当前位置: 仪器信息网 > 行业主题 > >

工业传输带摩定仪

仪器信息网工业传输带摩定仪专题为您提供2024年最新工业传输带摩定仪价格报价、厂家品牌的相关信息, 包括工业传输带摩定仪参数、型号等,不管是国产,还是进口品牌的工业传输带摩定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工业传输带摩定仪相关的耗材配件、试剂标物,还有工业传输带摩定仪相关的最新资讯、资料,以及工业传输带摩定仪相关的解决方案。

工业传输带摩定仪相关的资讯

  • SAXS有奖征文精选 | 膜孔道的溶剂化环境调控,实现锂离子选择性传输
    一、介绍 锂资源作为电子设备和电动汽车的关键原料,被誉为 "白色黄金"。为了确保锂资源的稳定供应,人们开始尝试从盐湖中提取锂资源。然而,盐湖中含有大量与Li+离子化学性质相似的Mg2+离子,这极大地增加了盐湖提锂的难度。因此,实现离子的高效分离以及盐湖提锂成为当前研究的重点。目前的研究主要集中在调控膜的尺寸和电荷量,以实现Li/Mg分离。研究表明,许多生物离子通道通过离子与孔道官能团之间的溶剂化/配位相互作用实现对离子的高效分离。然而,对于这种溶剂化/配位相互作用选择性机制在Li/Mg分离的研究仍然相对较少。二、测试和结果Li+/Mg2+离子分离膜的设计原理 由三醛基间苯三酚(Tp)制成的COF以其化学稳定性和与多种酰肼衍生物单体的兼容性而著称。这使得我们能够在图1中很好地研究膜的孔道环境和选择性之间的关系。因此,我们利用Tp与连接不同数量环氧乙烷(EO)单元的酰肼单体制备了膜,这些膜具有不同数量的EO单元,并将其命名为COF-EOx,其中x代表EO单元的数量。 图 1. COF-EOx的化学结构。 我们使用掠入射小角XRD衍射 (GIWAXS)技术评估了以COF-EO2/PAN 膜为代表的COF膜的结晶度。尽管活性COF层非常薄,而且腙键连接的COF具有一定的柔性,这导致该类COF的信号较弱,但XEUSS 3.0*仍然观察到了它们的衍射峰,表明其良好的结晶度(见图2)。此外,我们对COF-EO2/PAN膜进行了取向分析,证实了PAN基底上的COF膜在平面方向上没有优先取向,Qz = 0处的圆形模式证明了这一点(见图2)。这可能是孔道内的醚氧链官能团影响了最终的结果。 图2.(A)PAN基底和(B)COF-EO2/PAN膜对应的2D-GIWAXS图像。(C)上述2D-GIWAXS图像对应的一维图。 为了探究不同长度醚氧链COF膜对Li+和Mg2+跨膜传输的影响,我们首先进行了分子动力学(MD)模拟。结果显示,随着醚氧链长度的增加,Li+和Mg2+的跨膜能垒逐渐下降。这表明,醚氧链在促进离子传输方面发挥了重要作用。有趣的是,含有最长醚氧链的COF-EO4膜在Li+和Mg2+离子间的跨膜能垒上并未显示出最大的差异。相反,COF-EO2膜显示出最高的跨膜能垒差(见图2A),表明醚氧链能够有效调节COF膜的孔道环境,优化其分离Li+和Mg2+的性能。膜孔径的测量 随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。研究Li+和Mg2+的跨膜选择性 接着我们测试了孔道醚氧链的长度对Li+和Mg2+相对扩散速率的影响。结果显示Li+和Mg2+的相对离子通量与EO单元数量呈现出明显的火山状曲线关系(见图3C,插图)。具有中等长度醚氧链的COF-EO2/PAN膜展现出Li+和Mg2+离子相对迁移率的最大差异。这一发现与MD模拟的结果非常吻合。考虑到这些差异,为了量化醚氧链对Li+和Mg2+离子跨膜传输的影响,我们首先测量了COF-EOx/PAN在单盐条件下的离子通量,并将这些膜与不含醚氧链的COF-EO0/PAN进行了比较。我们的研究结果表明,增加醚氧链的长度可以增强离子传输,因为随着EO单元数量的增加,传输速度持续增加(见图3A)。值得注意的是,含有四个EO单元的COF-EO4/PAN对Li+和Mg2+离子的传输速度最高,超过COF-EO1/PAN对Li+和Mg2+传输速度的两个数量级以上。我们注意到这些膜的孔径随着醚氧链长度的增加而略有减小,这更加为醚氧链在离子传输中的促进作用提供了确凿的证据。图3. 离子跨膜行为的研究。(A) 根据PMF曲线得出的Li+和Mg2+离子穿过COF-EOx的跨膜自由能垒;(B) 四烷基铵阳离子与Cl-离子跨膜的相对迁移率;(C) COF-EOx/PAN在两侧注入相同浓度梯度溶液的条件下记录的I-V图(插图:COF-EOx/PAN的Vr)。 为了对这些实验观察结果做出合理解释,我们测量了COF-EOx/PAN中的Li+和Mg2+离子浓度。我们发现,Li+和Mg2+离子的电导率都高于体相值,并且随着醚氧链长度的增加,偏离更为明显(见图4B)。这表明,具有较长醚氧链的膜孔道能吸附更多的Li+和Mg2+离子。为了定量评估COF-EOx/PAN膜的跨膜能垒,我们测量了离子跨膜的表观活化能。结果表明,随着膜孔道EO单元数量的增加,Li+和Mg2+的表观活化能降低,而COF-EO2的Li+和Mg2+跨膜活化能差异最大,这与MD模拟和电化学实验结果一致(见图4D)。基于上述结果,我们认为基于配位化学的离子识别(通过促进传输机制发生)可用于合理解释选择性分离(见图4E)。图4. (A) 在1 M单盐条件下测试的LiCl和MgCl2穿过COF-EOx/PAN的离子通量,以及通过DFT计算得出的Li+和Mg2+与COF-EOx的结合能;(B) COF-EOx/PAN的电导率与氯化锂浓度的关系;(C) MD计算得出的Li+(虚线)和Mg2+(实线)穿过COF-EOx的PMF曲线(灰色背景代表离子进入COF孔道的区域;(D)在1 M单盐条件下测试的COF-EOx/PAN膜上的LiCl和MgCl2跨膜活化能以及相应的Li+/Mg2+选择性,以及(E)推测的离子跨膜传输机理。 为了进一步评估COF-EOx/PAN膜的分离性能,我们使用含有相同Li+和Mg2+离子浓度(0.025-1 M)的混合溶液进行了扩散实验。Li+和Mg2+离子的二元盐选择性峰值在15到331之间(见图5A)。与单盐条件相比,COF-EOx/PAN在二元体系下测试的Li+/ Mg2+选择性更高,这可能是因为在二元体系下,由于离子存在竞争作用,Mg2+离子的通量极大地减少。为了定量分析这一现象,我们将二元体系中的离子通量与单盐溶液中的离子通量进行了归一化处理。分析表明,在二元体系下,Li+和Mg2+离子的通量分别减少至0.34-0.60和0.06-0.19。因此,导致了Li+/ Mg2+选择性的增加(见图5B)。电驱动二元盐体系下的Li+/Mg2+分离性能的研究 为了研究COF-EOx/PAN在实际应用中的性能,采用了类似工业电渗析的装置,并在5 mA cm-2的电流密度下评估了其性能。实验中使用了0.1 M LiCl和0.1 M MgCl2的二元水溶液作为进料液。结果表明,COF膜的Li+/Mg2+分离比随着膜中醚氧链上EO单元数量的增加而变化。在电驱动条件下,虽然观察到离子通量显著增加,但COF膜仍然实现了高达1352的Li+/Mg2+分离比,远超过COF-EO2/PAN在扩散渗析条件下的分离比,成为迄今为止报道中性能最优的锂镁分离膜之一。此外,COF-EO2/PAN的Li+/Mg2+选择性超过了ASTOM标准两个数量级。因此,在使用COF-EO2/PAN进行电渗析处理后,西台吉尔盐湖(中国)的模拟溶液中Li+/Mg2+的摩尔比从0.06显著提升至10.9,而阿塔卡马盐湖(智利)模拟溶液中Li+/Mg2+的摩尔比从0.61提高至230。这些结果表明,COF-EO2/PAN在盐湖提锂应用中具有巨大的潜力。另外,COF-EO2/PAN还展现出卓越的长期稳定性。尽管选择性随时间略有下降,但通过用去离子水清洗膜,其选择性至少可以在10个周期后完全恢复。COF-EO2/PAN在不同条件下展现的全面稳定性和优异的选择性,使其成为盐湖提锂工业中理想的膜材料。图5. (A) 在二元盐体系下测试的LiCl和MgCl2在COF-EOx/PAN中的离子通量以及相应的LiCl和MgCl2的选择性(各为 1 M,误差条代表三个不同测量值的标准偏差);(B) 在二元盐体系下测试的LiCl和MgCl2的离子通量与在单盐条件下测试的离子通量(各为1 M)的归一化通量;(C) COF-EO2/PAN对Li+/Mg2+的选择性和对LiCl的离子通量与其他膜材料的比较。三、结论 在本研究中,我们通过一系列系统性研究深入探讨了醚氧链对COF膜在离子进膜、跨膜扩散以及选择性方面的影响。我们的研究成果揭示了一个重要发现:与Mg2+的传输相比,醚氧链替代的离子水合物对Li+的传输更为有利。此外,Li+和Mg2+与膜中密集分布的醚氧链形成的络合作用导致了膜孔道内离子的富集,有效地将离子与体相溶液隔离。这一富集效应在静电排斥力的作用下促进了离子通过膜的传导。Li+与Mg2+跨膜传导的活化能差异决定了膜的选择性特征。在分子层面上,离子选择性的机理研究表明,通过调节离子与膜之间的结合能,可以在保持高离子通量的同时提升离子选择性。Author: Qingwei MENGZhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China参考文献:[1] Meng, Qing-Wei, et al. "Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes." Proceedings of the National Academy of Sciences 121.8 (2024): e2316716121.随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。
  • 大连化物所设计开发出具有K+高效传输能力的离子传导膜
    近日,中科院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队与分子反应动力学国家重点实验室分子模拟与设计研究组(1106组)李国辉研究员团队合作,在离子传导膜材料的结构设计与研究方面取得新进展。团队通过对膜内离子传输通道的设计,实现了K+快速传输,并对膜结构和离子传输机理进行了详细地研究和探讨。   具有快速离子选择性传输能力的膜材料在工业分离、能源等应用领域具有广阔的应用前景。这些应用场景通常涉及从复杂混合物中分离特定离子,因此设计具有高效离子选择性传导的膜材料至关重要,但仍然存在挑战。在本工作中,团队通过金属离子与聚苯并咪唑的配位构建了具有可控离子传输通道的膜材料。研究表明,Zn2+与聚苯并咪唑PBI配位得到均匀的聚合物配位网络,形成连续的水通道,并暴露出更多的极性基团,促使K+的快速传输。团队通过分子动力学模拟计算K+在聚合物网络中的运输行为,揭示K+与聚合物链上的-N=相互作用,并靠近链段的含氧醚键,从而快速通过聚合物膜。 同时,配位膜的自由体积增大,形成亚纳米级分子通道。纳米通道的物理约束和膜的静电相互作用使K+在浓盐和浓碱溶液中的迁移不受溶液浓度的影响,迁移数高达0.9,与阳离子交换膜相当。采用K+高效传输离子传导膜组装碱性锌铁液流电池,可有效缓解电池运行过程由于锌沉积带来的离子强度失衡进而导致水迁移的问题。研究提供了一种通过金属离子配位调节聚合物链结构,进而调控聚合物膜离子传输特性的策略;同时加深了对金属配位聚合物膜离子传输机制的理解。   相关研究成果以“Metal-coordinated polybenzimidazole membranes with preferential K+ transport”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是我所DNL17博士研究生吴金娥、1106组副研究员廖晨伊。上述工作得到国家自然科学基金、中科院电化学储能技术工程实验室等项目的支持。
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™
    纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。 随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等能源在人类的智慧中应运而生。从资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。 现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。 产品介绍 CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,ZUI大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。图1 赛默飞电镜惰性气体/真空保护样品传输系统CleanConnect™ 工作流程 利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图2 惰性气体保护下将样品转移至赛默飞扫描电子显微镜 此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图3 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析 产品优势 CleanConnect的使用给电子显微镜用户带来了全新的体验,产品具有如下优势:1 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。2 CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。3 CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。4 模块化的设计,符合人体工程学,可实现更便捷的样品转移。5 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。 产品应用 部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图4 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右) 图5 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右) 如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。图6是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图7TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。 图6 利用Cryo-PFIB进行TEM样品制备过程 图7 利用TEM进行明场像(中)及原子尺度的观察(右) CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。 虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!
  • 新品发布|赛默飞电镜惰性气体/真空保护样品传输系统CleanConnectTM
    自人类起源以来,从未停止过对能源的追寻和探索。许多科学家曾梦想发明永动机,一劳永逸地解决能源供给问题,然而热力学第一定律的发现使人们认识到“永动机”永远无法实现,于是人类只能继续踏上探索能源的漫漫征程。纵观历史,人类经历了三大能源利用阶段,分别是“火与薪柴”、“煤炭与蒸汽机”与“石油与内燃机”时期。古希腊神话中,普罗米修斯从太阳神阿波罗处盗火种给人类送来了文明,中国则有一万多年前“神鸟鸮啄木,灿然火出,圣人燧人氏故此钻木取火”的传说。荀子曰:“君子性非异也,善假于物也”。上万年间,人类借助着能源的内在力量延续着智慧与文明。从薪柴到煤炭、石油、天然气,人类也一直在探索更高效、便捷的能源形态。随着化石能源的大量使用,能源危机和环境污染问题逐渐凸显,太阳能、风能、热能、潮汐能等可再生能源在人类的智慧中应运而生。从不可再生资源到可再生资源的应用,人类窥到了“取之不尽用之不竭”的理想能源的冰山一角。而如何利用和控制好这些能源,则需要有效的能量转换和储能技术。现如今,人类能源进程进入“新能源与可持续发展”阶段。新能源汽车势如破竹,动力电池和储能系统的重要性被推至前所未有的历史高度。现有的动力电池和储能器件的性能与其组成部件的性能息息相关,为了提升其整体性能,研究人员需要对组成部件材料的物理和化学性质有更深入的了解。如果这些材料对空气和水分敏感,这项研究将更具挑战。 Thermo Scientific针对空气敏感样品开发了惰性气体/真空保护样品传输系统CleanConnect,为空气敏感材料表征开拓出了全新视野。惰性气体/真空保护样品转移工作流程能够帮助科研工作者拓展空气敏感材料的研究边界,探究更多未知领域。产品介绍CleanConnect 惰性气体/真空保护样品传输系统可与大多数 Thermo Scientific扫描电镜和双束电镜系统兼容。它主要由样品装载室、闸阀单元、真空控制装置、样品转移仓和转移杆组成。CleanConnect的真空系统可与扫描电镜或双束电镜集成,无需额外配置真空泵,仅需要60s即可完成抽真空过程。和传统的样品转移杆不同,CleanConnect创新性地使用了惰性气体进行样品保护,使得转移仓持续维持正压,最大限度地保证样品与空气隔绝。CleanConnect系统配备的气压表可以实时显示转移仓中气压,使得用户对样品的气压状态有清晰的认识。CleanConnect的正压可以维持十个小时以上,可以实现样品长时间、长距离的转移。工作流程利用CleanConnect与扫描电子显微镜进行联用时,可将空气敏感的样品在手套箱中转移至CleanConnect样品台中,随后将 CleanConnect与扫描电镜的样品交换仓进行对接,将样品转移至扫描电镜的样品台中,这样就实现了惰性气体保护下的隔绝空气地转移,随后再利用扫描电镜进行形貌观察、元素分析等。图1 惰性气体保护下将样品转移至赛默飞扫描电子显微镜此外,CleanConnect也可加载在双束电镜上用于材料截面形貌的观察和TEM样品的制备。当需要观察空气敏感样品的内部显微结构时,先利用CleanConnect实现手套箱至双束电镜的转移,随后利用双束电镜的离子束对样品进行切割,再利用电子束对切割后的新鲜截面进行高分辨成像。如果期望实现原子尺度分辨率成像时,则可利用双束电镜制备TEM薄样,再使用CleanConnect将制备好的TEM薄样在手套箱中转移至TEM样品杆,再转移至透射电镜中完成纳米或原子尺度的高分辨成像。图2 惰性气体保护下将样品转移至双束电镜和透射电镜中进行纳米尺度分析产品优势CleanConnect的使用给电子显微镜用户带来了前所未有的体验,产品具有如下优势:• 保护样品避免与空气中的氧气、水分或二氧化碳发生反应,获取材料表面真实形貌与结构信息。• CleanConnect系统适用于不同的SEM和DualBeam产品型号,对于有多台设备的实验室,CleanConnect可实现多设备之间的样品关联互通。• CleanConnect系统兼容液氮冷冻台,样品从手套箱可以转移至双束电镜上的冷冻台上,使得样品在随后的的切割过程中免受离子束的热损伤。• 模块化的设计,符合人体工程学,可实现更便捷的样品转移。• 分离式的样品转移舱和转移杆设计,可以使CleanConnect从手套箱的小过渡仓直接进行快速转移,无需对手套箱进行改装。产品应用部分电池材料(如锂金属、硫基固态电解质、满充负极等)对水分和氧气非常敏感,因此在样品处理和转移过程中需要对其实施特殊保护以便于获取材料的真实形貌与结构信息。此外,固态电池的表征也需要在隔绝空气的条件下进行开展:例如固态电池材料的形貌表征、原位实验以表征枝晶在SEI(固态电解质界面)中横向生长形态以及由于硅材料体积膨胀导致的SEI不稳定性实验等。下面两图分别对比了锂金属和满充石墨负极样品在采用CleanConnect系统保护和在空气暴露后的形貌,结果表明CleanConnect有效保护了样品免受空气/水分污染,从而帮助研究者获取本真形貌结构信息,实现对样品更深入的分析研究。 图3 采用CleanConnect传输锂金属样品(左)和在空气中暴露2 min的锂金属(右)图4 采用CleanConnect传输满充石墨负极样品(左)和在空气中暴露2 min的满充石墨阳极(右)如果希望对锂金属进行原子尺度的表征,需要进行TEM样品制备。传统的Ga离子在室温下会与锂金属发生反应,难以用于锂金属的加工。Thermo Scientific研发的氙气等离子气体源的PFIB(Plasma FIB)可以实现锂金属透射样品的无损制备。为了避免锂金属暴露在空气中造成表面氧化,使用了CleanConnect进行样品传输,随后使用Cryo-PFIB技术进行样品冷冻制备和进一步的观察。5图是利用Cryo-PFIB技术在-178℃进行锂金属样品的TEM样品制备过程以及在TEM中观察到的样品形貌信息。图6TEM明场像中可以看到Li的碳化物与Li2CO3的分布,利用高分辨成像可以看到清晰的锂原子排列,可见在切割和转移过程中样品并未受到损伤或氧化。图5 利用Cryo-PFIB进行TEM样品制备过程图6 利用TEM进行明场像(中)及原子尺度的观察(右)CleanConnect除了可以应用在钠离子电池、钠硫电池、固态电池材料等空气敏感的电极材料以外,还非常适用于镁铝合金、钙钛矿材料、金属有机框架材料、催化剂等这些对空气敏感的材料表征。无论是在寻求替代能源的工作中,还是开发更强、更轻材料和高精尖的纳米技术研究中,都需要有利的仪器和工作流程来实现更深入的研究表征需求,以推进科学技术发展。我们相信随着CleanConnect系统在扫描电镜、双束电镜上的推广与普及,越来越多的科学家及工程师们能受惠于这一科技带来的对新材料研究的便捷,推进新材料、新产品研究的进程。虽然人类无法实现永动机的美好愿望,但却可以更好地开发先进技术、更有效地使用能源,让人类文明生生不息。如今,科学家们仍致力于电池材料研究以实现电池技术的突破,旨在开发更安全、更高能量密度和功率性能的电池产品。赛默飞也一直在持续开发更先进的分析技术应用于电池研发和生产中,助力科学家们实现这一目标。未来赛默飞也会竭诚为广大科研与工业用户开发出更多满足客户需求的产品,帮助客户让世界更健康、更清洁、更安全!8月23日 下午2:00-3:00观看直播,扫码预约
  • 深圳朗石新一代DT10数据采集传输仪精彩亮相
    生态环境部在2019年发布了HJ 35X-2019系列水污染源在线监测系统新标准。新标准增加了对数据上报的要求,规定了数据传输的频次。数采仪需要分析数据有效性,接受平台反控采样器采样、送样和留样功能,并读取仪器的状态、设置、日志等。新标准对于数采仪的要求更高、规范更加严格。为响应新标准要求,方便用户水质监测运维工作,朗石自主研发了DT10数据采集传输仪(下称数采仪)。DT10数采仪是一款应用于水质在线监测系统进行数据传输上报的仪器,完全符合《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)的标准及《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017、 HJ/T 212-2005)传输协议。应用范围:可应用于地表水、污染源、水站、自来水厂等水质在线监测系统的数据采集传输,服务于工程项目公司、环境技术服务公司、各类型企业等。 朗石DT10数据采集传输仪产品特点:? 接口类型丰富,并配备以太网、全网通3G/4G等多种通讯方式;? 支持数据“一站多发”、自动补传、手动补发功能;? 新增超标告警及留样控制功能,真正实现“智慧运维”,为企业节省运维成本。 此次新产品发布,朗石公司特别举办了“全网预约免费试用”的活动,欢迎前来朗石官网或微信公众号咨询,
  • Thermo Scientific Orion Star T910 pH滴定仪发布
    赛默飞世尔科技正式推出新型的用于自动酸碱滴定的thermo scientific™ orion star™ t910 ph滴定仪。 自即日起,可以订购该型号的滴定仪。 我们将赛默飞世尔科技的核心电化学技术与最先进的试剂分配系统集成在了一起,创建了一种简易、现代化自动滴定仪,使滴定更容易,更可靠,并且比手动滴定更具有可重复性。 相比于直接进行电极分析,我们的自动滴定仪扩大了可以测量的离子和化合物的数量,并提供动态过程控制,调整滴定以优化分析结果。 为了获得最佳的测量结果,我们将我们的ph滴定仪与我们优质的thermo scientific™ orion™ ross™ ph电极进行组合,这种电极具有出色的稳定性、快速响应、高准确性、高精度、长寿命和最小长期漂移的优点。 orion star t910 ph滴定仪适用于ph预设终点滴定和等当点/拐点滴定,包括:? 可滴定果汁,葡萄酒和食品的酸度? 饮用水和工业废水的碱度? 各种消费品和工业产品中的酸和酸度? 使用酸碱滴定的化学学术实验 这些小巧的滴定仪易于使用,从设置到实时滴定分析再到数据传输,都可以在大型彩色触摸屏上轻松导航。 可以创建和保存最多10个用户定义的方法,所有这些方法都带有屏幕说明和帮助菜单,因此实验室中的每个人都可以快速,轻松地调用。 配备高精度滴定管和分配器的自动滴定系统用于提供一致的滴定结果。 自动结果计算可简化分析并减少计算错误。 内部数据存储器保存了样品滴定、滴定剂标准化、电极校准和直接测量的历史记录 – 并且,所有这些数据都带有日期和时间标记 – 用以保存关键数据并便于将数据传输到打印机,计算机或u盘。 目标市场食品与饮品、环境方面、饮用水、废水、工业检测、消费品、高校、科研 订购信息型号描述start9100orion star t910 ph滴定仪套装(不含电极),包括20 ml滴定管,搅拌探头,分配器探头,管路套件,1l塑料瓶,带干燥管的gl38瓶盖,电脑连接线,u盘(含说明书),110-240v电源start9101orion star t910 ph滴定仪标准套装,包括8102bnuwp ross ultra ph电极,927007md atc温度探头,20 ml滴定管,搅拌探头,分配器探头,管路套件,1l塑料瓶,带干燥管的gl38瓶盖,电脑连接线,u盘(含说明书),110-240v电源start9102orion star t910 ph滴定仪非常规样品套装,包括8172bnwp ross sureflow ph电极,927007md atc温度探头,20 ml滴定管,搅拌探头,分配器探头,管路套件,1l塑料瓶,带干燥管的gl38瓶盖,电脑连接线,u盘(含说明书),110-240v电源
  • 科学家在高效光子纠缠传输技术取得新突破!
    【研究背景】量子网络是量子通信、计算和传感等领域的重要基础,因其能够实现超越传统网络的安全性和效率。与传统的信息传递方式相比,量子网络具有纠缠态传输和量子隐形传态等优点,这使得其在量子计算和量子密钥分发等应用中具备极大的潜力。然而,构建大规模的量子网络面临诸多挑战,包括量子比特之间的有效连接、光子在光纤传输中的损失以及量子信息的实时处理能力等问题。近日,来自于代尔夫特理工大学Ronald Hanson的课题组在城市规模量子网络的研究中取得了新进展。该团队成功实现了在两个独立操作的量子网络节点之间进行光子纠缠,这两个节点相隔10公里,并通过25公里的部署光纤与中间站相连。研究中,团队采用量子频率转换技术,将量子比特本征光子转换为通信L波段,以最小化光纤中的光子损失。同时,研究者们还设计了一种可扩展的相位稳定架构,使得可以采用抗损失的单点击纠缠协议。通过充分利用网络连接的标志能力,并结合长相干时间量子比特的实时反馈逻辑,团队成功在节点之间交付了预定义的纠缠态,而不受标志检测模式的影响。这一成果不仅解决了量子网络扩展中的关键挑战,还为不同量子比特系统的兼容性提供了新的解决方案,建立了一个探索城市规模量子网络的通用平台。这项研究为未来量子互联网的发展奠定了基础,有望推动量子通信技术在更广泛领域的应用。【表征解读】本文通过超导纳米线单光子探测器(SNSPDs)和量子频率转换器(QFC)等先进仪器,发现了在10公里距离内独立操作的量子网络节点之间实现的标志性纠缠现象,从而揭示了量子网络节点间的高效通信潜力。利用该技术,研究团队成功地在中间站通过25公里的光纤链路实现了量子态的传递,标志着城市规模量子互联网技术的一大步进。针对量子比特之间的纠缠现象,本文通过对NV中心电子自旋量子比特的微观机理表征,得到了量子态在长距离传输过程中的保真度提升的相关数据,进而挖掘了在不同环境条件下如何保持量子态稳定性的重要性。具体来说,研究表明,通过量子频率转换和相位稳定化技术,能够显著降低由于光纤传输引起的相位噪声和光损失,从而提高了系统的整体性能。在此基础上,通过结合干涉仪、光学反馈和电子极化控制等表征手段,研究团队获得了精准的相位锁定和噪声控制结果,这些结果不仅增强了节点间的相互关联性,也提升了标志性纠缠的保真度至80%以上。该过程着重研究了在量子网络中实现相位稳定化的复杂性和必要性,揭示了相位噪声对量子态传输质量的关键影响。总之,经过对标志性纠缠状态的深入表征和分析,本文深入探讨了量子比特之间的相互作用和量子通信的可行性,为制备下一代新型量子材料和器件提供了理论基础。这些新材料不仅具备更高的量子信息处理能力,同时也推动了量子通信技术的进步,尤其是在城市规模量子网络的实际应用中,展现出极大的应用潜力。大都市规模量子链路原文详情:Arian J. Stolk et al. ,Metropolitan-scale heralded entanglement of solid-state qubits.Sci. Adv.10,eadp6442(2024).DOI:10.1126/sciadv.adp6442
  • “ibidi细胞侵袭带膜通道载玻片”入围具有国际威望的2016德国工业行业奖
    “ibidi细胞侵袭带膜通道载玻片”入围具有国际威望的2016德国工业行业奖专业研发活细胞分析产品的德国ibidi公司凭借为细胞迁移和运输研究设计发明的独特的“ibidi细胞侵袭带膜通道载玻片”于2016年4月20日在德国慕尼黑再次入围2016年德国工业行业奖(生物技术领域)。德国工业行业奖是由享有盛誉的“德国工程师协会”赞助下设立的,由“胡贝尔出版社新媒体有限公司”颁发。至今已经连续11年颁发了针对特殊商业、社会、科技、生态效益等领域的工业奖项。这是ibidi公司继 2012年第二次获得这个荣誉。今年,ibidi公司从500名申请者中脱颖而出,入围生物技术领域的前三甲。科研人员可以用高分辨率显微镜直接观察“ibidi细胞侵袭带膜通道载玻片”中培养的单种或多种细胞。其多孔玻璃膜独特的透光性是现今市面上常用的不透明的多聚膜插件不可比拟的。 “ibidi细胞侵袭带膜通道载玻片”具有两个交叉的通道结构,透明的多孔玻璃膜就在这个交叉的位置。细胞可以培养在玻璃膜的两侧。然后用相差或者荧光显微镜就能直接观察。独特的通道设计能够对比在流动剪切力条件下培养的细胞与静置培养的细胞形态,生理状态的差别。“ibidi细胞侵袭带膜通道载玻片”可以在平滑肌细胞与剪切力条件培养的内皮细胞的共培养,动态剪切应力情况下的白细胞的迁徙和癌细胞侵袭等特殊试验中应用。优点总结:(与传统transwell做细胞侵袭实验对比)(1)这个载玻片做细胞侵袭,可以实时观察细胞侵袭的情况,transwell做侵袭的话,只能中断侵袭才能观察了;(2)用这个载玻片还可以选择让细胞从下往上侵袭,平常的transwell实验,细胞都是从上往下的,有可能是重力也造成影响了;(3)这个载玻片还能配合流体环境做侵袭实验,更真实地模拟体内血管或淋巴管的细胞侵袭,transwell是做不到的;(4)还能直接在这些通道里做细胞免疫荧光实验,更方便实验观察。 ibidi公司董事长Dr.Roman Zantl形容ibidi细胞侵袭带膜通道载玻片是“可以能够直接研究肿瘤细胞是如何进入血液中的。这对于研究如何防止癌症转移有着非比寻常的意义。”他还高兴的表示“ibidi细胞侵袭带膜通道载玻片”入围德国工业行业奖说明了ibidi产品在医学和生物技术领域获得了广泛的认可。Ibidi公司CEO Dr.Valentin Kahl表示“ibidi细胞侵袭带膜通道载玻片”是由BMBF (Bundesministerium für Bildung und Forschung)资助的,是KMU创新计划中“生物光电技术”研究项目的一部分。能够获得如此殊荣,是与合作伙伴密不可分的。关于ibidi公司德国ibidi公司位于德国慕尼黑附近马丁斯雷德,是一个研发专注于细胞功能检测的显微镜相关耗材产品的公司。产品包括经典细胞培养实验耗材和细胞功能性研究(例如,血管生成,趋化,和伤口愈合等)的实验耗材。主要客户是医学、生物学及生物技术、药理学等科研机构,产品销往世界各地的客户。
  • 安徽工业大学PNAS:宏量制备石墨烯纳米带及其功能材料
    近日,安徽工业大学化学与化工学院闫岩、刘明凯教授与南京大学及新加坡国立大学合作,开发出了一种宏量制备石墨烯纳米带且高效实现其层间功能化的策略。相关成果以“Rapid Production of Kilogram-Scale Graphene Nanoribbons with Tunable Interlayer Spacing for an Array of Renewable Energy”为题发表在《美国国家科学院院刊》上,论文的共同通讯作者是安徽工业大学化学与化工学院的闫岩教授、刘明凯教授,以及南京大学金钟教授和新加坡国立大学的林志群教授。安徽工业大学是第一完成单位。《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,通常简称为PNAS)是美国国家科学院的官方科学周刊杂志,创刊于1915年,收录的文献覆盖生物学、物理学、化学、材料学、数学和社会科学等领域。与《自然》和《科学》杂志一样,《美国国家科学院院刊》是世界上基础科学领域最负盛名的学术杂志之一,在SCI综合科学类期刊中排名第三。这是安徽工业大学首次以第一完成单位在该刊上发表文章。石墨烯纳米带是一种以带状形态存在的石墨烯材料,具有高电导率、高热导率、低噪声等特点。这些优良品质使得石墨烯纳米带成为集成电路互连材料的一种理想选择,用以替代传统金属材料。同时,由于其具有独特的宽度依赖带隙和两侧充足的孤对电子,石墨烯纳米带在高性能电子器件和纳米催化领域也得到了科研工作者的密切关注。然而,虽然已有报导多种制备石墨烯纳米带的方法,包括小分子有机合成、聚合物包埋切割、碳纳米径向切割、特定基体上外延生长等,但洁净石墨烯纳米带的宏量制备仍然面临巨大挑战。此外,如何扩展石墨烯纳米带的层间距并使其功能化也是石墨烯纳米带研究亟需解决的问题。基于此,安徽工业大学闫岩教授、刘明凯教授提出了一种“冷冻-卷曲-压缩”的策略,通过将大片层(平均宽度~20微米)的氧化石墨烯与二氧化硅溶胶超声混合,并在低温低压下进行脱水干燥和化学刻蚀,制备出了高纯度、高径向比的石墨烯纳米带材料(图1)。这种策略采用自上而下的方式,以单层的氧化石墨烯为原料,通过改变其拓扑结构,实现了高纯度石墨烯纳米带的宏量制备。该策略比小分子合成、径向剪切碳纳米管等方法更直接、更简洁,得到的石墨烯纳米带的纯度也更高。【图文导读】图1 石墨烯纳米带制备过程示意图场发射扫描电镜照片证明了这种石墨烯纳米带具有典型的准一维结构。如图2所示,这种材料具有高的长径比,表面是类石墨烯层状褶皱结构,其丰富的边缘结构为石墨烯纳米带的功能化提供了可供调控的空间。透射电镜图片证明这种材料具有薄层结构和透明性。拉曼数据中,碳材料特征峰D峰和G峰比例的降低,证明从氧化石墨烯到石墨烯纳米带,部分共轭结构得到了有效修复,这种石墨烯纳米带也显示出高达72900 S/m的电子传导速率。除了宏量制备,如何控制层与层之间的距离,是制备高性能石墨烯纳米带功能材料的另一项重大挑战。多相催化团队在“冷冻-卷曲-压缩”策略中,通过改变二氧化硅的尺寸和使用量,调控界面“π-π”相互作用和石墨烯纳米带的层间距,实现了在3.63-9.04 Å范围内层间距离的自由调节。图2 石墨烯纳米带宏量制备、结构表征与性能测试  此外,通过在层间进行客体分子/纳米材料修饰,可以实现对石墨烯纳米带材料的功能化设计,从而显著拓展石墨烯纳米带的应用范围。研究人员借助“冷冻-卷曲-压缩”的策略,将杂原子前驱体(六福磷酸铵)、单原子前驱体(乙酰丙酮钴)与石墨烯/二氧化硅进行混合,或以球形二硫化钼(零维),聚苯胺纤维(一维)或二硫化硒纳米片(二维)代替二氧化硅,并经过高温处理或化学处理,分别可以得到了氮/磷/氟共掺杂的石墨烯纳米带、钴单原子修饰的石墨烯纳米带、层间修饰二硫化钼的石墨烯纳米带、层间负载聚苯胺的石墨烯纳米带以及层间修饰二硫化硒的石墨烯纳米带材料,实现了对石墨烯纳米带材料的功能化设计。如图3所示。图3 不同尺度客体分子/纳米材料在石墨烯纳米带层间对其修饰并实现功能化设计这些新型的石墨烯纳米带基功能材料在新能源器件中表现出优异的储能和催化性能。例如,氮/磷/氟共掺杂的石墨烯纳米带材料作为非金属催化剂,在电催化氧还原反应中表现出接近商业化铂碳的催化活性。钴单原子修饰的石墨烯纳米带材料在电催化产氢反应中的塔菲尔斜率仅为48 mV/dec,展现出与商业化铂碳(44 mV/dec)接近的反应动力学。石墨烯纳米带包裹二硫化钼得到的复合材料,在电化学储锂方面表现出良好的活性。在0.1 A/g电流密度下展现出1210 mAh/g的比容量。同时展现出良好的循环稳定性,经过500次循环,容量仅衰减18.7%。石墨烯纳米带包裹聚苯胺纤维得到的复合材料,在超级电容器领域表现出良好的比容量(734 F/g)和倍率性能。石墨烯纳米带包裹二硫化硒得到的复合带状材料,作为钠离子电池正极材料,表现出486 mAh/g的电化学储钠性能。这些功能材料的开发,显著提升了石墨烯纳米带及其功能材料的应用场景(图4)。图4石墨烯纳米带基功能材料在新能源领域中的应用,包括电化学产氢、锂/钠离子电池等领域综上所述,通过设计“冷冻-卷曲-压缩”的策略,闫岩教授、刘明凯教授充分展示了如何通过界面工程宏量制备石墨烯纳米带材料,并通过改变支撑材料二氧化硅的尺寸和用量,实现了对石墨烯纳米带层间距的有效调节。进一步,通过在石墨烯纳米带的层间引入功能化非金属原子、金属单原子、不同维度纳米材料,实现了对石墨烯纳米带的功能化设计,并在一系列新能源器件中得到了应用拓展。
  • 蠕动泵在精密传输中的作用
    随着工业现代化的发展,生产线上对于液体输送的要求也越来越高。而如果在传输液体的过程中,采用的方法不当,会带来很多不便和风险,比如信号干扰,流体漏泄,甚至是系统崩溃等。  而蠕动泵则是一种非常实用的输送设备,它通过压缩软管的方式实现液体的输送。相比于一些传统泵的输送方式,并没有机械件接触,所以在液体输送中,不会让液体受到损害,也不会产生杂音和振动,能够更好的保障输送的稳定性和精度。  基于这些特点,蠕动泵在现代工业应用中被广泛地使用。实现了对于输送流量的实时监测和调整。那么在使用蠕动泵的过程中,究竟可以有什么优势呢?  一、减少成本,保证质量  相比于其他一些传输设备,蠕动泵的安装成本和维修成本都非常的低廉。在安装的过程中,它不需要太多的辅助设备,也不需要耗费太多的时间。而在维修的时候,只需要更换软管即可,非常的方便。累积下来,也可以减少企业的成本开支。  除了在成本方面的改善,蠕动泵还可以更好的保证液体的输送质量。它采用软管压缩的方式进行输送,不会对输送的物体造成任何的破坏,保证液体的完整性。而且还能够实现对于流量输出的精密控制,不会产生浪费。  二、提升效率,提高产能  在一些有喷涂要求的行业中,对于喷涂的均匀度和精度有着非常高的要求。而在使用传统的输送方式时,很容易会出现液体的不均匀流量和压力损失,导致喷涂效果不尽如人意。而蠕动泵可以通过提供稳定的流量和压力来实现更为均匀的液体输送,并且可以实现对于出料量的实时监测和调整,进一步提高了生产效率。  三、应用范围广泛  蠕动泵具有很强的适应性,可以输送各种类型的介质和流体。不管是粘稠液体、固体悬浮液体等,都可以非常理想地完成输送工作。同时,蠕动泵的安全性也非常出色,不会产生火花和电磁干扰等严重的安全问题,非常适合在化工、制药、食品加工等需要高度安全性的场合中使用。  总之,蠕动泵作为一种创新型的液体输送设备,具有诸多的优势。它可以在成本、质量和效率等不同方面为企业带来极大的改善和提升,大大提升了生产效益。相信在工业生产中,它的应用前景将越来越广泛。
  • 河南研发“无线传输分体式PCR检测仪校准装置” 为战“疫”增添利器
    在感染性疾病的诊断方面PCR技术在感染性疾病中尤其适用于检测一些培养周期长或缺乏稳定可靠检测手段的病原体。PCR的模板可以是DNA,也可以是RNA。模板的取材主要依据PCR的扩增对象,可以是病原体标本如病毒、细菌、真菌等。标本处理的基本要求是除去杂质,并部分纯化标本中的核酸。多数样品需要经过SDS和蛋白酶K处理。难以破碎的细菌,可用溶菌酶加EDTA处理。所得到的粗制DNA,经酚、氯仿抽提纯化,再用乙醇沉淀后用作PCR反应模板。PCR检测仪是用于新冠病毒核酸检测的关键设备,核酸检测是根据病毒的基因序列配制出相对应的引物和探针,利用PCR检测仪对待测样本进行扩增。近日,河南计量院研制出无线传输分体式PCR检测仪校准装置,基于自行设计的多通道温度检测模块,应用无线传输技术实现数据采集分析,设计指标满足《JJF 1527-2015 聚合酶链反应分析仪校准规范》的要求。只需将该装置的检测模块置入待校准的PCR检测仪中,工作人员无需进入实验室内部,即可对仪器进行校准,不但能够节约PCR检测实验室的管理运行成本和宝贵的防护资源,还能极大降低计量人员本身的感染风险,具有较好的推广应用价值。 无线传输是利用无线技术进行数据传输的一种方式。无线传输和有线传输是对应的。随着无线技术的日益发展,无线传输技术应用越来越被各行各业所接受。无线图像传输作为一个特殊使用方式也逐渐被广大用户看好。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线传输方式,建立被监控点和监控中心之间的连接。无线传输分为:1、模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机解调出原来的视频信号。2、数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,临了还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数据采集分析过软硬件结合,可以记录、显示和分析众多生命科学相关信号,可以完全代替传统的纸带记录仪、绘图仪、XY绘图仪、示波器和电压计。把信号变成便于数字处理的形式,以减少数字处理的困难。无论计算机的容量和计算速度有多大,其处理的数据长度总是有限的,所以要把长时间的序列截断。在截断时,会引入一些误差,所以有时要对截取的数字序列加权,如有必要,还可用专门的程序进行数字滤波。然后把所得到的有限长的时间序列按照给定的程序进行运算。例如作时域中的概率统计、相关分析,频域中的频谱分析、功率谱分析、传递函数分析等。数据采集分析应用领域包括:血流动力学、离体组织灌流、离体器官、灌流、微血管张力测定系统、微循环血流测定(激光多普勒)、新陈代谢研究(运动生理学、心肺功能测定)、电生理系统(细胞内、细胞外、电压钳)、超声血流量测定、植入式生理信号(血压、生物电、神经干放电、体温等)无线遥测、心理学、清醒动物血氧饱和度测定、人体无创血压、心输出量测定。PCR检测仪是利用聚合酶链反应技术对特定DNA扩增的一种仪器设备,PCR技术的原理类似于DNA的天然复制过程,其特异性依赖于靶序列两端互补的寡核苷酸引物,由变性-退火-延伸三个基本反应步骤构成。PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为百分百,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,使平均效率达不到理论值。PCR扩增仪通常由热盖部件、热循环部件、传动部件、控制部件和电源部件等部分组成。被广泛运用于医学、生物学实验室中,例如用于判断检体中是否会表现某遗传疾病的图谱、传染病的诊断、基因复制以及亲子鉴定等。PCR检测仪分类PCR仪分为普通PCR仪,梯度PCR仪,原位PCR仪,实时荧光定量PCR仪四类。荧光定量PCR仪光学校准方法实时荧光定量PCR仪特异性更强,自动化程度更高,且有效地解决了PCR污染的问题,应用领域及应用量都不断增加。但其设计更为复杂,温度模块和光学系统设计同时影响其性能和实验准确性,为定量PCR仪校准带来了巨大挑战。采用生物试剂等方式对定量PCR仪荧光部分校准缺乏溯源性,无法分析误差来源,存在较大缺陷。采用Cyclertest 3D optical定量PCR仪光学校准系统对ABI 7500 Fast Real-Time定量PCR仪的温场部分和荧光系统进行了检测并对检测结果进行了分析,结果表明对温度模块和光学系统共同进行检测并分析相关性能够更科学全面地评估定量PCR仪性能,满足定量PCR仪校准需求。
  • “随钻成像测井仪器及井地数据传输系统”成果发布
    5月30日,由科技部、国家发展改革委、工业和信息化部、国务院国资委、中国科学院、中国工程院、中国科协、北京市政府共同主办的2023中关村论坛举行重大科技成果专场发布会,从面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康四大板块发布了20项成果。中国科学院地质与地球物理研究所“随钻成像测井仪器及井地数据传输系统”作为20项成果之一在本次发布会上正式向社会发布。   开发深层和非常规油气是保障我国未来能源安全的举措。随钻成像测井仪器利用井下传感器探测地层特性,在钻井过程中给钻头装上“眼睛”,是石油工业最核心的技术之一。中国科学院地质与地球物理研究所智能导钻科研团队攻克了强振动冲击条件下动态测量等多项关键技术,自主研制了高温石英加速度计、压力传感器等5种井下核心传感器,成功开发出地质参数成像测井仪器,实现了从随钻一维曲线测井到二维成像测井的技术跨越;同时,研发出将井下数据实时传输至地面的泥浆连续波高速传输系统,并取得了最高速率每秒12比特的重大技术突破,为油气高效开发提供了有力支撑。   在发布会现场,中国科学院地质与地球物理研究所所长底青云院士作为成果单位代表发表感言时表示:油气产业正在从资源为王向技术为王转变,解决深层油气、非常规油气“高效、低成本”开发这一难题,唯一的出路只有“技术创新”,研究所将持续开展技术攻关,创新井下智能钻进装备技术,实现自主钻遇油气藏,助力复杂油气高效勘探开发。   近十年来,研究所聚焦国家重大需求,布局攻关探测传感器与专用芯片等关键核心技术,研发深地精准探测技术与装备、深层油气高效开发技术与装备,支撑我国深层和非常规油气等资源的精准探测和高效开发。科研团队齐心协力,不断攻坚克难,取得了一系列的重大成果。本次发布的“随钻成像测井仪器及井地数据传输系统”作为智能导钻专项第一阶段成果实现了从关键技术突破、关键器件研制、系统集成和现场应用的全链条创新。科研团队将继续攻关深层、非常规油气勘探开发前沿理论和关键技术,在服务国家重大需求方面做出应有的贡献。
  • 检测汽轮机油中带色不溶物---ASTM D7843标准漆膜倾向指数测定仪
    石化产业是国民经济重要的支柱产业,产品覆盖面广,资金技术密集,产业关联度高,对稳定经济增长具有重要作用。但仍存在产能结构性过剩、自主创新能力不强、产业布局不合理、环保压力加大等问题。石油化工产业作为高污染性产业,面临结构性改革的矛盾,国家政策引导对于促进石化产业持续健康发展具有重要意义。 石化工业作为国民经济的重要支柱产业和原材料配套工业,在后疫情时代有着新的机遇和未来。疫情过后,石化产业将重构,进入新的变革与调整期。 我国石油化工产业将朝着原料多元化、产品需求差异化、营销电商化、产业绿色低碳化、产业智能化等方向发展。A1390漆膜倾向指数测定仪,依据ASTM D7843标准,适用于检测汽轮机油中带色不溶物的测定。监测评定汽轮机油生成油膜的倾向性,避免漆膜沉积影响设备散热,导致油液加速老化及润滑性能下降。仪器特点1、采用数字化光泽控制技术,搭载智能操作系统,配合液晶显示,一目了然,操作自如; 2、10000组标样10000组试样超大容量的内存空间,实现完全记录,现场对比分析更加从容;3、3000mAh大容量高品质锂电池,轻松解决续航问题;4、内置通讯接口,可轻易完成与PC端的测量数据传输。5、轻便手持,便于在工厂和偏远地带进行测量技术参数测量几何图形: 45/0图像捕捉显示:4.5cm Color TFT光源: 立三方向25 LED (8可见波长 1 UV)色差公式:△E*ab重复行:△E0.07测量间隔:0.5秒重量:约800g尺寸:199mm*68mm*90mm
  • 西电科大国家重大仪器项目获批 突破等离子体传输瓶颈
    从西安电子科技大学获悉,西电科大申报的国家自然科学基金委员会国家重大科研仪器研制项目(部门推荐类)“临近空间高速目标等离子体电磁科学实验研究装置”日前获得批准,实现了西电国家重大科研仪器项目零的突破,对解决“黑障”难题、实现临近空间高速飞行器全程测控与可靠探测、拓展等离子体电磁物理学前沿研究、促进临近空间开发、提升空间探索能力具有重要理论意义。  该项目是2016年基金委批准的4个项目之一,也是信息学部今年唯一被批准的项目,获直接资助经费6712.34万元,项目负责人是西安电子科技大学空间科学与技术学院院长包为民院士。该项目联合了浙江大学、哈尔滨工业大学、中国人民解放军空军工程大学、中国科学院合肥物质科学研究院、北京遥测技术研究所等单位共同申报,在通过基金委组织的两轮会议评审脱颖而出后又顺利通过9月份专家现场考察,最终获得立项。据了解,重大科研仪器研制项目(部门推荐类)自2011年立项以来,全国共有40余个项目获批,其中信息学部项目共批准了7项。  据介绍,该项目将开拓等离子体物理学、空气动力学、电磁学、控制与信息传输理论多学科交叉研究能力,以期揭示高速目标等离子体与电磁波相互作用新机理,发展电磁调控等离子体特性新途径,突破高速目标等离子体信息传输及目标探测的理论瓶颈。  国家重大科研仪器研制项目面向科学前沿和国家需求,以科学目标为导向,加强顶层设计、明确重点发展方向,鼓励和培育具有原创性思想的探索性科研仪器研制,着力支持原创性重大科研仪器设备研制,为科学研究提供更新颖的手段和工具,以全面提升我国的原始创新能力。资助目标为通过关键核心技术突破或集成创新,用于发现新现象、揭示新规律、验证新原理、获取新数据的科研仪器设备的研制。
  • Ti-Touch精灵一代-瑞士万通新一代一体式电位滴定仪,水分仪
    瑞士万通日前推出Ti-Touch 精灵一代一体式设备,是日常样品分析的得力助手。Ti-Touch 精灵一代包含有915 KF Ti-Touch 卡尔费休水分滴定仪和916 Ti-Touch 全自动电位滴定仪,为一体式设备树立了另一个里程碑。其主要特征如下: 1. 系统整合度最高,外观设计简约时尚 2. 多思TMDosino加液单元技术,保障用户使用安全性获得专利设计的多思TMDosino加液单元技术,使得卡尔费休试剂的更换更加方便,避免了与有毒有害试剂的接触 3. 丰富可选的爱智能TM电极可以长距离传输信号及数据不会受到周围环境磁辐射信号的干扰信号更稳定更灵敏更准确使用寿命更长 4. 可扩展为双通道滴定或水分2个MSB 接口(万通串行端口) 可用于连接2个多思TMDosino加液单元或805 Dosimat 加液器2个磁力搅拌器或螺旋搅拌器 5. U盘存储防伪PDF实验报告,网络传输可生成防伪的PDF 实验报告,并存储在USB 存储器或网络电脑中可在网络或LIMS系统中直接存储实验方法和结果 6. 包括中文在内的多种对话语言 更多产品请登陆瑞士万通中文官网: http://www.metrohm.com.cn 关于瑞士万通: 1950年,瑞士万通发明了第一支复合pH电极。1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。1956年,瑞士万通开发出第一支活塞型滴定管。1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。……2007年,瑞士万通研发出首台智能型离子色谱仪。2010年,瑞士万通研制出世界首台紫外离子色谱。 Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 瑞士万通推出全新电位滴定平台OMNIS奥秘一代 演绎全新境界
    仪器信息网讯 德国时间2016年5月10日,两年一届的德国慕尼黑国际实验室、分析、诊断及生物技术专业博览会及研讨会(analytica 2016)在德国慕尼黑贸易展览中心成功开幕。来自世界各地的参展商携实验室、分析、诊断及生物技术等相关的仪器产品和服务盛装亮相。多家知名企业纷纷展出了最新的产品和技术,瑞士万通在此次展会上推出了一整套全新的电位滴定系统——OMNIS 奥秘一代。OMNIS奥秘一代  OMNIS 奥秘一代是为了满足当今实验室需求而推出的一整套全新的电位滴定系统。OMNIS 奥秘一代不仅仅是一台简单的电位滴定仪,是聚焦于客户的需求而开发的电位滴定系统,可以更快速的得到分析结果,使实验更安全、更方便、更高效。简而言之:演绎电位滴定全新境界。OMNIS奥秘一代展会现场照片  更快速!——四倍的样品吞吐量  OMNIS 奥秘一代能够在同一时间、同一系统上进行四个样品的全自动电位滴定。一旦发现系统中有空闲的工作位时,会自动触发下一个样品的分析——这一切完全自动实现,不需要额外设定!  更安全!——3S适配器技术让实验室工作更安全  OMNIS 奥秘一代拥有专利技术的3S适配器技术,让化学试剂处理变得更容易、更安全。3S意味着:  安全的化学试剂处理:只需将3S 适配器卡在试剂瓶瓶盖上即可完成安装,避免接触试剂瓶中的化学试剂。  可靠的试剂信息传输:试剂瓶瓶盖上内置RFID芯片,芯片内记录了所有与试剂相关的信息。  智能的化学试剂连接:试剂数据自动传输至电位滴定系统。  更简单!——设计超前的软件解决方案  OMNIS 奥秘一代拥有设计超前的软件解决方案:直观、简单易用、智能。硬件组件图形化显示,图标可拖放操作,简单直观,根据实验人员的文本输入,用户界面只会显示与实验人员的需求相关的信息,自动过滤不必要的内容,简化操作。  专为用户订制的用户向导:OMNIS奥秘一代软件基于化学实验室的概念、流程和需求而开发。拥有可视状态指示灯 警告,检查,方案建议 按您所需自由编辑模板:方法、程序、命令等。  更灵活!——模块化设计  模块化设计理念,方便用户随时升级实验室。用户可以从单独的OMNIS奥秘一代电位滴定仪开始配置,并在有其他实验需求的时候增加电位滴定模块和加液模块。如果需要处理的样品量增加了,也可以增加OMNIS奥秘一代机器人样品处理器实现全自动的电位滴定。由于工作位、样品架和泵都是模块化的设计,OMNIS奥秘一代可同时执行多达 4个全自动平行滴定,自动处理多达175个样品。瑞士万通analytica 2016展位现场  作为业界电位滴定产品的领导品牌,瑞士万通再次用事实证明了自己的优势和能力,此次推出的全新的电位滴定系统将成为滴定产品历史上的里程碑产品。同时在不远的将来,瑞士万通还会将其所有的分析技术全部集成到OMNIS奥秘一代操作平台中,让我们一起拭目以待。瑞士万通高层与仪器信息网工作人员展会现场合影  撰稿:张葳
  • 赛默飞全新Triplus 500顶空进样器上市,一起提高生产力!
    近期,Pittcon 2019在美国宾夕法尼亚州费城会议中心举行。赛默飞值此盛会发布全新 Thermo Scientific™ TriPlus™ 500 GC顶空自动进样器 对于挥发物分析检测实验室,静态顶空气相色谱法使用简便且具有广泛的适用性,是最可靠和强大的技术之一。 为了获得高精度分析结果,在静态顶空气相色谱法中阀 - 定量环采样技术受到广泛推崇,但传统的传输线连接也给检测分析带来了困扰和挑战。 全新一代 TriPlus™ 500 顶空自动进样器——升级无“线”连接新技术,全方位提升分析效率。保留经典可靠的阀-定量环技术 创新无传输线设计GC 色谱柱直连接口技术TriPlus 500 HS 自动进样器并非通过长传输管线将静态顶空连接至 GC 色谱柱,而是将顶空接口与 GC色谱柱直接相连,同时可选择分流进样。 ▲ 可以缩短样品通路,消除可能存在的冷点或热点,确保样品在转移至色谱柱过程中的完整性,带来精密度的提升。▲ 减少方法中的参数设定,完成方法的快速转移。▲ 紧凑机身,升级更高通量不增加占地面积 赛默飞一直专注技术创新,通过新的科技,为用户传递更多的价值, 满足客户需求,使实验人员可以随心而动,无惧分析中挑战。全新的TriPlus 500 气相色谱顶空自动进样器,除了GC 色谱柱直连接口技术外,也包含多种创新性设计,为用户提供极佳的稳定性、超高的灵敏度、卓越的可靠性,全方位提升分析效率。 快速旋转振摇在样品瓶孵化期间,采用新专利设计进行样品瓶振摇,为液相和气相之间提供更大的比表面积,从而加速了样品平衡,节省了宝贵的分析时间,带来高重复性萃取效率和气相浓度 紧凑的外形和模块化设计与毛细管色谱柱相连,占地面积小,可节省您宝贵的工作台空间。优质的集成化工业设计与 TRACE™ 1300系列气相色谱系统相得益彰,比其他顶空系统的工作台空间减少约30%,且升级更高通量不增加占地面积。TriPlus 500 顶空自动进样器与 TRACE 1310 气相色谱仪联用 节省劳动力的顶空进样功能●自动泄漏检查:在填充定量环之前,该功能会自动检查每个样品瓶是否存在泄漏。如果检测到样品瓶泄漏,则会在日志文件中记录错误。●多次顶空萃取:每个样品瓶自动执行多次分析,以跟踪减少的分析物峰面积并推断其在样品中的浓度。●多次顶空进样:从同一样品瓶中执行多次进样以富集顶空样品。 多格式条形码读取器条形码读取器可以自动扫描样品瓶并读取条形码,无需费力手动跟踪样品。节省时间,提高样品的可追溯性、管理和数据品质。1D 和 2D 条形码格式兼容,提供了更大灵活性 Triplus 500是一款全新的适用GC和GCMS的高度集成及模块化设计顶空自动进样器,具有极佳性能和极高耐用性。 无论您的需求是12 位样品瓶容量的常规款解决方案,还是高达240 位样品瓶容量的高通量系统,TriPlus 500 HS 平台的模块化和可扩展性设计都能为您提供所需的通量,保证完美的分析性能。
  • 人类首次用激光在星际间进行图像数据传输
    图片来源:Xiaoli Sun, NASA Goddard   美国航天局日前利用激光束将名画《蒙娜丽莎的微笑》传输到绕月飞行的“月球勘测轨道飞行器”上,这是人类首次利用激光在星际间进行图像数据传输。   美国航天局发表声明说,这是该局利用“月球勘测轨道飞行器”进行激光通信试验的一部分。通常飞离地球的航天器都是利用无线电通信,“月球勘测轨道飞行器”是目前唯一绕其他星球飞行且能使用激光通信的航天器。   这幅名画首先被数字编码,分解为152×200个像素 然后每个像素都变为激光脉冲,从美国航天局位于马里兰州的戈达德航天中心发出,传输到近24万英里(约38万公里)外的“月球勘测轨道飞行器”上,数据传输速率约为300比特每秒。   “月球勘测轨道飞行器”上的仪器在接收到激光脉冲后重建图像,并通过传统的无线电系统再将图像传回地球,从而验证激光传输成功。   “在不久的将来,这种简单的激光通信技术可能成为卫星无线电通信的补充”,美国航天局专家戴维史密斯说,“再往后看,这种传输方式有可能实现比现有无线电通信线路更高的数据传输速率”。   美国“月球勘测轨道飞行器”项目耗资4.91亿美元,于2009年进入月球轨道,重点考察月球两极,为未来载人探月寻找合适的着陆点。
  • 雷达组网全面监测沙尘传输过程
    上周,西北一带的天气来了点猛料,17号开始,内蒙古、宁夏、北京、河北等地遇到今春以来最强的沙尘污染,多地黄沙漫天,能见度小于1公里,严重影响居民生活。17日西北某地实拍图(图片来源:微信朋友圈)据历史数据显示,2000年至2016年,沙尘的日数呈现出自西向东、自北向南逐渐递减的规律,其中,新疆南疆盆地为沙尘发生频率最高地区,其次是内蒙古西北及甘肃河套以西地区。16年来沙尘发生的次数在逐渐递减,2011年、2014年、2015年、2016年沙尘暴天气过程均不超过2次,这是国家人为治理和环境气候因素的共同作用。小伙伴们纷纷表示欣慰,不过在欣慰的同时,小编带大家一起来分析下这次的沙尘过程。17日葵花卫星真彩图(图片来源:中科院遥感所)近年来,卫星遥感技术已渐渐应用到大气环境监测中。它的优势在于区域尺度,可快速提供整体污染分布与态势的直接观测。上图是高时间分辨率的葵花卫星监测到的此次沙尘传输的过程,就好比人眼在太空直接看到的景象。从卫星监测的动图我们能清晰看到此次沙尘的传输路径,从内蒙宁夏等地一路南下。那么其他地方都是在什么时候受到沙尘的影响,受沙尘影响程度又有多严重呢?在卫星图的指导下,小编调出了中科光电分布在全国各地的激光雷达。沙尘传输雷达监测网17-19日期间,共观测到3次沙团过境,其中,第二次的沙团强度最大,对地面的影响最重。三次沙团迁移中,呈现融合现象。沙团由北至南迁移,17日5时、高空3KM左右,武汉最先监测到沙团入境,18日晚间大量沉降,近地面PM10浓度迅速增高;17日13时、高空3KM左右,苏州上海等地监测到沙尘入境,18日上午沉降(沉降时间早于武汉,这可能是受当地气象条件的影响),强度中等;之后沙尘继续南下,17日20时浙江区域监测到高空3KM左右有沙尘团,19日上午到达地面,强度减弱。沙团由北至南的迁移过程中,逐渐沉降,强度逐渐减弱。雷达构成的监测网络,不仅可以监测到各地沙尘起始、沉降时间,结合时间相位差及经纬度信息还可以定量计算沙尘的传输速率,为沙尘预警预报提供支撑。感谢:衷心感谢遥感所提供的卫星图,感谢武汉、苏州、上海、宁波等监测站提供的雷达监测图。
  • 在线浊度水温分析仪——一款直观理解水质的工业在线浊度仪仪直送2024全+境+派+送
    在线浊度水温分析仪——一款直观理解水质的工业在线浊度仪仪直送2024全+境+派+送【万象环境热卖型号:WX-ZS9,气象环境监测设备专业定制供货商,推荐选择山东万象环境厂家】水质的好坏直接影响到水生生物的生存和繁衍,进而影响到整个生态系统的平衡。监测水质可以及时发现水体的污染状况,为采取保护措施提供依据,有助于维护水生生态系统的稳定和生物多样性。  一、产品介绍  ZS9在线水质分析仪是一种能够在线监测水质浊度的仪器。它集成了水质浊度传感器和测量模块通讯存储,能够快速、准确地记录水体中的关键参数。同时,仪器支持扩展水质多参数传感器,包括但不限于浊度、pH值、溶解氧(DO)、电导率、温度、氨氮等,可以根据不同的需求和应用进行组合和配置,记录并存储历史监测数据、报警历史记录,支持历史数据导出.xlsx。RS485接口支持MODBUS-RTU通讯协议方便用户自由通讯与PLC、DCS,组态软件,DTU等设备连接传输数据。  二、多参数水质监测仪应用领域  在线多参数水质检测仪广泛应用于各种水体的监测和控制,包括但不限于以下领域:  1.自来水厂:用于监测自来水的pH值、溶解氧、浊度等参数,确保自来水的安全和卫生。  2.地下水监测:用于监测地下水的pH值、电导率、温度等参数,以便及时发现并解决水质问题。  3.河流、湖泊监测:用于监测河流、湖泊的水质状况,如溶解氧、浊度、氨氮等参数,以便及时采取污染治理措施。  4.海洋监测:用于监测海洋的水质状况,如盐度、溶解氧、温度等参数,以便及时发现并控制海洋污染。  5.污水处理:用于监测污水的水质参数,如pH值、COD、氨氮等,以便控制和调节污水处理过程。  6.工业生产:用于监测工业生产过程中的水质状况,如酸碱度、电导率、溶解氧等参数,以便及时调节工艺过程,确保产品质量。  7.科学研究:用于科学研究领域的水质监测,如湖泊富营养化、气候变化等研究。  三、多参数水质监测仪技术特点  1、高可靠性:适用于长期工作在野外环境,测量稳定,抗干扰能力强。  2、灵活便携:各探头可自由组合,独立更换,即插即用。  3、可扩展性:可自由组合多种传感器。  4、多种应用:现场快速测定、应急监测、或对地下水、河流水、湖泊水源、城市管网水长期在线监测。  5、韧性外壳:ABS+PC材料,抗腐蚀,可长时间连续正常工作。  6、结构紧凑:可安装在尺寸较小的场合。  7、通讯连接:RS485扩展接口,主/从接口隔离可独立通讯。  四、多参数水质分析仪技术参数  显示输出4.3寸触摸屏,带LED强背光,可阳光直射下操作  电源直流供电:DC12V  功耗仪表功耗约12V /1W  声音输出蜂鸣器  通讯协议标准RS485 Modbus-RTU 协议和设备主/从传输通道支持  主要材料ABS+PC材质  存储温度-20到70℃  操作温度-10到50℃  防护等级IP65  尺寸175mm*140mm*49mm(长×宽×高)  重量约0.5KG
  • 新技术实现太赫兹波“绕障”传输
    当前无线通信系统依靠微波辐射来承载数据,未来数据传输标准将利用太赫兹波。与微波不同,太赫兹信号可被大多数固体物体阻挡。在《通信工程》杂志上发表的一项新研究中,美国布朗大学和莱斯大学研究人员描述了他们如何通过弯曲光线来绕过这些固体障碍,从而解决未来无线通信的这一难题。大多数用户可能使用Wi-Fi基站,让整个房间充满无线信号。无论用户移动到哪里,他们都能保持连接。但在更高频率下,信号将是定向光束。如果用户四处移动,该光束必须跟随才能保持连接。一旦移到光束之外或有物体阻挡,用户就不会收到任何信号。研究人员通过创建太赫兹信号来规避这个问题。该信号可沿着障碍物周围的弯曲轨迹行进,而不是被障碍物阻挡。研究团队引入了自加速梁的概念。这些光束是电磁波的特殊配置,当它们穿过空间时会自然地向一侧弯曲。团队设计了发射器,以便系统操纵电磁波的强度和时间。凭借这种操纵光的能力,研究人员可使波更有效地协同工作,以便在固体物体阻挡部分光束时维持信号。光束沿着发射器中的模式重新排列数据来适应阻挡。当一种模式被阻止时,数据传输将切换到下一种模式,从而保持信号链路完好无损。通过使用这些弯曲光束,研究人员希望未来能使无线网络更加可靠,即使在拥挤或有阻碍的环境中也是如此。未来在办公室或城市等经常出现物理障碍的地方,将可实现更快、更稳定的互联网连接。
  • BOD测量数据无线传输!动态过程,一目了然!
    生化需氧量(Biochemical Oxygen Demand,BOD),是指水体中的好氧微生物在一定温度条件下,一定时间内,将水中有机物分解成无机质,在此过程中所需要的溶解氧量。 BOD可反映水体被有机物污染的程度,水体中所含有机物越多,则需要消耗的溶解氧量也越多,BOD值也越大。 图1 健康水体中的有机物含量少,溶解氧多,可供鱼类等水生生物呼吸之用(源/Quikr Exam) 为了使样品具有可比性,我们常用一个时间段内的溶解氧量的消耗量来表征BOD值。例如,我们通常设定实验温度为20℃,用水样培养微生物,测定水中溶解氧的消耗情况。如果这一时间段是5天,就称为5日生化需氧量,记做BOD5,单位一般用mg/L来表示。数值越大,说明水中含有的有机物越多,污染也越严重。表1 受有机物污染程度不同的水体测量得到的BOD值 人们通常用稀释接种法来测量生化需氧量,计算公式如下: BOD=(D1-D2)/ P 其中,BOD是生化需氧量(mg/L);D1是稀释水样的初始溶解氧量(mg/L);D2是稀释水样经20℃恒温培养箱培养n天之后的溶解氧量(mg/L);P是稀释因子,表示为水样体积(mL)与稀释后水样体积(mL)的比值。 这种测量方法有不足之处。例如,只有“点”上的数据,无法获得变化“过程”中的BOD数据;另外,如果想继续测量水样BOD在其他时间点的数据,如BOD20,样品测量瓶需取出恒温培养箱,测试样品就会被干扰,导致后续的测量数据准确度下降。而且,样品BOD的平台期是在什么时间达到的也不清楚。 针对这一测量难题,意大利VELP公司推出了BOD EVO无线传输自动测定仪。 BOD EVO无线传输自动测定仪采用压强传感器对样品生化需氧量进行测量。经稀释接种或含菌的水样被置于密闭的培养瓶中,水样中溶解氧不断被消耗,使得密闭样品瓶内的压强降低,仪器内置的压强传感器可一直监测此压强变化,根据压差变化,计算水样的BOD值。 这种测量方法有其一系列独到优点。 模拟自然条件,结果更真实可靠传统方法,样品接种稀释后满瓶测量,不再为样品提供多余氧气,且静置放置数天,这样瓶内微生物代谢产物容易集结,易产生区域性溶解氧匮乏,生化反应受抑制可能性加大;BOD EVO培养瓶内样品上方所含21%氧气不断溶入水样中,搅拌子连续搅拌,可为微生物生长提供充分的溶解氧和有机物。测量结果更真实可靠。 操作简单,测量方便传统法操作繁琐、准备样品时间长,量程窄,一般BOD值大于100mg/L时需稀释,且需人工测量初始、终止溶解氧量,在培养过程中需要专人看管。BOD EVO操作简单,软件功能强大,可预先设置好采样时间间隔,自动连续测量溶解氧。无线数据盒能自动接收传感器发送的数据,并将其传输到计算机中。整个测量过程,无需专人看管。专业软件允许实验员对数据进行监控、记录和分析,可自动生成实验报告。 无线数据传输BOD EVO可连续显示记录生化需氧量数据传统方法监测到的是“点”上的数据,如BOD5。若想了解整个过程的动态数据,几乎无法实现。BOD EVO连续显示各时间点的耗氧量并存储BOD数据,从而直观了解样品耗氧动力学过程。 BOD EVO可深入研究样品有机物生化降解过程根据水样耗氧曲线,可深入研究水样有机物生化降解反应过程中的“滞后现象”等。不得不说,BOD EVO是生化需氧量测量领域的一款革命性产品。
  • 重庆市:服务高端仪器仪表发展,研制电镜、工业CT等设备
    7月15日,重庆市人民政府印发《重庆市计量发展规划(2021—2035年)》(以下简称《规划》)。《规划》明确发展目标,到2025年,建设一批全国一流的计量科技创新基地和先进测量实验室,在战略性新兴产业、现代服务业等重点领域建设一批国家级、市级产业计量测试中心,研制一批专业计量测试装备,形成一批专用计量测试方法和技术规范。专栏1 计量发展主要指标序号指 标 名 称2020年2025年2035年指标属性1主持及参与编制国家计量技术规范(项)61030预期性2编制地方计量技术规范(项)5780110预期性3主持及参与国家级计量科研项目(项)2510预期性4主持及参与省部级计量科研项目(项)62686预期性5建立社会公用计量标准(项)84710001200预期性6建成国家级产业计量测试中心(个)026预期性7建成市级产业计量测试中心(个)0610预期性8建成国家级计量检测中心/站(个)568预期性9建成国家计量重点实验室、技术创新中心(个)014预期性10计量装备国产化替代率(%)80%≥85%≥90%预期性11强检项目建标覆盖率(%)78%≥85%≥95%预期性12强检计量器具检定覆盖率(%)95%≥96%≥98%约束性13主要用能单位能源计量器具配备率(%)—≥90%≥95%预期性《规划》提出强化计量基础和前沿技术研究,重点开展高端数字测量技术、微纳米测量技术、图像识别测量技术、复杂几何测量技术、非接触式测量技术和高端计量器件自主可控技术研究和应用;加快溯源技术及计量装备研究,重点开展微纳米几何特征参量计量、发动机复杂部件失效定量分析以及扫描电镜、多参数仪器设备、无线传感器等先进制造领域,电动汽车充电桩、新能源汽车储供能、氢能源燃料电池、智能网联汽车行业等新能源汽车领域,能源、气态污染物、能效水效、油气回收监测与检测等节能环保领域的计量技术方法、装备和技术规范研究。《规划》强调加强关键共性计量技术研究。创新发展远程和在线计量技术、复杂环境和极值量计量技术应用,加快开展数字化模拟测量、工况环境检测技术、直流电能计量技术、计量设备虚拟仿真技术、智能电网量测领域质量数据分析及评价关键技术等基础共性计量技术研究。加强智能化计量检测技术研究,强化涉及全市重点产业领域的多参数检测、在线检测、动态监测、远程监测、自动化检测等技术方法和计量仪器设备的研究与开发,增强快速检测能力。《规划》还提出提升产业计量服务水平,服务制造业和现代服务业发展。重点围绕电子信息、汽车摩托车、装备制造、消费品、材料工业、生物医药等领域发展需求,搭建一批计量公共服务平台,聚焦全市制造业领域测不了、测不全、测不准难题,加强应用性、创新性、前瞻性计量测试技术和产业计量测试方法研究及专用装备研制,为“重庆制造”高质量发展提供全溯源链、全产业链、全寿命周期的计量测试服务。服务制造业发展重点工作1.电子信息产业领域。围绕新一代信息技术在软硬件产品中植入应用的计量服务需求,持续推动高带宽、低时延、大连接通信领域全产业链、全溯源周期的计量技术开发与测试装备研制,重点开展5G/6G通信、毫米波传输、关键元器件、大规模天线阵列、空间射频性能等测试方法研究和分析应用。2.汽车摩托车产业领域。围绕打造国家级车联网先导区、换电模式示范城市、氢燃料电池汽车示范城市,重点推进新能源汽车电池、电机充电以及智能网联汽车等安全与保障计量测试技术研究,开展电磁兼容领域量传溯源技术研究。开展新能源汽车电机能效计量测试技术研究,建设锂离子电池性能的完整评价体系及规范性计量测试平台等。3.装备制造产业领域。顺应工业机器人、数控机床、轨道交通、新能源、增材制造等领域装备高端化、智能化、成套化发展趋势,重点开展数字化精密测量、大尺寸及微纳米高精密测量、复杂几何型面测量等计量检测技术研究,持续完善装备制造计量服务能力。4.消费品产业领域。面向全市食品、特色纺织品、新兴消费品等领域消费升级需求,重点推动食品添加剂、有机化学品残留、包装材料及持久性有机污染物检测,以及消费品中生化计量、电离辐射计量等前沿性计量技术研究和相关标准物质的研制。5.材料工业产业领域。围绕全市增加高品质原材料供给和前沿材料工程化、产业化发展需求,重点开展面向绿色建材、化工材料等原材料,以及先进有色金属、石墨烯、气凝胶等新材料的前沿计量技术和关键特性参数计量标准研究。6.生物医药产业领域。面向全市居民健康管理、重大疾病发现、疫情防控保障等领域需求,持续推动远程医疗计量技术的开发与应用,重点开展精密医疗设备检测、植入材料检测和蛋白质计量、药物及疫苗研发生产计量、核酸计量溯源技术研究。服务现代服务业发展重点工作1.现代物流业。推进物联网核心元器件计量标准体系建设,重点研制物联网感知装备动态特性在线测试仪器设备,研究冷链环境动态监控系统校准技术,提升测试效率和质量。2.生产性服务业。重点推进面向研发设计、电子商务、服务外包等方面的测试、检验等计量服务。重点发展在线检测计量,完善检验计量服务体系。3.生活性服务业。重点加快商贸、文化、旅游、体育等领域计量标准制定和技术研发,加大计量标准的推广应用力度。《规划》还专门强调了服务高端仪器仪表发展和精密制造。面向高端仪器仪表和精密制造产业计量检测需求,重点完善压力、流量、电磁、光学、化学等仪器仪表检测能力开发,拓宽仪器仪表检测服务范围,提高检测效率和检测自动化水平。开展高端仪器仪表产业服务行动,建设一批计量测试共享实验室,解决企业生产设施不完备、检测能力不足等问题。鼓励引导企业进行高端仪器仪表研发,拓展产品种类、扩大服务市场,在特色仪器仪表领域持续做大、做强、做响“重庆制造”品牌。服务高端仪器仪表发展和精密制造重点工作1.高精度计量检测装备。重点研发面向卫星导航、环境监测、智能制造等领域的高精度计量检测装备,建立集成原子时标标准装置、高精度多轴转台标准装置以及大流量风速风向、微小流量、微小容量、高精度称重传感器、车辆动态多参数测量仪等检测装置。2.高端通用计量检测装备。重点研发面向汽车摩托车、装备制造、生物医药等领域的高端通用计量检测装备,开发发动机运行试验平台性能评价系统,研制大齿轮多参量计量标准器具以及扫描电子显微镜、透射式电子显微镜、工业CT等校准装置。3.面向高端应用的计量检测装备。重点研发面向智能制造、环境监测、安全防护等领域应用的计量检测装备,包括曲轴洛氏硬度测试系统、动态力值压力校准装置、大口径气体流速流量检测装置、自由曲面自动检测系统、多参数危险气体在线分析仪器等。4.传感器。重点开展面向环境监测、人工智能、航空航天等领域应用的传感器检测能力研究,包括多维力值传感器、惯性运动参数传感器、动态称重传感器校准装置。5.特色仪器仪表。重点研发面向供水、供电、供气等基层民生计量保障领域的仪器仪表,持续提升智能水表、燃气表、流量计、加气机、热能表、焦度计、高压电能表等我市特色仪器仪表的全国市场占有率。《规划》还提出服务“智造重镇”“智慧名城”建设,服务碳达峰碳中和工作,服务基础设施建设。加强计量与人工智能技术、数字技术、网络技术以及产业数字化科研生产平台联动,促进数字产业化和产业数字化,强化互联网与物联网领域计量服务,高水平服务“智造重镇”“智慧名城”建设。服务“智造重镇”“智慧名城”建设重点工作1.人工智能领域。重点开展人工智能测试评价技术及标准化测试数据集的研究。重点推进计算机视觉、跨媒体感知、自主无人智能等人工智能核心计量检测技术、关键参数测量与测试验证、标准制定修订等工作。2.产业数字化领域。提高测量过程控制有效性,为企业向数字化、网络化、智能化转型发展提供大数据支撑。重点推进数字技术典型示范应用场景,推动数字化车间、智能工厂建设和产业园区数字化改造在线监测计量体系建设。3.互联网领域。打造全频域、全时段、全要素的计量支撑能力,促进5G/6G、区块链等新业态、新模式的形成和发展。开展工业互联网物理信道、传输稳定性、功耗等参数的计量测试方法研究,提升数据传输可靠性。4.物联网领域。开展轻量级操作系统及测试技术研究,研究制定物联网感知装备测试标准和系统评价技术规范,开展测试评价。研制物联网感知装备动态特性在线测试仪器设备,提升测试效率和质量。建立健全碳排放计量标准体系,推动地区和行业碳排放计量标准方法研究,依法开展碳排放关键计量测试,提升碳计量和碳汇计算技术支撑能力。服务碳达峰碳中和重点工作1.碳排放领域。加强“双碳”计量技术、管理、服务体系建设,开展碳市场基础标准、重点领域碳减排标准体系和碳排放在线计量测试技术研究。组织质量法油流量标准装置、电动汽车充电桩远程在线检定装置的研发。2.能源领域。打造综合能源计量云平台,推进重庆市重点用能单位能耗在线监测系统建设,建立能源资源计量数据采集、监测和分析系统。开展用能产品能效标识检测和能源平衡测试、能源审计等技术服务,重点研究能源高效利用、新能源和可再生能源的开发利用、节能减排等领域计量检测技术。推进清洁能源发电、储能及并网控制计量测试技术的研究与应用。加强电力碳足迹追溯、发输电能效提升以及特高压、清洁能源场景计量试验监测技术研究。3.环境监测领域。开展环境监测在线计量技术及装备、环境计量标准物质研究。加快用于水、土壤、大气环境监测方面的新一代智能监测装备集成开发。利用物联网、大数据等技术实现环境监测类仪器的在线、便携、快速计量检测。重点提升环境、卫生领域污染物排放量监测能力,提升成品油、液化天然气、页岩气领域监测能力,助力生态环境治理和保护。4.应对气候变化领域。开展温室气体标准物质研究,进行二氧化碳、一氧化氮等温室气体纯度定值,开展污染物颗粒尺寸定值及分布研究。发挥计量专业优势,围绕建设西部国际综合交通枢纽、完善城市交通系统、完善能源保障体系、提升水安全保障能力和新型基础设施建设等领域重大工程、重要装备、重点网络线路计量需求,开展交通一体化综合检测、监测设备量值溯源和保证技术研究,开展计量技术攻关与先进测量装备研发,持续提升计量服务基础设施建设的技术保障能力。服务基础设施建设重点工作1.交通运输领域。重点推进高铁装备制造、机动车测速、道路交通称重等计量技术升级迭代。围绕国际大宗高价值产品贸易,加强“渝新欧”港口计量体系建设和互认。2.城市交通领域。重点推进利用物联网、云计算、移动互联网、卫星导航及应用等技术,开展轨道交通、城市道路等智能城市交通系统涉及的信息、通信、传感器等计量检测技术研究,为城市交通领域节能减排统计与监测平台提供计量测试数据,实现对交通运输领域能耗数据的动态监测。3.能源资源领域。重点推进能源资源计量领域的计量装备研制,制定修订能效水效标识产品地方计量技术规范,创新能源资源计量检测技术手段,开展能源计量器具在线动态计量检测标准方法研究。4.水安全领域。重点推进城乡供水水源水质在线检测计量标准及计量技术研究,完善地表水位监测、地下水位监测、水量计量、水雨情遥测、城乡供水监测、供水管网漏损监测、重点水源地水质监测计量标准及计量体系,重点提升漏水控制、污水处理、防洪能力等方面的计量检测技术水平。5.新型基础设施领域。面向5G/6G、千兆光纤、低轨卫星移动通信、空间互联网和量子通信网等网络设施建设需要,开展互联立体网络体系计量技术及计量标准体系建设,加快建设试验计量平台,打造一批复杂场景的应用试验计量基地。重点研发高精度守时系统,提供时间频率产品全产业链计量检测服务。6.自然资源监测领域。开展用于测绘、地质灾害监测预警的新一代地形地貌测量仪器校准溯源技术研究。《规划》还强调了加强计量标准体系建设,加大标准物质研制应用,加快计量技术机构建设,加强计量人才队伍建设等夯实计量基础能力建设工作。计量技术机构能力提升重点工作1.国家级计量测试中心。重点提升我市现有国家级计量测试中心技术能力水平。围绕服务全市战略性新兴产业和现代服务业发展,争取新获批筹建一批国家级计量测试中心。2.市级计量技术机构。重点提升市级法定计量机构技术能力,完善渝东北三峡库区城镇群、渝东南武陵山区城镇群区域法定计量机构保障能力。面向氢燃料电池、智能网联新能源汽车数字监管、增材制造、石墨烯和医疗器械等领域建设一批市级产业计量测试中心和性能评价实验室。3.行业主管部门专业计量技术机构。负责部门行业计量标准建设与维护、专用计量技术与方法研究、专用计量器具的管理和使用。面向电力、水务、气象、地质勘测等领域开展行业内计量风险收集、评估、监测、预警,承担政府及行业指定的基础保障任务。完整版下载:重庆市人民政府关于印发重庆市计量发展规划(2021—2035年)的通知.doc
  • 新型材料有望成为新一代高效膜分离材料 用于高效有机小分子分离取得新进展
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 近日,中国科学院国家纳米科学中心、纳米科学卓越创新中心研究员唐智勇和副研究员李连山在具有刚性分子骨架的自组装多孔薄膜用于高效有机小分子分离的研究中取得新进展。相关研究成果Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration 于7月23日在线发表在《自然-化学》(Nature Chemistry)杂志 (Nat. Chem. 2018, DOI: 10.1038/s41557-018-0093-9)。 /p p style=" line-height: 1.5em "   当今工业过程中涉及大量的分离、纯化或者浓缩过程,因此分离技术成为现代工业中最重要的技术之一。目前,分离纯化过程主要依赖于高能耗的基于热的过程,例如蒸馏、蒸发、精馏等。据统计,化工工业中用于分离和纯化的能源消耗占据了全部能源消耗的一半,其中80%被蒸馏过程消耗。因此,开发低能耗、高效的分离纯化技术将极大降低能源消耗。 /p p style=" line-height: 1.5em "   膜分离过程是一种在选择性膜两侧施加压力差,使得待分离物质选择性通过膜从而实现分离的过程,这一过程的核心技术是高效、高选择性膜材料。这一技术在水纯化或者海水脱盐方面已经有了很成熟的应用,利用聚酰胺等聚合物材料的薄膜实现杂质或离子去除。然而,其在有机体系的应用相对滞后,这是因为大部分传统的一维聚合物材料在有机溶液中不稳定。其次,传统一维聚合物薄膜没有永久性孔,导致分离速度非常低下。 /p p style=" line-height: 1.5em "   为了同时解决高稳定性、高溶剂通量及高选择性的问题,唐智勇课题组选择了具有刚性骨架的自组装多孔聚合物材料。这种材料相比于传统的一维柔性聚合物材料有非常大的优势:第一,三维全共轭结构使得这类材料在任何溶剂中不溶,且具有很高的热稳定性 第二,刚性骨架支撑起丰富的自组装微孔,有利于溶剂的传输 最后,可通过化学手段对孔结构或尺寸进行调控。然而其三维刚性结构在解决了结构稳定性的同时,其不溶的特性也同时带来了材料成膜困难的问题。因此,如何获得高质量的薄膜是解决这类材料在膜分离领域应用的关键一步。受一维聚合物表面聚合的启发,该课题组在SiO sub 2 /sub 表面修饰初始聚合位点后进行表面聚合反应,通过精细控制表面修饰及聚合反应条件,获得了平方厘米级的无缺陷薄膜并成功转移至超滤膜多孔支撑层。分子截留测试表明,其对有机溶剂具有极高的稳定性,在同等选择性基础上,过滤速度较目前商用的一维柔性聚合物薄膜高出两个数量级。这一结果主要得益于这类材料永久性微孔结构及高孔隙率,使其有望成为新一代高效膜分离材料。 /p p style=" line-height: 1.5em "   国家纳米中心博士梁斌和助理研究员王会为文章的共同第一作者 唐智勇、李连山为共同通讯作者。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/insimg/5a4b40ad-e20b-47d9-9ef0-26d1a80e97c4.jpg" title=" W020180724535051727276.jpg" / /p p style=" text-align: center line-height: 1.5em " 聚合物全刚性骨架支撑起自组装结构中高度联通的永久性微孔& nbsp /p
  • Nano-Micro Letters陈棋&陈煜改进空穴传输层的胶凝性能提高鈣鈦礦太阳能电池的性能
    顶尖团队的选择在2023年7月10日出版的《纳米-微米快报》期刊上,北京理工大学材料科学与工程学院的研究人员在陈棋教授和陈煜教授的带领下,发表了一项有关提高钙钛矿太阳能电池稳定性的研究。该研究集中于通过改进空穴传输层的胶凝性能来提高太阳能电池的性能和寿命。这项研究提出了一种新的方法,通过使用对苯二甲酸(TA)修饰spiro-OMeTAD空穴传输层(HTL),形成凝胶状结构,从而提高钙钛矿太阳能电池(PSCs)的性能和稳定性。将TA添加到spiro-OMeTAD中会形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。HTL的凝胶化有效地提高了所得HTL的紧密性,并防止水分和氧气的渗透。此外,TA能够使钙钛矿缺陷被钝化,并促进从钙钛矿层到HTL的电荷传输。研究团队制备的基于凝胶化HTL的优化PSCs表现出PCE (22.52%)的高的转换效率和良好的器件稳定性。凝胶化的HTL还可以防止LiTFSI盐的聚集,并在潮湿条件下保持高导电性。研究团队开发的凝胶化HTL的PSCs,在25°C下连续照射1000小时后仍保持其初始PCE的85%,在25°C环境空气中连续照射2500小时后保持其初始PCE的92%。凝胶化HTL策略也应用于PTAA,并观察到类似的湿度稳定性改进。这些研究团队获得的发现为改进基于spiro-OMeTAD的HTL以实现高效稳定的PSCs提供了简单且有前景的策略。空穴传输层(HTL)。HTL是一种薄膜,有助于从钙钛矿层中提取正电荷(空穴)到电极。常用的HTL材料是spiro-OMeTAD,它具有良好的空穴迁移率和与钙钛矿材料的兼容性。然而,spiro-OMeTAD也存在一些缺点,如其原始状态下的导电性差和对湿度的敏感性。为了克服这些问题,通常会在spiro-OMeTAD中掺杂锂盐,例如LiTFSI,以提高其导电性并降低其能级。然而,掺杂锂盐也会引入新的问题,如由于LiTFSI的吸湿性导致HTL和钙钛矿层的降解,以及由于Li+离子的迁移导致J-V滞后现象的形成。因此,研究团队一直在探索各种改善HTL性能和稳定性的策略,例如开发新的HTL材料,使用替代掺杂剂,以及优化掺杂方法。在本文中,研究团队将回顾该领域最近的一些进展,并讨论其优点和局限性。材料:本文中的实验采用商业获得并按原样使用的材料,例如碘化铯(CsI,99.9%,Sigma-Aldrich)、碘化铅(PbI2,Xi’an Polymer Light Technology)、氯化甲基铵(MACl,Xi’an Polymer Light Technology)以及用于电荷传输层的材料(SnO2(15 wt%胶体分散液,Alfa)、2,2′,7,7′-四[N,N-二-4-甲氧基苯基]胺基]-9,9′-二苯并螺[5,5′-二(苯并)二噁咯](spiro-OMeTAD,Xi’an Polymer Light Technology)、三氟甲磺酰亚胺锂盐(LiTFSI,99.95%,Sigma-Aldrich)、硫辛酸(TA,99%,Sigma-Aldrich))。使用的溶剂包括氯苯(CB,Sigma-Aldrich,99.9%)、N,N-二甲基甲酰胺(DMF,99.99%,Sigma-Aldrich)、二甲基亚砜(DMSO,99.5%,Sigma-Aldrich)、异丙醇(99.99%,Sigma-Aldrich)、乙腈(ACN,99.95%,Sigma-Aldrich)和tBP(99.9%,Sigma-Aldrich)。此外,氟甲酸铵(FAI,Dyesol)在购买后进行了进一步纯化。器件制备:研究团队将ITO基底用超纯水、丙酮和乙醇在超声系统中清洗30分钟。然后,用N2气干燥并经过UV-O3处理30分钟,以提高其润湿性。在基底上以4000 rpm的速度旋涂一层致密的SnO2层,并在150°C下热处理30分钟。在沉积钙钛矿薄膜之前,基底暴露于紫外光10分钟。对于PbI2前体,研究团队将PbI2和CsI溶解在DMF:DMSO的混合溶剂中,并在70°C下搅拌5小时。有机阳离子前体通过将FAI和MACl溶解在异丙醇中制备。两个溶液均经过0.22 μm的PTFE过滤器过滤。采用两步法制备钙钛矿薄膜:首先旋涂PbI2前体,然后是有机阳离子前体。在150°C下热处理10分钟后,旋涂空穴传输层(HTL)在钙钛矿薄膜上。使用了两种类型的HTL前体。对于参考HTL,使用了CB中的spiro-OMeTAD、TBP和LiTFSI的溶液。对于目标HTL,将TA加入到参考HTL溶液中。经过过夜氧化后,沉积了100 nm厚的Au膜作为背接触。使用金属阴影掩模定义了器件面积为0.0805 cm2。表征:研究团队使用Anton Paar仪器(Physica MCR 301,德国)进行了poly(TA)的流变学测量,采用平行板几何形状。应变扫描测量在25°C下进行,角应变范围为0.1至2500%,频率为0.5 Hz。温度扫描测量在25至100°C之间进行,应变为1%,频率为0.5 Hz。傅里叶变换红外光谱(FTIR)采用Magna-IR 750(Nicolet,美国)进行。采用Bruker AVANCE III 300 MHz NMR Spectrometer获得1H NMR光谱。使用Al Kα辐射采集了XPS数据的Axis Ultra XPS光谱仪(Kratos,英国)。使用Hitachi Regulus 8230进行了SEM成像。使用带有PRUM-TNIR-D-10探头的Bruker Dimension Icon IR进行了纳米FTIR实验。ToF–SIMS测量采用PHI NanoTOF II仪器(ULVAC-PHI,Inc.)与30 keV Bi+脉冲主离子束。使用UV–vis漫反射光谱仪(UV–vis DRS,日本Hitachi UH4150)获取了UV–vis吸收光谱。使用具有470 nm脉冲激光和基于galvo的扫描仪的激光扫描共焦显微镜(Enlitech,SPCM-1000)用于2D PL映射。使用带有Cu Kα辐射的Bruker D8 Advanced获得XRD数据。使用FLS1000(Edinburgh Instruments Ltd)和450 W的Xe灯进行了稳态PL和TRPL测量。使用源表(Keithley 2400)和AM1.5G光照从1000 W m-2太阳模拟器(SS-F5-3A,Enlitech)评估了PSC的光伏性能。J-V扫描以50 mV s-1的扫描速度在正向和反向方向进行。使用Enli Technology(中国台湾)EQE测量系统记录EQE曲线。校准的硅二极管用作EQE测量的参考。结果和讨论空穴传输层(HTL)的凝胶化TA是一种天然存在的小分子,具有疏水的1,2-二硫代璘和烷基链基团,以及亲水的羧酸基团。TA的结构包括动态共价二硫化键和非共价氢键,使其成为形成稳健连续网络的潜在交联剂。当TA溶解在氯苯中,并加入LiTFSI,它会发生凝胶化,形成一种黄色透明的凝胶状聚合物网络,称为poly(TA)。研究团队进行了流变学测量,研究了凝胶化行为。应变扫描测试显示,在约340%的振荡应变幅值处,凝胶向溶胶转变。在这个临界应变以下,凝胶网络保持稳定,但在存储模量(G’)和损耗模量(G")交叉点附近的340%处发生失效。通过流变分析观察到,凝胶在50°C以上发生可逆的固态到液态转变。这种超分子聚合物在温度升高或被水稀释时会转变为黏稠的聚合物溶液。通过增加单体溶液的浓度或加入Fe3+,Pb2+,Zn2+和Ca2+等金属离子,可以提高凝胶的转变温度。FTIR分析证实了TA与LiTFSI之间的强相互作用,导致交联结构的形成。TA的添加促进了空穴传输层(HTL)前体溶液中凝胶的形成。如甲酸或乙醇等溶剂可以溶解凝胶,使研究团队能够在钙钛矿上制备HTL薄膜。与参考HTL相比,带有TA的凝胶HTL表现出了改善的薄膜形貌。SEM和AFM分析显示凝胶HTL薄膜具有均匀且致密的表面,表明TA在提高薄膜质量方面起到了作用。AFM-IR确认了凝胶HTL薄膜中TA的空间分布。a TA 交联聚合的示意图。 b TA聚合的图片。 c 应变扫描时聚 (TA) 凝胶的储能模量 (G’) 和损耗模量 (G")。 d TA(红色)、LiTFSI 和 TA 混合物(蓝色)、LiTFSI(黄色)的 FTIR 光谱。 e spiro-OMeTAD 和掺杂 TA 薄膜的 spiro-OMeTAD 的扫描电子显微镜 (SEM) 图像。 f 目标薄膜的 AFM 图像和 g 相应的纳米 FTIR 图像。红外频率为 1693 cm–1 的纳米 FTIR(与 TA 的 C&thinsp =&thinsp O 伸缩吸收共振)提高湿度稳定性研究团队使用ToF-SIMS映射评估了凝胶HTL薄膜中添加TA的成分分布。观察到在高湿度条件下,参考薄膜表面明显出现LiTFSI的聚集,而带有凝胶HTL的目标薄膜显示出减轻的LiTFSI聚集。这表明在高湿度条件下,凝胶HTL更加坚固。发现TA与LiTFSI之间的相互作用能够延缓Li的聚集。AFM-IR和深度剖面ToF-SIMS测量进一步证实了凝胶化在防止LiTFSI聚集和迁移方面的有效性。还研究了凝胶HTL策略对钙钛矿薄膜湿度稳定性的影响。将覆有HTL的钙钛矿薄膜在湿润空气中老化,并监测UV-vis吸收光谱。参考薄膜在暴露于湿润空气后显示出吸光度的急剧下降,而目标薄膜显示出微不足道的变化。XRD测量证实参考薄膜分解为PbI2和光不活性的δ相,而目标薄膜显示出延缓的α向δ相转变。经过老化的薄膜的PL映射显示,与参考薄膜相比,目标薄膜具有更窄的波长范围,表明其稳定性更好。凝胶HTL策略也适用于PTAA,观察到了类似的湿度稳定性改进。接触角测量表明,与参考薄膜相比,凝胶HTL薄膜的吸湿性降低。这些发现表明,使用凝胶HTL覆盖的钙钛矿薄膜的湿度稳定性得到了显著改善。a 参考膜和 b 目标膜在 25°C、85-90% 的高相对湿度下老化 200 小时之前和之后的 Li+ 的 2D ToF-SIMS 元素图。 c 参考钙钛矿薄膜和目标钙钛矿薄膜在 700–850 nm 处随时间变化的紫外可见吸收光谱。 d 参考膜和目标膜在 750 nm 处的归一化吸收。参考文献的 e PL 峰位置图和统计图。 f 目标薄膜在 25°C、85–90% 的高相对湿度下老化 500 小时之前和之后设备性能和稳定性的提高:研究团队研究了凝胶空穴传输层(HTL)对器件的光电性能和稳定性的影响。使用ITO/SnO2/钙钛矿/ spiro-OMeTAD(TA)/Au的n-i-p型平面太阳能电池结构来评估光伏性能。使用研究团队开发的凝胶HTL的目标器件显示出较高的平均光电转换效率(PCE),为20.22%,而参考器件为18.11%。它们还显示出改善的重复性和HTL薄膜的致密性。最佳目标器件的PCE达到22.52%,其VOC、JSC和FF的值较参考器件更高。研究团队开发的目标器件的稳定性显著提高,在暴露于环境大气条件(RH约30-60%)下2500小时后,保留了92%的初始PCE。相比之下,参考器件在1000小时后只保留了60%。未封装的目标器件在高湿度(85-90%)下也显示出良好的稳定性,在1000小时后保留了85%,而参考器件在530小时后只保留了75%。此外,目标器件在持续LED照明1000小时后保持了超过85%的初始PCE,而参考器件仅保持约40%。这些结果证实了凝胶HTL策略显著改善了太阳能电池的长期稳定性。a PSC 的结构以及钙钛矿和凝胶 HTL 之间的界面。 b 参考设备和目标设备的 PCE 统计分布。孔径面积为 0.0805&thinsp cm2 的最佳性能目标器件的 c J-V 曲线。 d 参考器件和目标器件的 EQE 曲线及其综合 JSC 曲线。 e 最大功率点附近偏置电压 (1.00 V) 对应的稳定功率输出数据。在 MPP 条件下 f ≈30–50% RH、g 85–90% RH 和 h 连续照明下参考器件和目标器件的归一化 PCE 演变提高光伏性能:为了理解凝胶空穴传输层(HTL)器件中增强的效率和稳定性的原因,研究团队研究了spiro-OMeTAD和凝胶HTL薄膜的电导率。与纯净的spiro-OMeTAD相比,凝胶HTL中TA的存在显著提高了电导率。这种增强归因于TA中S原子的强电负性,促进了spiro-OMeTAD的氧化。稳态光致发光(PL)和时间分辨光致发光(TRPL)光谱表明,凝胶HTL促进了光生空穴在钙钛矿/spiro-OMeTAD界面的传输和提取。光电压与光伏性能改善的关系与PL和TRPL测量结果一致。综上所述,研究团队通过改进空穴传输层(HTL)的胶凝性能,提高了钙钛矿太阳能电池(PSCs)的性能和稳定性。他们使用对苯二甲酸(TA)修饰的spiro-OMeTAD HTL形成了凝胶状结构,防止了水分和氧气的渗透,并促进了电荷传输。研究团队开发的凝胶HTL策略显著提高了钙钛矿太阳能电池的转换效率和稳定性,为实现高效稳定的太阳能电池提供了有前景的策略。a ITO/spiro-OMeTAD/Au 和掺杂 TA/Au 电阻器件的 ITO/spiro-OMeTAD 的 I-V 曲线。 b 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 PL 曲线。 c 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 和 PL 是在短路时测量的。钙钛矿和钙钛矿/TA 薄膜的 Pb 4f 的 d XPS 谱。 TA 和含 PbI2 粉末的 TA 的 e FTIR 光谱。 f 使用 HTL 的参考钙钛矿薄膜和目标钙钛矿薄膜的 TRPL 衰减曲线。请注意,具有 HTL 的样品的 TRPL 是在开路条件下测量的
  • 沙尘“侦察兵”:中科光电激光雷达网让沙尘传输有迹可循
    2021年以来沙尘天气频发,我国西北、华北地区遭遇了多次大范围沙尘天气过程,其中4月中旬的沙尘天气甚至跨越长江,影响到江南地区。沙尘天气的爆发致使传输路径上的多数城市AQI持续爆表,对人们的生活产生不利影响。如何实现对沙尘天气的提前感知和预警预报,每一次沙尘天气在国内的传输和扩散轨迹如何?作为区域沙尘天气立体观测“侦察兵”,中科光电激光雷达组网记录了每一次沙尘天气在全国的传输轨迹 。让我们跟随“侦察兵”的报告,对今年的主要沙尘天气进行回顾和盘点。1月10日-15日沙尘过程分析 西北区域(甘肃) 图1 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图1月10日-13日,河西地区多次出现短时沙尘传输过程。1月10日,沙尘气溶胶分布高度随传输过程逐渐扩大至2km,粒子形态偏不规则型,沙尘传输速度在45km/h左右。1月11日-13日,沙尘团为近地面传输,沙尘气溶胶多集聚1km内,河西西部地区主要为非球形粗粒子,河西东部地区球形细粒子占主导地位,沙尘团在阿克塞-玉门一带传输速度在20km/h左右,玉门-武威一带传输速度显著增大至49km/h左右。1月13日午后至14日,各地沙尘强度较高,沙尘团分布在2km高度内,粒子形态高度不规则,沙尘传输速度在45km/h左右。华东区域(江苏、浙江) 图2 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图1月12日0时起,江苏北部和南部、浙江中部和南部先后监测到2.0km高度有沙尘传输并逐渐下沉至地面,沙尘平均移动速度约为38km/h。江苏北部0.8km高度内以球形粒子为主,1.0km高度左右以非球形粗粒子为主;江苏南部、浙江中部、南部以非球形粗粒子为主。3月15日-19日沙尘过程分析 西北区域(甘肃) 图3 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图3月15日-18日,受蒙古强沙尘暴污染传输影响,甘肃省自西向东出现强沙尘天气,沙尘传输速率在玉门-武威一带达100km/h左右,武威-临夏一线传输速率明显减弱至20km/h左右,沙尘团主势力集聚1km内,各激光雷达500m内消光系数均突破阈值1km-1,多站点甚至高达4km-1,退偏振比接近阈值0.4,规则细粒子和不规则粒子占比较高,PM2.5和PM10均达到严重污染水平;期间仍有外源沙尘间歇性输送,致使各地沙尘污染反复。3月19日,各地出现短时雨雪天气,沙尘污染逐渐消散。4月12日-19日沙尘过程分析 西北区域(甘肃) 图4 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月12日和4月15日,甘肃全省监测到两次沙尘天气,沙尘主势力集中在1km内,气溶胶形态偏不规则粗粒子型,12日沙尘传输速率在12-15km/h左右,15日沙尘传输速率显著增强至100-120km/h。13日出现降水过程,污染快速消散;但16日扩散条件较差,导致浮尘天气持续。 华东区域(江苏、上海、浙江) 图5 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图4月16日4时起,江苏南部、上海中部、浙江中部和南部依次监测到污染气团并逐渐影响地面,沙尘平均移动速度约为42km/h。其中江苏南部、上海中部近地面先受到规则细粒子污染,随后转为不规则粗粒子污染。浙江中部及南部近地面以不规则的粗粒子为主,尤其浙江南部的粗粒子极不规则,退偏比达到0.4以上。4月25日-26日沙尘过程分析 西北区域(甘肃) 图6 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月25日-26日,受强冷空气活动影响,甘肃省自河西东部向南部地区相继监测到强沙尘输入,1km内规则细粒子含量骤增,同时粒子不规则度明显增大,沙尘传输速率为20km/h。26日各地细粒子污染逐渐降低,但粒子不规则程度依然较高。5月4日-8日沙尘过程分析 西北区域(甘肃) 图7 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图5月5-7日,甘肃省监测到两次间歇性短时沙尘过程,其中5日沙尘范围较大,沙尘传输速率达80km/h左右,沙尘团高度在传输过程中逐渐降低至1.5km,主要为非球形粗粒子。7日沙尘范围集中在中部地区,沙尘传输速率达50km/h左右,沙尘团多分布在500m高度内,球形粒子含量较高,午后各地沙尘污染逐渐消散。 华东区域(江苏、上海、浙江) 图8 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图5月5日0时起,江苏北部和南部、上海中部、浙江中部先后在1.5km高度监测到污染气团传输并于5时左右下沉至地面,沙尘平均移动速度约为171km/h。其中江苏北部和南部以球形粒子为主,上海中部、浙江中部以非球形粗粒子为主。7日3时起,江苏北部和南部、浙江中部在2.0-3.0km高度内监测到沙尘团,其中江苏北部球形粒子含量较高,但0.4km高度以下主要为非球形粗粒子。总 结激光雷达组网发挥其全面监控每次沙尘过程的空间分布、传输特征、气溶胶特性等的优势,实现对污染传输过程的精细立体监测,同时对污染传输情况进行提前预判,为研究区域污染物的累积与输送提供有力的技术手段,并对区域的大气污染联防联控提供有效支持。2021年以来,全国共经历6次大范围的强沙尘传输过程。甘肃省沙尘传输路径主要为北路和西北路,当出现沙尘暴天气时,影响范围较广,气溶胶粒子多集聚在500m高度内,主要为规则球形粒子(不规则粗粒子不利于远距离传输),传输速率与天气形势相关;当出现强沙尘天气时,气溶胶粒子多分布在1km高度内,沙源地周边城市主要为不规则粗粒子,其余城市球形粒子和不规则粗粒子占比相当,甚至球形粒子占主导;沙尘污染较强时,影响范围缩小,气溶胶粒子多分布在2km高度内,主要为不规则粗粒子。华东地区则均受到北部沙尘传输贡献,其中1月和4月沙尘平均移速相当,5月沙尘平均移速最快。沙尘传输高度基本在2km以内,且逐渐下沉,最终造成地面监测数据(主要是粗颗粒物数据)升高;污染气团多以不规则粗粒子为主,但在部分地区、部分时段以规则细粒子为主;沙尘影响时间均超过3天。
  • 戴安公司与北京市工业技师学院签署共建合作协议
    近年来,党中央、国务院高度重视高等职业教育事业发展,高等职业教育规模进一步扩大,服务经济社会的能力有了较大提高,对完善我国高等教育结构,实现高等教育大众化发挥了积极作用。戴安公司积极跟进国家在职业教育发展方面的步伐,寻找机会,为提提高国家的职业教育水平贡献公司的力量。 北京市工业技师学院是经北京市政府批准,于2002年1月在北京化工高级职业技术学校基础上升格建立起来的集职前教育、职后培训、职业技能培训鉴定、职业需求预测、就业服务为一体、以培养高级工、技师、高级技师等高技能人才为主的综合教育培训基地。是按照教育部和财政部按照国务院《国务院关于大力发展职业教育的决定》建立“国家示范性高等职业院校建设计划”100所中第一批28所示范高等职业学校之一,该院的环境与生物技术系色谱班,专门培养离子色谱、液相色谱、样品前处理仪的高级操作技师。 戴安公司为支持国家的职业教育、为国家建设培养有用人才,日前与北京市工业技师学院签署了共建合作协议,协议包括戴安公司为该院2007年招收的环境与生物技术系色谱班提供奖学金,同时参与该班相关教学计划的制定,利用公司雄厚的技术资源为该班专业教师提供培训机会,为该班的色谱教学提供有力的技术支持,帮助色谱班的学生了解最新的国际色谱技术发展、熟练地掌握先进的色谱技术操作、毕业时成为合格的色谱操作技师。相信经过这个培养过程,会为学生毕业后快速进入仪器分析行业打下坚实基础,为学生的就业增加竞争力,同时戴安公司也为国家的职业教育事业作出了贡献。 戴安中国有限公司 市场部
  • 【梅特勒托利多天平新品专栏】如何应对多通道数据传输
    手工记录,不仅麻烦且容易出错。随着智能与自动化发展,越来越多的用户对天平有数据传输的需求。梅特勒托利多新一代全新和标准天平注重数据传输方案的解决,可帮助用户应对多样的数据传输需求。需求1:将天平的称量数据传输到电脑上的EXCEL里解决方案:Drop to cursor方案优势:无需任何软件,只需要一根数据线即可实现天平到电脑EXCEL数据的传输,并且支持传输时间、日期、样品ID号、单位等信息。需求2:将天平的称量数据导出到U盘里解决方案:U盘导出方案优势:可一键将称量数据导出到U盘,支持时间、日期、ID、结果状态等一系列信息,并且配有导出成功提醒,方便得知导出状态。需求3:同时传输几台天平的数据到系统里,最好还能对每台天平的称量数据进行图表分析解决方案:EasyDirect Balances方案优势:可同时管理几台天平的称量数据;可轻松查看结果并按日期、仪器、用户或样品进行筛选。将结果可视化为图表,以评估目标和允差范围,并进行统计以进行有效分析;支持XML、CSV、XLSX或PDF等格式每天、每小时甚至立即可以自动导出需要的数据;可提供调平、测试、校正和维修状态信息,为用户提供所有连接仪表的简单操作概览。需求4:将天平的称量数据传输到内部数据管理系统解决方案:MT-SICS方案优势:天平可以直接将称量数据传输到客户的数据管理系统,方便称量数据的采集和分析。下图为:某光伏客户太阳能电池偏在进行丝网印刷时,需要将电池片的银浆印刷量传输到客户的数据管理中。天平客户的系统操作界面客户的数据管理系统需求5:在一台天平上,配套外界设备(如:打印机等)并同时实现上述多种传输方式解决方案:多通道传输方案优势:可实现同时传输数据至不同设备,为数据管理和天平使用提供了更多的灵活性,基于此方案的典型应用,如:打印数据的同时,保存打印格式数据至U盘(软/硬备份一键完成);将数据同时传至企业内部管理系统和MT其他分析仪器等。梅特勒托利多新一代高级和标准天平提供丰富的接口,比如RS232,USB-A,USB-C以及LAN接口,满足客户多样性的有线和无线数据传输需求。
  • 【安捷伦】心谙所需 创新有谱 | 安捷伦新一代智能集成 8697 顶空进样器上市!
    坐在家中,喝着咖啡,从容访问一个浏览界面,即可同时控制、查看顶空进样器及气相色谱?全新上市的安捷伦新一代 8697 顶空进样器,帮您实现!智能互联,简化实验室工作厌倦了不得不查看多个界面来了解仪器状态、控制仪器运行?首款集成气相色谱智能互联的安捷伦顶空进样器 —— Agilent 8697 顶空进样器,从现在起革新您的 GC 工作流程管理方式!8697 顶空进样器将从制药、环境、法医学、材料多个市场纬度提升安捷伦气相、气质所能带给客户的更大的应用空间,以行业领先水平,助力客户,赋能应用,走进先进的智能化分析仪器的新时代!8697 顶空进样器有如下突出优势:可直接与 Agilent 8890、8860 和 Intuvo 9000 气相色谱通讯。这项集成智能互联技术为 GC 分析提供了一种全新的系统管理方法,您可以直接在 GC 界面上查看顶空进样器的状态信息。如此,您便可以一站式访问所需的全部信息。集成智能互联功能还可以使您的 GC 和顶空进样器更好地协同工作,以优化序列通量。如果指定的 GC 运行需要更长时间才能完成,8697 顶空进样器将自动等待,然后再进样下一个样品。在集成智能互联功能的协助下,您仅需通过 GC 系统的浏览器界面,即可远程访问顶空进样器系统。这意味着无论您是否在实验室都可获得仪器状态更新信息。8697 顶空进样器在系统操作、软件及操作界面上,还有如下革新:1. 可靠、值得信赖的系统操作在加压过程中对每个样品瓶进行自动检漏测试,无需耗时的校准过程。所以,您可以相信每一个样品瓶都是密封好的。2. 方法开发和转换工具避免了反复试验和误差8697 顶空进样器具有三个方法开发软件向导,使您能够:无需繁琐的反复试验就可将现有的阀与定量环或压力平衡顶空方法转换为安捷伦方法基于您的具体应用创建顶空方法,一旦您创建了自己的方法,通过参数增量功能可以轻松优化样品瓶平衡时间、柱温箱温度和样品瓶振荡。图 1. Agilent OpenLab 面板为您提供每个样品瓶的一览信息:运行状态、样品类型、执行的序列操作以及柱温箱中的样品瓶3. 直观的 GC 触摸屏界面,使您能够实时获取仪器状态和信息。主界面:一目了然,提供最新系统配置与流路连接状态。仪器实时状态界面:允许您自定义并确定常用的设定值,以便快速访问。8697 顶空:首次在 GC 触摸屏上看到顶空信息。图 2. GC 触摸屏界面卓越的精度、可靠性和简单易用性Agilent 8697 顶空进样器,传承了上一代产品的优秀性能,采用精心开发的技术和功能强大的软件,可助您大幅提升实验效率。它是需要高通量和高性能的中等容量实验室的理想选择。可靠、一致的惰性8697 顶空进样器采用惰性样品流路,可获得一致、可重现、出色的 GC 结果,不会造成分析物损失或降解。久经考验的样品流路8697 顶空进样器拥有与 7697A 顶空进样器相同的独立载气流路。因此,您可以安全地进行样品瓶排气。改进的传输线安装更简单:Captive 隔垫固定螺帽和改进的进样口支架简化了安装,并提供您实验室日常所需的耐用性更稳定:当传输线未安装在 GC 上时,新端盖可巧妙地保护熔融石英简化维护:改进的传输线隔垫意味着现在可以在不更换隔垫的情况下切割熔融石英先进的样品前处理极高的通量:优化的样品叠加,最多可同时加热和振荡 12 个样品瓶出色的进样灵活性:8697 支持 10 mL、20 mL 和 22 mL 样品瓶,并且可以同时运行多种规格的样品瓶便于样品处理的设计容量扩展:两个可移动的支架最多可容纳 48 个样品瓶不间断运行:在顶空进样器运行时,可以更换可移动的样品架,以便添加样品,直到完成整个工作方便的样品前处理:可移动的样品架有助于轻松完成样品前处理,以优化工作流程简化的样品追踪:可选的条形码阅读器支持您的实验室向数字化转型方便的工具访问:顶空所需的工具现拥有一个专用的存放位置了解进度智能暂停按钮和样品盘架 LED 可显示顶空的状态。紧凑小巧,节省实验台空间8697 顶空进样器的体积比市场上传统顶空小的多,但仍能为您提供所期望的安捷伦采样器的可靠性和耐用性。关键应用所需的数据法医学:可靠地测定血液样品中的乙醇含量复杂基质(如血液和生物样品)非常适合进行顶空分析,因为无需大量样品前处理即可保持 GC 洁净。使用 8697 顶空进样器,能够可靠地将乙醇与常见干扰物质分离,并利用可选的条形码阅读器维持监管链。图 3. 安捷伦血醇校验混标(部件号 5190-9765)的 FID 色谱图,证明了所有 12 种组分的转移和分离。将 50 µL 混标与 450 µL 0.1% (v/v) 叔丁醇水溶液于 20 mL 顶空样品瓶中混合,制得样品。制药:简化残留溶剂工作流程8697 顶空进样器可使用与 7697A 相同的方法参数。因此,您可以转移残留溶剂方法,而无需进行方法开发。图 4. 遵循 USP 的 2A 类溶剂的火焰离子化检测色谱图(1. 甲醇;2. 乙腈;3. 二氯甲烷;4. 叔丁醇;5. 反式-1,2-二氯乙烯;6. 顺式-1,2-二氯乙烯;7. 四氢呋喃;8. 环己烷;9. 甲基环己烷;10. 1,4-二氧六环;11. MIBK/CPME ;12. 甲苯;13. 氯苯;14. 乙苯;15. 间二甲苯/对二甲苯;16. 邻二甲苯)环境:准确检测挥发性有机化合物检测土壤和沉积物中的挥发性有机化合物 (VOCs) 对于满足安全标准和确保合规性至关 重要。顶空进样为土壤和沉积物检测提供了一种直接方法,并且具有残留低、重现性好和方法设置简单等分析效率优势。图 5. 20 µg/L VOC 校准标样选定离子的总离子色谱图关注安捷伦微信公众号,获取更多市场资讯
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制