[font=&][color=#666666]针对目前国家标准分析检测水质多参数方法存在的科学与技术问题,提出了一种基于超声-微纳米气泡(US-MNB)辅助技术、连续光谱法和顺序注射分析法(SIA)的可变光程水质多参数检测新方法。设计水质多参数检测系统,通过检测总磷(TP)、化学需氧量(COD)、氨氮(NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N)和六价铬(Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666])四种水质参数,验证了新方法的可行性。系统设计的核心是基于超声与微纳米气泡相结合的消解室以及具有可变光程功能的光谱扫描检测室,可达到快速消解和稳定检测的目的。同时系统基于国家水质检测标准,优化了水质多参数联合检测流程,并利用分光光度法和顺序注射分析技术对四种水质参数的含量进行连续光谱检测。首先,在常温常压下采用US-MNB辅助技术结合强氧化剂对TP进行消解,同时对检测室中NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行TP的测定。同理,消解COD的同时,对检测室中的Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行COD的测定。整个检测过程所用时间大幅降低,可在短时间内自动完成水质多参数的测定,显著地提高了检测的效率。以上述四种水质参数为测定对象,利用最小二乘法构建回归模型,拟合回归方程并计算相关系数,并绘制各参数的浓度-吸光度标准工作曲线。结果表明:TP标准工作曲线拟合系数≥0.984 5,且浓度与吸光度成正相关,重复性(RSD)为3.05%~3.62%,加标回收率为97.8%~103.6% COD标准工作曲线拟合系数≥0.998 7,且浓度与吸光度成负相关,重复性(RSD)为2.12%~2.74%,加标回收率为98.7%~104.7% NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N标准工作曲线拟合系数≥0.995 3,且浓度与吸光度成正相关,重复性(RSD)为3.41%~3.59%,加标回收率为99.2%~102.4% Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]标准工作曲线拟合系数≥0.993 8,且浓度与吸光度成正相关,重复性(RSD)为3.51%~3.92%,加标回收率为98.9%~109.3%。系统可准确测定水样中TP、 COD、 NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N和Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]的含量,且具有良好的稳定性与可靠性。基于超声-微纳米气泡辅助技术的可变光程水质多参数检测方法研究,对于拓宽光谱法在水质多参数快速检测领域的应用以及提升检测效率等方面的研究具有重要作用。 [/color][/font]
一项由澳大利亚墨尔本大学(University of Melbourne)William Ducker和张学华(Xuehua Zhang,音译)进行的最新研究,直接证实了纳米气泡(nanobubble)的存在。这篇名为“一种纳米尺度的气体状态”(A Nanoscale Gas State)的研究论文,发表在近期的《物理评论快报》(Physical Review Letters)上。长期以来,许多科学家怀疑在气体和液体的分界面上存在一种特殊的气体状态——纳米气泡,但一直没有直接的证据来证实这一推测。此外,许多理论证据甚至表明,这种气体状态并不存在。即使存在,这些纳米气泡也会在一秒钟内消失,不会有实际应用价值。因此,当澳大利亚墨尔本大学教授William Ducker开始对纳米气泡进行研究时,他想到的结果也只有这两个:直接证明纳米气泡不存在,要么存在但很不稳定。然而,结果却让人大吃一惊,以致于Ducker甚至要承认他的实验是“错误”的。纳米气泡不但存在,而且还比之前想象的稳定得多,可以持续数天。Ducker表示,实验证据如此确凿,他不得不改变之前的观点。Ducker和张学华是利用红外光谱技术,测定了分子的旋转运动状态,证实了其符合气体的运动规律。除此之外,研究小组还测定了纳米气泡的内部压力。Ducker表示,之前的理论认为纳米气泡内压很大,足以使其瞬间破裂消失。但是此次的研究表明,纳米气泡的内部压力并没有想象的那么大,大概与大气压相当,因此,气泡能够维持几天的时间。对于纳米气泡未来的应用,Ducker认为,在工业上,纳米气泡将节省利用管道抽水时的能量消耗。将同样的纳米气泡布满水管的内壁,将可以减少抽水时的摩擦,从而节省能量和成本。同时,纳米气泡可以被用于日常生活中。Ducker解释说,许多人造产品和自然资源是物质混合形成的,一些情况下我们希望这些物质保持混合,还有些情况我们需要分开它们。这时,我们就可以利用纳米气泡使油性物质和水融合稳定的时间更长。此外,纳米气泡还可以使从油砂中分离出油更加经济和有效率。Ducker表示,下一步将制造更多统一、密集、持久的纳米气泡覆层材料,从而能够找到一些更有价值的应用
[font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]
实验室有部氮气-空起发生器,但是考虑到纯度问题,只是采用了空气发生器,氮气出口是塞住的,没有接到气路上的。想问下专家,这样会不会有什么危险呢?因为不知道产生了的氮气它如何泻压呢?发现发生器无论开着或关着氮气的压力指示都回不到零的。另外,请问哪为有发生器的线路图或原理呢?发生器上的水箱昨天突然不停的有气泡涌出来,是什么原因呢?
据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。[img=图片]https://img1.17img.cn/17img/images/202401/uepic/35f3a9bc-4344-456c-bb7c-169186c68048.jpg[/img]光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大[color=#686868]领域的产业化应用,并取得了重要进展。[/color][img=图片]https://img1.17img.cn/17img/images/202401/uepic/a55665c3-16b9-45c4-ad33-6ace1d7108bf.jpg[/img]此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。[来源:致道资本][align=right][/align]
RT:求推荐一台看微纳米材料形貌的性价比高的光学显微镜。平时做一些微纳米材料,求各位老师推荐一款性价比高点的光学显微镜,目前预算1W多。
[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008441608_01_1633307_3.jpg[/img]图:(a)低倍扫描电子显维照片显示两个互相缠绕的、表明长有氧化锌纳米线阵列的纤维,其中一个镀有金。(b)高倍扫描电子显维照片显示两纤维界面处的纳米线对纳米线结构。(c)显示多根纤维组成的纤维纳米发电机的串/并连式连接来提高输出电压/电流。(图片来源:王中林实验室) 从2006年开始,王中林小组相继发明了纳米发电机、直流发电机。在2006年他首次提出了压电电子学(Piezotronics)的概念和新研究领域。由于氧化锌具有独特的半导体和压电性质,弯曲的氧化锌纳米线能在其拉伸的一面产生正电势,压缩的一面产生负电势。氧化锌半导体和金属电极之间的肖特基势垒则能控制电荷的积累与释放,从而实现机械能到电能的转化,并有效释放。 2007年初,基于压电电子学原理,王中林研究小组用超声波带动纳米线阵列运动,研制出能独立从外界吸取机械能、并将之转化为电能的纳米发电机模型。在超声波带动下,这种纳米发电机已能产生上百纳安的电流。但是,在实际环境中,机械能主要以低频震动形式存在,如空气的流动、引擎的震动等。要让纳米发电机能广泛应用于各方面,一个关键的问题就是要降低纳米发电机的响应频率,让纳米线阵列在几个赫兹的低频震动下也能将机械能转化为电能。 为了实现这一目标,王中林教授和王旭东博士及秦勇博士组成研究小组。利用溶液化学方法,他们将氧化锌纳米线沿径向均匀生长在纤维表面,然后用两根纤维模拟了将低频震动转化为电能的这一过程。为了能实现电极与氧化锌纳米线之间的肖特基接触,他们采用磁控溅射在一根纤维表面镀了一层金膜作为电极,而另一根表面是未经处理的氧化锌纳米线。当两根纤维在外力作用下发生相对运动时,表面镀有金膜的氧化锌纳米线像无数原子力显微镜探针一样,同时拨动另外一根纤维上的氧化锌纳米线;所有这些氧化锌纳米线同时被弯曲、积累电荷,然后再将电荷释放到镀金的纤维上,实现了机械能到电能的转换。 相对于之前的直流纳米发电机,新成果实现了如下突破:首先,通过让氧化锌纳米线在纤维之上生长,为实现柔软,可折叠的电源系统(如“发电衣”)等打下了基础;其次,基于纤维的纳米发电机能在低频震动下发电,这就使得步行、心跳等低频机械能的转化成为可能;再次,由于其合成方法简单,条件温和,这就大大扩展了基于氧化锌纳米线的纳米发电机的应用范围。根据目前的实验数据,他估计,如果能用这些纤维编织成布在极端优化的条件下,每平方米这样的布可能输出大约20-80毫瓦的电能。 王中林说,目前这种由两根纤维组成的纳米发电机的输出功率还很小,这主要是由于纤维的内阻较大以及纤维之间接触面积较小造成的。目前,他们正努力提高这种基于纤维的纳米发电机的输出能量。例如,通过在纤维上预先镀一层导电材料然后生长氧化锌纳米线,可以明显降低纳米发电机的内阻,进而可提高纤维基纳米发电机的输出电流;也可以通过增加纤维的数量来提高纳米发电机的输出能量。 文章的审稿人认为:“这是一项很有创意、具有突破性的研究……作者的思路是革命性的。”王中林认为,新成果将为纳米发电机在生物技术、纳米器件、个人携带式电子设备以及国防技术等领域的应用开拓更为广泛的空间。 “今天,纳米科技已经从早期对纳米材料结构和基本物理化学特性的研究,发展到利用纳米材料的优良特性有目的地制造纳米器件,各种各样的纳米器件被纷纷制造出来,如纳米传感器、纳米电动机甚至纳米机器人等。”王中林说,“但与此同时,为这些微型化、集成化的纳米器件提供能量的仍是传统电源,如电池。因此,迫切需要开发出纳米尺度的电源系统,为纳米器件的进一步小型化、集成化提供基本能源。” 目前,已经有BBC、NBC、PBS、《国家地理》等多家国际权威新闻媒体对这一重要的科学成果进行了报道。
【题名】:串联组合型微气泡发生系统的在线测试评价研究【期刊】:【年、卷、期、起止页码】:【全文链接】:https://www.cnki.com.cn/Article/CJFDTOTAL-BJSY201504005.htm
8月29日,中国国际纳米科学技术会议(ChinaNANO 2017)在北京召开,中国科学院院长白春礼院士为大会主席并代表会议组委会致开幕欢迎词。泰州石墨烯研究检测平台执行主任、全国纳米技术标准化技术委员会低维纳米结构与性能工作组(下简称“全国低维工作组”)、中国国际石墨烯资源产业联盟国际标准工作委员会(下简称“中烯盟国际标委会”)秘书长梁铮博士参加了ChinaNANO 2017标准及计量分会的专家交流和讨论。国际标准化组织纳米技术标委会(下简称“国际纳米标委会”)ISO/TC229主席Koltsov博士受邀作“全球纳米材料产业标准化进展”、韩国标准科学研究所纳米安全计量中心Nam Woong Song院长受邀作“纳米安全评价标准化进展”的主旨发言,中国食品药品检定研究院徐丽明主任等其他专家分别就纳米材料安全、检测、计量以及标准物质研制作专题报告。Koltsov主席介绍了全球纳米产业的近况及前景,对国际纳米标委会的标准化工作作了说明和总结,并指出国际纳米标委会将对全球整个纳米产业提供标准化支持,推动其健康有序发展。梁铮博士向Koltsov主席汇报了我国低维纳米技术领域标准化的最新进展。8月21日,在国家纳米科学中心、全国纳米技术标准化技术委员会的大力支持和指导下,全国低维工作组在江苏泰州正式成立,编号为SAC/TC279/WG9,南京大学长江学者、国家杰出青年基金获得者王欣然教授任组长,秘书处设在泰州石墨烯研究检测平台,该工作组将全面负责组织协调全国低维纳米技术领域标准化工作。当天,中烯盟国际标委会亦同时举行揭牌仪式并召开了第一次全体工作会议。梁铮博士向Koltsov主席进一步提到,以石墨烯为代表的低维纳米材料和相关纳米技术领域目前在中国已逐步从实验室研究阶段进入到产业化阶段,具有广泛和迫切的标准化需求,需要在前期国际国内纳米技术标准化工作的基础上,充分考虑石墨烯等低维纳米材料的特殊结构与性能,研究开发准确、有效、稳定的标准方法。Koltsov主席表示,国际纳米标委会将积极探讨与中国国家标准、联盟标准等各级标准化工作组织的合作机制,推动我国低维纳米技术领域各级标准的制定,为中国乃至国际纳米材料产业的健康发展提供有力支撑。测量方法的标准化、标准物质研制和计量技术的发展是确保纳米科学研究及产业化过程中各种技术指标一致性、准确性、可靠性的重要手段。此次ChinaNANO 2017标准及计量分会专门讨论了国际国内纳米技术标准化最新工作进展、发展路线图、研究热点,纳米测量不确定度评价、标准物质研制、纳米计量等领域所面临的技术挑战等,对我国石墨烯等新兴低维纳米材料的标准化具有重要的指导意义。[align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311359_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士参加ChinaNano2017国际会议[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士认真听取报告[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_02_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士与国际标准化组织纳米技术标委会ISO/TC229主席Koltsov博士亲切交谈[/align]
前两天去一个单位查看一个氢气发生器,问题是打开电源,输出压力为0.2Mpa左右,输出流量为0,7890A刚开始显示流量为40,后慢慢往下降,后关掉7890A,过一段时间发生器输出压力变低,流量显示为370------460ml/min,且一直在变,我同事给厂家联系过以后,说电解液浓度低,该换电解液了,重新配,加进去,输出压力为0.05mpa,流量为0,想着是哪里漏气了,打开机器外壳,看硅胶,颜色还是很新,老师说气相用的少,硅胶也没重新换过,因此也取消了换里边垫圈的念头,也不知道该从哪里检查,这捡漏多麻烦啊!后不经意见,看到电解池上怎么一层白色的东西,顺带傍边的线路上也有啊,这怎么回事,难道时候电解池泄气,细看下,确实电解池旁边有小气泡在排出,用扳手紧了下螺丝,还是这样,看来只有寄到厂家让他们修理了,不知道这个电解池很容易漏气吗?你们遇到过这种电解池漏气的情况吗?
早上起来反映气相点火点不着,FID有问题了。我说有鬼了,别的我不敢说。那台7900全部拆了都能点着火。后来一看,氢气都没有压力怎么可能点火,但是同志们说有流量啊,只是没有压力而已。我说你测测嘛。然后我们把氢气发生器的那个出口的接头拆了,然后用肥皂水一抹。没有气出来,那肯定是氢气发生器那个地方堵住了。于是开始了维修氢气发生器。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011633_424120_2661757_3.jpg这个就是开始的时候,流量200,但是表没有读读数。所以这个有问题。为了不必要的麻烦就把这个LOGO删除了。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011635_424122_2661757_3.jpg外面有一个罩子,直接把两边的螺丝用螺丝刀起开,然后就把这个罩子拿掉。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011637_424123_2661757_3.jpg拿掉以后的里面结构,之前也没有拆过这些东西,只能看看气路是怎么回事。这个过程可能有十分钟。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011638_424124_2661757_3.jpg右边的铁罐子是反应池。电解水的。打开以后会一直有气泡产生。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011639_424125_2661757_3.jpg光线不太好,手机也不太给力,只能这样子,等会有把这个干燥的硅胶管拿掉的照片会很清楚。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011640_424126_2661757_3.jpg这个是拿掉的图,这个设计很巧妙。氢气由铁管进过小孔进入硅胶管,由于有两个橡胶管密封,所以氢气只能由小孔往硅胶管的里面走,也不用跟硅胶管里面的小孔对其,只要这个橡皮圈密封好就行。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011644_424130_2661757_3.jpg干燥管底部图。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011643_424129_2661757_3.jpg干燥管上面图,里面填满硅胶,因为维修,先用一个袋子把所有的硅胶倒出来装起来。http://ng1.17img.cn/bbsfiles/images/2013/02/201302011644_424131_2661757_3.jpg最后用一个铁丝把那个长的导管通了一下就好了。后来拿棉花全部放在上面就不会再堵了。多以以后碰到仪器,别已开口就是国产仪器不好,出问题太多。有时候这些外围的设备也会导致出问题。
氢气发生器的维修案例1 气水分离器带来的泄漏 梗概 介绍了气水分离器的构造,和气水分离器不良造成泄漏的原因。 某次使用GC,开启氢气发生器后流量显示200ml/min,但是输出压力压力很长时间为零,不能上升。怀疑氢气发生器内部存在泄漏,同时仪器后部的开关电源部分也有些发热。应该是电解池负载过重造成的。综合故障现象,可以判定氢气发生器严重泄漏无疑。 于是打开氢气发生器,用肥皂液检查了所有管路接头,未见管路连接有明显泄漏。 仪器照片如下所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307172001_451968_1604036_3.jpg 试着画了一下该氢气发生器的结构图,剖析故障位置和原因。 图中红色实线是氢气流动的通路,蓝色虚线是纯水流动的通路。http://ng1.17img.cn/bbsfiles/images/2013/07/201307172001_451969_1604036_3.jpg 后来发现,气水分离器的出口管不断有气泡逸出。顺着流路仔细检查,这些气泡应该是氢气,这个现象不太正常。如图:http://ng1.17img.cn/bbsfiles/images/2013/07/201307172001_451970_1604036_3.jpg 于是怀疑应该是气水分离器存在问题。 这台发生器是采用电解纯水制氢原理的。电解池输出的氢气中含有较多纯水,在输送给后端的稳压部件之前,必须要除去水分。 拆下气水分离器研究了一下,其原理还是比较简单的。主要运行部件是一个浮子。仪器正常工作的时候,气水分离器的状态如下图所示: http://ng1.17img.cn/bbsfiles/images/2013/07/201307172001_451971_1604036_3.jpg 氢气由分离器的右下方通入,氢气中的大量水在分离器中沉积,当水位升高到一定程度,浮子受浮力大于其受重力,浮子向上运动,水就从分离器正下方流出,返回到水箱中。水流走后,浮子失去浮力,再次下降,堵住水出口。 这样分离器中的液面就基本稳定,上端出口的氢气相对含水量就比较低。 拆开气水分离器的时候,发现浮子被卡住,可能是长时间未用,分离器内生菌,致使浮子不能灵活工作,氢气从分离器下端逸出,泄漏到水箱中去了。如下图所示: http://ng1.17img.cn/bbsfiles/images/2013/07/201307172001_451972_1604036_3.jpg 清洗干净气水分离器,将仪器恢复原状,再次开机测试。仪器正常了。 小结:电解纯水的氢气发生器,由于纯水的容易生菌,看来要加强日常维护。
我最近用氢化物法测样品中Hg的含量时,当样样品溶液在氢化物发生器中混合后导入气液分离器时,产生了大量气泡,如同泡沫一般,且不易破碎。严重时泡沫会进入塑料导气管内,甚至冲入石英管中,从而导致测量很不准确,甚至实验失败。还有就是背景吸收很大。请问各位dx,这是什么原因,怎样才能消除泡沫的干扰?谢谢!!!
我最近用氢化物法测样品中Hg的含量时,当样样品溶液在氢化物发生器中混合后导入气液分离器时,产生了大量气泡,如同泡沫一般,且不易破碎。严重时泡沫会进入塑料导气管内,甚至冲入石英管中,从而导致测量很不准确,甚至实验失败。还有就是背景吸收很大。请问各位dx,这是什么原因,怎样才能消除泡沫的干扰?谢谢!!!
新人求助!氢化物发生器的试样吸入管道的反吹气严重,一直到进样结束的18秒还在不断冒气泡,而硼氢化钾管道反吹气很微弱,另外,检测出的不同浓度的砷标准溶液,吸光度基本持平,这是怎么一回事?
给大家推荐一本书,北京大学张树霖老师编著的《拉曼光谱学与低维纳米半导体》。书中前半部分主要介绍拉曼仪器,拉曼技术和拉曼相关的基础知识,后半部分介绍拉曼在纳米材料中的应用和进展。由科学出版社在2008年出版,有兴趣的同仁可以购买,相关的技术问题可以拿来讨论。作者简介:张树霖,教授/博士生导师,中国物理学会光散射专业委员会国际顾问组成员;国际拉曼光谱学大会国际执委会主席(2002-2004)、终身委员。2004年,获国家自然科学二等奖:“若干低维材料的拉曼光谱学研究”(第一作者)。1986年,获国家教委颁发的教学仪器研制一等奖:“RBD—Ⅱ型激光拉曼光谱仪”(研制主持人)。http://www.waterlike.com.tw/image/book/O58C087001.jpg
会议时间:2017年8月20日-21日会议地点:泰州天德湖宾馆主办单位:国家纳米科学中心、江苏省质量技术监督局承办单位:泰州市质量技术监督局、泰州石墨烯研究检测平台(全国纳米技术标准化技术委员会低维纳米结构与性能工作组秘书处)协办单位:中国国际石墨烯资源产业联[color=windowtext]盟、南京大学、东南大学、上海交通大学、复旦大学、[/color]南京邮电大学、西北工业大学、中国科学院上海技术物理研究所、内蒙古石墨烯材料研究院赞助单位:岛津企业管理(中国)有限公司、低维材料在线赞助联系人:袁文军(手机13761090949,邮箱[email=sponsor@graphene-center.org][color=black]sponsor@graphene-center.org[/color][/email])[align=center][b]赞助条款细则[/b][/align]近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生。这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,对该领域相关产业和技术的发展具有有力的支撑作用,开展标准化工作已成为迫切需求。经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组正式成立,编号为SAC/TC279/WG9,负责组织协调全国低维纳米技术领域标准化工作。经研究,定于2017年8月20日~21日在江苏省泰州市召开全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议,暨国家标准编制启动会。同时,为了加速国家标准、团体标准立项进度,推动我们主导相关国际标准,同期举办中国国际石墨烯资源产业联盟国际标准工作委员会第一次全体大会。本次会议预计参会人数近200人,是低维纳米技术领域相关企业、仪器设备厂商向中国和国际低维纳米行业展示自己产品并积极参与国家标准编制的一个很好机会,我们诚挚地邀请贵单位赞助这一盛会并展示宣传,共同推动低维纳米技术领域的蓬勃发展。大会的基本赞助条款如下:[b]A类赞助(5万元)[/b]承担会议期间举行的酒会、晚宴部分费用。(1) 由赞助企业代表在会议欢迎酒会或晚宴上代表本企业致辞;(2) 成为全国纳米技术标准化技术委员会低维纳米结构与性能工作组的长期战略合作单位,优先推荐相关专家成为观察员;(3) 长期优先参与标准的编制讨论;(4) 在会议手册上印制公司LOGO或显示公司名称;(5) 在会议各轮通知、日程及网页的突出位置显示公司的LOGO;(6) 在会场展区提供大约 4 平方米的展位,在展示区内提供2个宣传易拉保位置;(7) 免费参加会议(含会务费、资料费、餐费);(8) 会议资料袋中放置赞助单位的宣传资料。[b]B类赞助(2万元)[/b](1) 有权参与本次标准的编制讨论;(2) 在会议手册上印制公司LOGO或显示公司名称;(3) 在会议各轮通知、日程及网页的突出位置显示公司的LOGO;(4) 在会场展区提供大约3平方米的展位,在展示区内提供1个宣传易拉保位置;(5) 免费参加会议(含会务费、资料费、餐费);(6) 会议资料袋中放置赞助单位的宣传资料。更多合作,会议支持,会议展示,欢迎来电洽谈。如果赞助企业有其它特殊要求,请提出具体设想。我们将竭诚为本次会议的赞助商提供全方位细致周到的宣传与服务。联系人:袁文军(手机13761090949)E-mail:[email=sponsor@graphene-center.org][color=black]sponsor@graphene-center.org[/color][/email]会议网站:[url=http://www.grapheneiso.com/][color=black]http://www.grapheneiso.com/[/color][/url][align=right] 全国纳米技术标准化技术委员会[/align][align=right]低维纳米结构与性能工作组[/align]
各位高手,大家好: 小弟现在有一难题相求: ㈠Cu2+离子在普通的电极表面发生的电化学反应是否有别于在纳米孔隙中的电化学反应?是否后者的可逆性会更好? ㈡Cu2+离子在多孔电极的纳米孔隙内会发生什么反应? ㈢是否在正负极都会发生? 请高手发表自己的观点。谢谢! [em25] liq207
[size=29px]空气发生器维修记[/size]4月份的市例行检测时,13日晚上GC7890B[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]FPD检测器因气体参数比故障自动关机的情况,现将仪器发生故障排查及一波三折的维修过程分享给大家,以供出现类似情况用以参考。故障原因:GC7890B[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]FPD检测器自动关机,故障原因:气体参数比故障。空气发生器故障排查情况:空气发生器气压回零,不产生空气,重新关开机,压力表指针不变,还是没有气压产生。①空气发生器各个接口试漏,没有发现漏气情况②卸下与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的气路接口,气路端堵上死堵,打开空气发生器开关,空气压力表指针不动,不产生空气,③与空气发生器厂家联系,认定是空气发生器损坏,[font=calibri]卸下空气发生器,打包,返回厂家维修。[/font]更换上GC450上的 空气发生器,GC7890B开机正常,仪器检测工作正常进行。4月14日早上上班后,GC7890B FPD检测器火焰再次灭火,显示故障原因:气体参数比故障,经检查,空气发生器指针再次归零,不工作。因连续两个空气发生器发生同样问题,怀疑并不是空气发生器的原因。而是GC7890B[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]发生了故障。GC7890B [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]故障排查:与安捷伦工程师联系,说是有可能是EPC的问题。排查EPC问题步骤:将氮气瓶接在空气管路上,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]用键盘键开空气流量,数值稳定在60不动,说明EPC没有问题。重新安装空气发生器 一周后,空气发生器维修归来,重新连接安装空气发生器与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气路。拆箱、安装发现空气发生器厂家新安装的气体输出端与我单位原原气管接口不匹配,我单位气管粗,不能插入空气发生器气体输入端螺母。截去气管前段原金属塞子端,用矬子开始打磨气管,经过一个小时的细心打磨,气管能顺利插入空气发生器气体输出端口。安装,试漏,一切正常。开空气发生器,开[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],开机正常。五、空气发生器的维护保养1、每周放水一次,放水时旋转前面面板上的放水阀即可。2、检查空气发生器的变色硅胶、分子筛,检查和维护步骤如下;过滤器对空气起到净化、吸附、除湿的作用,我们每周检查硅胶是否变色,若硅胶三分之二变为粉红色,就需要更换。每次更换变色硅胶后,务必将过滤器上盖拧紧,保证密封良好。更换三次硅胶换一次分子筛干燥剂。3、变色硅胶烘干方法:用烘箱120℃烘2h左右。分子筛干燥剂烘干方法:用陶瓷碗盛装,马弗炉里500℃,烘5小时。4、更换过滤材料时,注意过滤器盖即底座部分是否拧紧。5、使用氢气发生器的过程中,注意仪器外部连接不要漏气,以确保气体的流量和压力稳定。 注意:请不要在有压力的情况下拧开净化器盖,以免发生危险。
[align=center]我与LY300高纯氢气发生器的故事[/align][align=left] ——记一次试漏的阅历 我们中心的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]1室“人机分离”成功改造结束后,马上开始了仪器设备的安装调试工作,为了安装调试工作开展的更顺利、更有条理,我们6个人进行了简单分工,我和HW科长负责气路的试漏工作。HW科长多年来一直在检测一线工作,是位资深检测工程师,他发现问题、解决问题的能力特别强,跟着他工作能在不知不觉中学习很多东西。 我们这次实验室改造对载气气路进行了全面的改造,它的试漏工作是重中之重。我作为助手调配好了适量的肥皂水,HW科长首先打开[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]GB7890的氮气瓶开关,让气路处于畅通的状态,边仔细检查边给我讲解:“[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的气路系统是一个载气或辅助气体连续流动的密闭系统,是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的重要组成部分,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中的很多故障都是由气路部分漏气造成,气路出现漏气的地方绝大部分是气路接头处,造成设备接头处漏气的主要原因有5种, 1、接头密合处有污[/align][align=left] 2、接头垫片不合适 3、没有拧紧 4、气路阀件内部松动、脱落或有污物,也常导致漏气5、气路中间漏气的问题较少,偶尔也有管路折断漏气。 检查漏气部位时,要分段、逐步查漏”。 HW科长对氮气瓶及氮气线路的各个接口进行了试漏检查,都没有发现漏气现象,我心里暗暗庆幸,今天工作挺顺,能早点结束 了。 [img=,554,522]https://ng1.17img.cn/bbsfiles/images/2018/08/201808101801059699_7292_3389022_3.png!w554x522.jpg[/img] 检查完氮气气路,我们开始对空气、氢气发生器进行试漏检查,把肥皂水涂到空气发生器的后端接口时,发现肥皂水有轻微的偏移,过了一会一个小小的气泡慢慢的冒了出来,“吹泡泡啦,吹泡泡啦”我像发现了新大陆一样激动,涂上肥皂水再试又冒出一个小气泡,拿来扳手拧紧半圈后,没有再冒出气泡,原来是安装螺丝时没有拧紧造成的。 [img=,522,451]https://ng1.17img.cn/bbsfiles/images/2018/08/201808101754521135_6789_3389022_3.png!w522x451.jpg[/img] 好一阵折腾,终于检查到最后一台仪器——LY300高纯氢气发生器,就在我伸伸懒腰的功夫,氢气发生器的后端接口一个大大的泡泡出现在我们面前,按照刚才的方法拧紧了螺丝,再试还是冒泡泡,且泡泡越来越大,HW重新卸下螺丝,仔细检查了螺丝螺帽接口没有发现破损部位,接下来检查螺丝帽中尼帽是否有问题,取出尼帽,捏了捏,很松,弹性很差,应该是尼帽已经失去了防松和锁紧的功能,喊来张工,搬出百宝箱,找到几个规格比较合适的尼帽。[/align][align=left] [img=,554,628]https://ng1.17img.cn/bbsfiles/images/2018/08/201808101755399115_6329_3389022_3.png!w554x628.jpg[/img] 因考虑新配的尼帽和原尼帽在形状上有一定差别,怕新的尼帽因为个头小,防松和锁紧的功能不够,HW在原尼帽外面又并排加上了两个小尼帽,因厚度原因螺丝怎么也拧不上,取下一个小尼帽,螺丝还是拧不上,就在我怀疑小尼帽是否能用的时候,HW科长取下了原尼帽,换上了两个小尼帽,螺丝顺利拧紧,HW科长边拧螺丝便给我讲解:像空气、氢气发生器发生漏气,会造成FPD、FID点不着火,恒温操作时基线出现无规则波动等。[/align][align=left] [img=,554,570]https://ng1.17img.cn/bbsfiles/images/2018/08/201808101808116877_4450_3389022_3.png!w554x570.jpg[/img][/align][align=left] 趁着HW放工具的间隙,我用肥皂水涂抹了接口一圈,肥皂水无反应,大功告成。以防万一,HW科长又重试了两次,没有泡泡产生,试漏工作圆满结束。 通过今天的试漏工作,我深深的体会到实验室操作无小事,严谨认真是前提。[/align]
空气发生器中主要部件为压缩机,压缩机中的润滑油会随水排出机外,为什么有些叫无油空气发生器也出油啊?那“无油”是什么意思啊?
http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。
——国家863计划纳米生物技术主题专家张阳德教授访谈录编者按:岁末年初,我国纳米生物领域出现了几件大事:2007年12月31日,中国医药生物技术协会纳米生物技术分会在深圳宣告成立。工程院院士何继善、科学院院士姚开泰等全国近百名专家参加。2008年2月,中国纳米生物技术分会在北京举行第一届委员大会,卫生部纳米生物技术重点实验室主任、卫生部肝胆肠外科研究中心主任、中南大学生物医学工程研究院院长张阳德教授,选举为首届主任委员。大会选举了中国工程院陈志南院士、中国科学院曾益新、魏于全、姚开泰院士、江雷教授5位专家为副主任委员。郭应禄院士等35名业内专家为常务委员。这个汇集我国纳米生物领域的医学、化学、微电子、精密机械加工的专家组成的强大团队,将整合科技界、产业界纳米生物技术的资源,开展国家“863计划”纳米生物技术研究的攻关和实施。为此,我们邀请张阳德教授阐述了我国开发纳米生物技术尤其是在医学应用的战略和关键问题。先发制人,后发制于人记者:科学的交叉与融合,产生了一些新兴的领域。其中纳米生物技术与医用材料,就属于这样的领域。作为国家863计划纳米生物技术的主题专家,你如何看待当今纳米生物技术的发展现状?张阳德:即使你比刘翔跑得还要快,你也得与对手站在同一条起跑线上。我们在现代科技与产业的一些方面,落后于西方发达国家,这并不是我们跑得不够快,而是因为没能站在同一个起点。纳米生物技术是纳米科技与当代生物医学多学科结合的产物,是当代生物技术的前沿和热点。尤其在医药卫生领域有着广泛的应用和巨大的产业化前景。当今国际,由纳米药物载体,纳米生物传感器,纳米生物临床检测诊疗手段引发的新技术革命方兴未艾。据预测,到2010年,纳米生物技术对美国GDP的贡献将达到万亿美元,在日本的市场规模也将达到30万亿日元。在中国这样的人口大国,市场前景更加不可限量。纳米生物技术在医学临床应用,将成为我国重要的战略高技术领域,直接影响着国民经济和社会发展,关系到国家安全和人民健康。记者:目前这一领域中各国的竞争趋势如何?张阳德:先发制人,后发制于人。抢占战略制高点,向来是发达国家发展战略高技术的一个原则。从2000年开始的美国国家纳米技术行动计划,将纳米生物医疗列为突破重点。美国国家卫生研究院(NIH)2001年专门组织了“纳米科技与生物医学”的研讨会,提出了“纳米科技将导致新的生物学和生物工程”的结论。美国NIH在2002年度科研项目计划中,超过50%%的经费是针对生物反恐怖的,其中多数项目的完成希望借助纳米科学技术。美国国家癌症研究所(NIC)的计划是希望借助纳米科学技术,主要包括纳米颗粒材料技术以及纳米传感器技术,形成一些新的、针对恶性肿瘤的早期诊断与治疗技术。欧盟2002年正式推出了第6框架计划(2002~2006年),旨在将科学发展的成果转化为产业界的实际竞争优势。纳米生物技术的研究重点包括先进的药物传递方式、具有生物实体的纳米电子学、生物实体的界面、生物实体的电子探测、生物分子或复合物的处理操纵和探测。
气体发生器顾名思义就是发生气体的仪器,在实验室中。常用的气体很多,有些是直接用于实验、有些是用于实验装置,有些气体是可以用装置储存运输的,而有一些只能在现场发生。那么实验装置的气体发生器常见的有几类:氢气发生器、氮气发生器、空气发生器、氧气发生器和臭氧发生器你实验室里的实验装置用到的有哪类气体发生器呢??
目前公司一台帕纳科X荧光CPU、高压发生器发生故障,急需寻找专业人员维护。
用的是北京东方精华苑科技有限公司的SGNK-500型氮、空气发生器,输出流量不断的上升,上升到700以后突然在左侧类似氢气发生器上的水箱上不停的冒泡,出来的有点像是黄色的油状的液体。不知道是什么原因?希望能得到各位的帮忙。
[font=宋体][size=16px][/size][/font][align=center][b][font=宋体]氢气发生器故障维修及维护保养经验浅谈[/font][/b][/align][font=宋体][size=16px][/size][/font][align=center][font=宋体]李久龙[/font][url=https://bbs.instrument.com.cn/boardlist/bbs/post/?forumid=441&FTTID=105#_ftn1][font='Calibri',sans-serif][1][/font][/url][/align][font=宋体][size=16px][/size][/font][align=center][font=宋体][color=black](宁波中金石化有限公司)[/color][/font][/align][font=宋体][size=16px][/size][/font][align=center][font=Calibri][size=16px] [/size][/font][/align][font=宋体][size=16px][/size][/font][font=宋体][size=16px]氢气发生器,一种实验室常见的辅助生产设备。使用起来即安全又方便;目前市面上生产的厂家有很多,今天我要介绍的是一中国产大容量氢气发生器的一次故障维修及日常维护保养经验。[/size][/font][font=宋体][size=16px][/size][/font][size=16px][font=宋体]我们化验室使用的氢气发生器品牌是:“北京新创宇”,容量是[/font][font=Calibri]2000ml/min[/font][font=宋体],产氢压力最大[/font][font=Calibri]0.5MPa[/font][font=宋体]。[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px]一、故障现象:[/size][/font][font=宋体][size=16px][/size][/font][size=16px][font=宋体]在使用中发现氢气发生的产气量达到了满量程:[/font][font=Calibri]2000ml/min[/font][font=宋体],即氢气发生器一直在最大功率下电解氢气。由于平时未发现此种情况,所以不是十分关注发生器的产气量。(备注:化验室有[/font][font=Calibri]10[/font][font=宋体]台氢气发生器,平时每天发生器的产气量最大也就在[/font][font=Calibri]500ml/min[/font][font=宋体],基本没有太大变化,所以平时巡检没有关注发生器的产气量)。直到氢气发生器的液位低液位报警后,再次加满水后才发现仪器的产氢量一直为满量程电解。[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px]二、故障原因查找:[/size][/font][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]2.1[/font][font=宋体]、故障发生后,观察氢气发生器的电解池上部水箱,发现有沸腾现象,可说明不是氢气发生器流量显示的问题,而是实际上产生了大量的氢导致氢气发生器一直在满载运行,扇热不完全而导致的电解液沸腾。[/font][/size][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]2.2[/font][font=宋体]、经观察氢气发生器的产气压力正常,一直可以保持在[/font][font=Calibri]0.5MPa[/font][font=宋体],关于仪器输出后,产氢量一直保持在[/font][font=Calibri]2000ml/min[/font][font=宋体],顾可以排除为外输管线上漏气的情况;[/font][/size][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]2.3[/font][font=宋体]、拆开氢气发生的两侧盖板,对氢气发生器的反应池到油水分离器、再到干燥管等全部气路接口进行试漏,发现均为漏气现象。[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px][img=,384,236]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181709254198_8676_3989257_3.png[/img][/size][/font][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]2.4[/font][font=宋体]、后来在咨询厂家工程师后,在氢气发生器[/font][font=Calibri]0.5MPa[/font][font=宋体]的压力下,关闭氢气发生电源后,在四个电解池中的两个电解池氧气排放管处仍有气泡冒出,判断为电解池内部发生泄漏,从而使电解池一直在工作,产生的氢气从氧气的排放口排放出去了。[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px]备注:里面有一层膜,正常的情况下只能透过氢气,不透过氧气,达到分离的效果。在关闭氢气发生电源后,在原有管道内的氢气通过膜反向回到电解池内,通过氧气排放口排出。[/size][/font][font=宋体][size=16px][/size][/font][font=宋体][size=16px]三、故障排除:[/size][/font][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]3.1[/font][font=宋体]、找到了故障的原因后,更换了二个新的电解池后,仪器正常产氢;[/font][/size][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]3.2[/font][font=宋体]、更换电解池时要注意,将氢气发生器内的电解液排放干净,将仪器内部擦拭干净,避免电解液残留在仪器底部,否则在安装好新的电解池通电后,会导致电解池损坏。[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px]四、氢气发生器的日常维护:[/size][/font][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]4.1[/font][font=宋体]、日常根据氢气发生器的使用量,定期添加水;[/font][/size][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]4.2[/font][font=宋体]、发现干燥器内的干燥剂变色后,及时更换及活化;[/font][/size][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]4.3[/font][font=宋体]、更换干燥器内注意检查内部干燥剂与接口处的密闭情况,避免产生泄露;[/font][/size][font=宋体][size=16px][/size][/font][size=16px][font=Calibri]4.4[/font][font=宋体]、每两年更换一次电解池内的碱液;[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px][/size][/font][hr/][font=宋体][size=16px][/size][/font][url=https://bbs.instrument.com.cn/boardlist/bbs/post/?forumid=441&FTTID=105#_ftnref1][font='Times New Roman',serif][1][/font][/url][size=12px][font=Times New Roman] [/font][font=宋体]作者简介:李久龙,男,工程师,[color=black]现在宁波中金石化有限公司化验室[/color]工作。[/font][/size][font=宋体][size=16px][/size][/font][font=宋体][size=16px][/size][/font][font=宋体][size=16px][/size][/font]
[font=宋体] 氢气发生器、空气发生器的维护保养[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]开机前,我们要对氢气发生器、空气发生器进行维护保养,现将维护保养的方法分享给大家。[/font][font='Times New Roman'] 一、[/font][font=宋体]LY300[font=宋体]高纯[/font][/font][font=宋体]氢气发生器的维护保养[/font][font=宋体] 1[font=宋体]、 [/font][/font][font='Times New Roman']LY-30[/font][font=宋体]0[font=宋体]型高纯氢气发生器的工作原理是以氢氧化钾溶液作电解液,通过电解而获得氢气,该仪器必须在有电解液的情况下才能正常工作,否则会严重损坏仪器。 新配置的电解液,当水位降低时,直接添加二次蒸馏水或去离子水就可以了,注意不要超过上水位线。[/font][/font][font=宋体] 2[font=宋体]、过滤器对氢气起到净化、吸附、除湿的作用,我们每周检查硅胶是否变色,若硅胶三分之二变为粉红色,就需要更换。每次更换变色硅胶后,务必将过滤器上盖拧紧,保证密封良好。更换三次硅胶换一次分子筛干燥剂。[/font][/font][font=宋体] 3[font=宋体]、变色硅胶烘干方法:用烘箱[/font][font=Times New Roman]120[/font][/font][font=宋体]℃[/font][font=宋体][font=宋体]烘[/font]2h[font=宋体]左右。[/font][/font][font=宋体][font=宋体] 分子筛干燥剂烘干方法:用陶瓷碗盛装,马弗炉里[/font]500[/font][font=宋体]℃[/font][font=宋体][font=宋体],烘[/font]5[font=宋体]小时。[/font][/font][font=宋体] 4[font=宋体]、更换过滤材料时,注意过滤器盖即底座部分是否拧紧。[/font][/font][font=宋体] 5[font=宋体]、使用氢气发生器的过程中,注意仪器外部连接不要漏气,以确保气体的流量和压力稳定。[/font][/font][font=宋体] 需注意事项:[/font][font=宋体] 烘干或更换新的硅胶和分子筛后,一定要先提纯氢气纯度。[/font][font=宋体][font=宋体] 提纯氢气纯度方法:打开氢气发生器开关,当气压升到[/font]0.4MPA[font=宋体]时,关闭氢气发生器开关,拧松气路螺丝至气压降为零后,拧紧气路螺丝。再次打开氢气发生器开关,当气压升到[/font][font=Times New Roman]0.4MPA[/font][font=宋体]时,再次排气降压,循环三次,排除硅胶和分子筛净化器里的残留空气。[/font][/font][font=宋体] 提高氢气纯度,可以防止因氢气纯度低而造成[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]开机点火失败。[/font][font='Times New Roman'] 二、[/font][font=宋体]空气发生器的维护保养[/font][font='Times New Roman'] 1、[/font][font=宋体]每周放水一次,放水时旋转前面面板上的放水阀即可。[/font][font='Times New Roman'] 2、[/font][font=宋体]检查空气发生器的变色硅胶、分子筛,检查和维护步骤同[/font][font=宋体]氢气发生器一样。[/font][font=宋体] [font=宋体]注意:请不要在有压力的情况下拧开净化器盖,以免发生危险。 [/font][/font]
各位老师有用原子吸收氢化物发生器测砷的吗?本人初次做这方面,有很多不明白的,请教下。1:标液的基体的10%HCL,样品是硝酸和硫酸消解的,有影响吗?2:配标液时加了硫脲和抗坏血酸,样品需要吗?3:可以用高压消解罐消解吗?4:电热板消解的温度要控制到多少?5:放置过夜和消解的过程中,是不是需要盖一下6:样品消解后一直有很多气泡的感觉,请问是什么情况,影响测试吗?谢谢各位大神不吝赐教!
基于动态光散射原理的纳米粒度仪的研制任中京, 陈栋章 (济南微纳颗粒技术有限公司, 济南)摘要:介绍了基于动态光散射原理的纳米粒度仪的工作原理和设计, 重点讲述了我公司自研制的CR128数字相关器的设计原理与性能特点, 以及利用该器件成功研制出的winner801光子相关纳米粒度仪的特性。关键词.. 纳米粒度仪;动态光散射(DLS);光子相关谱(PCS);数字相关器纳米颗粒的尺度一般在1-100nm之间, 是介于原子、分子和固体体相之间的物质状态。由于纳米颗粒具有尺寸小、比表面积大和量子尺寸效应, 使它具有不同于常规固体的新特性。在纳米态下, 颗粒尺寸更是对其性质有着强烈的影响, 纳米材料的粒度大小是衡量纳米材料最重要的参数之一。而常规的基于静态光散射原理的激光粒度仪的测量下限己接近极限, 但仍旧不能对纳米颗粒的粒度测试得出理想的结果甚至无能为力。光子相关光谱(Photon Correlation Spectroscopy,简称PCS)法已被证明是一种适于测量纳米及亚微米颗粒粒度的有效方法。PCS技术也成为动态光散射(Dynamic Light Scattering, 简称DLS) 技术, 主要是研究散射光在某一固定空间位置的涨落现象。其颗粒粒度测量原理建立在颗粒的布朗运动基础之上。由于颗粒的布朗运动, 一定角度下的散射光强将相对于某一平均值随机涨落。PCS技术就是通过这种涨落变化的快慢间接地得到相关颗粒粒度的信息。1 动态光散射基本原理基于动态光散射原理的颗粒粒度测试基本原理如图1.1所示。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441893_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441894_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441895_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441897_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441898_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281054_441899_388_3.jpg最后再对四路基线求其平均值用于数据分析, 以免突变的光强引起光强自相关函数发生畸变。在如上的算法的基础上, 我们所研制的C R 12 8 数字相关器采用F PG A 技术, 以硬件方式实现。如图2 .1所示, 主要由取样时间发生器、取样时间、光子计数器、12 8 相关运算模块、基线运算模块、相关数据存储器、数据输出及控制电路组成。其工作原理为:选取适当的取样时间, 并在该时间段内将输入的光子数连续计数, 并将计数结果进行128 路自相关运算及基线