纯度对确保用药安全有效,保证药物质量至关重要。赛默飞建立基于 Q Exactive Focus 的药物杂质分析解决方案,介绍了Q Exactive Focus 在药物杂质分析中的应用,从样品制备到结构解析帮助用户建立杂质分析工作流程和数据分析方法。Q Exactive Focus 是基于 Orbitrap 技术的台式高分辨质谱,将高性能四极杆的母离子选择能力与高分辨Orbitrap的精确质量数(HR/AM)检测技术相结合,提供优异性能和出色多功能性,并能进行高精度的目标杂质筛选或非目标杂质鉴定,高品质的数据可提供更可靠更灵敏的杂质定性和定量检测。本解决方案还列举了Q Exactive Series 应用于药物分析的部分客户文章,以及提供了药物杂质研究相关的网站和参考信息。为用户在药物杂质分析领域带来新的质谱检测体验。
  • 超高压液相色谱串联高分辨质谱筛查渔用投入品中禁限用药物
    建立了超高压液相色谱鄄静电场轨道离子阱质谱系统对渔用投入品中可能造成风险隐患的禁限用药物的快速筛查与定量技术。以水(含1% 甲酸)鄄乙腈(1颐9, V / V)溶液进行提取,通过稀释降低基质效应,在Accucore RP鄄MS 色谱柱(100 mm 伊2. 1 mm, 2. 6 滋m)上,以水(含0. 1%甲酸)和乙腈(含0. 1% 甲酸)溶液为流动相,利用梯度洗脱、HESI 离子化,Full鄄scan ddMS2 (TopN)扫描模式进行数据采集,通过与预先建立好的药物标准品质谱、色谱数据库进行比对分析,实现了53 种禁限用药同时筛查确证与定量分析。各药物最低检出浓度均低于10 ng/ mL,在0. 01 ~1. 0 滋g/ mL 范围内,各药物的线性相关系数均大于0. 98,根据实际测定结果设定对渔药及渔用饲料中筛查药物的检出限分别为0. 5 和5. 0 mg/ L,对渔药及渔用饲料基质添加10 和100 mg/ kg 的各筛查成分,定量回收率均高于50%,相对标准偏差均小于15%。将本方法用于农业部渔用投入品质量安全隐患排查项目中,共筛查68 个样品,其中在29 个渔用兽药样品中筛查出15 种说明书中未标明成分。
  • 离子色谱法检测脂溶性药物中一溴、二溴、三溴乙酸
    本方法利用离子色谱阀切换法测定脂溶性药物中一溴、二溴、三溴乙酸,准确、灵敏度高,精密度和回收率均符合规定的要求,能满足实际工作的要求。
  • 使用N2作载气分析水溶性药物中的残留溶剂
    本文中介绍依据日本药典第十七修正版第二次增补版,使用N2载气对水溶性药物中的一类、二类残留溶剂进行分析的结果。
  • 注射药物中不溶性微粒来源以及对患者风险的评估(下)
    不溶性微粒产生的另一个常见原因则是药物不相容。药物不相容性是指药物之间和/或与载液在通过同一静脉通道静脉注射期间发生的化学和物理反应。药物物理化学不相容性可导致沉淀物形成,导致输液颗粒污染。这种药物不相容性可能会损害静脉注射治疗期间给药药物的有效性和安全性,特别是在ICU中,多个药物可能同时通过同一导管输注,从而增加药物不相容的风险。很多研究阐述了药物不相容的机制,主要区分为物理反应和化学反应,物理不相容性包括可见(沉淀、浑浊或颜色变化)和不可见(pH变化、不可见颗粒、药物浓度降低)反应。制药生产中应特别注意不可见的不相容性反应,这可能会导致患者服用的药物量显著减少。化学药物不相容性通常是不可见反应,主要包括氧化还原、络合或外消旋反应。这种药物不相容性可能会降低给药的有效性,或产生毒性。一般而言,不同pH值(高沉淀风险)的药物不应通过静脉接入装置的同一端口进行给药。国外有研究在成人ICU中检测到14.4%的护理错误与药物不兼容有关,在儿科ICU中检测出3.4%的护理错误。
  • 拉曼光谱在药物API晶型及粒度分析中的应用
    化学原料药物(API,active pharmaceutical ingredient)的多晶型现象和粒度影响着药物的理化稳定性、制剂中药物的溶解度、溶出率、生物利用度以及生产工艺的可开发性。在新药研发和药物一致性评价中,API的晶型鉴别和粒度评价是其中关键一环。对于固体原料药和制剂中原料药的晶型分析,常用的方法为X射线粉末衍射法,其对粉末API样品的颗粒度有一定的要求,通常需要研磨处理。对于制剂中的API晶型分析时,由于某些常用辅料如甘露醇、乳糖、蔗糖等也存在多个晶型,可能会存在一定干扰,增加测试和分析难度。拉曼光谱技术是一种无需样品制备、非接触的快速分析技术,对于低频振动的检测具有明显的优越性,甚至可检测到分子的晶格振动,其谱带强度与待测物浓度的关系遵守比尔定律,也可用于化合物定量分析。与X射线粉末衍射法相比,制样简单,非接触检测,避免了制样过程对晶型的影响,从分子结构水平上识别物质及其晶型结构。赛默飞DXR2系列显微拉曼光谱仪具有先进的自动化光学控制系统、高灵敏度、智能化检测方式、优异的光谱分辨率和空间分辨率,轻松进行晶型鉴别、共晶分析、混晶定量等。此外,赛默飞DXR2xi显微拉曼成像光谱仪因其优异的空间分辨和高速的数据处理能力,不但可以满足晶型的常规鉴别分析,混晶、共晶分析,也可快速实现粒度统计及分布分析,提供更丰富的信息,助力仿制药一致性评价和新药研发。
  • 使用 Agilent 6495 三重四极杆质谱仪实现水中药物和个人护理用品 (PPCP) 的高灵敏度检测
    本应用简报介绍了使用 Agilent 6495 三重四极杆质谱仪检测水中 ppt 级别药物和个人护理用品的两种方法。根据所需流动相的不同分为正离子模式方法和负离子模式方法。动态多反应监测 (DMRM) 可对正离子模式下具有 316 种 MRM 离子对的 118 种化合物, 以及负离子模式下具有 62 种 MRM 离子对的 22 种化合物实现精密、准确的定量分析。利用高灵敏度 6495 三重四极杆液质联用系统简化分析流程,仅可直接进样 40 µ L 水而无需采用固相萃取 (SPE) 进行繁琐的分析物富集流程。
  • 拉曼光谱在药物API晶型及粒度分析中的应用
    化学原料药物(API,active pharmaceutical ingredient)的多晶型现象和粒度影响着药物的理化稳定性、制剂中药物的溶解度、溶出率、生物利用度以及生产工艺的可开发性。在新药研发和药物一致性评价中,API的晶型鉴别和粒度评价是其中关键一环。对于固体原料药和制剂中原料药的晶型分析,常用的方法为X射线粉末衍射法,其对粉末API样品的颗粒度有一定的要求,通常需要研磨处理。对于制剂中的API晶型分析时,由于某些常用辅料如甘露醇、乳糖、蔗糖等也存在多个晶型,可能会存在一定干扰,增加测试和分析难度。拉曼光谱技术是一种无需样品制备、非接触的快速分析技术,对于低频振动的检测具有明显的优越性,甚至可检测到分子的晶格振动,其谱带强度与待测物浓度的关系遵守比尔定律,也可用于化合物定量分析。与X射线粉末衍射法相比,制样简单,非接触检测,避免了制样过程对晶型的影响,从分子结构水平上识别物质及其晶型结构。赛默飞DXR2系列显微拉曼光谱仪具有先进的自动化光学控制系统、高灵敏度、智能化检测方式、优异的光谱分辨率和空间分辨率,轻松进行晶型鉴别、共晶分析、混晶定量等。此外,赛默飞DXR2xi显微拉曼成像光谱仪因其优异的空间分辨和高速的数据处理能力,不但可以满足晶型的常规鉴别分析,混晶、共晶分析,也可快速实现粒度统计及分布分析,提供更丰富的信息,助力仿制药一致性评价和新药研发。
  • 抗体药物偶联物 (ADC) 的药物/抗体比率 (DAR) 计算
    抗体药物偶联物 (ADC) 是制药公司药物开发途径中快速发展的一类新型生物治疗药物。ADC的制备方法是通过化学方法将具有生物活性的小分子药物与单克隆抗体相连。ADC 通过结合高效细胞毒性药物与靶标特异性抗体将细胞毒性药物直接送达病变组织,同时限制药物在非目标组织中的毒性。药物/抗体比率 (DAR) 是抗体所连接药物数量的平均值,它是 ADC 的重要属性。由于低载药量会降低效力,而高载药量则会对药代动力学 (PK) 和毒性产生负面影响,因此 DAR 值能够对药效产生影响。目前的偶联化学方法有赖氨酸侧链酰胺化或半胱氨酸链间二硫键还原,载药量通常为 0 ~ 8 个药物分子 (D0 ~ D8)/抗体。
  • 用于评价两性霉素B脂质体的USP 4流池法溶出仪药物释放试验的开发
    Amp B是两性霉素B的脂质体制剂,这是一种复杂的胃肠外抗真菌药物,迄今为止尚未获得美国食品及药物管理局批准的仿制药版本。对于通用Amp B脂质体产品开发,药物释放曲线的检查对于产品质量控制和与列出的参比药物的分析可比性评估非常重要。然而,目前尚无Amp B脂质体的标准化体外药物释放(IVR)试验。在本研究中,我们描述了基于USP-4流池法溶出仪的IVR试验的开发,该试验能够根据药物释放谱鉴别Amp B脂质体注射剂。IVR试验开发的目标是确定释放介质组成和试验温度,能够在24h内促进Amp B脂质体70-100%的药物释放,而不会出现Amp B沉淀或脂质体结构破坏。我们发现,在5%蔗糖、10% mM HEPES和0.01% NaN3(pH为7.4)的释放介质中添加5% w/v β -环糊精可防止Amp B沉淀并促进药物释放。IVR分析温度的增加导致药物释放速率的增加,故选择55°C作为在不引起样品沉淀的情况下促使药物释放达到溶出平台的最高温度。所开发的IVR试验用于区分Amp B脂质体和Amp B胶束产品(如Fungizone?和Fungcosome)的药物释放速率。IVR试验还能够区分与AmBisome?成分相同但通过挤出或均质工艺制备的Amp B脂质体,这两种工艺均导致可测量的脂质体粒度异质性和Amp B浓度差异。最后,使用USP-4 IVR分析比较了Amp B与印度批准的两种仿制药Amphonex?(Bharat Serum and Vaccines Ltd.)(f2为66.3)和Phosome?(Cipla Ltd.)(f2为55.4)之间的Amp B释放曲线。总之,所开发的USP-4 IVR测定法可作为仿制药Amp B脂质体制剂开发中药物释放图谱表征的有用工具。
  • Q E Focus高分辨液体质——药物杂质分析解决方案
    药物杂质因其可能对药品质量、安全性和有效性产生影响,目前成为国内外药品监管机构的重点关注内容之一。随着我国医药产品出口规模的扩大,了解国外法规市场的药物杂质控制要求、加强对药物杂质的分析与控制已成为国内药品生产企业共同关注的话题。杂质谱分析是指研究药物中存在的已知和未知杂质的分布情况,分析药物中杂质的来源和去向,通过杂质谱的研究,可以全面评估药物的安全性。对于药物生产阶段,杂质谱研究可以在工艺过程中建立完整可靠的杂质分析方法,对工艺的关键步骤监控杂质的变化情况,验证杂质分析方法并转移到 QA/QC,对于药物研发阶段,需要对工艺研发过程中的杂质进行鉴定和表征并进一步确认杂质的来源,研发人员根据分析结果可以评价药物的安全性和与原研药的一致性,并根据杂质来源进一步优化工艺,降低或消除杂质的产生。
  • 锐拓RT7流池法溶出系统应用案例——BCS II 类产品生理条件下的药物溶出研究
    固体制剂口服给药后, 药物的吸收取决于药物从制剂中的溶出或释放、药物在生理条件下的溶解以及在胃肠道的渗透。所以,如果体外溶出度试验能够模拟人体胃肠道的生理环境,那么该溶出方法将拥有更好的区分力,而且能够更好地预测药物体内行为。在这次应用案例中,我们将分享为某客户开展的某BCS II 类产品在生理条件下的溶出研究,希望能够给您带来启发和帮助。
  • 药物利巴韦林的多晶型熔点
    药物晶体具备良好的储存稳定性,新药配方一般采用结晶化合物。碰到最多的问题就是药物会以多种结晶形式,也就是多晶型。多晶型的每种晶型的物理性质都有很大的不同。因此控制结晶的形式和含量就显得十分重要。
  • 用于药物杂质分析的高分辨率采样二维液相色谱(氯二氟苯甲酸)——隐藏在 API 峰下的相对浓度杂质的检测
    分析与活性药物成分 (API) 有关的低浓度杂质对原料药的质量控制来说至关重要。当杂质与 API 的化学结构相似且浓度差异较大时,色谱分离与检测将变得困难。Agilent 1290 Infinity II 二维液相色谱解决方案可实现全二维液相色谱 (LC × LC)、多中心切割二维液相色谱 (MHC) 以及高分辨率采样二维液相色谱 (HiRes 2D-LC) 之间的轻松切换。在本应用简报中,使用高分辨率采样二维液相色谱实现两种紧邻洗脱的化合物的分离,其中一种化合物浓度极低且隐藏在其他高浓度化合物峰下。以氯二氟苯甲酸和脱酰胺胰岛素分别作为标准物质和实际样品进行分析。
  • 用于药物杂质分析的高分辨率采样二维液相色谱(脱酰胺胰岛素)——隐藏在 API 峰下的相对浓度杂质的检测
    分析与活性药物成分 (API) 有关的低浓度杂质对原料药的质量控制来说至关重要。当杂质与 API 的化学结构相似且浓度差异较大时,色谱分离与检测将变得困难。Agilent 1290 Infinity II 二维液相色谱解决方案可实现全二维液相色谱 (LC × LC)、多中心切割二维液相色谱 (MHC) 以及高分辨率采样二维液相色谱 (HiRes 2D-LC) 之间的轻松切换。在本应用简报中,使用高分辨率采样二维液相色谱实现两种紧邻洗脱的化合物的分离,其中一种化合物浓度极低且隐藏在其他高浓度化合物峰下。以氯二氟苯甲酸和脱酰胺胰岛素分别作为标准物质和实际样品进行分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制