当前位置: 仪器信息网 > 行业主题 > >

远距离红外热像仪

仪器信息网远距离红外热像仪专题为您提供2024年最新远距离红外热像仪价格报价、厂家品牌的相关信息, 包括远距离红外热像仪参数、型号等,不管是国产,还是进口品牌的远距离红外热像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合远距离红外热像仪相关的耗材配件、试剂标物,还有远距离红外热像仪相关的最新资讯、资料,以及远距离红外热像仪相关的解决方案。

远距离红外热像仪相关的论坛

  • 进口红外热像仪

    进口红外热像仪概述  红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。热像仪品牌集中在了为数不多的几大进口红外热像仪厂商。但是,从品牌实力、产品研发、应用推广和售后服务来讲,美国福禄克仍旧是红外热像仪的公司中的毫无疑问的领先者。  下面我们看看进口红外热像仪如何选型吧~~  1) 如何选择合适的分辨率?  您并不总是需要更高红外分辨率的热像仪。根据您的检测需求,综合图像质量、精度、操作和价格选择才是关键。一般来说,目前市面上主流像素的热像仪已可以满足绝大多数的检测需求。  2) 如何选择合适的热灵敏度?  对于一般日常维护工作,≤100mK(0.1 摄氏度)已适用。对于远距离监测和科研应用,建议使用更高热灵敏度的便携式红外热像仪。对于建筑诊断,Fluke 建筑专用热像仪(TiR系列)具有比同款通用型号更好的热灵敏度,最高可达≤40mK(0.04 摄氏度),更易识别建筑缺陷引起的非常细微的温度变化。  3) 热像仪的精度范围是多少?  红外热像仪依照国家标准,其精度为读数的±2% 或±2℃,取大值。如果检测中需要更高的精度,可以将该红外热像仪送到省级计量单位,出具校准证书,在校准证书中有准确温度和热像仪检测温度的对照表,从表中可以对热像仪的检测准确性进行进一步的修正。  4) 热像仪有哪些红外镜头可以选择?各自应用于哪些领域?我一定需要购买吗?  一般有标准、广角、长焦三种红外镜头。长焦镜头用于远距离拍摄;广角镜头用于更大的取景范围拍摄,也可以被用来在微距(10cm 内)拍摄检测小物体温度。Fluke Ti55FT、Ti50FT 可通过更换镜头来安装选配镜头; 锐智系列(Ti400/300/200)和睿鉴系列(Ti32/29/27)可通过在标准镜头上加装广角或长焦镜头,来满足远距离或者近物测量的需要。对于大部分日常应用,Fluke 热像仪的标准镜头已经足够。  进口红外热像仪比国产的好吗?  进口红外热像仪Fluke三大核心优势:  一、 图像卓越  独有的 IR-Fusion® 红外-可见光点对点融合技术,完美展示画面细节。  AutoBlend™ 优组合模式,实现 0%-100% 红外融合度轻松调节。  集成了领先的热灵敏度和空间分辨率,呈现业内最清晰的图像。  二、 坚固耐用  设计可承受2 米跌落  IP54 防护等级  冠名福禄克之前,需经过8项耐损试验  a、对包装产品:8 个角、6 个面、 12 个边跌落试验  b、对未包装产品:2 米跌落试验,每一面进行6 次  c、3 个垂直轴方向进行30 分钟的振动试验  d、电磁场和射频辐射试验  e、以10 升/ 分钟、100 kN/m2 压力进行防水试验  f、-10℃至50℃工作环境下测试  g、湿度95% @ 40℃工作环境下测试  h、模拟海拔12,000 米工作环境下测试  三、易于操作  符合人体工程学设计:  拇指按压导航,界面简单直观  可拆卸手带,左右手随意切换  精密的重心平衡设计,减少长时间操作疲劳  单手操作:从开机、对焦、拍摄、到查看图片,都可实现单手操作。  Fluke凭借其创新、卓越的技术和人性化的设计,已成为备受全球工程师认可的行业标杆,两米防摔,免校准互换镜头和卓越的人体工程学设计都是福禄克领导的热成像技术变革。

  • 热像仪的使用及技巧

    红外热像仪的使用技巧  热像仪是一种检测仪器,应用广泛在建筑领域、检查空鼓、缺陷、瓷砖脱落、受潮、热桥等领域中都有一定应用。热像仪在使用时是有一些技巧是需要用户了解的,下面小编就来为大家具体介绍一下热像仪的使用技巧吧。  1)调整焦距  您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围, Distance距离)  2)选择正确的测温范围  您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到最佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。  3)了解最大的测量距离  当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。 如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到最精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。  4)仅仅要求生成清晰红外热图像,还是同时要求精确测温  这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。  5)工作背景单一  例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。  6)保证测量过程中仪器平稳  在使用低帧频的红外热像仪拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到最好的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。  红外热像仪的优点  红外热像仪,能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用。下面小编就红外热像仪的优点给大家介绍一下,以便大家进一步认识红外热像仪:  高精确度温测:精度高的红外线热成像仪还能分辨出细微的温度差别,并可以将设备的热图像实时显示到屏幕上,不仅为热图像数据库的建立提供了技术支持,也实现了图像采集、储存和分析的一体化。之所以比红外线测温仪贵那么多,但也算是值了。  易于操作:红外线热成像仅及其附属设备大多属于非接触式的远距离检测设备,能够有效保证操作者的人身安全。作为一种相对先进的红外线检测技术,它能够在不妨碍设备正常运行的前提下检测设备的运行情况,从而使对事故的预防性检测变为对事故的预知性检测。  快速反应时间:红外线热成像仪检测设备能够在短时间内对相当数量的设备进行准确、全面的检测,及时发现设备运行过程中各方面的问题,甚至还可以对这些问题的具体位置、性质、严重程度做出科学的判断。  正是由于红外热像仪的优点,使得红外热像仪在各个领域应用都十分的广泛,并且未来的发展前景更不可限量。  红外热像仪在电力行业的具体应用  电力设备的故障大多数伴有发热的现象,从红外诊断的角度来看通常分为外部故障和内部故障。众所周知,电力系统运行中,载流导体会因为电流效应产生电阻损耗,而在电能输送的整个回路上存在数量繁多的连接件、接头或触头。在理想情况下,输电回路中的各种连接件、接头或触头接触电阻低于相连导体部分的电阻,那么,连接部位的损耗发热不会高于相邻载流导体的发热,然而一旦某些连接件、接头或触头因连接不良,造成接触电阻增大,该部位就会有更多的电阻损耗和更高的温升,从而造成局部过热。此类通常属外部故障。  外部故障的特点是:局部温升高,易用红外热像仪发现,如不能及时处理,情况恶化快,易形成事故,造成损失。外部故障占故障比例较大。  所谓高电压电器设备的内部故障,主要是指封闭在固体绝缘以及设备壳体内部的电气回路故障和绝缘介质劣化引起的各种故障。由于这类故障出现在电气设备的内部,因此反映的设备外表的温升很小,通常只有几K。检测这种故障对检测设备的灵敏度要求较高。  内部故障的特点是:故障比例小,温升小,危害大,对红外检测设备要求高。  根据相关单位提供的长期实测数据及大量案例的综合统计,电力设备外部热缺陷一般占设备缺陷总指数的90%~93%,内部热缺陷仅占7%~10%左右。  在电力行业,很早就将热像仪运用于设备的安全检修上,通过其对电气设备和线路的热缺陷进行探测,如变压器、套管、断路器、刀闸、互感器、电力电容器、避雷器、电力电缆、母线、导线、组合电器、绝缘子串、低压电器以及具有电流、电压致热效应或其他致热效应的设备的二次回路等,这对于及时发现、处理、预防重大事故的发生可以起到非常关键而有效的作用。  根据缺陷所产生的原因不同,我们通常归纳为以下三种:  一、是长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良,或由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。如接头连接不良,螺栓,垫圈未压紧;长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;  二、元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低;负荷电流不稳或超标等。  三、是由于电器内部本身故障,如内部连接部件接触不良导致的电阻过大;绝缘材料老化、开裂、脱落;内部元件受潮,元气件损耗增大;冷却介质管路阻塞等等。  对于那些可以直接观察到的设备及元气件,红外热像仪都能够发现所有连接点的热隐患。对于那些由于被遮挡而无法直接看到的部分,则可以根据其热量传递到外面部件上的情况加以分析,从而得出结论。由于现场的实际情况千变万化,即便你通过热像仪得到了一张有热点的图片,要想作出一个精确的判断,可能会受许多因素的影响。如当前的温度,风量,负荷等情况。我们可以根据不同的特点,作相关的分析,作出相应的判断如:  为保证电力生产安全高效运行,对电力设备状态检修提出了更高的要求。由于状态检修主要依赖于对运行中设备的状态检测以及在线监测手段,所以,电力设备运行状态检测和在线监测在电力安全生产中始终起着重要的作用。红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征,因而。采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。  采用红外成像技术可开展以下电力设备状态检测与故障诊断工作。  1.高压电气设备运行状态检测与内、外中心故障诊断:  2.各类导电接头、线夹、接线桩头氧化腐蚀以及连接不良缺陷;  3.各类高压开关内中心触头接触不良缺陷;  4.隔离刀闸刀口与触片以及转动帽与球头结合不良缺陷;  5.各类CT一次内中心及外中心连接不良缺陷、本体及油绝缘不良缺陷以及内中心铁芯、线圈异常不良过热陷;  6.各类PT绝缘不良缺陷、缺油以及内中心铁芯、线圈异常不良过热缺陷;  7.各类电容器过热、耦合电容器油绝缘不良和缺油(低油位)缺陷;  8.各类避雷器内中心受潮缺陷、内中心元件老化或非线性特性异变缺陷;  9.各类绝缘瓷瓶表面污秽缺陷,零值绝缘子检测,劣化瓷瓶检测;  10.发电机运行状态检测、电刷与集电环接触状态检测、内中心过热检测;  11.电力变压器箱体异常过热,涡流过热,高、低压套管上、下两端连接不良以及充油套管缺油(低油位)缺陷;  12.各类电动机轴瓦接触不良以及本体内、外中心异常过热。

  • 【线上讲座247期】LIBS的现在与将来 (五)——LIBS远距离遥测分析 火热上线...至4月12日

    欢迎大家前来与chauchylan老师一起就LIBS光谱技术的相关问题进行探讨~!活动时间:2015年03月31日——2015年04月12日 【线上讲座247期】LIBS的现在与将来 (五) Part 5 主讲人:chauchylan 专家 活动时间:2015年03月31日——2015年04月12日 我们热烈欢迎chauchylan老师光临直读光谱版面进行讲座!http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif引言:激光诱导击穿光谱技术(laser induced breakdown spectroscopy)简称LIBS,是一种光谱探测技术。基于高功率密度的激光作用在样品表面,产生激光诱导等离子体,通过探测激光诱导等离子体中的原子和离子谱线,来确定样品的成分组成的一种光谱分析工具。我们荣幸邀请chauchylan老师详细介绍LIBS的过去、现在与将来。由于LIBS知识的相关内容比较多,本讲座拟定分五期完成。第一期为LIBS的过去http://bbs.instrument.com.cn/shtml/20130717/4856165/,第二期至第五期为LIBS的现在与将来:Part1 http://bbs.instrument.com.cn/shtml/20140923/5469496/;http://bbs.instrument.com.cn/shtml/20141022/5503467/;http://bbs.instrument.com.cn/shtml/20141124/5548303/;http://bbs.instrument.com.cn/shtml/20141223/5584639/。http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif提要一、LIBS远距离遥测分析二、化学计量学在LIBS中的应用三、 LIBS将来及其展望http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif欢迎大家前来与chauchylan老师一起就LIBS放电光谱法的知识探讨进行交流~!以上为chauchylan老师所著,未经chauchylan老师和仪器信息网同意任何个人和单位禁止转载!!! 提问时间:2015年03月31日--2015年04月12日答疑时间: 2015年03月31日--2015年04月12日特邀佳宾:直读光谱版面的版主、专家以及从事此行业的同行们参与人员:仪器论坛全体注册用户活动细则:1、请大家就LIBS知识的相关问题进行提问,直接回复本帖子即可,自即日起提问截至日期2015年04月12日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :chauchylan老师您好!我有以下问题想请教,请问:……http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归chauchylan和仪器信息网所有。本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。http://ng1.17img.cn/bbsfiles/images/2017/10/2009226105115_01_1766615_3.gif

  • 红外热像仪的应用

    红外热像仪的应用在电力行业,很早就将热像仪运用于设备的安全检修上,通过其对电气设备和线路的热缺陷进行探测,如变压器、套 管、断路器、刀闸、互感器、电力电容器、避雷器、电力电缆、母线、导线、组合电器、绝缘子串、低压电器以及具有电流、电压致热效应或其他致热效应的设备的 二次回路等,这对于及时发现、处理、预防重大事故的发生可以起到非常关键而有效的作用。 所谓电气设备热缺陷,通常是指通过一定手段检测得到,由于其内在或外在原因所造成的的发热现象。 根据缺陷所产生的原因不同,我们通常归纳为3 种:一种是长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良,或由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生 的发热。如接头连接不良,螺栓,垫圈未压紧;长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械 振动等各种原因所造成的导体实际截面降低;负荷电流不稳或超标等。 另一类是由于电器内部本身故障,如内部连接部件接触不良导致的电阻过大;绝缘材料老化、开裂、脱落;内部元件受潮,元气件损耗增大;冷却介质管路阻塞等等。 对于那些可以直接观察到的设备及元气件,红外热像仪都能够发现所有连接点的热隐患。对于那些由于被遮挡而无法直接看到的部分,则可以根据其热量传递到外面 部件上的情况加以分析,从而得出结论。由于现场的实际情况千变万化,即便你通过热像仪得到了一张有热点的图片,要想作出一个精确的判断,可能会受许多因素 的影响。如当前的温度,风量,负荷等情况。我们可以根据不同的特点,作相关的分析,作出相应的判断如: 为保证电力生产安全高效运行,对电力设备状态检修提出了更高的要求。由于状态检修主要依赖于对运行中设备的状态检测以及在线监测手段,所以,电力设备运行 状态检测和在线监测在电力安全生产中始终起着重要的作用。红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热 状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下 热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征,因而。采用红外成像技术可以通过对设备热 像图的分析来诊断设备的状态及其隐患缺陷。采用红外成像技术可开展以下电力设备状态检测与故障诊断工作。 高压电气设备运行状态检测与内、外中心故障诊断: 各类导电接头、线夹、接线桩头氧化腐蚀以及连接不良缺陷; 各类高压开关内中心触头接触不良缺陷; 隔离刀闸刀口与触片以及转动帽与球头结合 不良缺陷; 各类CT一次内中心及外中心连接不良缺陷、本体及油绝缘不良缺陷以及内中心铁芯、线圈异常不良过热陷; 各类PT绝缘不良缺陷、缺油以及内中心铁芯、线圈异常不良过热缺陷; 各类电容器过热、耦合电容器油绝缘不良和缺油(低油位)缺陷; 各类避雷器内中心受潮缺陷、内中心元件老化或非线性特性异变缺陷; 各类绝缘瓷瓶表面污秽缺陷,零值绝缘子检测,劣化瓷瓶检测; 发电机运行状态检测、电刷与集电环接触状态检测、内中心过热检测; 电力变压器箱体异常过热,涡流过热,高、低压套管上、下两端连接不良以及充油套管缺油(低油位)缺陷; 各类电动机轴瓦接触不良以及本体内、外中心异常过热。

  • 奥地利实现143公里量子远距传输打破中国纪录

    2012年09月07日 08:21 新浪科技 http://i0.sinaimg.cn/IT/2012/0907/U5385P2DT20120907081946.jpg奥地利物理学家凭借143公里的成绩打破量子远距传输的最远距离纪录  新浪科技讯 北京时间9月7日消息,据美国物理学家组织网6日报道,维也纳大学和奥地利科学院的物理学家凭借143公里的成绩打破量子远距传输的最远距离纪录。这项成就是在朝着基于卫星的量子通讯道路上向前迈出的重要一步。研究成果刊登在《自然》杂志上。  实验中,奥地利物理学家安东-泽林格领导的一支国际小组成功在加那利群岛的两个岛屿——拉帕尔玛岛和特纳利夫岛间实现量子态传输,距离达到143公里。此前的纪录由中国研究人员在几个月前创造,成绩为97公里。  打破传输距离并不是科学家的首要目标。这项实验为一个全球性信息网络打下了基础,在这个网络,量子机械效应能够大幅提高信息交换的安全性,进行确定计算的效率也要远远超过传统技术。在这样一个未来的“量子互联网”,量子远距传输将成为量子计算机之间信息传送的一个关键协议。  在量子远距传输实验中,两点之间的量子态交换理论上可以在相当远的距离内实现,即使接收者的位置未知也是如此。量子态交换可以用于信息传输或者作为未来量子计算机的一种操作。在这些应用中,量子态编码的光子必须能够传输相当长距离,同时不破坏脆弱的量子态。奥地利物理学家进行的实验让量子远距传输的距离超过100公里,开辟了一个新疆界。  参与这项实验的马小松(Xiao-song Ma,音译)表示:“让量子远距传输的距离达到143公里是一项巨大的技术挑战。”传输过程中,光子必须直接穿过两座岛屿之间的湍流大气。由于两岛之间的距离达到143公里,会严重削弱信号,使用光纤显然不适合量子远距传输实验。  为了实现这个目标,科学家必须进行一系列技术革新。德国加尔兴马克斯-普朗克量子光学研究所的一个理论组以及加拿大沃特卢大学的一个实验组为这项实验提供了支持。马小松表示:“借助于一项被称之为‘主动前馈’的技术,我们成功完成了远距传输,这是一项巨大突破。主动前馈用于传输距离如此远的实验还是第一次。它帮助我们将传输速度提高一倍。”在主动前馈协议中,常规数据连同量子信息一同传输,允许接收者以更高的效率破译传输的信号。  泽林格表示:“我们的实验展示了当前量子技术的成熟程度以及拥有怎样的实际用途。第一个目标是基于卫星的量子远距传输,实现全球范围内的量子通讯。我们在这条道路上向前迈出了重要一步。我们将在一项国际合作中运用我们掌握的技术,中国科学院的同行也会参与这项合作。我们的目标是实施一项量子卫星任务。”  2002年以来就与泽林格进行量子远距传输实验的鲁珀特-乌尔森指出:“我们的实验取得了令人鼓舞的成果,为未来地球与卫星之间或者卫星之间的信号传输实验奠定良好基础。”处在低地球轨道的卫星距地面200到1200公里。(国际空间站距地面大约400公里)乌尔森说:“在从拉帕尔玛岛传输到特纳利夫岛,穿过两岛间大气过程中,我们的信号减弱了大约1000倍。不过,我们还是成功完成了这项量子远距传输实验。在基于卫星的实验中,传输数据更远,但信号穿过的大气也更少。我们为这种实验奠定了一个很好的基础。”(孝文)

  • 红外热像仪应用:轨道交通检测的万能手

    红外热像仪应用:轨道交通检测的万能手

    1、红外热像仪应用于接触网:电气化铁路的重要组成部分,主要为电气化机车提供动力;接触网的连接件由于受外界因素的影响容易发生过热,严重时会导致供电中断,引发列车停运事故;红外热像仪可以在远距离对接触网进行温度检测,及时发现隐患,避免事故发生http://ng1.17img.cn/bbsfiles/images/2016/06/201606250917_598118_3116934_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606250917_598119_3116934_3.jpg  2、红外热像仪应用于电力机车车头:电力机车因其功率大、速度快、运载能力高等优点近年来在铁路运行系统中所占的比例越来越高,电力机车内部有大量的电力设备,其运行时会产生很大的热量,同时由于连接件松动、设备问题等原因将造成机车故障,严重时会导致事故的发生,红外热像仪可以在机车停车间隙进行巡检,及时发现机车内部的设备隐患http://ng1.17img.cn/bbsfiles/images/2016/06/201606250917_598120_3116934_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606250917_598121_3116934_3.jpg  3、红外热像仪应用于机车轮轴:轮轴测温是铁路系统中规定必须进行温度检测的一个项目,当轮轴的温度高于环境温度40℃以上的,就必须立即更换,否则会损害轴承强度及刹车片性能,红外热像仪可以及时、准确地发现轮轴过热隐患,避免行车事故。http://ng1.17img.cn/bbsfiles/images/2016/06/201606250918_598122_3116934_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606250918_598123_3116934_3.jpg  4、红外热像仪应用于高架桥箱梁:其检测对于渗水是比较重视的,因为渗水可导致混凝土表面炭化,使得混凝土表面出现裂缝,从而危害高架桥梁的结构强度http://ng1.17img.cn/bbsfiles/images/2016/06/201606250919_598124_3116934_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606250919_598125_3116934_3.jpg  5、红外热像仪应用于高架桥梁防水层:目前在中国运营的高速铁路大多使用高架桥梁作为路基,为防止渗水导致混凝土表面炭化造成结构裂缝,所以在高架桥梁的表面均敷设有防水层;但受防水层材料和施工的质量的影响,防水层在敷设后容易起壳和剥落,从而危害机车的安全http://ng1.17img.cn/bbsfiles/images/2016/06/201606250919_598127_3116934_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606250919_598128_3116934_3.jpg

  • 手持式红外热像仪选型案例

    手持式红外热像仪选型案例

    大面积、小目标http://ng1.17img.cn/bbsfiles/images/2015/10/201510291441_571502_3051882_3.png  评估储油罐的腐蚀或结构完整性监测潜在耐火砖劣化区域  案例解释:  目标尺寸通常超过10 米,检测距离达到数十米,而需要查验的损坏部位的尺寸只有几十厘米,例如:钢厂热风炉的直径为10米,高度30-50 米,但每块耐火砖宽度只有20 厘米,客户需要既可以看到目标的整体热像图,也要能够看到耐火砖的脱落问题。  设备要求:  1 超过300 万像素,足够的视场角度及优异的空间分辨率,可以实现对较大面积/ 区域的目标进行整体和远距离全面地分析要求,同时又可以分辨/ 检测出很多难以发现的细节或细小问题点,提高检测全面性和效率的同时,避免遗漏或意外事故风险。  2 最先进的聚焦方式选择,让聚焦更省时,LaserSharp® 激光自动对焦, 自动对焦, 手动对焦和EverSharp 多焦点记录功能,多种聚焦方式集于一身。保证您能够在几乎任何情况下都可以准确对焦,捕捉全部准确的数据;  3 红外热图、视频录制、带红外数据的视频录像,以及Wifi 传输方式,可以保证能够作为深度研究的有力依据。  相关应用:  l 大型工业设备的维护,如石化企业的反应塔,蒸馏塔等,冶金企业的高炉等;  l 隧道/ 大坝/ 桥梁渗水检测;  l 地质研究/ 勘探、火山研究;  l 建筑的维护,如机场、建筑群。  小温差http://www.ihome027.com/images_all/image2015/10-3/pos_ccrs_20151028134040_2_98_96.png  胚胎孵化监测蓝色低温代表死胎)植物病虫害检测  案例解释:  当检测目标的温差低至0.1 ℃以内时,需要有极高热灵敏度的热像仪才能发现细微差别,尤其是在科学研究领域。  设备要求:  1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供目标更多细节。  2 超优异的热灵敏度:此类现场的温差只有0.1℃,需要清晰地看到微小温差的问题点;TiX 系列产品拥有更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,对于1℃的温差,可用超过30 种颜色表示其温度的变化,能够显示出更体现更小的温差,提供更清晰的热像。  3 高级对焦系统:提供了手动对焦、自动对焦及LaserSharp® 自动对焦和EverSharp 多焦点记录功能,可快速、准确地捕获对焦正确的图像。  4 灰度和全彩色图像:可满足温差显示细节的要求,各种各样的应用。  5 更大的数码变倍:TiX 系列产品提供32 倍的放大,可以任意缩放图像细节。  相关应用:  l 材料工程化:受力分析,热应力分析,非破坏性试验,包括检查和分析复合材料的层离、空隙、吸湿和压裂,表面辐射。  l 化学和生物科学:化学反应/ 变化研究,生物分析,动植物相关研究,医学/ 病理学等相关研究。  l 复合材料和结构的NDT 无损检测裂缝,空隙,分层,粘结,渗漏。  超远距离http://www.ihome027.com/images_all/image2015/10-3/pos_ccrs_20151028134040_3_97_80.png  水泥厂生产设备检测高压输电塔的线夹检测  案例解释:  电力公司维护人员在500 米外对高压输电塔的进行巡检。  设备要求:  1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的像红外素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供最大细节。  2 超优异的空间分辨率:TiX 系列产品在更高的像素下,配备适合的镜头,可以达到更加优异的空间分辨率,如TiX1000 在配备120mm 超长焦的镜头时,空间分辨率可以达到0.1mRad,也就是说理论上,可以在500m 距离下,能够检测50mm 尺寸目标(高压线夹)。  3 5.6 英寸可旋转LCD 大显示屏:可帮助您方便地检查难以触及设备的上方、下方及周围。  4 可倾斜LCoS 彩色取景器:分辨率为800 x 600 像素,在日光下可提供最大可视性。  5 高级对焦系统:提供了手动对焦、自动对焦及LaserSharp® 自动对焦和EverSharp 多焦点记录功能,可快速、准确地捕获对焦正确的图像。  6 最大的镜头灵活性:利用现场可更换的可选镜头(2 倍和4 倍长焦镜头、两个广角镜头),无论距离远近,均可获得高分辨率图像。  7 更大的数码变倍系数: TiX 系列产品可以提供32 倍的放大,在现场,您就可以利用32 倍放大,分析更小的目标温度。  8 带有语音和文字注释,800 万可见光的录像功能:使得故障点记录、分析、存档更清晰、直观、简单、方便。  相关应用:  l 高压供电设备维护;  l 港口/ 码头塔吊电机维护。  微米级小目标http://www.ihome027.com/images_all/image2015/10-3/pos_ccrs_20151028134040_4_90_18.png  电路板中2 x 2 mm 芯片温度检测0.5 x 0.5mm小芯片及周边检测  (使用标准镜头)(使用微距镜头)  案例解释:  小型芯片温度检测,通常尺寸在2-3mm 以内,芯片内部的功能组件在50 μm 以内。  设备要求:  1 更优异的空间分辨率: TiX 系列的超高像素配三款微距镜头,使您能够拍摄高分辨率图像,可以提供小目标,微小目标的检测方案,如测量几十微米(μm)目标尺寸。  TiX 系列在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供最大细节。  2 超优异的热灵敏度: TiX 系列产品拥有更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。  3 高帧频模式:可利用TiX 的高帧

  • 帮忙下载一篇文献“单颗LED实现远距离均匀照明系统设计”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2847c512718e2b7f8c%29%20author%3A%28%E8%B0%A2%E6%B4%AA%E6%B3%A2%29%20]谢洪波[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28aec09b8e7f23f3ca%29%20author%3A%28%E6%B1%9F%E6%95%8F%29%20]江敏[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2891f02131476ef763%29%20author%3A%28%E6%9D%A8%E7%A3%8A%29%20]杨磊[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2848cb5b4fac3e267f%29%20author%3A%28%E5%AD%9F%E5%BA%86%E6%96%8C%29%20]孟庆斌[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%284fba1075ad171ca2%29%20author%3A%28%E6%96%B9%E6%98%A5%E4%BC%A6%29%20]方春伦[/url][/color][/size][/font][b][b][/b][/b][/b][font=&]【题名】:[/font][b][b][url=http://www.eope.net/EN/abstract/abstract17664.shtml][b][b]单颗LED实现远距离均匀照明系统设计[/b][/b][/url][/b][/b][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=44d548ceda7647026248a7152eb966fc&site=xueshu_se&hitarticle=1][font=&][size=13px][color=#0066cc]谢洪波[/color][/size][/font][/url][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28aec09b8e7f23f3ca%29%20author%3A%28%E6%B1%9F%E6%95%8F%29%20]江敏[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2891f02131476ef763%29%20author%3A%28%E6%9D%A8%E7%A3%8A%29%20]杨磊[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2848cb5b4fac3e267f%29%20author%3A%28%E5%AD%9F%E5%BA%86%E6%96%8C%29%20]孟庆斌[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%284fba1075ad171ca2%29%20author%3A%28%E6%96%B9%E6%98%A5%E4%BC%A6%29%20]方春伦[/url][/color][/size][/font][url=https://xueshu.baidu.com/usercenter/paper/show?paperid=de039de3a67788dad45ff8e511b0ebcf&site=xueshu_se]单颗LED实现远距离均匀照明系统设计 - 百度学术 (baidu.com)[/url][/b][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2847c512718e2b7f8c%29%20author%3A%28%E8%B0%A2%E6%B4%AA%E6%B3%A2%29%20]谢洪波[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28aec09b8e7f23f3ca%29%20author%3A%28%E6%B1%9F%E6%95%8F%29%20]江敏[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2891f02131476ef763%29%20author%3A%28%E6%9D%A8%E7%A3%8A%29%20]杨磊[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%2848cb5b4fac3e267f%29%20author%3A%28%E5%AD%9F%E5%BA%86%E6%96%8C%29%20]孟庆斌[/url][/color][/size][/font][font=&][size=13px][color=#0066cc],[/color][/size][/font][font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%284fba1075ad171ca2%29%20author%3A%28%E6%96%B9%E6%98%A5%E4%BC%A6%29%20]方春伦[/url][/color][/size][/font]

  • 红外热像仪的使用方法

    红外热像仪是一种发射红外线来检测的仪器,不需要接触检测物就可检测。最早时期红外热像仪用于军事,随着科技的发展,红外热像仪进入了多个领域,红外热像仪怎样使用呢?下面我们来了解一下。 正确使用flir热像仪的方法和技巧1)调整焦距 FLUKE红外热像仪在建筑行业的应用2)选择正确的测温范围3)了解最大测量距离 4)仅仅要求生成清晰红外热图像,还是同时要求精确测温5)工作背景单一 6)保证测量过程中仪器平稳 1)调整焦距 您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围, Distance距离) 2)正确的测温范围 您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到最佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。3)最大的测量距离 当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。 如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到最精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。4)仅仅要求生成清晰红外热图像,还是同时要求精确测温。这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。5)工作背景单一例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。6)保证测量过程中仪器平稳现在所有的长波NEC红外热像仪都可以达到60Hz帧频速率,因此在拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到最好的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。

  • 手持式红外热像仪选型案例

    大面积、小目标http://www.wzxxw.cn/p/m/1224/11(7).jpg  评估储油罐的腐蚀或结构完整性 监测潜在耐火砖劣化区域  案例解释:  目标尺寸通常超过10 米,检测距离达到数十米,而需要查验的损坏部位的尺寸只有几十厘米,例如:钢厂热风炉的直径为10 米,高度30-50 米,但每块耐火砖宽度只有20 厘米,客户需要既可以看到目标的整体热像图,也要能够看到耐火砖的脱落问题。  设备要求:  1 超过300 万像素,足够的视场角度及优异的空间分辨率,可以实现对较大面积/ 区域的目标进行整体和远距离全面地分析要求,同时又可以分辨/ 检测出很多难以发现的细节或细小问题点,提高检测全面性和效率的同时,避免遗漏或意外事故风险。  2 最先进的聚焦方式选择,让聚焦更省时,LaserSharp® 激光自动对焦, 自动对焦, 手动对焦和EverSharp 多焦点记录功能,多种聚焦方式集于一身。保证您能够在几乎任何情况下都可以准确对焦,捕捉全部准确的数据;  3 红外热图、视频录制、带红外数据的视频录像,以及Wifi 传输方式,可以保证能够作为深度研究的有力依据。  相关应用:   大型工业设备的维护,如石化企业的反应塔,蒸馏塔等,冶金企业的高炉等;   隧道/ 大坝/ 桥梁渗水检测;   地质研究/ 勘探、火山研究;   建筑的维护,如机场、建筑群。  小温差http://www.wzxxw.cn/p/m/1224/12(6).jpg  胚胎孵化监测 蓝色低温代表死胎) 植物病虫害检测  案例解释:  当检测目标的温差低至0.1 ℃ 以内时,需要有极高热灵敏度的热像仪才能发现细微差别,尤其是在科学研究领域。  设备要求:  1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供目标更多细节。  2 超优异的热灵敏度:此类现场的温差只有0.1℃ ,需要清晰地看到微小温差的问题点;TiX 系列产品拥有更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,对于1℃的温差,可用超过30 种颜色表示其温度的变化,能够显示出更体现更小的温差,提供更清晰的热像。  3 高级对焦系统:提供了手动对焦、自动对焦及LaserSharp® 自动对焦和EverSharp 多焦点记录功能,可快速、准确地捕获对焦正确的图像。  4 灰度和全彩色图像:可满足温差显示细节的要求,各种各样的应用。  5 更大的数码变倍:TiX 系列产品提供32 倍的放大,可以任意缩放图像细节。  相关应用:   材料工程化:受力分析,热应力分析,非破坏性试验,包括检查和分析复合材料的层离、空隙、吸湿和压裂,表面辐射。   化学和生物科学:化学反应/ 变化研究,生物分析,动植物相关研究 ,医学/ 病理学等相关研究。   复合材料和结构的NDT 无损检测裂缝,空隙,分层,粘结,渗漏。  超远距离http://www.wzxxw.cn/p/m/1224/13(7).jpg  水泥厂生产设备检测 高压输电塔的线夹检测  案例解释:  电力公司维护人员在500 米外对高压输电塔的进行巡检。  设备要求:  1 超高分辨率图像:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的像红外素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供最大细节。  2 超优异的空间分辨率:TiX 系列产品在更高的像素下,配备适合的镜头,可以达到更加优异的空间分辨率,如TiX1000 在配备120mm 超长焦的镜头时,空间分辨率可以达到0.1mRad,也就是说理论上,可以在500m 距离下,能够检测50mm 尺寸目标(高压线夹)。  3 5.6 英寸可旋转LCD 大显示屏:可帮助您方便地检查难以触及设备的上方、下方及周围。  4 可倾斜LCoS 彩色取景器: 分辨率为800 x 600 像素,在日光下可提供最大可视性。  5 高级对焦系统: 提供了手动对焦、自动对焦及LaserSharp® 自动对焦和EverSharp 多焦点记录功能,可快速、准确地捕获对焦正确的图像。  6 最大的镜头灵活性:利用现场可更换的可选镜头(2 倍和4 倍长焦镜头、两个广角镜头),无论距离远近,均可获得高分辨率图像。  7 更大的数码变倍系数: TiX 系列产品可以提供32 倍的放大,在现场,您就可以利用32 倍放大,分析更小的目标温度。  8 带有语音和文字注释,800 万可见光的录像功能:使得故障点记录、分析、存档更清晰、直观、简单、方便。  相关应用:   高压供电设备维护;   港口/ 码头塔吊电机维护。  微米级小目标http://www.wzxxw.cn/p/m/1224/14(8).jpg  电路板中2 x 2 mm 芯片温度检测 0.5 x 0.5mm小芯片及周边检测  (使用标准镜头) (使用微距镜头)  案例解释:  小型芯片温度检测,通常尺寸在2-3mm 以内,芯片内部的功能组件在50 μm 以内。  设备要求:  1 更优异的空间分辨率: TiX 系列的超高像素配三款微距镜头,使您能够拍摄高分辨率图像,可以提供小目标,微小目标的检测方案,如测量几十微米(μm)目标尺寸。  TiX 系列在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),可获得锐利的图像,提供最大细节。  2 超优异的热灵敏度: TiX 系列产品拥有更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,便于分辨更小的温差和更小目标,提供更清晰的热像。  3 高帧频模式:可利用TiX 的高帧频模式(高达240Hz)监测目标的温度快速变化。这样就能够分析多帧数据,便于更好地理解小目标的温度变化。  4 PC上回放和分析数据:利用随热像仪提供的SmartView® 软件,优化和分析图像,并生成检查报告。您也可将结果导出至电子表格,做进一步、更详细的分析,以及互动式数据展示。  相关应用:   微生物体研究;   芯片及PCB 线路,焊点检测;   生产工艺/ 过程杂质检测;   细小目标(如激光光纤)生产过程中温度均匀性检测。  高速温度变化/快速位移http://www.wzxxw.cn/p/m/1224/15(7).jpg  烟花快速升空后的燃放瞬间 发动机散热系统检测  设备要求:  1 高帧频模式:可利用TiX 的高帧频模式(高达240Hz),实现对高速温度变化/ 快速位移的目标进行连续检测,可以获得目标的温度变化趋势,或高速位移过程中,真实的温度值。  2 实时辐射视频流记录:可以实时记录带温度数据视频,支持逐帧分析热过程和变化,更容易发现和确认真实的温度值,以及需要进一步检查的位置。  3 更多的数据传输/ 存储方式数据可以快速传输/ 存储至:仪器内存/SDHC 卡/ USB / GigE  Vision /Wifi 等,有力保证获取大量数据,作为深度研究的有力依据。  4 超高分辨率图像+ 优异的热灵敏度:在精密位移成像技术模式下,分辨率和像素是标准模式的4 倍(TiX1000 的红外像素高达310 万,TiX660 的红外像素高达120 万),结合TiX 更高的热灵敏度,如TiX640/660 热灵敏度可达0.03℃,可获得锐利的图像,提供更清晰、更多细节的目标热图。  5 PC 上回放和分析数据。利用随热像仪提供的SmartView® 软件,优化和分析图像,并生成检测报告。您也可将结果导出至电子表格,做进一步、更详细的分析,以及互动式数据展示。  相关应用:  材料研究;摩擦力/ 碰撞/ 力学研究;车床刀具研究;发动机趋势研究;感应加热研究;  点胶应用;焊接/ 包装应用;其他应用:激光脱毛。  其他高端应用  设备要求:  1 高温目标检测:TiX 系列可以检测高达2000 ℃的高温目标,支持需要极端温度条件的检查工作。  2 低温目标:TiX 系列可以检测低至-40℃的低温目标,支持需要极端温度条件的检查工作。  3 适应更低的工作环境:TiX 系列可以在-25℃的环境下,长时间工作,适应更严酷的工作场合。  相关应用:  材料/ 发动机等高温目标检测、低温目标(培养皿保温)检测、严寒地区外部环境下/ 高低温箱内长时间检测等。

  • 【原创】利用热像仪对电力机车车头进行检测-铁路行业

    电力机车概述: 电力机车本身不带原动机,靠接受接触网送来的电流作为能源,由牵引电动机驱动机车的车轮。电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠等主要优点,而且不污染环境,故在铁路系统中得到迅速的发展,目前交通干线上进行客运及货运的机车基本都是电力机车,而传统的内燃型机车一般作为支线运输或备份机车进行使用。 为什么需要对电力机车进行温度检测? 电力机车内部有大量的电力设备及机械设备,如果发生过热导致设备故障将会使机车停运,严重时将引发行车事故,所以当机车完成运输任务后,均需要进行短暂的设备巡检,保证行车安全。 电力机车需要对哪些设备进行温度检测? 电力机车一般由下列部分构成:总成、车体、转向架、主变压器、网络控制、主变流器、驱动装置、牵引电机、制动系统等。因电力机车车型较多,现以韶山3型(SS3)电力机车为例,该型车内部涉及到红外热像仪检测的部件主要有:主变压器、调压开关、变流装置、牵引电动机、电子控制柜、制动电阻柜等。红外热像仪机车温度检测的优势: 红外检测具有远距离、不停电、不接触、不解体等特点,给电力机车设备状态监测提供了一种先进手段。如何能做好电力机车的检测? 电力机车在运行时是不允许进行检测的,只有在进站后会有20至30分钟的检测时间,所以我们建议: 1.检测前做好检测目标的排序,尽量做到一条路线将所有的检测点都包含在内。 2.掌握主要设备正常运行时的温度范围,这样在遇到问题点时可以快速做出判断。 3.注意安全,虽然机车停止电动机运行,但有部分用电设备依旧带电,部分设备同时还有高温(如主变压器大功率调压电阻)。 4.部分接点因断电后温度下降,若与同类接点相比有温差,就算差异不是很大,也需要关注。 5.机车内部分区域比较暗,最好请带上照明工具。

  • 请问液相和气相/气相质谱仪放在一个房间的至少距离是多少?

    请问液相和气相/气相质谱仪放在一个房间的至少距离是多少?因无法给液相单独的实验室,现只能和GC/GCMS放在同一房间,近50平方,有两台GCMS,一台GC和一台GPC等。房子中间是试验台,周围有样品处理的小设备。液相有DAD和RI检测器,DAD还好,就是怕RI受GCMS的降温升温的影响,应该至少和GCMS保持多远距离?有什么办法或措施来减少影响呢?谢谢!

  • 红外线热像仪使用小技巧

    红外线热像仪使用小技巧

    红外线热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外线热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。红外线热像仪被广泛应用于工程技术,楼宇检查,军队实战等领域,特别是最近10年,红外线热像仪的发展更为迅猛,以年20%的增长比例增长。  随着红外线热像仪的广泛应用,越来越多的使用者关注如何用好热像仪,红外线热像仪的使用有哪些小技巧?以备受全球工程师们亲睐的国际一流品牌Fluke红外热成像仪(福禄克)为例,小编总结了8项小技巧,分享出来供大家参考啦~http://ng1.17img.cn/bbsfiles/images/2015/10/201510311511_571815_3051882_3.png1对于狭窄空间内的目标检测,能否用镜子反射被测物辐射来进行检测?  镜子对红外能量反射率不高,建议使用抛光金属来进行反射,在检测时还需要精确调整反射角度。  2红外线热像仪能否对运动中的设备进行检测?对被测物体的运动速率是否有限制?  这取决于被测物体相对于红外线热像仪的运动速率,如果被测物体的运动速率小于20 公里/ 小时,可以用9Hz及以下帧频的红外线热像仪。如果高于20 公里/ 小时,就需要购买60Hz 帧频红外线热像仪,该款仪器需要做特别许可申请。  3是不是在夜间进行检测,可以避免太阳反射的影响,检测效果更好?  在绝大多数应用中,日间检测与夜间检测并没有明显的效果区别。Fluke红外线热像仪和自带的热分析软件都可以通过调整背景温度补偿、设置发射率等方法抵消掉大部分环境温度干扰。有些特殊的行业应用,为追求更快的检测效果,会采用夜间检测方法,例如建筑渗漏检测在夜间进行的话,环境温度比较稳定,更容易识别建筑物因积水、空鼓等造成的微小温差。  4如何快速获取温度分布曲线?  在所拍摄的热图上画任意一条线,通过SmartViewR热分析软件的后台分析可以显示出线上各点的位置及温度的对应关系曲线。  5能不能进行连续监测来获得温度趋势图?http://ng1.17img.cn/bbsfiles/images/2015/10/201510311511_571814_3051882_3.png  Fluke锐智系列红外线热像仪带有标准USB 接口,可将显示屏的实时视频信号输入计算机,在SmartViewR(热像仪标准配置)软件上进行播放;通过趋势分析软件,可将视频信号中的高低温自动捕捉点和中心点温度进行数字化保存,保存的内容为温度值和时间,并建立趋势分析曲线图:横坐标为时间、纵坐标为温度。  6拍摄图像的红外热图与可见光图不重合,是什么原因?如何弥补?  有两种情况会导致该问题发生:  1)对焦不准;  2)拍摄距离过近 - 每台红外线热像仪都有红外和可见光两种最小聚焦距离(分别对应红外镜头和可见光镜头)。只有拍摄距离同时大于2 种镜头的最小对焦距离情况下,红外与可见光图像才能达到完全融合,而近距离拍摄很可能会有图片错位的情况。当您发现红外热像图与可见光图不重合时,可使用SmartViewR 软件的图像编辑,通过移动可见光图位置来消除其与红外图的偏差。  7热像图异常时怎么办?  当发现只有可见光而没有红外图像,或只有红外图像而没有可见光;有四种原因是红外线热像仪内部的设置引起的。  1)锐智和易见系列在IR-FusionR 中有全可见光功能。  2)锐智、睿鉴和易见系列有高低温报警功能,不到报警温度的范围以全可见光显示,达到报警温度的范围用红外显示。  3)确认调色板的温度范围模式是否为自动,如果是手动,需确认目标的温度范围与手动范围设置相匹配。  4)当镜头设置为广角镜头,可见光功能将自动取消(长焦镜头设置没有此现象)。  8如何检测空间的温度分布?  8-14 微米波长的红外能量能穿透空气,所以用普通的红外线热像仪直接检测空气的温度是不可能的。用纸表面的温度分布模拟空间的温度分布,因纸的热传导性和空气的热传导性有差异,故准确性会受到影响。  建议解决方法:框架分布法  用铁丝(最好是非金属材料)制做框架结构,按照现场需要间隔一定距离设置横向支架。注意:尽量不要用铜丝,因为其热传导率很高,容易引起误差。用薄金属片(铝片或铜片等)表面涂漆,固定在横向支架上;如果现场不宜取材,烟盒中的锡纸或普通纸张也可,但热平衡时间需要增加。

  • 【资料】正确使用红外热像仪的方法和技巧

    正确使用红外热像仪的方法和技巧   1)调整好红外热像仪的焦距   您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围,Distance距离)   2)选择正确的红外热像仪测温范围   您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对红外热像仪的温度跨度进行微调将得到最佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。   3)了解红外热像仪的最大的测量距离   当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到最精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。   4)仅仅要求生成清晰红外热图像,还是同时要求精确测温   这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。   5)工作背景单一   例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。   6)保证测量过程中红外热像仪平稳   现在所有的长波NEC红外热像仪都可以达到60Hz帧频速率,因此在拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到最好的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。

  • 【原创】用红外热像仪做监控设备的优势

    随着红外热成像技术的不断发展,红外热像仪越来越多地应用于安防系统,成为安全监控系统的有力助手。 与传统安全监控设备相比,红外热像仪有以下几大优势。 1、红外热像仪可在漆黑环境下进行监控任务,具备隐蔽性; 红外热像仪夜晚监控 2、红外热像仪可在有如树木、草丛等遮挡物的情况下进行监控; 红外热像仪透过在有遮挡情况下的监控 3、红外热像仪具备穿透烟、雾、雨水等进行探测的能力; 红外热像仪透过烟雾监控 4、红外热像仪监控距离远。 红外热像仪在安防上的应用主要有: 1、防火防盗; 2、侦察检控; 3、保安巡逻; 4、机场、码头等安检; 5、公路、铁路等夜间检查; 6、体温检查; 7、生命搜救。 如果您对红外热像仪相关知识感兴趣或有任何疑问,不妨拨打我们的服务热线:400-027-6268或者浏览武汉永盛科技有限公司,进一步了解!也希望您能关注我们淘宝的红外测温专家店,您将会得到更多惊喜!

  • 红外热成像仪使用中环境影响因素介绍

    红外热成像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热成像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。红外热成像仪被广泛应用于工程技术,楼宇检查,军队实战等领域。  随着红外热成像仪的广泛应用,越来越多的使用者关注如何用好热像仪,红外热成像仪在使用中环境影响因素都有哪些?以备受全球工程师们亲睐的国际一流品牌Fluke红外热成像仪(福禄克)为例,小编总结了6大因素,分享出来供大家参考啦~  1红外热成像仪的仪器工作温度有什么需要注意?可以在0℃以下检测或充电吗?  一般热像仪可在-10~50℃范围内工作;但当环境温度在0℃以下,建议开机半小时后达到充分预热再进行检测,连续室外检测时间不超过20 分钟。避免在过冷或过热的地方充电,以免减弱电池的蓄电能力。  2红外热成像仪对工作时的环境湿度有什么限制?  湿度为10%~90%,无凝结。  3Fluke 红外热成像仪是否具有防爆认证?可以用来检测危险区域吗?  目前Fluke 红外热成像仪不具有防爆认证。但热像仪具有远距离检测的优势,在检测距离可以满足被测目标的大小尺寸前提下,您可以选择在危险区域以外准确调焦后进行测试。  4现场环境下雨,是否会影响准确测量?  下雨本身对测量精度影响不大,但被测物体表面附着的水滴可能造成热量的异常流失,使测量温度不能准确反映物体的正常表面温度。同时,下雨环境对仪器本身也可能造成损坏,故不建议在雨天进行直接测量。  5现场环境存在大风,是否会影响准确测量?  大风对准确检测影响很大,按电力行业红外热成像诊断标准,被测目标的风速不应高于5 米/ 秒。若现场风速高于此标准,会导致被测物体散热过快,使测量温度偏低。  6红外热成像仪使用中会产生辐射干扰其他设备运行吗?会受到检测现场的其他设备的电磁辐射影响吗?  Fluke 红外热成像仪是全被动接收设备,自身没有主动辐射信号,对于您的现场设备或产品没有任何干扰。外部电磁辐射影响:目前只发现电解铝的大电流整流柜会对热像仪造成干扰(一般此类现场电流会超过10 万安培以上)。

  • 红外热像仪应用于新型丝状材料研究和加工领域

    红外热像仪应用于新型丝状材料研究和加工领域

    红外热像仪应用在新型丝状材料低温熔融研究和加工方面,丝状材料在熔融时,需要检测从融化出口至一定长度内的温度分布状态,为材料的特性和质量的分析提供温度依据。但丝状材料通常较细,加上受到容器尺寸的限制,要想清晰地拍摄有难度。file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml\wps87C4.tmp.pnghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612131640_01_3169614_3.png检测案例:某大学机械与工程学院,新型丝状材料在容器内260℃环境下熔融,通过容器底部的出料口向下产出,需要对该材料在出料口处直至1cm 距离的温度分布进行检测和分析,以确保该材料的强度和韧度等技术指标。 检测难点:1、丝状材料的直径仅为0.2 mm 左右,目标小。2、受到容器底部形状的限制, 不能在近距离拍摄,检测距离相对较远;而常用的微距镜头在拍摄小目标时,距离一般需要在3-4cm 内。 解决方案:福禄克红外热像仪应用在检测新型丝材料熔融中:热像仪安放在容器的下方,斜向45°角往上,热像仪配置微距镜头3 + 长焦镜头,辅以二维可调精密位移云台。为使保存热图的时候不发生抖动,热像仪开启连续自动拍摄功能,并同时开启录像功能。 为什么选择微距镜头3福禄克大师之选系列一共有3 种微距镜头,每种微距镜头的作用距离和小目标的分辨能力是不一样的:● 微距镜头1 (FLK-Xlens/Macro1):可分辨的目标最大、作用距离最远● 微距镜头2 (FLK-Xlens/Macro2):可分辨的检测目标小、作用距离最近● 微距镜头3 (FLK-Xlens/Macro3):可分辨的检测目标小、作用距离较远http://ng1.17img.cn/bbsfiles/images/2016/12/201612131640_02_3169614_3.png file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml\wps87F6.tmp.png拍摄机型:Fluke TiX640 红外热像仪配微距镜头3 + 长焦镜头file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml\wps87F7.tmp.pnghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612131640_03_3169614_3.png

  • 研发品管用红外热像仪Fluke TIS系列功能升级

    研发品管用红外热像仪Fluke TIS系列功能升级

    全新升级版工业热像仪TiS系列在秉承福禄克领先的工业设计的同时,配合其精密的光学系统,完美的成像效果,全新的功能升级,最重要的是亲民的价格,毫无疑问使得TiS系列红外热像仪成为Fluke红外热像家族又一非凡产品。  其卓越的性能和全面升级的功能,注定成为研发与品质管理工程师的新宠,针对产品研发应用Fluke重点推荐机型为TiS75、TiS65、TiS55、TiS45。http://ng1.17img.cn/bbsfiles/images/2016/06/201606151517_597024_3116934_3.jpg  性能升级:获取优异图像质量  • 像素最高达到:320*240  • IFOV最低达到:2.0mRAD  • 最小聚焦距离可达:0.15m  • 测温范围最高可达:550 ℃  • 可见光像素高达: 500万  功能升级:实现灵活操作及查阅  1. 手动对焦模式:可以在0.15米距离进行拍摄,对于芯片或贴片元器件等小目标可清晰检测。  2. 多个可移动点显示功能:可在显示屏任意一点上显示温度数据,方便观察。  3. 连续拍摄功能:可对疑似问题点的连续温度变化情况进行定时自动连续拍摄,检测人员无需长时间在现场等待,节约检测时间。  4. 高低温自动捕捉:可提高工作效率,避免错失可疑点。  5. AVI和带温度数据格式的录像模式,并可结合趋势分析软件对温度数据做趋势图和记录。  典型应用领域:  照明、电子、家电、机电、装备产品研发等领域http://ng1.17img.cn/bbsfiles/images/2016/06/201606151518_597025_3116934_3.jpg  电路板元器件检测http://ng1.17img.cn/bbsfiles/images/2016/06/201606151518_597026_3116934_3.jpg  LED灯发热不均http://ng1.17img.cn/bbsfiles/images/2016/06/201606151518_597027_3116934_3.jpg  制冷剂管道泄漏  更多详情,请查看福禄克红外热像解决方案中心,从精密到简便,从主管到基层,皆有所选!

  • 红外测温仪

    高温往往是电气和机械应用中潜在问题的首个指标,为了及时测量难以触及或危险区域的设备温度,需要性能好的。能满足现场需求的红外线测温仪。 个人觉得红外测温仪小巧轻便,耐高温(分别为500摄氏度和650摄氏度),远距离测控点+精密激光技术使得测量准确度高且便于使用;而大型背光显示屏,则使得数据不论白天黑夜都可大屏清晰可见;加上防尘防水,坚固耐用,能承受三米处跌落。 欢迎朋友们拍砖及提出高见。

  • 红外热像仪工作原理

    热像仪的操作以红外热像仪的工作原理为基础。热像仪通常作为一种开源节流的检测工具,可用于诊断、维护和检查电气系统、机械系统和建筑结构,另外,科学研究和企业研发人员也可以通过热成像技术攻克各类研究过程中的难题。那么,到底什么是红外热成像技术呢?而红外热像仪工作原理又是什么呢?就让福禄克红外热像仪来告诉你吧!  红外热成像  红外热成像是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。  人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。  例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。  热像仪工作原理  热像仪旨在检测目标所放出的红外辐射。参见下图。目标是指使用热像仪进行检查的物体。http://www.wzxxw.cn/p/m/1224/20(6).jpg  目标是指使用热像仪进行检查的物体。热像仪旨在检测目标所发出的红外辐射。  红外辐射通过热像仪的光学镜片聚焦于探测器,从而引起反应,通常是电压或电阻的变化,该变化由热成像系统中的电子元件读取。热像仪产生的信号将转换成电子图像(温度记录图)并显示在屏幕上。温度记录图是经过电子处理后显示在屏幕上的目标图像,在该图像中,不同的色调与目标表面上的红外辐射分布相对应。在这个简单的过程中,热像仪可以查看与目标表面上发出的辐射能量相对应的温度记录图。  热像仪组件  典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、探测器和处理电子元件、控件、数据存储设备、配有手带的把柄以及数据处理和报告制作软件。这些组件因热成像系统的类型和型号而异。参见下图。http://www.wzxxw.cn/p/m/1224/21(5).jpg  典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、控件和配有手带的把柄。http://www.wzxxw.cn/p/m/1224/22(5).jpg  热像仪通常都带有一个便携包,用于放置热像仪、软件及现场使用的其它相关设备。  镜头。热像仪至少配有一个镜头。热像仪镜头可以捕获红外辐射并使之聚焦于红外探测器上。探测器将作出反应并生成电子(热)图像或温度记录图。热像仪镜头用于采集传入的红外辐射并使之聚焦于探测器上。大多数长波热像仪的镜头包含锗 (Ge)薄层增透膜,可以改善镜头的透光能力。  福禄克最新发布的全新25微米微距镜头和4倍长焦预校准镜头,将极端目标温度变化尽收眼底。25微米微距镜头可以识别在印刷电路板等上的超微目标,甚至是肉眼难以看见的缺陷。新的4倍长焦镜头让用户能够看到放大四倍的远处目标,从而能够轻松检测电线或高火炬塔等目标。http://www.wzxxw.cn/p/m/1224/23(8).jpg  显示屏。热图像显示在热像仪的液晶显示屏 (LCD) 上。LCD 显示屏必须足够大,而且足够清晰,以便在各种场合的不同光线条件下轻松查看图像。此外,显示屏通常还会提供其它信息,例如电池电量、日期、时间、目标温度(以 °F、°C 或 °K 为单位)、可见光图像以及与温度有关的色谱键。参见图 1-5。http://www.wzxxw.cn/p/m/1224/24(5).jpg  图1-5 热像图显示在热像仪上的液晶屏(LCD)上。  探测器和处理电子元件。探测器和处理电子元件用于将目标处理成为有用的信息。目标发出的热辐射将聚焦于探测器(通常是电子半导体材料)上。热辐射可使探测器作出可测量的反应。该反应在热像仪中经过电子处理,形成热图像,并显示在热像仪的显示屏上。  控件(操作菜单)。控件用于执行各种电子调整,以优化显示屏上的热图像。可以对温度范围、热跨度和级别、调色板和图像融合度等变量执行电子调整。此外,还可以对辐射率和反射背景温度执行调整。参见图 1-6。近几年已出现触摸屏热像仪实现所有操控。http://www.wzxxw.cn/p/m/1224/25(6).jpg  图1-6 借助控件,可以对变量(例如温度范围、热跨度和级别和其它设置)执行电子调整。  数据存储设备。包含热图像和相关数据的电子数字文件存储在各类电子记忆卡或存储器以及传输设备中。许多红外成像系统还允许存储补充语音或文字数据以及通过集成的可见光摄像机采集的相应可见光图像。  数据处理和报告制作软件。与大多数现代热成像系统配合使用的软件不仅功能强大,而且容易使用。数字热图像和可见光图像可以导入个人计算机中,然后在此处通过各种调色板显示,而且还可以进一步调整所有辐射参数和分析功能。之后,经过处理的图像将被插入报告模板中,或者发送至打印机、以电子形式存储或者通过互联网发送给客户。福禄克红外热像仪使用的是SmartView红外分析软件。

  • 福禄克红外热像仪TIS系列全新功能升级

    福禄克红外热像仪TIS系列全新功能升级

    全新升级版工业热像仪TiS系列在秉承福禄克领先的工业设计的同时,配合其精密的光学系统,完美的成像效果,全新的功能升级,最重要的是亲民的价格,毫无疑问使得TiS系列红外热像仪成为Fluke红外热像家族又一非凡产品。  其卓越的性能和全面升级的功能,注定成为研发与品质管理工程师的新宠,针对产品研发应用Fluke重点推荐机型为TiS75、TiS65、TiS55、TiS45。http://ng1.17img.cn/bbsfiles/images/2016/06/201606171144_597213_3116934_3.jpg  性能升级:获取优异图像质量  • 像素最高达到:320*240  • IFOV最低达到:2.0mRAD  • 最小聚焦距离可达:0.15m  • 测温范围最高可达:550 ℃  • 可见光像素高达: 500万  功能升级:实现灵活操作及查阅  1. 手动对焦模式:可以在0.15米距离进行拍摄,对于芯片或贴片元器件等小目标可清晰检测。  2. 多个可移动点显示功能:可在显示屏任意一点上显示温度数据,方便观察。  3. 连续拍摄功能:可对疑似问题点的连续温度变化情况进行定时自动连续拍摄,检测人员无需长时间在现场等待,节约检测时间。  4. 高低温自动捕捉:可提高工作效率,避免错失可疑点。  5. AVI和带温度数据格式的录像模式,并可结合趋势分析软件对温度数据做趋势图和记录。  典型应用领域:  照明、电子、家电、机电、装备产品研发等领域http://ng1.17img.cn/bbsfiles/images/2016/06/201606171144_597214_3116934_3.jpg  电路板元器件检测http://ng1.17img.cn/bbsfiles/images/2016/06/201606171144_597215_3116934_3.jpg  LED灯发热不均http://ng1.17img.cn/bbsfiles/images/2016/06/201606171145_597216_3116934_3.jpg  制冷剂管道泄漏  更多详情,请查看福禄克红外热像解决方案中心,从精密到简便,从主管到基层,皆有所选!

  • 【基础知识】--红外测温仪工作原理

    一、概述   红外测温技术在生产过程,产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。   红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应用红外诊断技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。   红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修(预防试验是20世纪50年代引进前苏联的标准)提高到预知状态检修,这也是现代电力企业发展的方向。特别是目前大机组、超高电压的发展,对电力系统的可靠运行,因其关系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。它备受国内外电力行业的重视(20世纪70年代后期国外普遍应用的一种先进状态检修体制),并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。   采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。   利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。   带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。  来源:网络

  • 红外热像仪市场分析

    红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域。在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,被广泛应用于军民两个领域。在现代战争条件下,该技术已在卫星、导弹、飞机等军事武器上获得了广泛的应用。同时,随着非制冷红外热成像技术的发展,尤其是随着产业化过程中生产成本的大幅度降低,红外热像仪已在电力、消防、工业、医疗、安防等国民经济的各个部门得到了非常广泛的应用。 随着中国经济、社会的快速发展,中国红外热像仪行业具有巨大的发展空间。 ①军队现代化建设需要大量的红外热像仪。在发达国家,红外热像仪已配置在陆军、空军、海军等各个军种中,海湾战争中平均每个美国士兵配备1.7 具红外热像仪。与发达国家相比,目前我国军队中红外热像仪应用的相对较少,按照我国政府发布的《2006 年中国的国防》白皮书,我国军队的人员数量为230万人,如果未来我军10%的部队装备红外热像仪,则我国军用红外热像仪市场容量就可达到23 万套,按照每套10 万元人民币计算(目前大部份军用红外热像仪实际售价远超过10 万元),其市场远景需求量可达230 亿元人民币。 ②从长期来看,民用领域的潜在市场需求很大 红外热像仪广泛应用于消防、电力、建筑、安防等民用领域,我国红外热像仪在这些行业的应用还处于起步阶段,发展空间巨大。

  • 【资料】红外热像仪的最佳选择

    红外热像仪的最佳选择   1、选择红外热像仪首先要考虑温度分辨率:温度分辨率体现了一台红外热像仪的温度敏感性,温度分辨率越小红外热像仪对温度的变化感知越明显,选择时尽量选择此参数值小的产品。红外热像仪测试被测物的主要目的是通过温度差异找出温度故障点,测量单个点的温度值并没有太大意义,主要是通过温度差异来找相对的热点,起到预维护的作用。   2、选择红外热像仪其次空间分辨率:简单来说空间分辨率越小测温越准确,空间分辨率较小时,被测最小目标覆盖了红外热像仪的像素,测试的温度即被测目标的温度。如果空间分辨率较高,被测的最小目标不能完全覆盖红外热像仪的像素,测试目标就会受到其环境辐射的影响,测试温度是被测目标及其周围温度的平均温度,数值不够准确。见下图比较:   3、温度稳定性:红外热像仪的核心部件为红外探测器,目前主要有两种探测器氧化钒晶体和多晶硅探测器,氧化钒探测器主要的优势是测温视域MFOV(MeasurementFieldofView)为1,温度测量是精确到1个像素点。AmorphousSilicon(多晶体硅)传感器,MFOV为9,即每点的温度是基于3×3=9个像素点平均而获得。氧化钒探测器的温度稳定性好、寿命长,温度漂移小。NEC红外热像仪均使用氧化钒探测器,欧美大地回收了曾销售给香港客户的10多台NEC红外热像仪(主要为9100/5102/7700系列),发现5年来客户购买的NEC红外热像仪温度准确度依然维持在±2%或2℃,没有温度漂移,很稳定,唯一一台不过关的是5年前售出的热像仪,客户每星期都使用,标定结果差了3度,为其做了调整,已经恢复正常使用。   4、测温范围和被测物:根据被测物体的温度范围确定测温范围,来选择合适温度段的红外热像仪。目前市场上的红外热像仪大多会分成几个温度档,比如-40-120℃0-500℃,并不是温度档跨度越大越好,温度档的跨度小测温相对会更准确些。另外一般红外热像仪需要测量500℃以上的物体时,则需要配备相应的高温镜头。   5、选择红外热像仪最后要考虑像素:首先要确定购买红外热像仪的像素级别,大多红外热像仪的级别和像素有关。民用红外热像仪中相对高端的产品像素为640*480=307,200,此高端红外热像仪拍摄的红外图片清晰细腻,在12米处测量的最小尺寸是0.5*0.5cm。中端红外热像仪的像素为320*240=76,800,在12米处测量的最小尺寸是1*1cm;低端红外热像仪的像素为160*120=19,200,在12米处测量的最小尺寸是2*2cm。可见像素越高所能拍摄目标的最小尺寸越小。

  • Fluke万元工业红外热像仪升级版TiS系列之研发篇

    Fluke万元工业红外热像仪升级版TiS系列之研发篇

    全新升级版工业红外热像仪TiS系列在秉承福禄克领先的工业设计的同时,配合其精密的光学系统,完美的成像效果,全新的功能升级,最重要的是亲民的价格,毫无疑问使得TiS系列热像仪成为Fluke红外热像家族又一非凡产品。  其卓越的性能和全面升级的功能,注定成为研发与品质管理工程师的新宠,针对产品研发应用Fluke重点推荐机型为TiS75、TiS65、TiS55、TiS45。http://ng1.17img.cn/bbsfiles/images/2016/06/201606161547_597145_3116934_3.jpg  性能升级:获取优异图像质量  • 像素最高达到:320*240  • IFOV最低达到:2.0mRAD  • 最小聚焦距离可达:0.15m  • 测温范围最高可达:550 ℃  • 可见光像素高达: 500万  功能升级:实现灵活操作及查阅  1. 手动对焦模式:可以在0.15米距离进行拍摄,对于芯片或贴片元器件等小目标可清晰检测。  2. 多个可移动点显示功能:可在显示屏任意一点上显示温度数据,方便观察。  3. 连续拍摄功能:可对疑似问题点的连续温度变化情况进行定时自动连续拍摄,检测人员无需长时间在现场等待,节约检测时间。  4. 高低温自动捕捉:可提高工作效率,避免错失可疑点。  5. AVI和带温度数据格式的录像模式,并可结合趋势分析软件对温度数据做趋势图和记录。  典型应用领域:  照明、电子、家电、机电、装备产品研发等领域http://ng1.17img.cn/bbsfiles/images/2016/06/201606161547_597146_3116934_3.jpg  电路板元器件检测http://ng1.17img.cn/bbsfiles/images/2016/06/201606161547_597147_3116934_3.jpg  LED灯发热不均http://ng1.17img.cn/bbsfiles/images/2016/06/201606161547_597144_3116934_3.jpg  制冷剂管道泄漏  更多详情,请查看福禄克红外热像解决方案中心,从精密到简便,从主管到基层,皆有所选!

  • 机器人的红外线距离测量原理

    超声波并不是测量机器人与物体间距离的唯一方法,也可以利用红外线。和超声波测量不同,红外线距离传感器不会去探测线光束的传播时间。因为对于我们感兴趣的距离,传输时间为10—15—10-12秒数量级。只有那些极为昂贵的电路才能应付这样的速度。红外线系统采用所谓视差技术。即测量已知光源和它的反射光束之间的反射角。它的工作方式是:红外线光束照射在一个场景上。光束经过传感器前的物体反射后。再照射到传感器。物体越接近,由于视差引起的角度变化就越大。反射光束照在一个非常小的线性光检测器矩阵上。光检测器矩阵连接分析物体距离的电路。这个电路可以提供数字或模拟输出。

  • 红外热像仪测温原理在线夹检测上的应用

    红外热像仪测温原理在线夹检测上的应用

    在输电系统中,线夹是重要设备,但线夹常常由于接触不良、腐蚀等原因,出现异常过热点,严重影响安全供电。使用利用Fluke红外热像仪测温原理可以准确地检测出过热点,及时排除隐患,确保供电安全。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_01_3169614_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_02_3169614_3.png线夹热缺陷形成原因线夹作为输电线路的重要金具,其可靠性是影响电网长期安全稳定运行的重要因素。根据缺陷所产生的原因不同,我们通常归纳为以下几类:1 长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良。2 由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。如接头连接不良,螺栓,垫圈未压紧或过紧。3 长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低。4 负荷电流不稳或超标等。热缺陷的划分 根据GB763-90以及实测数据统计分析,按照热缺陷温升的高低及对设备的危害程度可将其分为一般性热缺陷、严重性热缺陷和危险性热缺陷三种。1 一般性热缺陷:其温升范围在10~20℃之间,与相同运行条件下的设备相比,该接头有一定的温升,用红外成像仪测量仅有轻微的热像特征,此种情况应引注意,检查是否系负荷电流超标引起,并加强跟踪,防止缺陷度的加深。2 严重性热缺陷:发热点温升范围在20~40℃之间,或实际温度在60~80℃之间,或设备相间温差范围在1.5~2.0倍之间,热像特征明显,缺陷处已造成严重热损伤,对设备运行构成严重的威胁,此种缺陷应严加监视,条件允许时应尽快安排停运处理。3 危险性热缺陷:发热点温升超过40℃,或者最高温度已超过国标GB763-90所规定的该材料最高允许值。热像图非常清晰,该种缺陷随时可能造成突发性事故,应立即退出运行,进行彻底检修。Fluke红外热像仪的优势1 Fluke已申请专利的IR-Fusion技术除了拍摄红外图像外,还同时捕获一幅数字照片,将其融合在起,有助于识别和定位故障,从而能够在第一时间正确的修复故障。2 Fluke Ti系列热像仪配备了功能强大的软件,用于存储和分析热图像并生成专业报告。通过该软件,可以对存储在从热像仪下载的图像中发射率、反射温度补偿以及调色板等关键参数进行调节,更好地利用红外热像仪测温原理。而这些都可以在办公室进行,提高了检查的安全性和方便性。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_03_3169614_3.png http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_04_3169614_3.png没有进行修正的线夹 进行发射率及背景温度修正的线夹如何才能做好线夹的检测? 线夹因测量距离较远,利用红外热像仪测温原理测量时一般需加配一个长焦(望远镜)镜头,镜头的放大倍数以3倍(或称9°镜头)为宜。在正常状态下,线夹的温度比周围的环境温度高,如环境温度为10℃,线夹温度通常为20℃至30℃;但有时使用热像仪检测到的线夹温度却低于环境温度,这是由于下列原因所造成的:1 没有准确聚焦 红外热像仪需要进行准确的调焦才能得到准确的辐射能量;当没有准确调焦,热像仪得到的辐射能量会大大减少,根据红外热像仪测温原理,这样检测的温度值自然就会出现较大误差;Fluke红外热像仪的画中画(PIP)功能可以帮助进行准确聚焦,其操作非常简单直观:被检测线夹所在的输电线路穿过红外及可见光部分,转动调焦旋钮,当红外部分的输电线与可见光部分的输电线衔接完好时调焦完成,反之红外和可见光部分的输电线不能完好衔接。2 发射率修正 线夹的检测与其他变、配电设备的检测不同,一般需要检测其真实的绝对温度而非相对温差,故对线夹的发射率进行修正是必要的,以目前常用的高氧化铝材质的线夹为例,其发射率需修正为0.30,若使用红外热像仪上工厂设置值0.95进行检测,就可能出现较大误差。3 背景温度补偿修正 线夹的红外热像检测是向上往天空方向,故线夹的背景温度必需以天空的温度进行修正而非线夹所处的环境温度。若天空晴朗,背景温度会超过热像仪测量下限,这时背景温度补偿参数以所能够设置的最低温度进行修正;若天空有云,则背景温度补偿参数以实际检测的天空温度进行修正。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191649_01_3169614_3.png

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制