当前位置: 仪器信息网 > 行业主题 > >

染色体细胞测定仪

仪器信息网染色体细胞测定仪专题为您提供2024年最新染色体细胞测定仪价格报价、厂家品牌的相关信息, 包括染色体细胞测定仪参数、型号等,不管是国产,还是进口品牌的染色体细胞测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合染色体细胞测定仪相关的耗材配件、试剂标物,还有染色体细胞测定仪相关的最新资讯、资料,以及染色体细胞测定仪相关的解决方案。

染色体细胞测定仪相关的资讯

  • 微生物所创建全染色体编辑的高产丁醇细胞工厂
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   利用代谢工程与合成生物学技术,创建高效生产天然或非天然化学品的微生物细胞工厂,已展现出良好的应用前景和巨大的市场潜力。然而,实验室构建的工程菌株大多基于质粒系统完成,通常需要抗生素和诱导剂来保证功能基因和途径的稳定存在,这为大规模低成本生产带来挑战。在染色体水平上进行基因编辑与操作,创建完全没有质粒、基因表达无需诱导的高产工程菌株,对于化学品的生物制造具有重要意义。然而,由于染色体拷贝数少、目标靶点不清楚、基因表达水平低、基因操作相对困难等因素,见诸报道的全染色体编辑的高产工程菌株很少。 /p p   针对这一挑战,中国科学院微生物研究所研究人员以大宗有机溶剂和潜在生物燃料——正丁醇为目标产品,以大肠杆菌为底盘细胞,创建全染色体编辑的丁醇细胞工厂。该研究的基本策略是将细胞工厂构建分为在染色体上创建生物合成途径与全染色体编辑优化两个部分,通过交互循环操作,不断强化丁醇途径以及底盘细胞对丁醇途径的支持能力,从而提高工程菌株的丁醇生产能力。经过以上策略获得的丁醇高产菌株,在简单批式发酵中可以产生20g/L的丁醇,达到产丁醇大肠杆菌最高水平;对葡萄糖的得率达到理论最大值的83%,超越天然的产丁醇梭菌,显示出全染色体编辑代谢工程的潜力。该菌株生产丁醇不需要添加任何抗生素和诱导剂,已在中科院天津工业生物技术研究所中试平台完成了放大测试,效果良好,具有工业化生产应用的潜力。 /p p   该研究使用一系列基因组操作技术,包括同源重组、l噬菌体Red重组技术、CRISPR/Cas9、Tn5转座子突变等,在大肠杆菌染色体水平上对38个基因进行编辑和操作,通过理性和非理性策略相结合,解决竞争碳流的副产物较多、丁醇生产能量和还原力不足、染色体基因表达强度弱等问题,最终获得了具有工业应用潜力的高产丁醇细胞工厂,为创建全染色体编辑的化学品高产细胞工厂提供了范例。 /p p   研究工作得到国家自然科学基金及国家863计划项目等资助,并已申请中国专利,相关研究成果在线发表在 em Metabolic Engineering /em 上。 /p p br/ /p
  • X染色体失活新机制:液-液相分离的成核作用
    性别决定过程中会出现X染色体失活(X chromosome inactivation,XCI)现象,其中涉及到一个非常关键的长非编码RNA Xist,在XCI过程中Xist由两条X染色体中的一个转录出来,覆盖在X染色体之上对X染色体进行沉默【1,2】。Xist通过招募染色质修饰蛋白、转录沉默因子以及其他的RNA结合蛋白,启动基因沉默并对X染色体进行大规模的重塑,形成非活性X染色体中心(inactive X chromosome,Xi)【3,4】。但X染色体上需要被沉默的基因有一千多个,而Xist只有几十个,并不与需要沉默的基因数量级相对应,因此X染色体的沉默的具体机制还不得而知。2021年11月4日,美国加州大学洛杉矶分校Kathrin Plath研究组与Tom Chou研究组以及Yolanda Markaki(第一作者)合作发文题为Xist nucleates local protein gradients to propagate silencing across the X chromosome,揭开了Xist通过对局部蛋白进行成核作用,促进Xist以及相关蛋白在X染色体上的覆盖,从而导致X染色体失活的分子机制。为了检测Xist如何介导X染色体失活,作者们将雌性小鼠胚胎干细胞分化形成外胚层类似细胞(Epiblast-like cells,EpiLCs),此时会促进Xist的表达以及X染色体失活的诱导(图1)。在分化培养的第二天D2到D4是基因沉默的关键时期。通过RNAs-seq,作者们对所有的X染色体相关的基因进行了检测,确认D2-D4是Xist发挥作用的时间框,与其相互作用蛋白一起促进了基因的逐渐沉默。因此,作者们将D2时期的X染色体称为pre-Xi,而将D4时期的染色体称为Xi。图1 外胚层类似细胞中Xist诱导X染色体失活通过对D2-D4转换过程中Xist覆盖体积的统计,作者们发现pre-Xi与Xa的体积相似,而D4的时候Xi的体积与体细胞中凝缩程度相似。而且通过原位杂交实验,作者们发现pre-Xi到Xi的过程中结构出现了显著变化,因此X染色体失活过程中出现了染色体高阶结构的不同。那么首先作者们想知道X染色体失活过程中Xist的数量具体是多少,为此作者们使用三维结构照明显微镜(Three-dimensional structured illumination microscopy,3D-SIM)对Xist的数量进行了统计,利用MS2-MCP实验系统【5】作者们发现Xist的数量大约是50个,每个点中包含两个Xist分子,在pre-Xi到Xi的过程中Xist的数量也没有出现显著的变化。但Xist点联合起来将X染色体上1000多个基因进行了沉默,Xist与被沉默的基因之间庞大的数量差引起了作者们的兴趣。能做到这一点的其中一个可能性是靶标基因之间可以通过快速扩散和瞬时的相互作用而被沉默。为了对这一假设进行检测,作者们检验了Xist点的移动性。作者们惊讶地发现,Xist点的位置几乎没有明显的融合和分裂,说明Xist点的信号位置是被严格限制的,而且主要位于开放的A-compartment之中。图2 Xist招募蛋白效应因子促进超复合体的形成那么Xist是如何做到沉默X染色体上的基因的呢?为此作者们想知道Xist点是否是通过招募其他的效应因子蛋白而导致在X染色体上的沉默的。作者们诱导基因沉默的效应因子蛋白进行检测,发现Xist点会招募其他效应因子比如SPEN等在Xist存在的局部区域形成大分子复合体(图2),增加局部蛋白质浓度形成Xi。SPEN能够形成大分子复合体依赖于其中存在内在无序序列【6】,通过敲除该内在无序序列,作者们发现SPEN蛋白招募进入Xist形成的复合体中也依赖于其内在无序序列,同时该序列对于X染色体失活过程也是非常关键的。Xist与形成的超复合体逐渐对X染色体进行塑形,促进X染色体上基因的沉默,形成X染色体失活中心区域(X-inactivation center,Xic),该区域包含正是Xist基因所存在的区域。图3 工作模型总的来说,该工作发现X染色体失活并非Xist通过扩散到整个染色体上促进基因沉默的,而是通过招募相关的效应因子蛋白形成大规模的、动态的蛋白质复合体(图3),促进X染色体高阶结构变化,逐渐凝缩并最终导致X染色体上的基因沉默。原文链接:https://doi.org/10.1016/j.cell.2021.10.022
  • 央视新闻:合成生物学领域重大突破,首例人工单染色体真核细胞
    p   2018年8月2日,央视网消息(新闻联播):“经过四年研究攻关,中国科学院研究团队与国内多家单位合作,在国际上首次人工创建了单染色体的真核细胞,这也是继人工合成结晶牛胰岛素之后中国科学家在合成生物学领域取得的又一重大突破。这一成果8月2日在国际学术期刊《自然》在线发表。” /p p   据小编细查,新闻中提及的中科院团队具体为中国科学院分子植物科学卓越创新中心/植物生理生态研究所覃重军研究组为主的研究团队。该团队完成了将单细胞真核生物酿酒酵母天然的十六条染色体人工创建为具有完整功能的单条染色体。该项工作表明,天然复杂的生命体系可以通过人工干预变简约,自然生命的界限可以被人为打破,甚至可以人工创造全新的自然界不存在的生命。 /p p   新闻里屡屡出现贝克曼库尔特流式经典产品——MoFlo& #8482 XDP 超速流式细胞分选系统。其实在科学家的杰出成就中,MoFlo& #8482 XDP的出现绝非偶然,甚至可以说是必备神器。因为作为世界上最强大的流式分选系统之一,MoFlo很早就建立了流式分选的金标准,它为推动细胞分选在科学界的应用做出了杰出贡献,在全球科学家中独享盛誉。此次MoFlo再度建立了流式分选的金标准,引领了流式分选的新潮流。 /p p style=" text-align: center " img width=" 557" height=" 428" title=" 微信图片_20180810174744.jpg" style=" width: 458px height: 281px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e8f71d02-791c-4da8-87cd-781927f1a7e3.jpg" / /p p style=" text-align: center " img width=" 557" height=" 447" title=" 微信图片_20180810174751.jpg" style=" width: 455px height: 253px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/81b029b9-a828-4fc6-991c-2f3afc55e42e.jpg" / /p p   2018年是MoFlo系列产品诞辰30周年,自1988年问世以来MoFlo以其优越的性能,高活性、高纯度、高得率、超高速度一直引领着流式细胞分选仪的技术发展。从最早的Cicero、MoFlo Legacy到如今的MoFlo XDP、MoFlo Astrios EQ,MoFlo不断帮助科学家们登上一座座科学新高峰。染色体分选、精子分选、干细胞分选、痕量细胞分选、以及现在热门的单细胞分选、微颗粒分选,贝克曼库尔特生命科学部与科学家们一起不断让其进步,以满足日益增长的科研需求。 /p p style=" text-align: center " img width=" 599" height=" 255" title=" 微信图片_20180810174758.jpg" style=" width: 461px height: 196px " src=" http://img1.17img.cn/17img/images/201808/insimg/8b909348-f55f-48da-ab57-bb20313bb91a.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " strong 1.集高速、高活性、高纯度、高得率为一身 /strong /span /p p   MoFlo系列流式细胞仪位于市面上速度最快的流式分选仪前列。最高每秒钟200,000的液滴形成能力超过其他产品一倍以上。在70,000 EPS分选条件下仍能保持99%以上的纯度及90%以上的得率。其高活性受到业界广泛认可,是干细胞及其他脆弱细胞研究的首选。 /p p style=" text-align: center "   span style=" color: rgb(0, 176, 240) " strong  2.多激光多参数 /strong /span /p p   在MoFlo系统上最多可以配置7根高功率激光,最多同时检测44个参数。可以满足您任何实验的需求。 /p p style=" text-align: center " img width=" 599" height=" 336" title=" 微信图片_20180810174806.jpg" style=" width: 442px height: 194px " src=" http://img1.17img.cn/17img/images/201808/insimg/526dbf61-a018-4aae-b7c7-fb2af3b5db4e.jpg" / /p p style=" text-align: center "   strong span style=" color: rgb(0, 176, 240) "  3.超大数据存储量 /span /strong /p p   Summit软件有大于10亿事件的单文件存储能力,没有参数限制。让您在研究稀有痕量细胞时能看见明显的群体,而不是类似噪音的小点,结果更加可靠。 /p p style=" text-align: center " img width=" 600" height=" 322" title=" 微信图片_20180810174810.jpg" style=" width: 445px height: 220px " src=" http://img1.17img.cn/17img/images/201808/insimg/d97e8157-4587-433b-8150-330fa4df0d4a.jpg" / /p p style=" text-align: center "   strong span style=" color: rgb(0, 176, 240) "  4.混合分选模式 /span /strong /p p   在MoFlo的系统中,不管你做几路分选都可以对不同的分选液路设置独立的分选模式。富集、纯度、单细胞模式,适应不同群落要求,同时完成实验,不用多次分选。并且能对一群细胞设置多种分选模式,既要纯度又要得率,珍贵样本绝不浪费。 /p p style=" text-align: center "   strong span style=" color: rgb(0, 176, 240) "  5.不加电垂直分选 /span /strong /p p   单细胞测序最大的难题就是如何将一个目标细胞准确的分进仅有十几微升液体的管底。为了解决用户的难题,MoFlo独创不加电垂直分选功能。将废液流加电偏转,目标液滴不加电垂直下落,每一个目标细胞都可以精准的到达接受容器管底,不浪费您每一孔的努力! /p p style=" text-align: center " img width=" 599" height=" 218" title=" 微信图片_20180810174817.jpg" style=" width: 453px height: 176px " src=" http://img1.17img.cn/17img/images/201808/insimg/182637d7-9edb-4c9b-b479-d5dc03ad0571.jpg" / /p p style=" text-align: center "   strong span style=" color: rgb(0, 176, 240) "  6.卓越的小颗粒检测能力 /span /strong /p p   具备增强型前向检测器(eFSC)的MoFlo Astrios EQ,将流式的颗粒分辨率带入纳米级别。细胞外囊泡、外泌体流式分析分选的时代已经到来! /p p style=" text-align: center " img width=" 601" height=" 466" title=" 微信图片_20180810174823.jpg" style=" width: 453px height: 250px " src=" http://img1.17img.cn/17img/images/201808/insimg/ac1191ca-a7f0-44c5-bdde-0270afb55c71.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 176, 240) " 7.IntelliSort II全自动分选设置及维持系统 /span /strong /p p   这么优秀的系统操作一定很复杂吧?No!No!No!有了IntelliSort II系统,分选设置只需依次点按三个扭,几分钟内分选设置自动完成。最重要的是还不需要微球哦!又快又省!而且系统还能自动维持分选状态,在一定范围内根据外部环境不断微调参数,保证从分选开始到结束效果始终如一。分选开始就可以干其他事情啦,让您可以真正实现walk away。 /p p br/ /p
  • 【重大喜讯】贝克曼MoFlo™ XDP助力世界首例人工单染色体真核细胞!
    2018年8月2日,央视网消息(新闻联播):经过四年研究攻关,中国科学院研究团队与国内多家单位合作,在国际上首次人工创建了单染色体的真核细胞,这也是继人工合成结晶牛胰岛素之后中国科学家在合成生物学领域取得的又一重大突破。这一成果今天(2日)在国际学术期刊《自然》在线发表。据小编细查,新闻中提及的中科院团队具体为中国科学院分子植物科学卓越创新中心/植物生理生态研究所覃重军研究组为主的研究团队。该团队完成了将单细胞真核生物酿酒酵母天然的十六条染色体人工创建为具有完整功能的单条染色体。该项工作表明,天然复杂的生命体系可以通过人工干预变简约,自然生命的界限可以被人为打破,甚至可以人工创造全新的自然界不存在的生命。(相关报道请请见文末。)新闻一经播出,就有小贝家的粉丝迅速@小编。新闻里屡屡出现贝克曼库尔特流式产品线经典产品MoFlo™ XDP 超速流式细胞分选系统。其实在科学家的杰出成就中,MoFlo™ XDP的出现绝非偶然,甚至可以说是必备神器。因为作为世界上最强大的流式分选系统之一,Moflo很早之前就建立了流式分选的金标准,它为推动细胞分选在科学界的应用做了杰出贡献,在全球科学家中独享盛誉。此次MoFlo再度建立了流式分选的金标准,引领了流式分选的新潮流。2018年是MoFlo系列诞辰30周年,自1988年问世以来MoFlo以其优越的性能,高活性、高纯度、高得率、超高速度一直引领着流式细胞分选仪的技术发展。从最早的Cicero、MoFlo Legacy到如今的MoFlo XDP、MoFlo AstriosEQ,MoFlo不断帮助科学家们登上一个个科学高峰。染色体分选、精子分选、干细胞分选、痕量细胞分选、以及现在热门的单细胞分选、微颗粒分选,贝克曼库尔特生命科学部与科学家们一起不断让其进化,以满足日益增长的科研需求。那么MoFlo有什么独门秘诀呢?1.集高速、高活性、高纯度、高得率为一身;MoFlo系列流式细胞仪位于市面上速度最快的流式分选仪前列。最高每秒钟200,000的液滴行成能力超过其他产品一倍以上。在70,000 EPS分选条件下仍能保持99%以上的纯度及90%以上的得率。其高活性受到业界广泛认可,是干细胞及其他脆弱细胞研究的首选。2.多激光多参数;在MoFlo系统上最多可以配置7根高功率激光,最多同时检测44个参数。可以满足你任何实验的需求。3.超大数据存储量;Summit软件有大于10亿事件的单文件存储能力,没有参数限制。让你在研究稀有痕量细胞时能看见明显的群体,而不是类似噪音的小点,结果更加可靠。4.混合分选模式;在MoFlo的系统中,不管你做几路分选都可以对不同的分选液路设置独立的分选模式。富集、纯度、单细胞模式,适应不同群落要求,同时完成实验,不用多次分选。并且能对一群细胞设置多种分选模式,既要纯度又要得率,珍贵样本绝不浪费。5.不加电垂直分选;单细胞测序最大的难题就是如何将一个目标细胞准确的分进仅有十几微升液体的管底。为了解决用户的难题,MoFlo独创不加电垂直分选功能。将废液流加电偏转,目标液滴不加电垂直下落,每一个目标细胞都可以精准的到达接受容器管底,不浪费你每一孔的努力!6.卓越的小颗粒检测能力;具备增强型前向检测器(eFSC)的MoFlo AstriosEQ,将流式的颗粒分辨率带入纳米级别。细胞外囊泡、外泌体流式分析分选的时代已经到来!7.IntelliSort II全自动分选设置及维持系统:这么优秀的系统操作一定很复杂吧?No!No!No!有了IntelliSort II系统,分选设置只需依次点按三个扭,几分钟内分选设置自动完成。最重要的是还不需要微球哦!又快又省!而且系统还能自动维持分选状态,在一定范围内根据外部环境不断微调参数,保证从分选开始到结束效果始终如一。分选开始就可以干其他事情啦,让您可以真正实walkaway。See it, Sort it. Every well, every time. 分你所见,得您所愿。选择MoFlo,助您成功!赶快联系我们吧!相关报道:1. CCTV 1 新闻联播:[视频]我国合成生物学研究取得重大突破 创建世界首例人工单染色体真核细胞2.上海发布:【最新】中科院今早在沪宣布:我国实现合成生物学里程碑式突破!*本产品仅用于科研,不用于临床诊断。
  • Nat Genetics | 染色体碎裂驱动癌基因扩增
    2019年,BioArt曾解读Nature Reviews Cancer上的一篇观点文章(这篇观点文章是3月发表),讲述了染色体外DNA的(Extrachromosomal DNA,ecDNA)过去和未来(详见BioArt报道:特别推荐丨环状DNA的过去和未来),详细介绍了癌基因在ecDNA上扩增的重新发现的过程,强调ecDNA在肿瘤发病机制和加速癌症进化中的重要性。然而ecDNA的结构如何呢?同年11月21日,美国加州大学圣迭戈分校的Paul Mischel教授团队(注:Mischel正是Nature Reviews Cancer的通讯作者之一另外在2017年,Mischel团队曾发表一篇Nature文章揭示了染色体外癌基因扩增与肿瘤的关系)发表了Nature文章对ecDNA进行了详细解析,利用各种技术手段证明了ecDNA的存在形式是—环状,即ecDNA变成了eccDNA(详见BioArt报道:Nature亮点 | 吴思涵等首次解析肿瘤染色体外DNA的环状结构与功能)。功能上,eccDNA在癌症中扮演了重要的角色,尤其是原癌基因(详见BioArt报道:Nat Genet 丨ecDNA:在癌症基因组图谱上画出浓墨重彩的一笔);来源上,eccDNA不仅来自于染色体,甚至可以整回到染色体中(详见BioArt报道:再一篇!Nat Genetics报道染色体外环状DNA新功能:驱动神经母细胞瘤基因组重排),那么,还有一个问题,eccDNA是否有序列或位置特异性,表观遗传学领域大佬哈佛医学院张毅教授于今年10月20日在Nature上给出了否定的回答,并提到eccDNA可能是基因组DNA随机断裂产生片段的环化产物(详见BioArt报道:专家点评Nature | 突破!张毅团队揭秘染色体之外环状DNA的前世今生)。再回到癌症,基因扩增对于癌症的发展“功不可没”,其扩增可以分为染色体外扩增(如双微体,double minutes,DM)和染色体内扩增(如均匀染色区,homogeneously staining regions,HSR)。除了DM和HSR,还有一种是巨型标记染色体(giant marker chromosomes)或者新染色体(neochromosomes)。这些概念也说明了癌症基因扩增中演化的复杂性。尽管扩增演化中的部分形式的机制已经相对比较明确了,比如串联重复等,但大部分还是不甚清楚。2021年11月15日,德国科隆大学儿童医院Matthias Fischer在Nature Genetics上发表了文章Chromothripsis followed by circular recombination drives oncogene amplification in human cancer,利用小儿神经母细胞瘤的全基因组测序发现一种新型扩增,并命名为“地震扩增”(seismic amplification,注:这一术语原本属于地质学或者地震相关学科),这一扩增的特点为多重重排和不连续的拷贝数,并且在38种不同类型肿瘤的发生率为9.9%(在38种不同类型肿瘤共计2756例病人中,出现例数为274,占9.9%)。机制上,地震扩增起始于染色体碎裂,产生染色体外环状DNA,之后是环状重组,由此导致原癌基因拷贝数增加、表达升高,从而促进癌症的发生。首先,研究人员检测了79例神经母细胞瘤样本的全基因组数据,对其基因扩增进行了详细分析,并将经历过14次及以上内部重排的扩增子定义为“地震扩增”。根据这一定义,神经母细胞瘤中228个扩增子中有20个属于“地震扩增”,并且影响了79例样本中的19例。其热点区域主要有两个,2p24(内部有MYCN)和12q13/12q15(内部有CDK4和MDM2)。除了神经母细胞瘤,研究人员进一步分析了TCGA上37种不同类型癌症的2677个肿瘤样本,对其“地震扩增”进行了描述。由于染色体碎裂可产生大规模的基因重组,研究人员比对了染色体碎裂和“地震扩增”的区域,发现77.6%的地震扩增子与染色体碎裂区域至少部分重合,其中34.9%是完全重合。同时研究人员排除了断裂—愈合—染色体桥循环(breakage-fusion-bridge cycles)是地震扩增起始事件的可能性。之后,研究人员对重排和扩增事件进行了分析,描述了“地震扩增”的过程模型:1)一个或多个染色体区域发生染色体碎裂;2)将随机片段整合为环状DNA;3)发生环状重组事件(这些环状重组事件与肿瘤细胞高频突变有关);4)扩增区域或保留在双微体中、或以均匀染色区形式整合进染色体中、或形成新染色体。重要的是,“地震扩增”在肿瘤细胞中是稳定的,而非变化的。总之,该研究定义了一种复杂的基因扩增形式——“地震突变”,并描述了其扩增过程,为理解癌症基因组演化包括染色体外环状DNA提供了新的解读。原文链接:https://doi.org/10.1038/s41588-021-00951-7
  • 《Science》回答:那么多条染色体,分离的时候怎么不掉队?
    有机体从单个细胞开始,经过数百万代的分裂,最终生成骨骼、心脏、大脑和其他组成生物的成分。在这个复杂的过程中,DNA的转移是通过染色体这种离散包来进行的。在细胞分裂的每一代中,所有染色体的复制和精确分布是至关重要的。如果遗传的染色体成分发生改变,即使是轻微的改变,也可能导致出生缺陷和某些癌症。博士后学者Pablo Lara Gonzalez,生物科学部教授Arshad Desai和他们的同事在《Science》杂志上发表了一项新的研究,研究了每次细胞分裂时染色体如何正确遗传的奥秘。Lara Gonzalez和Desai使用了一种新的探针来监测这一过程的一个关键方面,他们详细研究了“等待”信号背后的机制,以确保细胞分裂不会过早启动。研究人员将他们的研究集中在 “纺锤体检查点”上,这是一种质量控制机制,可以确保细胞分裂过程中染色体的准确遗传。纺锤体检查点通路在染色体上的一个叫做着丝粒的位置被激活,着丝粒是一个机械界面,蛋白质纤维在这个界面上耦合,将染色体拉开。细胞与发育生物学(生物科学)和细胞与分子医学系(医学院)教授Desai说:“当着丝粒没有附着在这些蛋白质纤维上时,它们会发出‘等待’信号,使细胞停止有丝分裂(细胞分裂),从而为附着物的形成提供时间。”通过这种方式,细胞确保所有染色体正确连接,并准备在细胞分裂前被拉开,从而不留下任何染色体。在这篇论文中,研究人员描述了等待检查点信号是如何在未连接染色体的着丝粒上产生的。巧合的是,他们研制出了一种荧光探针,使他们第一次能够观察到活细胞着丝粒中等待信号产生的关键分子事件。Lara Gonzalez说:“这项研究发现了一个关键的‘媒人’分子,它将等待信号的两个成分结合在一起,而这两个成分不喜欢单独联系在一起。这些发现有助于解释为什么‘等待’检查点信号选择性地产生于动粒而不是细胞的其他部位。”研究人员说,这一发现为在某些疾病状态(如癌症)下如何降低染色体遗传的准确性提供了一个框架。
  • 日研究人员制成植物人工染色体有助开发新品种
    日研究人员制成植物人工染色体有助开发新品种 日本冈山大学资源植物ELISA试剂盒研究所教授村田稔率领的研究小组25日宣布,他们成功在植物细胞内人工制造出了带有遗传信息的染色体。这一成果将有助于开发新的作物品种。 ELISA试剂盒研究小组使用拟南芥,利用“自顶向下分析法”,通过操控细胞内原有的染色体,并进行改编,制作出了比通常染色体要小的环状人工染色体。即使是自花授粉的种子,也有40%以上继承了这种人工染色体。 ELISA试剂盒研究小组说,利用植物制作出能被下一代继承的人工染色体,这在世界上尚属首次。通过向这种染色体植入特定的基因,就可培育出能抗病虫和抗倒伏的新植物和作物品种。 村田稔说:“利用这种技术,还可以只在水稻生长期间,植入抗病虫和抗倒伏的基因。”Mouse Linker for activation of T cell,LAT ELISA Kit 小鼠T细胞活化连接蛋白(LAT)ELISA试剂盒 规格: 96T/48TMouse lipoprotein lipase,LPL ELISA Kit 小鼠脂蛋白脂酶(LPL)ELISA试剂盒 规格: 96T/48TMouse lipoprotein α,Lp-α ELISA Kit 小鼠脂蛋白α(Lp-α)ELISA试剂盒 规格: 96T/48TMouse lipoprotein-associated phospholipase A2,Lp-PL-A2 ELISA Kit 小鼠脂蛋白相关磷脂酶A2(Lp-PL-A2)ELISA试剂盒 规格: 96T/48TMouse L-Phenylalanine ammonla-lyase,PAL ELISA Kit 小鼠L苯丙氨酸解氨酶(PAL)ELISA试剂盒 规格: 96T/48TMouse L-phenylalanine,LPA ELISA Kit 小鼠苯丙氨酸(LPA)ELISA试剂盒 规格: 96T/48TMouse L-Selectin ELISA Kit 小鼠L选择素(L-Selectin/CD62L)ELISA试剂盒 规格: 96T/48TMouse Luteinizing Hormone-Releasing Hormone,LHRH ELISA Kit 小鼠黄体生成素释放激素(LHRH)ELISA试剂盒 规格: 96T/48TMouse luteotropic hormone,LH ELISA Kit 小鼠促黄体激素(LH)ELISA试剂盒 规格: 96T/48TMouse lymphocyte factor ELISA Kit 小鼠淋巴细胞因子ELISA试剂盒 规格: 96T/48TMouse lymphocyte function associated antigen 3,LFA-3 ELISA Kit 小鼠淋巴细胞功能相关抗原3(LFA-3/CD58)ELISA试剂盒 规格: 96T/48TMouse lymphotactin,Lptn/LTNELISA Kit 小鼠淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒 规格: 96T/48TMouse Lysozyme,LZM ELISA Kit 小鼠溶菌酶(LZM)ELISA试剂盒 规格: 96T/48TMouse Macrophage Colony-Stimulating Factor,M-CSF ELISA Kit 小鼠巨噬细胞集落刺激因子(M-CSF)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 1β,MIP-1β ELISA Kit 小鼠巨噬细胞炎性蛋白1β(MIP-1β/CCL4)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 1δ,MIP-1δ ELISA Kit 小鼠巨噬细胞炎性蛋白1δ(MIP-1δ/CCL15)ELISA试剂盒 规格: 96T/48T
  • 广州生物院等在染色质高级结构调控细胞命运机制研究中获进展 成果发表于Cell Reports
    真核生物基因组DNA缠绕在组蛋白八聚体上形成染色质,并在染色质架构蛋白的作用下逐级折叠形成远距离的染色质相互作用(或染色质环)、拓扑相关结构域和染色质区室等染色质高级结构。远距离染色质互作可以调控基因表达,在细胞命运决定过程中具有关键作用。CCCTC结合因子(简称CTCF)最早被认为是绝缘子结合蛋白,随后发现CTCF在转录激活/抑制、基因印记、X染色体失活等方面均发挥重要的调控作用。近年来,CTCF被认为是染色质架构蛋白,与Cohesin复合物等在调控远距离染色质相互作用和维持染色质“成环”等方面起到重要作用。然而,CTCF是否在同一生物学过程中发挥其多重功能至今尚不清楚。4月5日,中国科学院广州生物医药与健康研究院研究员姚红杰课题组联合美国加州大学圣地亚哥分校教授付向东课题组,在Cell Reports上,发表了题为CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming的研究论文。该研究运用体细胞重编程到诱导多能干细胞为模型,结合多维组学技术,并联合生物信息分析,揭示了CTCF介导的染色质绝缘和染色质结构变化协同调控干细胞多能性获得的新机制。研究发现,CTCF在体细胞重编程过程中表达逐渐升高,并发挥促进体细胞重编程为诱导多能干细胞的作用。在这一过程中,CTCF具有同时抑制体细胞相关基因表达和促进多能性基因网络激活的双重功能。机制分析发现,CTCF通过发挥染色质绝缘功能抑制体细胞相关基因的表达,同时,CTCF具有维持多能性基因染色质开放的作用,CTCF还结合在部分多能性基因启动子区,促进这些多能性基因增强子(Enhancer)和启动子(Promoter)之间的相互作用(EP互作)。此外,该研究还揭示了CTCF与染色质重塑因子SMARCA5形成蛋白复合物,有助于维持多能性基因的染色质开放和多能性转录因子的结合,促进多能性基因网络的激活。研究表明,在体细胞重编程为诱导多能干细胞过程中,CTCF发挥了介导染色质绝缘和染色质重塑的协同调控作用。该研究进一步完善了CTCF的生物学功能,并为后续研究细胞命运决定的调控机理提供了新思路。研究工作得到国家杰出青年科学基金、国家重点研发计划、国家自然科学基金联合基金项目和中科院战略性先导科技专项等的支持。  论文链接 本研究的模式图
  • Y染色体检测助白银案告破 基因技术千亿级市场待开启
    很多人认为,“白银案”告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用  位列“中国四大谜案”之首的一桩陈年悬案告破,受害人家属得到欣慰的同时,传统的DNA技术以及新一代基因测序技术也都跟着走红了。  公安部刑侦局8月27日发布消息,1988~2002年间强奸、杀害多名女性的犯罪嫌疑人高承勇在甘肃省白银市落网。高承勇对犯罪事实供认不讳,甘蒙“805”系列强奸杀人残害女性案(白银案)成功告破。  由于帮助办案人员找到犯罪嫌疑人的是一种叫作Y-DNA遗传标记的技术,有人将该案的最终告破归因于基因技术的进步。事实上,Y-DNA遗传标记技术已有30多年历史,是一项十分成熟的技术,警方也并非第一次使用。  相比Y-DNA遗传标记技术,新一代基因测序技术更为先进,基于新技术,寻人(寻亲)或许将不再是一件难事。未来,在医疗健康等领域,基因技术将开启一个新的千亿级市场。  Y染色体检测技术立功  提及司法侦破中的基因技术,很多人都会觉得“酷炫”,因为侦查人员可以仅凭现场的血迹、精液、指纹等身体特征线索,就能在茫茫人海中锁定犯罪嫌疑人。  事实上,从线索到锁定嫌犯,中间还要跨越巨大的数据库鸿沟。  甘肃省白银市在1988~2002年先后发生了9起女性惨遭入室杀害的案件。其间,内蒙古自治区包头市昆都仑区也发生过两起类似案件。  虽然历次罪案现场都留下了数量不等的血迹、精液、指纹、足印等线索,但因为上世纪90年代西部地区的街头几乎没有监控探头,案发前后也几乎没有目击者和间接证人,警方一直未能查出凶手的身份。  直到近期,与案犯同姓氏的远房堂叔因为在甘肃省武威市民勤县犯了罪被监视居住,白银警方采集到了他的血样,经Y-DNA检验分析后发现,结果与“805”大案嫌犯的Y-DNA信息相符合。这一初步检测的结果表明,案犯与此人有相同的Y染色体遗传,是同一家族的男性成员。  警方随后启动家系排查,对其家族上下直系男性逐一筛排分析,尤其是警方已经掌握的嫌犯的大致年龄,最后确定此人的远房侄子高承勇具备作案条件。  高承勇归案后,其本人指纹和DNA与案发现场的指纹和DNA相同。经审讯,案犯对犯罪事实供认不讳。  30多年的老技术  很多人认为,白银案最终告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用这一技术。  Y染色体鉴定为基础的姓氏检测,是一项生物技术,最早来源于亲子鉴定技术。DNA中有一种特异性的碱基序列称短串联重复顺序(Short Tandem Repeat, STR),Y染色体上的STR称Y-STR,具有家族特异性。  目前已在Y染色体上发现30个左右的STR标记物,通常选取其中6~10个标记物即可满足姓氏检测鉴定的基本要求。另有数据显示,如果把中国12.5亿的汉族人口按照Y-DNA的家系来区分,中国大约有100万个姓氏家系。  华大司法研究人员张博士告诉记者,2006年8月告破的陕西汉阴邱兴华案也用到了这一技术。  在山阴道观铁瓦殿杀害了10名道观管理人员和香客后,邱兴华逃离现场。公安人员从他抽过的烟蒂携带的脱落细胞上,进行了Y-染色体DNA检测,加上相关证人的描述,确定了邱兴华是犯罪嫌疑人并对他进行了抓捕。  Y-DNA遗传标记技术出现了30多年,公安应用也较为广泛,只是普通人并不常接触。当然,这一技术的应用对于数据库内的DNA样本量也有一定要求。  在业内人士看来,DNA技术用于司法破案的震慑作用比实际作用更大,只要在案发现场发现任何蛛丝马迹,公安人员就能通过一定的科技手段找到犯罪嫌疑人。  千亿级市场待开启  随着新一代基因测序仪的出现,新一代基因测序技术也将更多在司法领域“大显神威”。  张博士告诉本报记者,比如新技术可以进行“基因画像”,和传统的画像方式相比,基因画像更加逼真。同时,对于一些复杂的犯罪现场,犯罪嫌疑人的DNA非常微量,可能还混杂了细菌、微生物等,用传统的技术无法检测,新一代基因测序技术都可以解决。  新一代基因测序技术虽然更高效,但在司法鉴定中的推广比较慢,原因之一是成本高。新一代基因测序技术的成本与之前的技术相比,实现了“超摩尔定律”的降低速度,个人全基因组数据从最初的30亿美元,降低到目前的1000~1300美元左右,如果这一成本在几年内有望降低到100美元甚至更低,那普通人都可以到专业的基因机构存储自己的DNA信息。  除了抓捕犯人,让走失的老人或儿童回家,也是DNA信息的重要作用。如果一名孩子或老人录入过DNA信息,一旦走失,被公安人员发现后,便可通过DNA信息比对,迅速找到失散的家人。  基于寻人(寻亲)目的而存储的DNA信息不需要存储个人全基因组数据。张博士表示,只需要存储一些中立DNA,就能在茫茫几十亿人中确定并找到唯一的个人,也不会涉及这个人的功能基因和疾病信息。  尽管市场上也有一些基因检测公司推出瞄准儿童走失的“基因ID”产品,但是,国内像华大司法一样具备司法部核准的第三方鉴定机构且掌握新一代基因技术的机构并不多。  有些走失了孩子的家庭,父母并不知道可以通过孩子用过的牙刷、鞋袜提取到DNA信息,存储下来,未来如果孩子再有机会录入DNA信息,就能通过比对找到父母。  华大司法近期推出的公益项目,就是免费帮助丢失儿童的家庭建立DNA档案,但是至今只有三个家庭主动向华大司法求助。  “存储DNA的目的是为了让我们无论在哪儿都能找到家人。”张博士说。  除了寻人,新一代基因测序技术还能用于亲子鉴定。张博士表示,传统的DNA分型技术只能在孩子出生以后或通过羊水穿刺这种有创方式来进行取样,确定孩子和父母之间的血缘关系。而利用新一代基因测序技术,仅通过抽取怀孕妈妈的外周血,就能尽早知道亲子信息。  事实上,新一代基因测序技术除了司法领域的应用外,在临床医疗领域,很多基因测序公司已经研发出贯穿整个生命周期的产品,个体化医疗的时代正在被基因技术开启。  比如,怀孕前可以做夫妇双方的遗传病基因检测,针对一些有经常性流产史的人也可以对流产组织进行基因检测辅助诊断,新生儿出生后可以做遗传代谢病、遗传性耳聋等儿童期高发遗传病检测,做到防患于未然。  针对肿瘤基因检测,可以通过抽取外周血检测与肿瘤相关的508个基因,可以指导个体化用药,以及预测家族遗传性肿瘤的风险,在一些癌症治疗中,基因检测也可起到常规用药指导的作用。  业内人士表示,如果这些检测产品能够经过监管部门审批,和医疗机构合作,进入临床使用,基因技术打开的将是一个千亿级的市场,而现在正处于市场看到光明前的黑暗期。
  • NGS走进产前染色体筛查,势在必然
    p   最近,来自深圳华大基因、香港中文大学以及南京医科大学的研究人员通过实验证实了低覆盖全基因组测序应用于染色体变异 a title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong 临床筛查 /strong /span /a 的可行性与重要性,他们的研究成果就刊登在最新的Genetics in Medicine上。 /p p   实验过程中,研究人员通过高通量基因组测序对上百个产前及产后样本进行了染色体分析,有效检测结果率高达96%。研究样本共涵盖119例染色体异常与103例拷贝数异常,其中包括53%的流产胎儿以及14.7%的死胎。同时,研究人员根据样本来源为不同样本设计了多种诊断策略。 /p p   根据他们的实验过程与研究结果,论文的作者持续强调着他们的工作突出了NGS在产前及产后样本基因检测中的潜在重要性,应用NGS技术,研究人员检测到了常规核型分析及染色体微阵列分析所不能发现的多种染色体变异。 /p p   传统的微阵列比较基因组杂交以及SNP(单核苷酸多态性)阵列技术通常被用于诸如迪格奥尔格综合症、天使人综合症等疾病的致病性CNV(拷贝数变异)筛检。然而,对这些技术的回顾性研究却在不断暗示着NGS可能会发现一些诸如此类的传统筛检技术所不能发现的染色体错误。 /p p   相比之下,基于测序的低覆盖染色体筛检技术具有更高的敏感性与特异性。通过测序技术,研究人员在570例产前与产后样本中检出了异倍或致病性CNV。其中包括186例产后血样、37例死胎与198 例早期流产胎儿的组织样本以及149例其他产前样本。这些样本由中国以及香港的科研中心于2013年至2015年之间收集。 /p p   应用Illumina HiSeq 2000,研究团队成功地导出了549例样本的深度测序数据,剩余样本所导出的低质数据被研究人员归咎于原始样本的DNA质量过差。有赖于测序数据,研究人员揭示了119例样本中的染色体异常并在82例样本中发现了超过100种致病性CNV,82例样本中共计74例染色体缺失与29例染色体重复。同时,研究人员在11例样本中发现了镶嵌异倍体的存在。 /p p   研究人员表示,染色体的测序结果与微阵列检测结果相一致,同时测序还发现了32例微阵列检测并未发现的突变样本。 /p p   最终,文章的作者再次强调,他们的工作“突出了NGS在产前及产后样本基因检测中的潜在重要性, NGS有能力精确 a title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong 检测 /strong /span /a 常规核型分析及染色体微阵列分析所不能发现的多种染色体变异。” /p
  • Nature!首个Y染色体完整测序结果发布
    随着两篇最新研究论文在顶尖学术期刊《自然》正式上线,人类Y染色体的完整序列终于展现在世人面前。这条染色体是人类的性别决定染色体之一,也是人类46条染色体中最后一条完全解码的染色体。▲人类Y染色体是人类基因组中最后一条得到完整测序的染色体(图片来源:参考资料[3];Credit:Darryl Leja, National Human Genome Research Institute)2022年,在国际科研团队“端粒到端粒”联盟(T2T)的通力合作下,最新版的人类参考基因组(被命名为T2T-CHM13)问世,包括所有22条常染色体和X染色体的“无缝组装”,含有30.55亿对碱基。这份参考基因组达到了前所未有的完整程度,解开了染色体着丝粒等结构复杂的区域。然而,人类参考基因组中的Y染色体,仍有一大半序列是缺失的。Y染色体成为人类基因组的最后谜团,与其重复结构的异常复杂有关。所有染色体都有一些重复序列,但在Y染色体中,重复序列所占的篇幅特别大,将近一半——约3000万个碱基是重复序列,因此要把测序读取到的片段重新拼装起来就特别困难。玩过拼图的朋友知道,缺乏线条的纯色图案最具挑战。为了解决这一难题,T2T联盟领导的这项新研究应用了前沿的长读取测序技术和新型的计算组装方法,借鉴此前无缝组装人类其他染色体时的成功经验,首次完成了Y染色体的测序和组装。其结果填补了Y染色体长度50%以上的空白,同时纠正了原先人类参考基因组序列中Y染色体上的多个错误。▲全球100多名研究人员组成的团队对人类Y染色体进行了全面测序“最大的惊喜是,那些重复序列是如此有序。”论文通讯作者、T2T联盟的联合主席Adam Phillippy博士在美国国立卫生研究院(NIH)的新闻稿中指出,“过去我们不知道缺失的序列是如何组成的,有可能非常混乱。但事实相反,染色体中近一半由两段特定的重复序列——即‘卫星DNA’——交替组成,构成了拼布一般的图案。”根据此次获得的完整序列(T2T-Y),人类的Y染色体由62,460,029对碱基组成。科学家们从中新鉴定出了41个过去未知的蛋白编码基因,也揭示了影响生育的重要基因组特征。▲一条人类Y染色体的完整序列(图片来源:参考资料[1])例如,Y染色体有一段被称为“无精子症因子区”,包含了与精子生成有关的几个基因。而这段DNA中有一组回文序列。这种回文结构会形成环状结构(DNA loop),有时DNA环被意外切断,造成缺失。而“无精子症因子区”的DNA缺失会破坏精子生成,导致不育。研究人员指出,有了完整的Y染色体序列,现在就可以更精确地分析这类缺失及其对精子生成的影响。这项研究还重点关注了TSPY(testis-specific protein Y)基因家族,即睾丸特异性蛋白编码基因,新发现的41个基因中有38个属于这一家族。它们的一大特征是串联重复拷贝非常多。研究人员在分析这一区域时发现,不同的个体含有的TSPY拷贝10~40个不等。Y染色体不仅结构复杂,还是人类染色体中变化速度最快的染色体,《自然》同期发表的另一篇研究论文便揭示了Y染色体在不同人群中的演化和变异。研究团队一共组装了43条来自不同男性个体的Y染色体,他们来自全球21个不同种群。这些组合提供了人类Y染色体在18.3万年间遗传变异的详细视图,揭示了新的DNA序列、保守区域的特征,并揭示了造成Y染色体复杂结构的分子机制。图片来源:123RF完整的人类Y染色体序列将为许多新发现打开大门。除了与性别决定有关的特征外,Y染色体上的基因对人类的其他性状和疾病也有影响,比如癌症的患病风险和严重程度。基于Y染色体的完整序列,后续将有更多研究可以围绕影响癌症或其他疾病的临床相关基因深入探索。一些研究发现,拥有Y染色体的人随着年龄增长会丢失部分或全部Y染色体,但科学家们还没有完全弄清这种情况为什么会发生、可能产生哪些影响。现在,解开这一谜团将变得容易。在意料之外的领域,研究论文也提供了一个有趣的发现:在过去有些研究中被认为是细菌DNA的遗传物质实际上来自人类的Y染色体,也就是被人类样本污染的结果。因为这些细菌样本在采集时,通常提取自人类皮肤,而过去由于人类参考基因组中Y染色体的大部分序列都是缺失的,一些未能被正确识别的序列就被误以为是细菌的。研究人员指出,更新的序列数据有望对细菌基因组的研究提供帮助。
  • Nat Methods | 汤富酬课题组开发出基于单分子测序平台的scNanoHi-C技术,可精准检测单细胞高阶染色质互作
    真核生物基因的表达受到基因组中顺式作用元件的复杂调控。哺乳动物基因组中存在大量的顺式作用元件,例如:启动子、增强子、沉默子、绝缘子等等,其数量远远超过蛋白编码基因。目前人类基因组中已知的顺式调控元件就有一百多万个,而蛋白编码基因只有大约两万个。遗传学研究也表明基因调控不仅仅是单个基因之间一对一的简单调控事件,而是以调控网络的形式发挥作用,不同的调控元件以及靶基因之间存在着复杂的相互作用。例如,一个基因的启动子可以整合来自多个增强子或者沉默子的调控作用,一个增强子元件也能够同时影响多个基因的表达1-3。随着三维基因组技术的发展,人们对基因表达调控相关的染色质构象已经有了一定的理解,但由于技术的限制,大部分研究都是集中在成对的相互作用(pair-wise interaction)上,而对于多个顺式调控元件同时与一个基因启动子之间的高阶相互作用(high-order interaction)的研究仍然比较有限。此外,多个基因组元件是如何通过三维基因组构象的变化同时参与基因表达调控的机制目前也尚不清楚。近年来,为了探究更精准和全面的染色质互作情况,检测高阶染色质互作的技术也相继出现。然而这些技术往往局限于基因组的特定位点,或是需要特殊的仪器设备。得益于三代测序平台(单分子测序平台)的日渐成熟,最近开发的基于牛津纳米孔技术 (Oxford Nanopore Technology, ONT) 的Pore-C方法4在检测染色质高阶相互作用方面表现出优异的性能,可以通过应用新的统计方法有效地分析全基因组中多个染色质位点之间高阶相互作用的协同性。尽管上述这些基于大量细胞的研究方法能够有效地检测染色质的高阶相互作用,但它们无法解决细胞间的异质性问题,阻碍了它们在复杂组织器官样品中的应用。而现有的单细胞Hi-C(single-cell Hi-C,scHiC)技术受限于二代测序较短的读长(通常是双端总共300bp)也难以对染色质高阶相互作用进行检测。目前除了单细胞超分辨率成像以外,2022年开发的scSPRITE5是唯一一种可以在单细胞水平检测染色质高阶相互作用的测序方法。但是该方法更适用于远距离的间接染色质高阶相互作用,而对于与基因调控更相关的直接染色质高阶相互作用的检测能力很有限。此外,scHi-C 的另一个挑战是很难平衡捕获细胞群体异质性所需的高通量(每次实验能够检测大量单细胞)与探索高分辨率 3D 基因组结构所需的高深度(每个单细胞中捕获大量染色质相互作用)之间的矛盾。因此,需要一种可扩展的 scHi-C方法来剖析高阶染色质三维结构,并在单细胞水平上研究这些染色质高阶相互作用在不同生物过程中的协同调控机制。为了应对这些挑战,2023年8月28日,北京大学生物医学前沿创新中心汤富酬课题组在Nature Methods上发表题为scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells的文章。该研究在国际上率先使用单分子测序平台开发了一种基于邻近连接的单细胞染色质构象捕获方法,称为 scNanoHi-C。该方法实现了在单细胞水平的高阶染色质相互作用检测,并且在通量上具有很好的灵活性,能够满足不同的实验需求。在实验上,scNanoHi-C依次使用 1% 甲醛 (FA) 和 1.5 mM 戊二酸二琥珀酰亚胺酯 (DSG) 孵育进行交联,以降低连接反应的随机噪音并兼顾对短程和长程染色质相互作用的高灵敏度检测。为了尽可能完整地保留单细胞中固定连接后的染色质三维结构信息,该研究设计了一种灵活的单细胞基因组长片段扩增方法。该方法使用两端具有相同接头的低浓度Tn5转座酶以提高DNA片段扩增长度和基因组覆盖度,并通过设计24种带有不同条码标签的 Tn5 酶结合后续PCR扩增中引入的条码标签共同控制测序的通量。通过这种方式,scNanoHi-C 能够在一次 PromethION 测序中对少至几个单细胞进行低通量、高覆盖度测序或者对数千个单细胞(最高可达 24×96=2304个细胞)进行高通量、低覆盖度测序,可以根据实验需求灵活进行选择(图1)。为了评估scNanoHi-C技术的可靠性,该研究首先将scNanoHi-C应用于正常二倍体的GM12878细胞系,并分别使用低深度(~0.2Gb/cell)、中等深度(~1Gb/cell)、高深度(~4Gb/cell)三种策略进行测序,并与基于二代测序平台的大量细胞原位Hi-C标准数据集进行比较,结果显示出很高的一致性。同时每个策略检测到的串联体(含有有效染色质相互作用的测序读段)中大约一半为高阶串联体(包含三个以上不同调控元件间的相互作用)。在这些高阶串联体中,大约58%是三联体,26%是四联体,其余为五联体以上的多联体(基数从5到11不等)。图1:实验流程示意图以及高阶串联体的检测接着该研究在多个方面对scNanoHi-C的应用进行了探索:1.scNanoHi-C可以在单细胞水平上精准捕获染色质三维结构的异质性。scNanoHi-C能够在单细胞水平检测各层级染色质结构特征,包括染色体领域(整条染色体,50Mb-200Mb尺度的结构特征)、A/B区室(常染色质区域与异染色质区域,5Mb-20Mb尺度的结构特征)、以及拓扑关联结构域样结构(TAD-like,0.5Mb-5Mb尺度的结构特征)。同时,scNanoHi-C的单个染色质片段长度(单体长度,平均610 bp)相较于传统基于二代测序平台的scHi-C(测序不超过150bp)显著提高,这大大增加了其在染色质相互作用对中捕获到单核苷酸多态性(SNP)位点的机会,能够在二倍体细胞中直接判定单倍型的单体比例由原来二代测序平台的大约9%提高到了25%。因此,scNanoHi-C也可用于有效地重建单个二倍体细胞的基因组三维构象。同时,利用单细胞A/B 区室化值(single-cell A/B compartment value, scA/B value), scNanoHi-C对GM12878、HG002 和 K562 三种人类细胞系进行了聚类分析,能够在单细胞精度准确将三种细胞分开,并识别了细胞类型间的染色质差异区室化区域。此外, scNanoHi-C也能够准确地检测每个单细胞的基因组拷贝数变异(CNV)特征。分析结果表明,scNanoHi-C准确地捕获了GM12878细胞培养过程中产生的非整倍体亚克隆以及K562细胞的拷贝数变异。同时,scNanoHi-C也可应用于结构变异的检测,如准确检测出了K562 细胞中 BCR-ABL1 和 NUP214-XKR3 的基因融合事件(染色体易位事件)。图2:scNanoHi-C串联体和单体的长度分布、单倍体分型的比例、细胞分群结果和单细胞拷贝数变异(CNV)图谱2.scNanoHi-C能够在单个细胞中准确鉴定高阶染色质相互作用。该研究在GM12878 细胞数据集中,使用scNanoHi-C得到的单细胞高阶串联体信息结合ABC模型(Activity-by-contacts model)6预测的增强子-启动子 (E-P) 相互作用关系共同鉴定了增强子-启动子高阶相互作用。通过这种方式,该研究首次在单个细胞中以20 kb的分辨率直接观察到1,097 个基因的单个启动子能够与多个增强子同时发生相互作用,表明这些基因可能同时受到多个增强子的调控。这些受到高阶调控的基因主要富集在与GM12878这种B淋巴细胞的功能相关的免疫信号通路上,并且通常表现出更高的表达水平。特别地,这些基因中还包括一些B细胞谱系特异性转录因子如EBF1以及EBV 超级增强子相关基因如MIR155HG、IKZF3和ETS1等。这些结果表明,多个增强子的协同调控可能是确保关键基因高水平稳健表达的一种潜在机制。通过类似的方法,该研究还在单个细胞中鉴定出了1,422 个能够与多个启动子同时发生相互作用的增强子。此外,该研究发现部分高阶基因调控作用能够在多个单细胞中被检测到,这可能与细胞中频繁使用的关键转录程序有关,后续可以通过发展基于富集策略的具有更高分辨率的Hi-C技术进行进一步的深入研究。图3: scNanoHi-C技术对多向基因调控网络的检测3.scNanoHi-C能够揭示不同基因组区域之间的协同调控关系以及染色体外环形DNA与线性基因组间的复杂相互作用。倾向于形成高阶相互作用的一组基因组位点称为“基因组协同调控区域”。该研究针对scNanoHi-C的数据特点对鉴定基因组协同调控区域的算法进行了优化,并将该算法运用到GM12878细胞活跃启动子和增强子的集合中,在全基因组范围内共鉴定出了917组增强子-启动子协同调控区域。其中,大约20%(187/917)的协同调控区域包含来自不同染色体的基因组位点(提示不同染色体之间的反式相互作用)。这些协同调控区域在活跃转录的基因组区域、淋巴细胞特异性转录因子和染色质环相关因子(CTCF等)的结合位点区域中高度富集。此外,在917个协同调控区域中,有167个被发现与GM12878细胞特异性的超级增强子有关。接着,该研究将scNanoHi-C运用到携带大量染色体外环形DNA(ecDNA) 的COLO320DM 人类结直肠癌细胞系中,检测到了染色体外环形DNA与线性基因组(染色体内的基因组)之间存在广泛的染色质高阶相互作用,并且首次在单个细胞中观察到四个主要的染色体外环形DNA的基因位点之间存在复杂的高阶相互作用。这些结果表明,染色体外环形DNA可能通过建立复杂的高阶染色质三维结构来驱动癌基因的过量表达。图4: scNanoHi-C技术对染色体外环形DNA(ecDNA)相关的协同作用的检测4.scNanoHi-C能够高效辅助单细胞基因组从头组装。在可用细胞数量有限的情况下,该研究表明使用scNanoHi-C辅助单细胞基因组(single-cell whole genome sequencing,scWGS)从头组装7可以大幅度提高组装质量。例如,使用20个单细胞的基因组长读长测序数据和12个单细胞的scNanoHi-C数据组装的人类基因组支架(scaffold)的NG50要优于使用30个单细胞的基因组长读长测序数据直接组装的效果(2.49 Mb vs. 1.34 Mb)总之,scNanoHi-C具有很好的可扩展性和灵活性,在一次测序中可对少至几个单细胞或多达数千个单细胞进行染色质三维结构测序,并且实验流程相对简单、易于操作,仅需要基本的PCR仪等分子生物学设备,适合于各种生物学实验室使用。scNanoHi-C还是一种强大且多功能的工具,可用于在单细胞分辨率准确区分细胞类型、对单个二倍体细胞进行高效单倍型分型、检测单个正常细胞和肿瘤细胞中的基因组拷贝数变异和各种复杂结构变异以及高效辅助单细胞基因组从头组装。更重要的是,scNanoHi-C 首次实现了在单个细胞中在全基因组水平对增强子-启动子的高阶直接相互作用的检测,在单个细胞中准确鉴定了高阶基因调控事件,同时能够对复杂的染色体外环形DNA与线性基因组间的高阶相互作用进行精准检测。scNanoHi-C显示了单细胞长读长Hi-C测序技术在分析由高阶染色质三维结构介导的不同细胞间基因调控异质性方面的潜力,为将来进一步研究发育和疾病进展过程中高阶染色质结构变化机制,揭开基因组中各种复杂调控关系中的“暗物质”奠定了坚实的基础。北京大学生物医学前沿创新中心、前沿交叉学科研究院生命科学联合中心博士生李文、生命科学学院博士生卢健森为该论文的共同第一作者,北京大学生物医学前沿创新中心汤富酬教授为该论文通讯作者。该研究得到了国家自然科学基金基础科学中心项目、北京未来基因诊断高精尖创新中心、昌平实验室的资助,北京大学高通量测序平台以及北京大学“北极星”高性能计算平台的协助与支持,北京大学邢栋课题组为本研究提供了重要的帮助。论文链接:https://www.nature.com/articles/s41592-023-01978-w参考文献:1 Hafner, A. & Boettiger, A. The spatial organization of transcriptional control. Nat Rev Genet, doi:10.1038/s41576-022-00526-0 (2022).2 Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat Rev Genet 22, 154-168, doi:10.1038/s41576-020-00303-x (2021).3 Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341-1345, doi:10.1126/science.aau0320 (2018).4 Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat Biotechnol 40, 1488-1499, doi:10.1038/s41587-022-01289-z (2022).5 Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nature Biotechnology 40, 64-73, doi:10.1038/s41587-021-00998-1 (2021).6 Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet 51, 1664-1669, doi:10.1038/s41588-019-0538-0 (2019).7 Xie, H. et al. De novo assembly of human genome at single-cell levels. Nucleic Acids Res 50, 7479-7492, doi:10.1093/nar/gkac586 (2022).汤富酬,博士,北京大学BIOPIC/ICG研究员,国家“优青”(2013)、“杰青”(2016)。1998年本科毕业于北京大学,2003年在北大获得细胞生物学博士学位,2004-2010年间在英国剑桥大学Gurdon研究所从事博士后研究, 2010年回到北京大学组建实验室,主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用一系列技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他表观遗传学关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎表观遗传调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。
  • PERKINELMER展示快速检测染色体新技术
    ACOG 会议上的演示资料展示了 PerkinElmer 的一项新技术   马萨诸塞沃尔瑟姆 – 2009 年 5 月 4 日 – 专注于提高人类及其生存环境的健康与安全的全球领先公司 PerkinElmer, Inc.,今天宣布其用于快速、经济高效的检测染色体异常的新技术 - BACs on BeadsTM。首次展示了 BACs on BeadsTM 技术用于快速、单次同时检测染色体结构和数目的异常。   今天在伊利诺伊州的芝加哥举行的美国妇产科学院年度会议上,阿尔伯特爱因斯坦医学院妇产科教授兼纽约贾克比医疗中心主席 Susan J. Gross 博士,展示了在其机构中开展的 BACs on BeadsTM 在羊水分析这一应用领域的结果数据。BACs on Beads™ 技术的此项应用目前正在 Gross 博士的实验室中进行临床验证。   “BACs on BeadsTM 是一项适用于实验室开展检测的理想技术。此技术有潜力检测孕期重度伤残和智力缺陷等其它病例,它超越了目前唐氏综合症检测的技术。”Gross 博士说。“此项技术为进行经济高效的分子核型分析提供了巨大机会。”   在 BACs on BeadsTM 中,针对兴趣基因位置的 DNA 探针与聚苯乙烯微珠结合在一起。样品中的互补 DNA 与微珠上的探针 DNA 杂交,然后进行测量以检测特定的染色体异常。   “BACs on BeadsTM 实现了我们要传递新技术以造福于人类的健康和幸福的承诺。对于 BACs on BeadsTM 分子核型分析技术的首次应用,我们感到非常兴奋,”PerkinElmer 的基因筛查业务总裁 Ann-Christine Sundell 说。“我们期盼着 Gross 博士的成就达到巅峰,以便将 BACs on Beads 技术应用到日常临床使用中。”   PerkinElmer 计划在今年下半年向全球推出用于研究用途的 BACs on BeadsTM 检测试剂盒。   有关详细信息,请访问 PerkinElmer 网站,网址为 www.perkinelmer.com   关于 PerkinElmer, Inc.   PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。   # # #   媒体联系人:   PerkinElmer:   Henri Storm, +358-40-53 666 84   Henri.Storm@PerkinElmer.com   或   Porter Novelli:   Amy Speak, 617-897-8262   Amy.Speak@porternovelli.com
  • PerkinElmer推出快速检测染色体异常新技术
    马萨诸塞沃尔瑟姆 – 2009 年 5 月 4 日 – 专注于提高人类及其生存环境的健康与安全的全球领先公司 PerkinElmer, Inc.,今天宣布其用于快速、经济高效的检测染色体异常的新技术 - BACs on Beads™ 。首次展示了 BACs on Beads™ 技术用于快速、单次同时检测染色体结构和数目的异常。 今天在伊利诺伊州的芝加哥举行的美国妇产科学院年度会议上,阿尔伯特爱因斯坦医学院妇产科教授兼纽约贾克比医疗中心主席 Susan J. Gross 博士, 展示了在其机构中开展的 BACs on Beads™ 在羊水分析这一应用领域的结果数据。BACs on Beads™ 技术的此项应用目前正在 Gross 博士的实验室 中进行临床验证。   “BACs on Beads™ 是一项适用于实验室开展检测的理想技术。此技术有潜力检测孕期重度伤残和智力缺陷等其它病例,它超越了目前唐氏综合症检测的技术。”Gross 博士说。“此项技术为进行经济高效的分子核型分析提供了巨大机会。” 在 BACs on Beads™ 中,针对兴趣基因位置的 DNA 探针与聚苯乙烯微珠结合在一起。样品中的互补 DNA 与微珠上的探针 DNA 杂交,然后进行测量以 检测特定的染色体异常。   “BACs on Beads™ 实现了我们要传递新技术以造福于人类的健康和幸福的承诺。对于 BACs on Beads™ 分子核型分析技术的首次应用, 我们感到非常兴奋,”PerkinElmer 的基因筛查业务总裁 Ann-Christine Sundell 说。“我们期盼着 Gross 博士的成就达到巅峰,以便将 BACs on Beads™ 技术应用到日常临床使用中。”   PerkinElmer 计划在今年下半年向全球推出用于研究用途的 BACs on Beads™ 检测试剂盒。   有关详细信息,请访问 PerkinElmer 网站,网址为 www.perkinelmer.com.cn   关于 PerkinElmer, Inc.   PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,   为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或 致电 1-877-PKI-NYSE。   For Further Information   媒体联络   Henri Storm   PerkinElmer, Inc.   电子邮件:Henri.Storm@PerkinElmer.com   电话: +358-40-53 666 84   or   Amy Speak   Porter Novelli   电子邮件: Amy.Speak@porternovelli.com   电话:617-897-8262
  • 240万!山东省千佛山医院染色体全自动扫描显微镜和图像分析系统采购项目
    项目编号:SDGP370000000202202006132 项目名称:山东第一医科大学第一附属医院(山东省千佛山医院)染色体全自动扫描显微镜和图像分析系统采购项目 预算金额:240.0万元 最高限价:240.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A染色体全自动扫描显微镜和图像分析系统 1 详见附件 240.000000 合同履行期限:详见招标文件 本项目不接受联合体投标。
  • iPad出新技能 通过显微镜头检测染色体
    近日台湾创业公司Aidmics便为iPad开发出一套新技能——用iPad检查自己祖传染色体的品质,该技能是通过一个名为iSperm的设备实现的,其中包含一个200倍光学放大器与1微米解析度的显微镜头、一个生物微流晶片以及一个精子分析App,只需要短短17秒便可让我们这种毫无医学知识的小白感受到祖先的荣光。  当然这17秒绝对不包括你自己的事前准备,其中7秒用于视频的载入,10秒用于分析处理,不过由于医学管理方面的相关规定,该设备最早也要等到明年才能进入千万家庭中,售价大约在100美元-200美元之间,适合那些想要宝宝的家庭使用,那种每天数蝌蚪的生活真是连想都不敢想!
  • 240万!中国医学科学院血液病医院全自动染色体扫描分析仪采购项目
    一、项目基本情况项目编号:TJBD-2022-A-012项目名称:中国医学科学院血液病医院(中国医学科学院血液学研究所)全自动染色体扫描分析仪采购项目预算金额:240.0000000 万元(人民币)最高限价(如有):240.0000000 万元(人民币)采购需求:全自动染色体扫描分析仪1台,具体内容及要求详见项目需求书,经财政部门审核同意,本项目允许进口产品投标,同时也接受满足需求的国内产品参与竞争。合同履行期限:合同签订后3个月内交货(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • 单染色体酵母第一作者选择申请海外博士,科学家再次疾呼:莫让“海归”标签“逼”走优秀博士生
    p    span style=" color: rgb(255, 0, 0) " 日前刚在英国 《自然》杂志发表领先世界的合成生物学成果,中国科学院分子植物科学卓越创新中心、植物生理生态研究所合成生物学重点实验室覃重军研究员就在媒体面前流露出内心焦虑:论文的第一作者、掌握了自己学术思想和实验关键技术的博士生邵洋洋正在申请海外博士后,其中就包括此次与他们同时发表类似论文的美国同行实验室。 /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/ef2459e4-3725-47d6-a971-944dcbf97e7b.jpg" title=" 640-3.jpeg" / /p p style=" text-align: center " ▲覃重军研究员(右)与论文第一作者也是团队成员之一的邵洋洋在实验室进行试验研究。 /p p   “为了学生的前途考虑,我希望她出国,但为国家考虑,我真希望能留住她。”覃重军无奈地说, span style=" color: rgb(0, 112, 192) " 按照国内学术圈现行的 “游戏规则”,年轻人若在国外实验室做出好的工作再回国,获得的待遇会好很多。能否根据真实学术水平和实际科研贡献,给予海内外青年人才同等待遇?这个近来被诸多讨论的话题,再次摆在我们面前。 /span /p p    strong span style=" color: rgb(255, 0, 0) " 国内不乏孕育重大产出的优秀“学术土壤” /span /strong /p p   将酿酒酵母中16条天然染色体,通过基因编辑的方法合成一条,覃重军研究团队在 “合并染色体”的国际竞争中拔得头筹。连他最强劲的竞争对手——美国科学院院士、纽约朗格尼医学中心的杰夫· 博伊克,都忍不住来问他,究竟是怎么会想到要这么做,又是怎样完成染色体 “十六合一”的?因为博伊克的实验室用了相同的技术路线,但只融合到两条染色体。 /p p   “这是只有外行才敢想的念头,一开始没多少人觉得我能做出来。”覃重军非常感谢植生所给了他宽松的氛围,支撑他度过了最艰难的时光,“整整五年,我没有发表一篇与酵母相关的论文,换在别的单位,或许早就让卷铺盖走人了。” /p p    span style=" color: rgb(0, 112, 192) " 覃重军说,这次成功的关键是他在初期作了大量思考,清晰界定了实验的原则,同时实验室也在进行系统的技术积累。 /span 中国科学院上海植物生理生态研究所所长、中国科学院院士韩斌告诉记者,尽管覃重军没有出论文,但研究所更看重人才的长期发展,在国际评估中,他的研究方向一直得到认可, span style=" color: rgb(0, 112, 192) " “需要五到十年才能出的重大成果,我们就该耐心等待。” /span 为了让科学家安心做科研,植生所为各研究组长提供稳定的年薪,而非根据各研究组的科研经费多少来核算。 /p p   维持研究团队运转的人头费一直是件头疼事。多年来,覃重军研究组的“赤字”超过300万元。 “有些单位的研究组账面少于50万元,就可能被要求关闭,更不可能赤字运行。”为此,他感到十分幸运, “现在无论哪里要我去,我都不会离开植生所这片宽容的学术土壤。”更何况,这里每年都会冒出两三项引发学术界关注的重大成果,已初具国外著名实验室的创新氛围。 /p p span style=" color: rgb(255, 0, 0) " strong   优质“小环境”还需“大环境”扶持滋养 /strong /span /p p   宽松而有活力的 “学术土壤”在国内尽管还不多,但越来越多的 “星星之火”已经出现。不必远寻,就在生命科学领域,上海就有多个研究所具备了专注学术、宽容失败、奋力创新科研氛围,而且具备了国际一流的研究实力。 /p p   照理说, span style=" color: rgb(0, 112, 192) " 这样的研究所对优秀博士毕业生应该具有相当吸引力。但邵洋洋斟酌再三,还是决定申请海外博士后。 /span 的确,以此次单染色体人工酵母的工作,她可以申请到全球合成生物学领域任何一个顶尖实验室,去那些实验室接受训练和熏陶,这是每个年轻博士所向往的。然而,更吸引人的,是去一个优秀海外实验室学习上两三年,做出杰出工作再回国,就能比不出国的青年科学家获得更多科研经费支持和房贴,申请人才计划、科研项目都更有优势。 /p p   “可我又有什么理由阻止她出国做博士后呢?尽管我的研究组人手十分紧张,她走之后,很多后续工作可能难以开展。” span style=" color: rgb(0, 112, 192) " 尽管植生所的 “小环境”不错,但从整个科研大环境来看, “海归”标签依然在科研经费获取、人才评价等方面起着重要作用。这让覃重军如鲠在喉。 /span /p p   不久之前,中国科学院神经科学研究所博士后刘真受聘为研究组长,他也曾为是否出国做博士后而纠结过。尽管他留在国内并做出了世界首批克隆猴这样的杰出工作,但在科研启动期所获得的资助仍比不上 “海归”们。 /p p    span style=" color: rgb(0, 112, 192) " “一个优秀博士生的流失,不仅意味着一段黄金创造力的流失,也可能将国内实验室的创新科研思路带给竞争对手。”痛心之余,覃重军疾呼,能否更公平地对待不同路径成长起来的人才,适时转变人才评价方式,让优秀博士生不必为了 “海归”标签而出国。 /span /p
  • 南京铭奥成为进口牛奶体细胞检测仪/牛奶体细胞计数仪中国总代
    为了迎合各大牧场,乳品回收站控制奶牛的体质,及时发现病情,提前判断奶牛隐形乳房炎、监测控制病牛的治疗情况,进而提高牛奶品质的市场需要,南京铭奥现成为新产品牛奶体细胞测定仪/牛奶体细胞计数仪Somatos的中国总代理。该牛奶体细胞仪可用于计算牛奶体细胞数,原理是将牛奶样品经表面活性剂处理后。奶样中体细胞的细胞膜和核膜被破坏,细胞核DNA大量释放,,细胞内的DNA释放出来引起牛奶黏度的变化,同时运用超声波检测系统对经过表面活性剂处理后的牛奶进行检测,记录超声参量(声速、衰减、功率谱)与体细胞数的关系,从而得出黏度变化与体细胞数的关系,从而可以通过测定黏度来测定体细胞数。 牛奶体细胞测定仪/牛奶体细胞计数仪Somatos牛奶体细胞检测仪,牛奶体细胞速测仪计数速度快,牛奶混合物单次分析检测时间不超过4分钟,检测范围很广,为:90000-1500000,相对误差范围小,仅为±3%,要求功率不超过20伏安,价格合理实惠,非常适合各类牧场及乳品回收站使用。
  • 南京铭奥代理Somatos牛奶体细胞分析仪,牛奶体细胞计数仪
    为了满足各大牧场,乳品回收站控制奶牛的体质及时发现病情,检测牛奶品质,提前判断奶牛隐形乳房炎、监控病牛的治疗情况,提高牛奶的品质的市场需要,南京铭奥现代理新产品Somatos牛奶体细胞分析仪,牛奶体细胞计数仪。该牛奶体细胞仪可用于计算牛奶体细胞数,原理是将牛奶样品经表面活性剂处理后。奶样中体细胞的细胞膜和核膜被破坏,细胞核DNA大量释放,,细胞内的DNA释放出来引起牛奶黏度的变化,同时运用超声波检测系统对经过表面活性剂处理后的牛奶进行检测,记录超声参量(声速、衰减、功率谱)与体细胞数的关系,从而得出黏度变化与体细胞数的关系,从而可以通过测定黏度来测定体细胞数。 牛奶体细胞测定仪/牛奶体细胞计数仪Somatos牛奶体细胞分析仪,牛奶体细胞计数仪计数速度快,每个样品测定只需4分钟,检测范围很广,为:90000-1500000,价格合理实惠,非常适合各类牧场及乳品回收站使用。 牛奶体细胞分析仪,牛奶体细胞计数仪
  • 活细胞中基因转录与染色质运动的实时观测技术!
    【研究背景】人类基因组是细胞内的遗传物质,其高度动态的特性在转录、复制和DNA修复等过程的实现中发挥着至关重要的作用。与传统的基因组研究方法相比,近年来的研究揭示了基因组在时空组织上的复杂性,这对理解基因表达和调控等生物过程具有重要意义。然而,如何从分子水平理解染色质的运动与基因表达之间的关系,以及这一过程对细胞功能的影响,仍然存在许多未解之谜,因此带来了重大的科学挑战。近日,来自纽约大学Alexandra Zidovska教授团队在基因组动态研究中取得了新进展。该团队采用了同时的双颜色旋转盘共聚焦显微镜技术,设计了CRISPR-dCas9-PCP-mCherry系统,实现了对单个基因运动和全基因组动态的实时观察。通过对MUC4和IL6两个基因的监测,他们发现基因转录活动与附近基因组的运动存在密切联系,这种联系受到染色质紧缩状态的调节。研究表明,单个活跃基因可以在低紧缩区域驱动更大尺度的基因组运动,而高紧缩染色质则会驱动基因运动,无论其转录状态如何。利用位移相关光谱技术(DCS),该研究显著提高了对染色质运动及其生物学功能的理解,成功获取了基因活动、染色质空间异质性及其出现的全基因组运动之间的关系。这一发现揭示了基因组的时空组织如何直接影响基因调控与表达,为今后深入研究基因组动态及其在健康和疾病中的作用提供了新的视角和思路。通过这些研究,科学界对基因组的复杂动态行为有了更深入的认识,有望为基因调控机制的理解和相关疾病的治疗提供理论依据。【表征解读】本文通过位移相关光谱(DCS)技术和同时的双颜色旋转盘共聚焦显微镜(spinning disc confocal microscopy),揭示了人类基因组在细胞核内的动态行为,特别是基因转录与全基因组运动之间的关联。DCS技术的应用使我们能够实时映射细胞核内染色质的运动模式,发现了染色质在细胞核中以微米尺度的域形式进行有序的运动,这一发现为理解基因组的自组织和功能提供了新的视角。针对染色质在活细胞中所展现的相干运动现象,本文深入探讨了其微观机制。通过监测特定基因(如MUC4和IL6)的转录活动,结合其周围染色质的物理环境,我们揭示了染色质紧缩程度对基因运动的影响。研究结果表明,单个活跃基因能够驱动低紧缩区域的大尺度运动,而在高紧缩区域,染色质的特性则主导了基因运动,不论其是否处于转录状态。这一发现提示我们,基因运动不仅与其自身的转录活动相关,还受到周围染色质环境的显著影响。在此基础上,本文通过系统的运动相关性分析,揭示了基因转录活动如何与染色质的空间异质性相互作用。这些发现表明,基因组的时空组织对于基因调控和表达具有重要影响。尤其是,染色质的不同紧缩状态导致了基因运动的显著变化,从而影响了转录过程的效率和稳定性。这一机制的揭示为我们提供了理解基因表达调控的新视角,尤其是在疾病状态下,如癌症和神经疾病等。总之,经过对染色质动态的深入分析和表征,本文明确了基因转录与基因组运动之间的复杂关系,并探讨了染色质微观结构与基因活动之间的相互作用。这些研究不仅加深了我们对基因组时空组织的理解,还为新材料的制备提供了理论基础,特别是在开发基于基因组动态特性的生物材料方面。这些进展将推动生物医学和基因工程等领域的进一步发展,为我们深入理解生命现象及其调控机制提供了新的思路和方法。使用CRISPR-dCas9和PP7干环结合蛋白对单个基因进行体内可视化原文详情:Chu, FY., Clavijo, A.S., Lee, S. et al. Transcription-dependent mobility of single genes and genome-wide motions in live human cells. Nat Commun 15, 8879 (2024). https://doi.org/10.1038/s41467-024-51149-4
  • 福斯体细胞计数法斩获欧洲和美国双认证
    福斯的 FossomaticTM FC分析仪是目前唯一同时通过美国 NCIMS/FDA 认证及欧洲 Microval 认证的快速检测原料奶中体细胞数的仪器。Microval 是欧洲的一家认证组织,专业验证和审批食品与饮料中微生物分析法的替代方法。Fossomatic FC 的审批是在全面比照了参考标准:ISO 13366-1:2008 – 体细胞计数 –第1部分 显微镜检验法的基础上进行的。检验报告的摘要可在 Microval 的官方网站上查询。网址:www.microval.org.在取得欧洲 Microval 审批之前,Fossomatic FC已作为一种快速电子计数方法获得美国的 FDA/NCIMS 认证。它是目前唯一一种已斩获欧美两大权威机构双重认证的原料奶体细胞计数法。Fossomatic 的测量原理基于流式细胞技术。采用该技术,悬浮细胞经染色处理,在压力下通过流通池,并在传感器前被照射发光。每个通过的细胞由光电转换器记录。Fossomatic 分析仪可在一小时内对600个样品进行测试。降低乳腺炎产生的成本体细胞是白细胞(白血球)和来自乳腺分泌组织的细胞(上皮细胞或分泌细胞)。它们大量出现可消除感染并修复由细菌造成的组织损伤。细胞计数有助于发现牛群中罹患乳腺炎的奶牛。提供体细胞计数检测是原奶检测中心的重大使命,它可以帮助奶农避免奶牛疾病所带来的严重后果,其中包括兽医诊治费用、抗生素、牛奶滞留损失、奶牛产量下降、质量下降以及牛奶交易量减少和屠宰。为 Fossomatic 7 解决方案获得认证铺平了道路福斯是第一家开发 Fossomatic 体细胞计数方法的公司,早在20世纪80年代初就将此法作为奶牛群体改良方案的一部分引入常规检测,从而大大降低了牛奶的损失率。然而,加强奶牛的乳腺炎管控,任重而道远。为此,福斯近日又宣布推出新一代分析仪 Fossomatic 7 和 Fossomatic 7 DC (link),其中包括一种全新的更先进的体细胞计数检测形式,可以更详细地显示乳腺炎的实际状态。这样就有可能开发新的工具以帮助奶农加强乳腺炎管理。新一代的 Fossomatic 分析仪采用与 Fossomatic FC 分析仪完全相同的测量原理,目前也正在接受欧洲 Microval 和美国 NCIMS/FDA 的双重认证检测。
  • 流式细胞仪的那些事儿
    流式细胞仪在生命科学领域尤其医学中应用非常广泛,是一种能够对细胞进行相关处理的仪器,并且能够对细胞进行必要的分析。小编为大家介绍一下流式细胞仪的概念、发展历史、特点、分类、基本原理以及应用。  流式细胞术与流式细胞仪的概念  流式细胞术(flow cytometry , FCM):是一种定量分析技术,是指利用流式细胞仪检测细胞特异性标记荧光信号而测定细胞的多种生物物理性质的方法,同时也是一项可以把具有某相同荧光信号特性的某些细胞亚群从多细胞群体中分离和富集出来的细胞分析技术。点击查看更多细胞流式仪  流式细胞仪(flow cytometer):是一种集激光技术、电子物理技术、光电测量技术、电子计算机技术、细胞荧光化学技术和抗原抗体检测技术为一体的新型高科技仪器 是以激光为光源、检测生物学颗粒理化性质的仪器。  流式细胞仪的发展历史  1、1934年,Moldavan使悬浮的红细胞从一个毛细玻璃管中流过,每个通过的细胞可被一个光电装置记录下来。这就是流式细胞仪的雏形。  2、1965年,Kamentsky用紫外吸收和可见光散射两个参数同时测量未染色细胞,给出细胞中核酸的含量和细胞大小。奠定了多参数流式细胞测量的基础。  3、1967年,Van Dilla和Los Alamos采用了层流流动室和氩激光器,开发出了液流束、照明光轴、检测系统三者相互垂直的流式细胞仪。这成为目前各种流式细胞仪的基础。  4、1969年,Fulwyler利用静电墨水喷射液滴偏转技术,建立了流式细胞分选术。Ehrlich和Wheeless利用飞点扫描技术和缝扫描技术使零分辨率的流式细胞仪变成了低分辨率的流式细胞仪。  5、20世纪70年代,随着Kohler和Milstein成功提出了单克隆抗体技术和荧光标记技术,为特异研究和分析细胞奠定了良好的基础。  6、1973年,美国BD公司和美国斯坦福大学合作,研制开发并生产了世界上第一台商用流式细胞仪FACS I。  7、20世纪80年代,流式细胞仪的数据采集、存储、显示、分析日趋完善,随着样品制备方法的增加,新的荧光染料和细胞标记物的出现,使流式细胞仪的应用范围逐渐扩大。  8、20世纪90年代,与之配套的标本制备仪和自动进样器的问世,以及适合临床应用的单克隆抗体的增加,使流式细胞仪逐渐从科研单位进入医院的中心实验室和检验科,成为现代化的临床检验仪器的一部分。  流式细胞仪的特点  1、高速度:每秒可检测1 000-5 000个细胞。  2、高灵敏度:每个细胞只要带有1 000-3 000个荧光分子就能检出,两个细胞之间有5%的差别就可区分出来,光散射的灵敏度为0.3um。  3、高精度:在细胞悬液中测量细胞,比其他分析技术的变异系数更小,分辨率高。  4、高纯度:分选细胞的纯度可大于99%以上。  5、多参数:可同时定量检测单个细胞的DNA等多个参数。  流式细胞仪的分类  1、根据功能不同,可分为临床型和综合型(科研型)。  2、根据有无细胞分选功能,可分为流式细胞分析分选仪和流式细胞分析仪。  3、根据结构不同,可分为一般流式细胞仪(零分辨率流式细胞仪)和狭缝扫描流式细胞仪(高分辨率流式细胞仪)。前者的激光光斑为椭圆形,光斑直径大于被检细胞体积。后者激光光束为一条线状扁平光斑,直径在3-5um。  流式细胞仪的基本原理  1、将悬浮分散的单细胞悬液,经特异性荧光染料染色后,放入样品管。  2、在气体压力的作用下,悬浮在样品管中的单细胞悬液形成样品流垂直进入流式细胞仪的流动室,流动室充满鞘液,在鞘液的约束下,细胞排列成单列由流动室的喷嘴喷出,成为细胞液柱。  3、液柱与水平方向的入射激光束垂直相交,相交点称为测量区。通过测量区的细胞受激光照射后发出荧光,同时产生光散射。这些信号分别被成90℃角方向放置的光电倍增荧光检测器和前向角放置的光电二极管检测器接收,经过转换器转换为电子信号。  4、电子信号经模/数转换输入计算机。计算机通过相应的软件储存、计算、分析,就可以得到细胞的大小和活性、核酸含量等理化指标。  流式细胞仪的应用  1、DNA倍体分析  DNA分析是流式细胞仪最初且是现在应用最广检测项目。由于恶性细胞DNA含量通常与正常细胞不同,存在异倍体细胞,所以现有很研究评价异倍体细胞与肿瘤恶性度及其预后的关系。DNA含量检测还可提供细胞周期方面的信息,这在细胞生物学中运用很广泛。特别地,它可表示出细胞毒性药物对细胞作用过程。这些DNA检测还可与细胞表面标志物标记同时进行,这样在细胞混合培养中,可通常追踪表达特异标志物的细胞显示其生长周期情况。所有方法都是基于染料能与核酸起特异的化学反应并发射出荧光,常用的染料为PI,DAPI。  在该领域Partec公司的 CyFlow PA是一枝独秀。  2、细胞生存能力实验  使用Heochest 33342染料与DNA特异性结合,后因细胞活力不同染料的结合程度也各异,故可评估细胞的活性度。  3、计数外周血中检测网织红细胞  使用TO染料能够特异性地与RNA结合,结合系数高达3000,故具有很好的性价比。  4、外周血、骨髓采集物中CD34阳性干细胞计数,临床上用于骨髓移植前干细胞数理的测定。使用标准ISHAG方案,需要DNA或其他核染料占用FITC通道,PE标记CD34抗体,PE-CY5标记CD45抗体。  5、交叉淋巴细胞、粒细胞毒实验  检测识别供体血清中免疫球蛋白与受体粒细胞之间是否存在反应有着重要临床意义,因为这种反应会导致移植后发热、移植后肺损伤及免疫性粒细胞缺乏症。流式细胞仪可检测全血样本与血清孵育后粒细胞上结合的人免疫球蛋白。FITC标记人免疫球蛋白抗体、PE标记粒细胞表面标志物、PE-CY5标记HLA抗体。  6、血小板自身抗体检测  血小板自身抗体识别人血小板抗原,会引起各种临床相关症状,如新生儿自免性血小板减少症、输血后紫癜、难治性血小板减少。流式细胞可快速准确地检测血小板自身抗体。FITC标记抗人免疫球蛋白抗体、PE标记识别血小板抗体。  7、移植交叉配型  原细胞毒实验,主要用于避免移植物超急性排拆反应。流式细胞仪用于监测T或B细胞是否受到受体血清中免疫球蛋白攻击,作为HLA配型前的预实验。流式细胞仪因其高精确性已成为该领域内的金标准。FITC标记抗人免疫球蛋白抗体、PE标记识别T细胞CD3或B细胞CD29抗体。  8、检测细胞经抗原或细胞有丝分裂刺激后活化效应淋巴细胞早期活化指标CD69可用来检测免疫治疗效果。流式细胞使用三色分析可监测淋巴细胞各亚群活化情况:FITC标记的CD3抗体、PE标记的CD8抗体、PE-CY5标记的CD69抗体。  9、细胞增殖状态检测  核增殖抗PCNA、Ki67、BrdUrd用于衡量细胞增殖分裂状况,在评估肿瘤预后有重要意义。为些标志物的检测一般同细胞表面标志物同时检测。FITC标记PCNA或Ki67或BrdUrd,PE或(并)PE-CY5标记细胞表面标志物。  10、染色体分析  流式细胞仪染色分析运用两种特异性染料:Hoechest33258与核苷酸AT结合 Chromomycin A3与GC相结合。从而在双参数坐标上根据染色体ATCG含量的不同识别各种染色体。平时进行的染色体分析耗时且需要操作者极具经验,而用流式细胞仪时可快速地识别出异常染色体,如加配分选系统可将这些异常染色体分选出来作进一步分析。  以上,就是小编为您介绍的流式细胞仪的概念、发展历史、特点、分类、基本原理以及应用。如今医疗的进步离不开医疗设备的发展与进步,流式细胞仪就是集中于测量发育异常的细胞遗传物质的数量变化,该设备的鉴定对种质资源、物种进化、物种分类、生态学研究、倍体育种等方面具有重要意义。
  • 国内首家:IPHASE SLC家族OAT1转运体细胞研发成功
    PART.01 OAT转运体 肾脏在代谢产物的排泄、酸碱平衡、维持体内系统稳态中起关键作用,其中肾小管的分泌和重吸收功能主要由转运体介导,这也是葡萄糖、氨基酸和其他营养物质吸收及清除内源性废物和外源性生物制剂的有效机制。这些转运体主要分布于肾近端小管细胞基底膜和顶端膜,其中OATs主要负责阴离子和两性离子有机分子(包括内源性物质和许多药物)的跨膜运输,属于两亲性溶质转运蛋白家族(SLC)。 目前已报道的OAT家族成员有10余种,包括OAT1-OAT10以及尿酸转运体,大多分布于肾脏之中。OATs可以将由血液进入管周液中的多种外源性及内源性有机阴离子毒素逆电化学梯度转运至肾小管上皮细胞内,最终随尿液排出体外。而疾病、药物-药物相互作用或其他因素等均可能引起OATs表达或功能的改变,从而导致药物的肾脏分布改变,诱导有毒代谢产物的积累,最终引发肾脏毒性。因此,OATs在药物的肾脏毒性中具有关键作用。 图片出自文献“肾脏有机阴离子转运体介导的中药肾毒性研究进展” PART.02 OAT1转运体 OAT1是肾脏的主要药物转运体之一,同时也是肾脏OATs家族中分布最广的一种,被FDA列为与临床药物治疗密切相关的7个重要转运体之一,主要分布于肾近曲小管。OAT1底物覆盖范围非常广泛,主要包括叶酸等内源性物质以及对氨基马尿酸(PAH)、抗病毒药物、甲氨蝶呤、抗生素、非甾体类抗炎药等。 在联合用药方案中,底物可能彼此竞争结合转运蛋白,使药物清除率降低,药物在体内积累,从而导致潜在的不良反应。研究显示,丙磺舒可竞争性抑制OAT1对头孢类的摄取,使得头孢类药物的肾清除率下降,半衰期和血药浓度明显增加;吲哚美辛、酮洛芬可降低甲氨蝶呤的肾脏清除率,引起急性肾衰竭;马兜铃酸可抑制OAT介导的丙磺舒的摄取,马兜铃酸在肾脏蓄积,产生毒性。 药物肾毒性的传统评价方法多采用体内动物模型和体外2D肾细胞系模型,但是肾脏OATs在转运多种具有潜在肾毒性的药物中起着至关重要的作用。目前尚没有OATs晶体蛋白,主要借助特异性的人源OATs转染细胞,对OATs的配体识别结合域结构及配体结构特点进行考察,阐明OATs与药物间相互作用,以此评价药物肾毒性。基于此,IPHASE研发出了国内首家瞬时转染重组OAT1转运体细胞。 PART.03 IPHASE 转运体相关产品 IPHASE作为创新药体外研究生物试剂引领者,凭借先进的设备、专业的技术人员和多年研发经验,通过HEK293细胞系成功构建国内首家瞬时转染重组OAT1转运体细胞,推出SLC转运体家族新产品! IPHASE技术人员以PAH为底物验证重组OAT1转运体细胞的代谢能力。结果发现,IPHASE重组OAT1转运体细胞转运PAH的能力是指导原则的9倍,表明IPHASE瞬时转染重组OAT1转运体细胞满足药物研发要求。 1 批量生产采用批量生产方式,库存充足,可保证同一批次产品的供应。 2 货期短国内现货,保障客户使用需求。 3 售后服务机制健全有专业技术人员提供全方位服务。 除瞬时转染重组SLC OAT1转运体细胞外,IPHASE同时推出了就ABC转运体囊泡和SLC转运体细胞相关产品,供客户自行选择,以满足客户对于不同药物的研究。 产品名称 产品规格 OATP1B1 转运体 8-10 million OAT1 转运体 8-10 million OAT3 转运体 8-10 million OCT2 转运体 8-10 million OATP1B3 转运体 8-10 million OATP2B1 转运体 8-10 million OCT1 转运体 8-10 million NTCP 转运体 8-10 million MATE1 转运体 8-10 million MATE2K 转运体 8-10 million OATP1A2 转运体8-10 million BCRP 转运体 0.5 mg/mL*0.5mL BSEP 转运体 0.5 mg/mL*0.5mL MDR1 转运体 0.5 mg/mL*0.5mL MRP1 转运体 0.5 mg/mL*0.5mL MRP1 转运体 0.5 mg/mL*0.5mL MRP3 转运体 0.5 mg/mL*0.5mL MRP4 转运体 0.5 mg/mL*0.5mL MRP8 转运体 0.5 mg/mL*0.5mL IPHASE/汇智和源凭借多年的研发经验,推出了多领域、多种类的高端科研试剂,为药物早期研发提供筛选工具,为生命科学领域的探索提供新材料、新方法和新手段,为遗传毒性研究提供便捷产品。此外,IPHASE/汇智和源可提供特殊产品的定制服务,望广大科研工作者来电咨询,咨询热线400-127-6686。 发 文 章 得 奖 励 凡使用本公司产品,在国内及国际刊物上发表论文(论文发表日起一年内),并注明产品属于汇智和源/IPHASE所有,即可申请奖励。根据发表刊物影响因子不同,给予不同金额奖品: 非SCI论文及IF≤5分,500元礼品; 5分<IF≤8分 800元; 8分<IF≤10分 1000元; IF≥10分 2000元; 注:礼品卡也可兑换同等金额产品购买抵用券; 活动多多,礼品丰厚,快来参与吧! 关 于 我 们 汇智和源,致力于为创新药研发企业及生命科学研究机构提供高品质的生物试剂,IPHASE为公司核心品牌,品牌宗旨“Innovative Reagents For Innovative Research”。
  • Nature:干细胞的端粒保护机制与众不同
    众所周知,端粒是染色体末端的特殊“帽子”结构,作用是保持染色体完整性和控制细胞分裂周期。弗朗西斯• 克里克研究所(Francis Crick Institute)的研究人员近日在《Nature》杂志上发表了一项新成果,突出了干细胞与众不同的端粒保护机制。在健康细胞中,端粒的保护作用非常有效,但随着年龄的增长,端粒逐渐缩短,最终失去了某些保护功能。这会导致我们的健康状况随着年龄的增长而下降。不过,端粒缩短也能够避免肿瘤发展。癌细胞必须突破这层障碍,才能实现无限增殖。在体细胞内,端粒结合蛋白TRF2发挥着端粒保护作用。它结合并稳定端粒末端的t环(t-loop)结构,从而阻止染色体末端被识别为DNA损伤。在去除TRF2蛋白后,t环无法形成,染色体末端融合在一起,形成意大利面状的染色体,最终杀死细胞。然而,在这项最新的干细胞研究中,研究人员发现TRF2的端粒保护作用是可有可无的。从小鼠胚胎干细胞中去除TRF2蛋白后,t环继续形成,染色体末端仍然受到保护。这也就是说,即使TRF2不存在,干细胞在很大程度上不会受到影响。随着胚胎干细胞分化成体细胞,这种独特的末端保护机制却消失了。t环和染色体末端保护都依赖于TRF2。这表明体细胞和干细胞采用完全不同的方式来保护染色体末端。文章第一作者、DNA双链断裂修复机制实验室的Philip Ruis表示:“现在,我们知道干细胞中t环的形成并不需要TRF2,我们推断肯定有其他因素在起到相同的作用,或这些细胞采用不同的机制来稳定t环。我们也想深入了解。”研究人员发现,胚胎干细胞中t环的形成不依赖于TRF2,这也说明了为什么在多能性阶段TRF2的保护作用是可有可无的。“从根本上说,我们证明了干细胞以与众不同的方式保护其染色体末端,但仍需要t环,”通讯作者Simon Boulton说。多年来,人们一直在争论t环本身是否在保护染色体末端上起作用。此次研究有助于平息这场争论。研究人员发现,在带有t环但缺乏TRF2的干细胞中,端粒仍受到保护,这表明t环结构本身具有保护作用。研究人员表示,更好地了解端粒如何工作,以及它们如何保护染色体末端,这有助于人们深入了解早衰和癌症等过程。未来,他们将继续这项研究工作,深入解析体细胞和干细胞的端粒保护机制。
  • 30纳米染色质高精度三维冷冻电镜结构成功解析
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp DNA如何包装成染色体,是科学家们一直努力破解的重要科学问题。近30年来,由于缺乏系统、合适的研究手段,作为染色质包装过程中承上启下的关键部分,30纳米染色质高级结构研究一直是现代分子生物学领域面临的最大挑战之一。 /p p style=" line-height: 1.5em "   科学家已经发现,染色质包装分4步完成,对应了染色质的四级结构:第一级结构是核小体 第二级结构是核小体螺旋化形成30纳米染色质纤维 第三级结构是30纳米染色质再折叠成更为复杂的染色质高级结构,即超螺旋体 第四级结构是超螺旋体进一步折叠形成在光学显微镜下可以看到的染色体。 /p p style=" line-height: 1.5em "   为解析30纳米染色质的高精度三维冷冻电镜结构,中科院生物物理所研究员李国红课题组及其合作者(朱平课题组和许瑞明课题组)在基金委重大研究计划“细胞编程与重编程的表观遗传学机制”支持下,自主建立了染色质体外组装和冷冻电镜技术(11埃)。利用这一技术,研究人员在国际上首次发现30纳米染色质纤维是以4个核小体为结构单元形成的左手双螺旋结构。同时,连接组蛋白H1在单个核小体内部及核小体单元之间的不对称分布及相互作用促成30纳米高级结构的形成,从而明确了H1在30纳米染色质纤维形成过程中的重要作用。 /p p style=" line-height: 1.5em "   2014年4月25日,在DNA双螺旋结构发现61周年的纪念日,《科学》杂志以Double Helix,Doubled(《双螺旋,无独有偶》)为题介绍了这项重要成果,并同期刊发英国剑桥大学教授Andrew Travers撰写的题为The 30-nm Fiber Redux(《30纳米纤维的归来》)的评论。该评论指出:(本文)结果明确地界定了染色质纤维中DNA的走向,解决了染色质到底是单股纤维还是双股纤维这个根本性的问题。本来似乎已经陷入困境的30纳米染色质纤维结构研究,又会重新成为生物学家们继续关注的焦点。该成果发表后受到国内外学术界的广泛关注,被多部世界知名最新版本教科书收录(《生物化学》《结构生物学》等)。 /p p style=" line-height: 1.5em "   据李国红介绍,在30纳米染色质纤维结构解析的基础上,他们通过与中科院物理所李明课题组合作,利用单分子磁镊技术对30纳米染色质纤维建立和维持的动力学过程进行了深入的探讨。在后续研究中,研究人员正在建立和完善描绘全基因组染色质结构的MNase-seq技术——gMNase-seq(细胞核内染色质结构分析方法),通过蛋白质融合或不同大小的金颗粒修饰和改造MNase,提高MNase-seq的空间分辨率,进一步描绘了细胞核内染色质纤维三维结构的动态调控及其分子机制。 /p p style=" line-height: 1.5em "   “30纳米染色质纤维结构”先后入选“十八大以来中国科学院重大创新成果”和“中国科学院‘十二五’标志性重大进展核心成果”。该研究成果表明我国科学家在攻克30纳米染色质纤维高级结构这一30多年悬而未决的重大科学问题上取得了重要突破,这使我国在染色质结构研究领域达到国际领先水平。同时,也为预测体内染色质结构建立的分子基础以及各种表观遗传因素对染色质结构调控的可能机理提供了结构基础。 /p p br/ /p
  • 免疫细胞疗法能否成为肿瘤的主要治疗方法?
    分享:基因编辑技术能否有助于将细胞疗法用于治疗实体瘤?珀金埃尔默旗下Horizon Discovery的乔纳森弗兰普顿 (Jonathan Frampton) 在给Laboratory News的一篇撰文中,介绍了如何利用碱基编辑技术来降低当前昂贵的治疗成本,使其成为治疗癌症的主流方法。开发同种异体细胞疗法还需解决一些挑战,包括如何避免破坏患者的免疫系统。目前有两种有效的细胞疗法能治疗“液体肿瘤”(白血病和淋巴瘤)。诺华研发的Kymriah和吉利德科学研发的Yescarta两种药物使用的细胞均属于嵌合抗原受体(CAR) T细胞——两者最初均表现出高反应率,这种高反应率会在部分患者中形成持久的临床反应。虽然这些疗法的前期效果良好,但如何让下一代细胞疗法能够有效治疗实体瘤,仍面临不少问题。2019年,美国新增约176,000名液体肿瘤患者,而实体瘤新增患者约为160万(几乎增长10倍)。此外,由于Kymriah和Yescarta 均属于自体疗法(使用患者体内的细胞用于药物生产),这种个体的治疗成本很高,分别为475,000美元(Kymriah)和373,000美元(Yescarta),这远远超出了大众可以承受的医疗预算范围。相比之下,如使用一般抗癌药物,患者每月的花费约为10,000 美元。这种情况下,需要作出哪些改变,才能让细胞疗法成为治疗癌症的主要方法呢?基因编辑技术—能否将细胞疗法用于治疗实体瘤?尽管细胞疗法是一种复杂的癌症治疗形式,但它可以直接靶向液体肿瘤。细胞疗法可以通过血液进入白血病和淋巴瘤细胞,从而不需要靶向特定的组织或器官,也无需在杂乱无章的毛细血管网络中进行导航以及长时间驻留在免疫抑制和缺氧的实体瘤微环境中。人们普遍认为,需要进一步完善细胞疗法才能应对和克服这些挑战,从而提高患者的生存率。 避免出现脱靶染色体易位要增加存活率、增殖率和持久性,需要精确调节治疗细胞,这可能涉及对多个基因进行编辑。虽然普遍使用的基因编辑器CRISPR-Cas 在改变单个遗传信息时具有很强的稳健性,但这一过程会使得DNA双链产生断裂 (DSB) ,导致细胞出现脱靶染色体易位。借助单编辑或双编辑技术,在正确的指引和谨慎使用下,就很少会出现遗传信息的改变;不过,如需要编辑多个基因,产生染色体易位和其他遗传畸变的风险就会增加,这种风险可能会引起致癌细胞的产生,对于患者来说这无疑是一种潜在的灾难。在需要对一个或两个基因进行编辑,如果可以精确地识别出用于患者治疗的已编辑过细胞,就可避免易位现象。然而,当需要编辑的细胞较多时,很难精确识别已编辑细胞,进而导致致癌易位风险的增加。碱基编辑器:避免出现双链断裂碱基编辑作为基因编辑领域一项相对较新的技术,正在受到人们的关注。碱基编辑器可以在不使用核酸酶来导入DNA 双链断裂的情况下,持续高效地在原代细胞中进行基因编辑。利用碱基编辑在DNA中形成一个缺口(或单链断裂)并借助脱氨酶改变特定的碱基对,这样就可以通过在早期编码外显子中引入终止密码子来实现高效的基因敲除。未来几年,碱基编辑会对细胞疗法的发展产生更明显的影响,尤其是对同种异体细胞、非自体细胞治疗的发展的影响。通用型同种异体细胞疗法?借助同种异体细胞疗法,可以将健康供体转换为通用型治疗细胞,可以大规模生产治疗细胞并集中储存,在治疗需要时可以随时获取。但要开发同种异体细胞疗法会面临一些挑战,包括如何才能避免破坏患者的免疫系统。为了克服这个问题,就必须改造现行的同种异体细胞疗法,使其具有隐身模式,在这种模式下,患者的免疫系统将它视为“自我”的一部分。要开发出这样的细胞,需要修改多个基因,而且这些基因很可能会被敲除。碱基编辑器将在编辑多个基因方面发挥关键作用,这样能够在不使用免疫抑制药物的情况下,延长同种异体治疗细胞在患者体内的存活时间。同种异体细胞疗法的供应链简单、易大规模生产,成本上比自体细胞疗法更低。相关医疗经济研究结果表明,如果能够实现规模经济,同种异体细胞疗法的费用可以降到每剂7500美元,毫无疑问这将有助于进一步推广细胞疗法,使其成为主流疗法。推广细胞疗法持久临床反应的高效细胞疗法是另一个可以实现的目标。它需要将免疫细胞的疗法在治疗液体肿瘤中的成功经验转应用于治疗实体瘤,它需要修改免疫细胞,使其能够适应更为复杂的实体瘤微环境,同时降低此类疗法的成本。这两个目标都可以通过应用高效的基因编辑技术开发同种异体细胞疗法来实现。目前人们正利用CRISPR-Cas进行细胞开发,随着安全性不断提高,未来的同种异体细胞疗法利用碱基编辑器来改变基因信息,将为真正的细胞疗法治疗肿瘤带来雨霖。作者: Jonathan Frampton,珀金埃尔默旗下Horizon Discovery业务发展合伙人(Corporate Development Partner)
  • 基于Perturb-seq技术,绘制首个全基因组范围的人类细胞基因型-表型综合图谱
    近日,美国加州大学旧金山分校与纪念斯隆凯特琳癌症中心等单位的研究人团队合作Cell期刊发表了题为“Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq”的研究性文章。研究团队利用一种紧凑的、多路CRISPR干扰文库(CRISPRi),结合单细胞转录组测序、Perturb-seq技术等分析了数千个功能缺失的基因扰动在不同细胞类型中的作用,揭示了细胞表型、基因功能和调控网络的多维信息,绘制了第一个全面的人类细胞基因型-表型综合图谱。文章发表在Cell研究概要图,来源:Cell新基因功能数据可供其他科学家使用。图片来源:Jen Cook-Chrysos/Whitehead Institute建立遗传变化和表型之间的关联对于理解基因和细胞功能至关重要。经典的研究方式主要包括以表型为中心的“正向遗传”,即揭示驱动表型的基因变化;以及以基因为中心的“反向遗传”,即对确定的遗传变化引起的不同表型进行解析。近年来,基因技术的革新也推动了表观遗传遗传研究的进展。其中,CRISPR-Cas9基因编辑技术可以轻松地对基因进行编辑,进而抑制或激活基因,在揭示基本细胞机制、分化因子和遗传疾病相关基因以及识别癌症驱动基因等层面提供了有力工具。单细胞技术的发展也使在单细胞层面读取表观遗传学、转录组学、蛋白质组学和成像信息等成为可能,同时单细胞维度的研究也可以深入分析选择性遗传扰动影响的具体细胞类型和细胞状态。因此,单细胞CRISPR筛选可以同时分析单细胞的遗传干扰和高维表型,从而将正向遗传学的基因与反向遗传学丰富的表型相结合。虽然单细胞CRISPR筛选技术前景广阔,但其应用仅限于最多几百个基因扰动研究,并且这些基因扰动研究也通常被用来解决预先确定的生物学问题。目前,高通量、无偏颇的单细胞CRISPR筛选研究仍然缺失。主要研究内容全基因组Perturb-seq的多路CRISPRi策略Perturb-seq是指利用CRISPR-Cas9技术将基因变化引入细胞内,然后使用单细胞转录组测序捕获特定基因变化导致的转录组信息变化,能够研究给定细胞类型的全面遗传扰动影响,可以以前所未有的深度跟踪打开或关闭基因的影响。基于Perturb-seq,研究团队探究了可以提高可扩展性和数据质量的关键参数,例如遗传扰动模式和sgRNA库,并最终设计了一种包含多个时间点和细胞类型的Perturb-seq筛选方法,并可利用10x Genomics的液滴法单细胞转录组测序技术对所有筛选策略下的细胞状态进行解析。图1. 基因组尺度Perturb-seq的多路CRISPRi策略示意图,来源:Cell为了揭示基因扰动的功能后果和基因型-表型关系,研究团队使用人类血癌细胞系以及来自视网膜的非癌细胞,对超过250万个细胞进行了Perturb-seq,并使用这些数据构建了一个基因型-表型综合图谱。研究团队根据基因的共同调控将其聚类到特定表达程序中,并计算每个扰动簇中每个基因表达程序的平均活性。分析结果包含多个与基因干扰相关的已知表达程序,包括蛋白酶体功能障碍导致的蛋白酶体亚基上调、 ESCRT蛋白缺失时NF-kB信号通路的激活,以及胆固醇生物合成上调对囊泡运输缺陷的反应等。有趣的是,聚类分析发现了许多驱动红系或髓系分化的基因扰动,与K562细胞的多系潜能也是一致的。正如预期的那样,红细胞生成的关键调控因子(GATA1、LDB1、LMO2和KDM1A)的缺失导致了髓系分化增强,BCR-ABL及其适配体GAB2的抑制则促进了红细胞的分化。接下来,研究团队分析了选择性必需基因的分化作用,因为这些基因可能是颇具前景的治疗靶点。研究发现,在K562细胞中必需的酪氨酸磷酸酶PTPN1的缺失驱动了髓细胞分化。此外,在靶向实验中,联合敲除PTPN1和KDM1与单独敲除任意一个基因相比,导致分化和生长缺陷的表型会显著增加,表明这些靶点是通过不同的细胞机制发挥作用。以上结果强调了表型在了解细胞分化和治疗靶点方面的效用。图2. 基于Perturb-seq的基因型与表型关系汇总,来源:Cell单细胞中非整倍体的基因驱动和影响探索单细胞异质性可以揭示在整体或平均检测中被遗漏的机制。为了评估基因扰动诱导表型的外显率,研究团队采用SVD评分作为单细胞表型大小的衡量标准,通过单细胞SVD分数的变化对基因扰动进行表型影响评估。SVD评分是量化每个受扰动细胞的转录组相对于对照细胞的离群程度。分析结果表明,许多与染色体分离有关的基因都是细胞异质性的主要驱动因素,包括TTK、SPC25、DSN1,这些遗传干扰导致的极端转录变化可能是由于有丝分裂错误分离导致的染色体拷贝数的急性变化。为了探究这一点,研究人员使用inferCNV估算了基因组中单细胞DNA拷贝数变异。与预期一致,干扰纺锤体装配检查点的核心组成部分TTK,可以导致非整倍体和近整倍体细胞的染色体拷贝数发生显著变化。此外,干扰TTK的细胞中有76%发生了核型改变,未受干扰的细胞中只有2%发生了核型改变。值得注意的是,由于染色体的随机增加或减少,TTK敲除细胞具有高度可变的核型,这也是其表型异质性的原因。同时,该分析还揭示了单细胞CRISPR筛选可以用来解析表型,而不是预先定义的实验终点。图3. 单细胞中非整倍体的基因驱动和后果,来源:Cell发现线粒体基因组的应激特异性调控因子当前,领域内一个关键的科学问题是如何理解细胞核和线粒体基因组的表达来应对线粒体压力。该最新研究的实验设计为探究这一问题提供了可能。为了确定基因扰动引起的差异表达模式,研究团队检测了单细胞转录组测序数据在线粒体基因组中的分布。为了验证这种基于位置的分析的有效性,首先证实了已知线粒体转录调控因子(TEFM)和RNA降解(PNPT1) 的敲除会导致线粒体基因组位置发生重大变化。相比之下,研究发现许多基因扰动似乎导致了mRNA相对丰度的变化,而不是位置排列的总体变化。鉴于观察到的反应的复杂性,研究人员提出可能有多种机制影响不同线粒体编码转录本的水平,以应对不同的压力。图4. 解析压力应激下线粒体基因组的调控机制,来源:Cell结 语 单细胞CRISPR筛选代表了一种新兴的工具,可用于生成丰富的基因型-表现型图谱。但目前单细胞CRISPR筛选研究仅限于预先选择的基因,研究重点也是预先确定的生物学问题。在该最新研究中,研究团队进行了全基因组规模的单细胞CRISPR筛选,并展示了这些筛选策略是如何使用数据驱动的分析来解剖广泛的生物学现象,强调了关键的基因功能和衍生原则,同时绘制了丰富的基因型-表型图谱以指导未来的研究。该研究为系统探索遗传和细胞功能提供了源动力,同时也为领域提供了宝贵的数据资源。在未来,研究人员希望将Perturb-seq用于癌细胞系之外的不同类型细胞研究,也希望继续探索基因功能图谱。文章共同通讯作者Thomas M. Norman博士表示:“该研究是多个科研团队多年合作工作的结晶,很高兴看到它继续取得成功和扩展,我认为这个数据集甚至将使来自生物医学以外领域的研究团队进行各种分析成为可能。”参考文献:1. Replogle et al., Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq, Cell (2022).2. Fianu, I., et al., (2021). Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887.3. Kummer, E., and Ban, N. (2021). Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 22, 307–325.
  • DISEASE In A DISH | 基于诱导多功能干细胞iPSC来源的药物研发
    山中伸弥(Shinya Yamanaka),京都大学iPS细胞研究所所长,因在“诱导多功能干细胞(induced Pluripotent Stem Cell, iPSC)”的卓越贡献,被授予2012年诺贝尔生理或医学奖[1]。“iPSC来源于病人体细胞,有望为重大疾病的新药开发提供强有力的治疗工具。” "IPS cells can become a powerful tool to develop new drugs to cure intractable diseases because they can be made from patients' somatic cells." by Shinya Yamanaka. [2]—山中伸弥对iPSC在临床应用方向寄予厚望iPSC是生物学里界内的一个重要里程碑。研究发现哺乳动物成熟体细胞能够重新编程为诱导多功能干细胞,且细胞能够进一步发育成各种其他器官类型的细胞。这一发现不仅彻底改变了人类对细胞和器官生长的理解;同时,通过对人体细胞的重新编程,为重大疾病治疗提供了崭新的应用前景。iPSC 的商业应用主要有以下四个领域:1)药物研发,2)细胞治疗,3)毒性筛选,4)干细胞生物银行。[3]iPSC商业化的四个关键领域(图片源自BioInformant)相对与其他治疗方法,iPSC用于细胞治疗的关键优势在于伦理法规和即用型(off-on-shelf)定制。与胚胎干细胞不同,iPSC来源成体而非人类胚胎,伦理风险小;另一方面,借助基因工程技术,iPSC允许创建针对不同疾病的基因定制细胞系,同时降低免疫排斥风险,以实现即用型可大规模生产的细胞治疗产品。[4]距iPSC研究获诺贝尔奖7年后,2019年 Fate Therapeutics公司宣布首个iPSC来源的CAR-NK细胞免疫产品FT596获批新药临床研究申请。FT596源自诱导多能干细胞,除靶向CD19专利CAR以外,还具有CD16(hnCD16)Fc受体和IL15受体片段,以增强其抗体依赖性细胞毒性(ADCC),并促进NK细胞和CD8 T细胞增殖及活化。Fate Therapeutics公司的iPSC产品平台已获得100多项专利批件和100多项待批专利申请组合,用于大规模生产通用NK细胞和T细胞产品。iPSC来源的细胞疗法已开启细胞治疗3.0时代,有望改善目前细胞疗法“批量到批量”工程化生产中成本高昂、工艺费时及产品显著异质性等现状。FT596设计图示(图片源自Fate)在实际研发操作过程中,iPSC 来源的细胞分化培养面临着独特挑战。iPSC来源的神经元细胞通常需要进行长期培养(在同一个384孔板上培养长达数周),以获得相对成熟的细胞。而且,我们会经常使用老年病人来源的细胞样本来模拟疾病,进一步增加培养的周期。然而,随着培养时间的增加,细胞污染和聚团的风险也会增加;长期培养还会使每孔的细胞数具有更大的可变性;以及复杂的细胞表型会极大增加药物评价的难度。基于诱导多功能干细胞iPSC来源的药物研发平台(图片源自Evotech)带着这个行业难题,让我们去国际顶尖的生物科技公司Evotech一探究竟。Evotec公司总部位于德国汉堡,在欧美市场共有15个分部,在药物研发领域有20多年的经验积累,与数十家国际生物制药巨头有长期合作。在整个药物研发管线布局中,最引人瞩目的是其业内一流的基于诱导多功能干细胞iPSC来源的药物研发平台。借助于该平台,Evotec从病人群里中获得细胞源,并以此建立涵盖20多种疾病的200多株iPSC生物银行,进一步培养、扩增及诱导分化后,通过自动化样品处理、多模式检测及高内涵表型筛选系统组成的一体化质控分析平台,完成多种疾病模型的药物筛选和针对个体病人的细胞治疗工作。[6][蓝色-细胞核;绿色-神经元标志物 TuJ1;蓝色-皮层神经元标志物-TBR1];高内涵表型筛选平台用于iPSC来源的X染色体脆折症研究 (图片源自Evotec)基于XLII cell::explore和Explorer G3工作站,Evotec和PerkinElmer共同开发了一个自动化平台,用于工业级别iPSC来源细胞的培养。该平台处于配备层流的无菌环境中,支持384孔iPSC来源细胞的全自动培养,包括细胞接种、培养基更换和化合物处理。由专门设计的专用数据库管理孔板的处理和跟踪,对iPSC来源的细胞进行常规监控,以检查污染物、细胞密度或聚团以及进行智能软件决策,为进行大规模HTS检测的iPSC来源细胞类型增加了必不可少的质量控制组成部分,任何不符合QC标准的培养皿都会被自动放入隔离培养箱中。扫描下方二维码,即可下载高通量人源iPSC分化细胞培养和自动化质控应用相关资料。参考文献1.https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/2.https://www.brainyquote.com/authors/shinya-yamanaka-quotes3.https://mp.weixin.qq.com/s/bPaO6xj956XmVEAJYTKLPA4.https://medicalxpress.com/news/2017-08-off-the-shelf-cell-therapies-multiple-myeloma.html5.https://fatetherapeutics.com/pipeline/immuno-oncology-candidates/ft596/6.https://www.evotec.com/en
  • 流式细胞仪的技术发展
    流式细胞仪与其他细胞剖析仪器比较,具有突出的技能特征,这些技能特征的不断改善就大致地代表了流式细胞仪的技能发展过程。 1、高速度: 剖析速度以每秒可剖析的细胞数来表明。流式细胞仪是以高速度的数据处理电子体系信号,合作GX的液流控制体系,有力地保证了流式细胞仪的检测功能。 流式细胞仪对细胞的检测速度一般为1000——5000个/s 而到现在为止,对细胞的规范剖析速度已到达了2×104个/s,Zda剖析速度可到达6×104个/s。 2、高灵敏度: 灵敏度的高低是衡量流式细胞仪检测弱小荧光信号的重要目标,一般是以能检测到单个微球上Z少标记有异硫氢酸荧光素(FITC)或藻红蛋白(PE)荧光分子数目来表明。 曾经,每个细胞要带有1000——3000个FITC分子才能在流式细胞仪上丈量出来 现在,一个细胞上只要带600个荧光分子,乃至带100个FITC分子,即可以被检测和分选出来。 3、高准确度: 曾经,在两个细胞间待测细胞成分存在5%以上的差异时,流式细胞仪才能检测出来 现在,两个待测细胞间细胞成分仅相差1%左右时,流式细胞仪便可检测出来。例如,在检测男人和女性外周血淋巴细胞DNA含量时,仅仅是X染色体和Y染色体DNA含量之间有所区别(大约相差约占整个细胞的2%左右),使用流式细胞仪便可以轻而易举地把男人和女性的淋巴细胞区别隔并分选出来。 4、高精度: 分辨率是衡量流式细胞仪丈量精确度的目标,通常用变异系数(CV)值来表明。用流式细胞仪检测某种细胞成分时,比用其他剖析细胞学技能的CV值都要小得多,分辨率要高得多。众所周知,用某种仪器剖析细胞时,其CV值越大,剖析结果越不精确。 曾经的流式细胞仪,在剖析细胞样品时,CV值只能到达5%——7%左右,前向角散射光分辨率仅为0.3μm。流式细胞仪前向角散射光的分辨率已到达0.02μm。流式细胞仪的电信号脉冲通道,从最初的128道→256道→1024道,直到现在一般已到达40%道,有的乃至还可以到达5120道。 信号脉冲通道数散布越多,对细胞的分辨率就越高,对细胞的剖析就越精确。例如,现在,各流式细胞仪生产厂家生产的流式细胞仪,都能以高精确度来剖析人类染色体的畸变,经过二维图显现扩展集体散布,极大地进步了流式细胞仪的分辨率。别的,经过对脉冲体系功能的改善,也进步了细胞参数剖析的质量。 5、多参数: 流式细胞仪剖析细胞时,可以从一个细胞中一起获得多种细胞信息。因为流式细胞仪选用的光源不断改善从开端的单一的激光器或紫外光器,至现在发展为选用2-3个激光器,或再加一个紫外光器。 有的选用立体空间激光体系,实现多荧光道剖析,Zda程度地削减荧光信号之间的补偿,进步检测的灵敏度,所以,利用空间立体激起的多激光体系可以进步多参数的剖析质量。 现在的单激光四色剖析或双激光四色剖析的流式细胞仪,488nm激光器激宣布的4种不同荧光光谱之间常有堆叠,做4色剖析时,难以避免荧光过多堆叠而导致的补偿困难。利用该体系对488nm激光发生的3色荧光与635nm激起而发生的第4种荧光分成两种信号,能Zda程度地削减补偿,使4色荧光到达Zwan美的效果。 因而在一个细胞中,除剖析前向角和侧向角的散射光参数外,还可以检测到3种、4种、6种,乃至到8种荧光参数,这明显增加了流式细胞仪的信息量,进步了工作效率和科学性。 6、高纯度: 流式细胞仪的重要功能之一是能分选出实验者所需要的任何细胞。其分选目标首要包含:分选速度、分选纯度和细胞回收率。这些目标均随流式细胞仪的技能发展而逐步得到改善和进步。 现在流式细胞仪分选细胞速度已到达6×104——1×105个/s,分选纯度为99.9%以上,分选回收率也达90%以上。 7、其他几方面的技能改善: ①荧光信号从线性丈量到对数丈量的改善,因为对数丈量可以放大电信号,使之对弱荧光和某些药物自发荧光标本检测才得到满意的结果 ②光谱堆叠的校对,经过补偿润饰软件的开发使用,从而保证了各种不同激起荧光检测剖析的质量 ③DNA含量剖析时,经过剖析脉冲的面积、宽度,区别实体瘤组织标本中的粘连细胞集体,剔除DNA检测中的二联体细胞,Zda程度地削减假阳性,从而处理了实体瘤DNA剖析时长期存在的关键性的难题 ④曩昔选用激光的一种波长(如488nm)的发射光仅能激起样品中一种波长的继发光,因而,只能检测细胞中一种细胞成分。现在流式细胞仪选用一种488nm激起波长的发射光,可以一起激起样品中三种或四种不同波长的继发光,这便可用于同一细胞不同成分的同步剖析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制