当前位置: 仪器信息网 > 行业主题 > >

微生物菌落检测仪

仪器信息网微生物菌落检测仪专题为您提供2024年最新微生物菌落检测仪价格报价、厂家品牌的相关信息, 包括微生物菌落检测仪参数、型号等,不管是国产,还是进口品牌的微生物菌落检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微生物菌落检测仪相关的耗材配件、试剂标物,还有微生物菌落检测仪相关的最新资讯、资料,以及微生物菌落检测仪相关的解决方案。

微生物菌落检测仪相关的论坛

  • 【云唐仪器】菌落总数快速检测仪的作用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404251008416839_5929_5604214_3.jpg!w690x690.jpg[/img]  菌落总数快速检测仪的作用不仅限于食品安全领域,还广泛应用于医药、环保、农业等多个行业。以下是对其作用的具体探讨:  在食品安全领域,菌落总数快速检测仪能够迅速、准确地检测出食品中的微生物污染情况,为食品安全监管提供有力支持。在食品生产、加工、运输和销售的各个环节中,微生物污染是一个不可忽视的问题。一旦食品受到污染,不仅会影响食品的品质和口感,还可能对人体健康造成危害。而菌落总数快速检测仪则能够快速检测出食品中的微生物数量,帮助企业和监管部门及时发现并控制污染源,确保食品安全。  在医药领域,菌落总数快速检测仪同样具有重要的作用。药品作为一种特殊商品,其质量和安全性直接关系到患者的生命健康。药品在生产过程中,如果不严格控制微生物污染,就可能导致药品变质、失效甚至产生有害物质。而菌落总数快速检测仪则能够及时、准确地检测出药品中的微生物污染情况,为药品质量的监控和保障提供有力支持。  此外,在环保领域,菌落总数快速检测仪也能够发挥重要作用。水体、土壤等环境中的微生物污染是影响生态环境质量的重要因素之一。通过使用菌落总数快速检测仪,环保部门可以快速检测出环境中的微生物污染情况,为环境质量的评估和治理提供科学依据。  在农业领域,菌落总数快速检测仪同样具有应用价值。农业生产中,土壤和灌溉水中的微生物污染会直接影响作物的生长和产量。通过使用菌落总数快速检测仪,农民和农业部门可以及时了解土壤和水源中的微生物污染情况,采取相应的措施进行防治,提高农业生产效益和产品质量。  综上所述,菌落总数快速检测仪在多个领域中都具有广泛的应用价值,能够帮助人们快速、准确地检测出环境中的微生物污染情况,为各行业的健康发展提供有力支持。随着科技的不断进步和应用领域的不断拓展,相信菌落总数快速检测仪将会在未来发挥更加重要的作用。

  • 【云唐仪器】菌落总数快速检测仪用途

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403080953217092_7664_5604214_3.jpg!w690x690.jpg[/img]  菌落总数快速检测仪是一种广泛应用于食品安全、环境监测和医疗卫生等领域的仪器。它通过快速、准确地检测样品中的菌落总数,为各个领域提供了重要的信息,有助于保障公众的健康和安全。  在食品安全领域,菌落总数快速检测仪被广泛应用于食品生产和加工过程中的质量控制。通过对食品样品中的菌落总数进行检测,可以及时发现食品中的微生物污染情况,从而采取相应的措施进行处理,防止食品安全问题的发生。此外,菌落总数快速检测仪还可以用于食品储存和运输过程中的监测,确保食品在整个供应链中的质量稳定。  在环境监测领域,菌落总数快速检测仪可以用于检测水源、空气、土壤等环境中的微生物污染情况。通过对环境样品中的菌落总数进行监测,可以评估环境的卫生状况,及时发现污染源,为环境保护和治理提供有力的支持。  在医疗卫生领域,菌落总数快速检测仪对于医院、实验室等场所的卫生监测具有重要意义。通过对医疗器械、手术器械、手术室等环境的菌落总数进行检测,可以评估医疗环境的卫生状况,确保医疗过程的安全和有效性。  总之,菌落总数快速检测仪的用途广泛,不仅为食品安全、环境监测和医疗卫生等领域提供了便捷、准确的检测手段,也为保障公众健康和安全发挥了重要作用。随着科技的不断发展,相信菌落总数快速检测仪将会在更多领域得到应用和推广。

  • 【云唐仪器】表面菌落数快速检测仪是什么仪器

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403080951006405_8602_5604214_3.jpg!w690x690.jpg[/img]  表面菌落数快速检测仪是一种先进的科学仪器,旨在快速、准确地检测和计数物体表面的微生物菌落数量。这款仪器以其高效、便捷和精准的特点,在食品安全、医疗卫生、环境监测等领域发挥了重要的作用。  表面菌落数快速检测仪采用了先进的生物传感技术和光学成像系统,能够非接触式地对物体表面进行扫描和检测。它可以在短时间内捕捉到微生物菌落发出的微弱光信号,并通过内置的高性能计算机系统进行数据处理和分析,从而快速得出菌落数量。  与传统的菌落计数方法相比,表面菌落数快速检测仪具有更高的检测效率和更低的误差率。它不仅可以在短时间内完成大量的检测任务,而且可以在不需要专业人员操作的情况下进行自主检测,大大降低了检测成本和时间成本。  此外,表面菌落数快速检测仪还具有广泛的应用范围。它可以用于检测食品、药品、医疗器械等物品的卫生质量,也可以用于监测环境中的微生物污染情况。通过使用该仪器,人们可以更加及时地掌握微生物污染的情况,从而采取相应的措施,保障人们的健康和安全。  总之,表面菌落数快速检测仪是一种高效、便捷、精准的科学仪器,为食品安全、医疗卫生、环境监测等领域提供了强有力的技术支持。它的出现,不仅提高了检测效率和质量,也为人们的生活带来了更多的便利和安全保障。

  • 食品微生物检测菌落总数限量标准的疑问

    食品微生物检测,菌落总数限量标准规定样品中蛋白质含量大于40%时,菌落总数限量为40000,如果是氨基酸含量大于40%是否适用于这一限量标准呢?(正常情况下的限量标准是1000)

  • 微生物检测出现红色菌落是什么细菌?

    各位同仁大家好: 小女子我刚进入食品检测这一行业,还望大家多多指教! 昨天我们实验室在做菠萝丁的微生物检测,发现检测细菌总数的培养皿中出现大量的红色菌落,想请问下,这红色菌落是什么物质,你们有没有遇见过这样的情况呢? 微生物实验会不会有被感染之类的危险呢?望大家多多指教!谢谢!

  • 表面菌落数快速检测仪故障排查与保养

    [size=16px]  表面菌落数快速检测仪故障排查与保养  表面菌落数快速检测仪的故障排查与保养是非常重要的,以确保仪器的准确性和延长其使用寿命。以下是一些建议和步骤:  故障排查:  检查电源与连接:  确保电源插头插好,电源线没有断开或损坏。  检查电缆和电源插头是否有损坏或松动的现象。  检查仪器操作:  如果仪器在操作过程中突然停止运行,可能是由于内部某个部件损坏或温度过高。此时,应先检查仪器是否过热,如果是,则关闭仪器并让其冷却。  如果问题仍然存在,可能是其他硬件问题,建议联系厂家寻求维修或更换故障部件。  软件与校准检查:  定期进行校准,确保数据准确性。如果发现校准不准确,可能是由于样品浓度不均匀或遗留的杂质导致的。此时,可以尝试调整校准设置、清除样品中的杂质、重新标定来解决这个问题。  检查操作过程中是否有不当之处,如样品处理或操作错误,这些都可能导致得到的数据与实际情况不符。  保养:  清洁与消毒:  使用合适的消毒剂定期清洗计数板和培养皿,建议每次使用后都进行清洁和消毒,以防止细菌和真菌的滋生。  避免使用漂白水或强酸等刺激性化学品,以免损坏仪器表面。  存储:  将仪器存放在干燥、通风、无尘和避光的地方,以避免灰尘污染和紫外线照射。  定期更换部件:  根据使用频率和厂家建议,定期更换易损耗的部件,如滤纸和灯管等。  总之,对于表面菌落数快速检测仪,定期的故障排查和保养是非常必要的,这可以确保仪器的准确性和可靠性,从而提高实验的准确性并减少污染风险。同时,如果遇到难以解决的问题,建议联系厂家或专业的维修人员进行处理。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403251048219590_7849_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 微生物致病菌检测仪应用场景

    微生物致病菌检测仪是一款采用生物化学反应方法检测ATP(三磷酸腺苷)含量的科学仪器。由于活细胞中都含有ATP,通过测量ATP的含量,可以判断被测样品中微生物及其他生物参与的多少,进而用于判断卫生情况。  微生物致病菌检测仪具有操作相对简单、高灵敏性的特点,但非专业人员在使用时仍需注意一些问题,以免影响仪器检测的准确性。  微生物致病菌检测仪的应用场景包括但不限于以下领域:  制药行业:用于检查原料药、注射用水、口服液、片剂、胶囊、生物制品及制剂的微生物限度,确保药品质量和安全性。  疾控中心:用于检测江、河、湖、海、水样,以及空调冷凝水、生活饮用水等水质的细菌总数和致病菌,进行水质监测和评估。  食品行业:适用于饮料、矿泉水、纯净水等产品的菌落总数检查,确保食品质量和安全。  化妆品行业:用于检测各种用水及产品中的微生物含量,保证产品质量和安全性。  医院和医疗保健机构:用于空气微生物的采样研究,如洁净室和手术室的无菌检测,以及室内环境的微生物监测。  科研机构:用于进行微生物限度研究和实验,如药物研发、生物工程等领域。  此外,还有其他需要进行微生物限度检测的领域,如发酵、化工等,以及需要保证产品质量和安全性的其他行业。  请注意,虽然微生物致病菌检测仪具有广泛的应用,但在使用过程中仍需遵循相关操作规范,以确保检测结果的准确性和可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405091043269783_6130_4214615_3.jpg!w690x690.jpg[/img]

  • 【第二届网络原创作品大赛】食品卫生微生物学检测菌落总数测定测量结果的不确定度评定

    食品卫生微生物学检测菌落总数测定测量结果的不确定度评定依据JJF1059-1999《测量不确定度评定与表示》、CNAL/AG06《测量不确定度政策实施指南》和CNAL/AR11《测量不确定度政策》分析一、测量方法按照国家标准GB/T4789.2-2003《食品卫生微生物学检验菌落总数测定》规定的检测程序进行。检测过程为:1) 以无菌操作将检样25g(mL)剪碎放于含有225mL灭菌生理盐水或其它稀释液灭菌玻璃瓶内(瓶内预置适当数量的玻璃珠)或灭菌乳钵内,经充分振摇或研磨做出1:10的均匀稀释液。固体检样在加入稀释液后,最好置均置器中以8000r/min~10000r/min的速度处理1min,做出1:10的均匀稀释液。2) 用1mL灭菌吸管吸取1:10稀释液1mL,沿管壁徐徐注入含有9mL灭菌生理盐水或其它稀释液的试管内(注意吸管尖端不要触及管内稀释液),振摇试管,混合均匀,做出1:100的稀释液。3) 另取1mL灭菌吸管,按上条操作方法,做10倍递增稀释,如此每递增稀释一次,即换用1支1mL灭菌吸管。4) 根据食品卫生标准要求或对标本污染情况的估计,选择2个~3个适宜稀释度,分别在做10倍递增稀释的同时,即以吸取该稀释度的吸管移1mL稀释液于灭菌培养皿内,每个稀释度做两个培养皿。5) 稀释液移入培养皿后,应及时将凉至46℃营养琼脂培养基(可放置于46℃±1℃水浴保温)注入培养皿约15mL,并转动培养皿使混合均匀。同时将营养琼脂培养基倾入加有1mL稀释液灭菌培养皿内作空白对照。6) 待琼脂凝固后,翻转平板,置36℃±1℃温箱内培养48h±2h。7) 作平板菌落计数时,可用肉眼观察,必要时用放大镜检查,以防遗漏。在记下各平板的菌落数后,求出同稀释度的各平板平均菌落总数。8) 选取菌落数在30~300之间的平板作为菌落总数测定标准。一个稀释度使用两个平板,应采用两个平板平均数,其中一个平板有较大片状菌落生长时,则不宜采用,而应以无片状菌落生长的平板作为该稀释度的菌落数,若片状菌落不到平板的一半,而其余一半中菌落分布又很均匀,即可计算半个平板后乘2以代表全皿菌落数。平板内如有链状菌落生长时(菌落之间无明显界线),若仅有一条链,可视为一个菌落;如果有不同来源的几条链,则应将每条链作为一个菌落计。同一样品重复测量10次,取其平均值作为测量结果。10次重复测量的结果见表1。表1 单一样品重复测量的计算过程序号测量结果xilgxilgxi- (lgxi- )21350004.5441-0.030670.0009412880004.94450.369730.136731000005.00000.425230.18082142000005.30100.726230.527415650004.81290.238130.056706696003.9823-0.592470.3510217500004.69900.124230.015433898003.9912-0.583570.340554990003.9542-0.620570.38510710330004.5185-0.056270.003166平均值599404.5748二、数学模型从数据看,由于测量结果发散极大,与之相比其它不确定度来源(人员、标准、设备、环境、方法等)无疑均可以忽略不计,这也是微生物测量的特点。因此仅考虑由测量结果发散引入的不确定度分量。于是数学模型可以简单地写为y=x三、测量不确定度评定由于重复测量结果中最大值和最小值相差20倍。因此用常规的直接根据平均值得到标准偏差的方法显得有些不合理。通常的做法是取对数以后在用常规的贝塞尔方法进行计算。具体计算过程如下:1) 测量结果xi(表1第2列);2) 取对数lgxi,得到对数lgxi的平均值为: =4.5748(表1第3列);3) 求残差lgxi- (表1第4列)4) 求残差的平方(lgxi- )(表1第5列),得到残差平方和为 =1.9978595) 合成标准不确定度测量结果为10次重复测量的平均值,故平均值的标准不确定度为 =0.14906) 扩展不确定度由于置信概率p=95%,自由度ν=10-1=9,由t分布表可得k=2.26。于是 7) 取反对数,由lgx坐标回到x坐标由于lgx与x之间的非线性关系,不能直接求扩展不确定度U的反对数,只能给出微生物含量的可能区间。因此首先确定lgx的取值范围为:lgx=4.5748±0.3367,或写成4.2381≤lgx≤4.9115取反对数后可得 1.7×104≤x≤8.2×104四、不确定度报告由于微生物测量结果的特殊性,所以其测量结果的不确定度表示也与其他专业不同。按照国家标准GB/T4789.2-2003《食品卫生微生物学检验菌落总数测定》规定的检测程序进行,被测样品微生物菌落总数(十次测量平均值)在1.7×104和8.2×104之间。[img]http://bbs.instrument.com.cn//images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=194237]食品卫生微生物学检测菌落总数测定测量结果的不确定度评定.doc[/url][color=#DC143C][size=4][font=黑体]应疯子哥的要求,把公式及图片贴上来,在5楼-7楼有版主ROGERSW的完整佳作。[/font][/size][/color]

  • 如何检测生乳中的菌落总数?

    如何检测生乳中的菌落总数?

    [align=center][size=18px]如何检测生乳中的菌落总数?[/size][/align][size=16px]微生物无处不在,生[/size][size=16px]乳中的微生物种类很多,主要有细菌、酵母菌、霉菌和噬菌体。目前最多的是要检测生乳中的菌落总数,那生乳中的菌落总数怎么测呢?[/size][size=16px]首先我们来看一下国家标准,标准规定生乳中菌落总数限量是≤2000000CFU/mL。[/size][size=16px]检测生乳中菌落总数一共有这几种方法。第一种是平板计数法,这种方法检测比较准确,但是检测的时间很长,因为它中间有一个48h的培养。如果着急的话这种方法就不太建议。第二种方法是美兰褪色法,美兰褪色法大家应该不陌生,就是在新鲜乳中加入亚甲基蓝,然后通过褪色的时间判断微生物的含量,褪色时间越快,微生物含量就越多。这样就能间接判断生乳的质量。还有一种方法就是用仪器检测了。[/size][size=16px]我们来详细介绍一下这个方法,前两种方法大家都烂熟于心了,我就不过多介绍了,我们来看看仪器检测该怎么用。[/size]1、 [size=16px]仪器介绍[/size][align=left][img=,690,284]https://ng1.17img.cn/bbsfiles/images/2023/10/202310181156583261_3551_6198248_3.png!w690x284.jpg[/img][/align][align=left][/align][align=left][size=16px]图一是仪器,图二是检测管,[/size][size=16px]菌落总数检测管底部的有一个透明的传感器,用于检测位于传感器上方的液体培养基中的微生物代谢所产生的 CO[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][font='calibri'][size=16px]。[/size][/font][size=16px]CO[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px] 是微生物代谢的普遍产物。当 CO[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px] 进入传感器时会改变其光学性质,并由暗色变为黄色(表明二氧化碳的存在)。只有气体可以穿过这个传感器,而液体、 微生物和颗粒物质均不能进入;这样光学读数不会被样本遮蔽。[/size][/align][align=left]2、 [font='calibri'][size=16px]操作步骤[/size][/font][/align][align=left][size=16px](1)将 25ml(g)固体样品加入 225ml 无菌生理盐水水中,混合均匀; [/size][/align][align=left][size=16px](2)吸取 1ml 稀释液加入 BFS-TVC 检测管中;拧紧摇匀后放入检测仪中。 [/size][/align][align=left][size=16px](3)在电脑中输入相关信息,点击“Start”开始检测; [/size][/align][align=left][size=16px]结果判定:曲线法定量检测,直接报告产品的 CFU 值;限定值法检测,在 系统运行过程中,如果出现 DT 检测时间,则样品菌含量超标;如果未出现DT,则样品菌含量不超标。 [/size][/align][align=left][size=16px]目前这几种方法就是最常用的方法,平板计数法,美兰褪色法,微生物仪器法。如果能有更加简便并且测试准确的方法就好了。仪器其实还是有些麻烦的,比较仪器体积很大,来回搬运不方便,还需要检测管的耗材。[/size][/align][align=left][size=16px]希望我总结的这几种方法能够对各位朋友提供一点帮助。[/size][/align][align=left][/align][align=left][/align]

  • 水中微生物检测方法-细菌总数检测-ATP??

    在BCEIA展会上,看到大的仪器厂家开始向小型化仪器方面发展,其中有一款便携式ATP,主要检测细菌总数,非常快速,我联想到我们水质菌落总数是需要培养的,时间很长。那我们是不是菌落总数也可以采用这样的方法??ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少。

  • 【转帖】达能:菌落数不在检测标准

    香港消委会近日的一份“测试瓶装水卫生程度”的调查结果将几个高端水品牌纷纷拉下马。昨天,在调查中被检出菌落数超标的依云水向本报发来声明表示,其产品符合国际标准,微生物菌落总数并非检测项目,而是检测致病菌数。   香港消委会在其官方网站公布“测试瓶装水卫生程度”的调查结果。报告中称,香港消费会对40款瓶装水进行了测试,包括11款蒸馏水、4款矿物质饮品和25款天然矿泉水。其中8款天然矿泉水样本存在含菌情况,每毫升含有2至550个菌落。这其中就包括作为依云水。   依云水生产商达能集团昨天向本报发来声明称,在水中存在微生物菌落是天然矿泉水产品的固有特征,国际食品法典和中国国家质量监督检验检疫总局均不将微生物菌落总数纳入检测项目,而是检测致病菌数。   依云方面称,目前在中国市场和香港地区销售的依云天然矿泉水均符合以上检验机构发布的所有标准。

  • 微生物的分离纯化及稀释平板菌落计数

    一、实验原理稀释平板测数是根据微生物在高度稀释条件下固体培养基上所形成的单个菌落是由一个单细胞繁殖而成这一培养特征设计的计数方法,即一个菌落代表一个单细胞。计数时,首先将待测样品制成均匀的繁殖稀释液,尽量使样品中的微生物细胞分散开,使其成单个细胞存在,否则一个菌落就不只是代表一个细胞,再取一定稀释度、一定量的稀释液接种到平板中,使其均匀分布于平板中的培养基内。经培养后,由单个细胞生长繁殖形成菌落,统计菌落数目,即可计算出样品中的含菌数。此记数方法所计算的菌数是培养基上长出来的菌落数,故又称活菌计数。一般用于某些产品检定,如根瘤菌剂等产品检定,生物制品检验,土壤含菌量测定及食品、水源的污染程度的检验。自然条件下,微生物常以群落状态存在,这种群落往往是不同种类微生物的混合体。为了研究某种微生物的特性或者要大量培养和使用某种微生物,必须从这些混杂的微生物群落中获得纯培养,这种获得纯培养的方法称为微生物的分离与纯化。在自然界中,土壤是微生物生活的良好环境,其中生活的微生物数量和种类都是极其丰富的,因此土壤是人类开发利用微生物资源的重要基地。土壤中的微生物数量、种类与土壤肥力有关,肥沃的土壤中多,贫瘠土壤中少。其生理类群则与土壤的其它理化性质,如通气、pH有关,例如在通气良好的菜园土中,好气性微生物占有绝对优势。本实验以菜园土为材料分离土壤中的好气性细菌,并进行数量测定。分离微生物时,一般是根据该微生物对营养、pH、氧气等要求的不同,供给它们适宜的生活条件,或加入某种抑制剂造成只利于该菌种生长,不利于其它菌种生长的环境,从而淘汰不需要的菌种。分离微生物常用的方法有稀释平板分离法和划线分离法,根据不同的材料,可以采用不同方法,其最终目的是要在培养基上出现欲分离微生物的单个菌落,必要时再对单个菌落进一步分离纯化。在用稀释平板分离微生物时,还可以同时测定待分离的微生物的数量。放线菌与细菌同属原核微生物,是重要的抗生素产生菌,在土壤中的数量仅次于细菌,尤其是在有机质丰富、透气性好的中性到微碱性土壤中的数量较多。本实验采用高氏一号琼脂培养基分离和计数菜园土中的放线菌。真菌在土壤中的数量次于细菌和放线菌,主要在有机质丰富、透气性好的偏酸性土壤中较多。分离土壤中的真菌并不难,但由于其菌落大,容易扩展,计数准确性较低。本实验采用加有氯霉素或庆大霉素和孟加拉红的马丁氏培养基分离及计数菜园土中的真菌。按一般资料介绍为链霉素,但此种抗生素要先配成一定浓度的溶液,且应于倒平板前才加入培养基中。在此培养基上,放线菌和细菌被氯霉素或庆大霉素和孟加拉红所抑制,但大多数真菌能够生存,且其菌落受孟加拉红的抑制而较小,从而避免了某些真菌的扩散蔓延而带来的数量上的误差。

  • 【原创大赛】食品检测中一次菌落的鉴定

    【原创大赛】食品检测中一次菌落的鉴定

    食品检测中一次菌落的鉴定【生活中的仪器分析】食品安全——“菜”米油盐酱醋茶大检测 最近我们做的样品到了国外之后,出现微生物偏高现象,菌落状态比较怪异,是一个小的白点,客户发过来菌落如图: http://ng1.17img.cn/bbsfiles/images/2013/12/201312172036_482705_2082444_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/12/201312172036_482706_2082444_3.jpg 同时我们也在查找原因,由于我们的产品是粘粉产品,而且出现这种菌落的产品并不普遍,只是很少一部分,概率很低,通过对不同的原料和生产过程的半成品和接触面进行验证,最后发现在面包粉中偶尔会出现这种状况,在一次实验中被我们捕做到了,图片很相似:http://ng1.17img.cn/bbsfiles/images/2013/12/201312172042_482708_2082444_3.png http://ng1.17img.cn/bbsfiles/images/2013/12/201312172042_482709_2082444_3.jpg 菌落为白色的小点,表面光滑、边缘整齐的菌落,菌落周围无溶血。国外客户怀疑为酵母菌,为了进一步的确认,挑取典型的菌落进行了纯化,并找专家使用VITEK进行进一步的鉴定,鉴定结果如下: http://ng1.17img.cn/bbsfiles/images/2013/12/201312172046_482710_2082444_3.jpg生化卡成分http://ng1.17img.cn/bbsfiles/images/2013/12/201312172049_482711_2082444_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312172049_482712_2082444_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312172049_482713_2082444_3.jpg 鉴定结果为Kocuria kristinae(克氏库克菌),属于微球菌科微球菌属,分布在自然环境及哺乳动物皮肤,革兰氏阳性,罕见运动,不生芽孢。严格好氧最适温度25~37℃。最初出现在脊椎动物皮肤和土壤,但从食品和空气中也常常能分离到。 微球菌属在自然界中的许多地方被分离出来,包括动物的皮肤、植物、土壤、入海口、海边沙地、海水和淡水中、乳制品甚至空气中,在哺乳动物的皮肤之中有大量的菌落存在。并不是日本客户怀疑的乳酸菌,我们现在主要还是从面包粉车间的卫生进行控制。 同时我们现在一直在监视面包粉的微生物指标,对于类似的菌落,我们也进行酵母菌的检测,从现在实验结果看来并不是酵母菌,实验还在持续中,欢迎各位专家多多指导。

  • 讲解微生物细菌检测仪作用和用途

    微生物细菌检测仪是一种专门用于检测生物体、环境水样、食品、化妆品和医药产品表面ATP(三磷酸腺苷)含量的装置。ATP是所有活细胞和一些非细胞生物(如病毒、霉菌和酵母菌等)所含的核苷酸之一,因此微生物细菌检测仪可以通过检测表面ATP含量来检测这些生物的存在。  微生物细菌检测仪的工作原理是通过荧光素酶作用的ATP检测试剂将样品表面的ATP转化为荧光素,然后利用荧光素酶催化的发光特性来测定样品表面的ATP含量。这种测量方法快速、准确、简单,一般检测时间不超过30秒。  微生物细菌检测仪的作用和用途非常广泛,它可以用于以下领域:  食品生产和加工:检测食品生产和加工过程中的卫生情况,确保食品质量和安全。  医疗设备和药品检测:用于检测医疗设备、药品和患者样本中的微生物,确保患者的安全和健康。  环境监测:检测水源和空气中的微生物污染,评估环境质量。  化妆品和医药产品检测:确保这些产品的生产和储存过程中的卫生条件符合标准。  此外,微生物细菌检测仪的使用方法通常包括打开机器、放入试子、采集样品、挤压拭子头、将拭子插入仪器中检测等步骤。在操作过程中,需要遵循相关操作规范,以确保检测结果的准确性和可靠性。  总之,微生物细菌检测仪是一种重要的检测工具,它可以帮助我们快速、准确地检测生物体、环境水样、食品、化妆品和医药产品表面的微生物含量,为食品安全、医疗、环境监测等领域提供有力的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405091048555937_3652_4214615_3.jpg!w690x690.jpg[/img]

  • 乳酸菌和菌落总数的检测

    固体饮料里面有添加了乳酸菌,在检测固体饮料的菌落总数的时候,按照菌落总数的检测方法会把乳酸菌也给检测出来了吗? 这样的话其菌落总数一定会超标 ,没有可以执行的标准

  • 菌落总数的检测

    员工手部的菌落总数可不可以直接在培养基上涂抹呀?以前是用棉球檫拭后稀释培养,我现在想用倒好的培养基直接用手涂抹来检测菌落总数,不知道可不可以!做过的培养可以指教一下!谢谢

  • 病毒细菌检测仪如何评估检测数据

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  病毒细菌检测仪如何评估检测数据,病毒细菌检测仪评估检测数据的方法涉及多个方面,主要包括数据的准确性、灵敏度、特异性、重复性以及与标准方法的对比等。以下是对这些方面的详细分析:  一、数据的准确性  与传统方法的对比:病毒细菌检测仪的检测结果应当与传统微生物培养方法或其他准确的微生物检测方法具有一致性。这是评估数据准确性的重要标准。通过对比两种方法的结果,可以判断检测仪的准确度。  标准物质检测:使用已知浓度的标准物质(如特定种类的病毒或细菌)进行检测,将检测结果与标准物质的浓度进行对比,以评估检测仪的准确性。  二、灵敏度与特异性  灵敏度:病毒细菌检测仪应能够在低微生物含量下进行可靠的检测。这要求检测仪具有较高的灵敏度,能够检测到微量的微生物。  特异性:检测仪的检测结果应主要受到目标微生物的影响,而不受其他物质的干扰。特异性是评估检测仪在复杂环境中准确识别目标微生物的能力。  三、重复性  多次检测:在相同条件下对同一样本进行多次检测,观察检测结果的稳定性。如果多次检测结果基本一致,说明检测仪的重复性良好。  变异系数:计算多次检测结果的变异系数,以量化检测结果的稳定性。变异系数越小,说明检测仪的重复性越好。  四、检测标准与范围  检测标准:参考相关国家标准或行业标准,如《GB/T 4789.2-2022 食品微生物学检验 菌落总数测定》等,评估检测仪的检测结果是否符合标准要求。  检测范围:了解检测仪的检测范围,确保其在预定范围内进行检测。超出检测范围的结果可能不准确或无法解释。  五、数据分析与解读  数据分析:使用统计软件对检测数据进行处理和分析,如计算平均值、标准差、置信区间等,以量化检测结果的不确定性。  结果解读:根据数据分析结果和检测仪的说明书或操作手册,对检测结果进行解读。注意区分合格、警告和不合格等不同的结果等级。  六、实际应用中的注意事项  样品前处理:确保样品在检测前经过适当的前处理,如稀释、培养等,以提高检测的准确性和灵敏度。  操作规范:遵循检测仪的操作规程和注意事项,确保操作过程规范、准确。  维护保养:定期对检测仪进行维护保养,如清洁、校准等,以保证其性能和稳定性。  综上所述,评估病毒细菌检测仪的检测数据需要从多个方面进行综合考量。在实际应用中,应结合具体情况选择合适的评估方法和标准。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407171141238127_4767_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 霉菌与菌落总数检测问题

    请教一下:霉菌与菌落总数检测时要在2个无菌室进行前处理吗?有的人说要分开检测,防止交叉污染;有的人说在一起操作没事。我想问有没有什么标准或文件说要分开操作,大家的实验室是怎么操作的?我说的实验室是通过资质认定或CNAS的检测机构

  • 食品微生物学检验 菌落总数测定 方法验证

    目的: 通过对食品中菌落总数测定方法进行验证,证明我公司采用标准GB 4789.2-2016《食品安全国家标准 食品微生物学检验 菌落总数测定》规定的方法对食品中菌落总数的测定满足检测要求。[b]1 实验室基本情况[/b][align=center]表1-1参加验证的人员情况表[/align] [table][tr][td] [align=center]姓名[/align] [/td][td] [align=center]性别[/align] [/td][td] [align=center]职务[/align] [/td][td] [align=center]所学专业[/align] [/td][td] [align=center]从事相关分析工作年限[/align] [/td][/tr][tr][td] [align=center]A[/align] [/td][td] [align=center]女[/align] [/td][td] [align=center]微生物主管[/align] [/td][td] [align=center]食品科学与工程[/align] [/td][td] [align=center]8年[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]女[/align] [/td][td] [align=center]微生物组长[/align] [/td][td] [align=center]食品科学与工程[/align] [/td][td] [align=center]5年[/align] [/td][/tr][/table][align=center]表1-2使用仪器情况登记表[/align] [table][tr][td] [align=center]仪器名称[/align] [/td][td] [align=center]仪器型号[/align] [/td][td] [align=center]制造厂商[/align] [/td][td] [align=center]备注[/align] [/td][/tr][tr][td] [align=center]生化培养箱[/align] [/td][td] [align=center]SPX-250B-Z[/align] [/td][td] [align=center]上海博迅实业有限公司医疗设备厂[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]立式压力蒸汽灭菌器[/align] [/td][td] [align=center]YXQ-LS-75SⅡ[/align] [/td][td] [align=center]上海博迅实业有限公司医疗设备厂[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]净化工作台[/align] [/td][td] [align=center]SW-CJ-2D[/align] [/td][td] [align=center]苏州博莱尔净化设备有限公司[/align] [/td][td] [align=center] [/align] [/td][/tr][/table][align=center]表1-3使用试剂登记表[/align] [table][tr][td] [align=center]试剂名称[/align] [/td][td] [align=center]批号[/align] [/td][td] [align=center]生厂商[/align] [/td][td] [align=center]备注[/align] [/td][/tr][tr][td] [align=center]氯化钠[/align] [/td][td] [align=center]160913[/align] [/td][td]西陇科学股份有限公司[/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]平板计数琼脂(PCA)[/align] [/td][td] [align=center]171223[/align] [/td][td]北京陆桥技术股份有限公司[/td][td] [align=center] [/align] [/td][/tr][/table][b]2 方法验证过程[/b]2.1 菌液制备:挑取一粒大肠埃希氏菌(ATCC25922)瓷珠置于BHI液体培养基中,24h过夜培养,使之菌悬液浓度在10[sup]9[/sup] CFU/mL,用无菌生理盐水按照10倍系列稀释法,稀释至10[sup]-6[/sup]~10[sup]-7[/sup]。2.2 样品制备:2.2.1 试验组:取25 mL2.1中制备的菌液,加入到225 mL无菌盐水中,制成每毫升10 CFU~100 CFU的样品原液,作为试验组。2.2.2 供试品组:不添加任何菌的相同样品。2.3 培养基/试剂制备:2.3.1按GB4789.28-2013食品微生物学检验 培养基和试剂的质量要求配制。2.3.2根据供应商提供的配制说明进行配制。2.4 实验操作:2.4.1 接种及培养:选择3个稀释度的样品匀液,在进行10倍递增稀释时,每个稀释度分别吸取1 mL样品匀液于无菌平皿中,每个稀释度做两个平皿。同时,分别吸取1 mL空白稀释液加入两个无菌平皿内做空白对照。及时将15-20 mL冷却至46℃的PCA倾注平皿,并转动平皿使其混合均匀。待琼脂凝固后,36℃±1℃倒置培养48 h±2 h。为防止蔓延,可在琼脂凝固后在表面覆盖一层约4 mL的琼脂。2.4.2验证试验采用空白对照、人员比对进行试验,并分别计算实验结果及人员比对结果。2.5 测试数据: [table][tr][td=1,2] [align=center]人员[/align] [/td][td=1,2] [align=center]实验组别[/align] [/td][td=4,1] [align=center]稀释度[/align] [/td][td] [align=center]检测结果[/align] [/td][td] [align=center]平均结果[/align] [/td][/tr][tr][td=2,1] [align=center]10[sup]0[/sup][/align] [/td][td=2,1] [align=center]10[sup]-1[/sup][/align] [/td][td] [align=center]CFU/mL[/align] [/td][td] [align=center]CFU/mL[/align] [/td][/tr][tr][td=1,4] [align=center]A[/align] [/td][td] [align=center]试验组-1[/align] [/td][td] [align=center]47[/align] [/td][td] [align=center]43[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]45[/align] [/td][td=1,2] [align=center]46[/align] [/td][/tr][tr][td] [align=center]试验组-2[/align] [/td][td] [align=center]45[/align] [/td][td] [align=center]48[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]47[/align] [/td][/tr][tr][td] [align=center]供试品组-1[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]<1[/align] [/td][td=1,2] [align=center]<1[/align] [/td][/tr][tr][td] [align=center]供试品组-2[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]<1[/align] [/td][/tr][tr][td=1,4] [align=center]B[/align] [/td][td] [align=center]试验组-1[/align] [/td][td] [align=center]38[/align] [/td][td] [align=center]45[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]42[/align] [/td][td=1,2] [align=center]41[/align] [/td][/tr][tr][td] [align=center]试验组-2[/align] [/td][td] [align=center]43[/align] [/td][td] [align=center]35[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]39[/align] [/td][/tr][tr][td] [align=center]供试品组-1[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]<1[/align] [/td][td=1,2] [align=center]<1[/align] [/td][/tr][tr][td] [align=center]供试品组-2[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]<1[/align] [/td][/tr][/table][align=center] [/align][align=center]r(A)=log[sup]47[/sup]—log[sup]45[/sup]=0.02<0.25[/align][align=center]r(B)=log[sup]42[/sup]—log[sup]41[/sup]=0.03<0.25[/align]重复性:单人两次独立的单次实验结果的绝对差值,不应大于重复性限r=0.25,以10为底每g(或ml)中微生物计数的对数。[align=center]R=log[sup]46[/sup]—log[sup]41[/sup]=0.05<0.45[/align]复现性:人员比对结果符合标准要求,两人单次试验结果的绝对差值,不应大于复现性限R=0.45,以10为底每g(或ml)中微生物计数的对数。2.7是否对方法偏离? □是 ■否2.8 结论根据GB 4789.2-2016 《食品安全国家标准 食品微生物学检验 菌落总数测定》要求依法检测,试验人员比对结果符合规定。故我公司对食品中菌落总数的测定符合标准GB 4789.2-2016《食品安全国家标准食品微生物学检验菌落总数测定》的要求。

  • 微生物致病菌检测仪的应用有哪些

    微生物致病菌检测仪的应用有哪些

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310121022426573_6277_5604214_3.jpg!w690x690.jpg[/img]  微生物致病菌检测仪是一种用于检测食品、水源、医疗设备、药品、环境样本等中的微生物致病菌的仪器设备。其应用领域广泛,包括但不限于以下几个方面:  食品安全:检测食品中的细菌、真菌和病毒,以确保食品的卫生和安全。这包括肉类、奶制品、水果、蔬菜等各种食品。  饮用水和水源监测:用于监测自来水、井水、河流、湖泊等水源中的细菌、寄生虫和其他微生物,以确保饮用水的安全。  医疗设备和制药工业:用于检测医疗设备的消毒情况,确保其不受微生物污染。在制药工业中,它用于监测生产过程中的微生物污染,以确保药品的质量和安全。  医疗领域:用于检测医院环境、手术室、器械等的微生物污染,以预防医院感染和交叉感染。  环境监测:在环境科学中,用于监测空气、土壤、水体中的微生物,以研究环境污染和生态系统的健康。  制药和生物技术研究:用于研究生物反应器、发酵过程和生物制药生产中的微生物活动,以确保生产过程的质量和一致性。  医疗诊断:一些微生物致病菌检测仪可用于诊断感染性疾病,例如检测病原体,如细菌或病毒,从患者样本中。  这些应用领域表明微生物致病菌检测仪在维护公共健康、食品安全、环境保护和医疗保健方面发挥着关键作用。这些仪器采用不同的技术和方法来检测微生物,包括培养法、[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]、质谱法等,具体应用取决于需要检测的微生物类型和样本类型。

  • 浅谈水中菌落总数的检测方法

    [align=center][font='calibri light'][size=21px]浅谈水中菌落总数的检测方法[/size][/font][/align][align=left][font='calibri'][size=16px]之前在研究奶中菌落总数的检测方法的时候,偶然看到了水中菌落总数的方法,就想到既然都是液体,那是不是可以尝试用检测水中菌落总数的方法去检测牛奶中的菌落总数。[/size][/font][/align][align=left][font='calibri'][size=16px]我们先来看看水中菌落总数检测的方法。[/size][/font][/align][align=left][font='calibri'][size=16px]第一种:平皿计数法[/size][/font][/align][align=left][font='calibri'][size=16px]这个计数法是通过数菌落,一个单菌落就代表原样品中的一个单细胞。[/size][/font][/align][align=left][font='calibri'][size=16px]方法:样品10倍稀释→1ml稀释样品+15ml营养琼脂(45℃)混合→冷却凝固→37℃,48h培养。[/size][/font][/align][align=left][font='calibri'][size=16px]之后根据稀释倍数和取样接种量换算样品含菌数。[/size][/font][/align][align=left][font='calibri'][size=16px]第二种:酶底物法[/size][/font][/align][align=left][font='calibri'][size=16px]原理:不同细菌分泌的不同产物可分解不同底物产生同一种信号——荧光,此信号可以在366nm的紫外灯下显示,数对应荧光孔数查MPN表得结果,稀释水样范围<738MPN/mL。[/size][/font][/align][align=left][font='calibri'][size=16px]方法:1mL待测水样+9mL无菌水摇匀(培养基)→倒入定量盘,水平摇晃将液体充满孔槽→竖盘,棉条吸取多余水分→反向放置→37℃,48h培养→用366nm紫光灯照射,数带有荧光孔的数量。[/size][/font][/align][align=left][font='calibri'][size=16px]当时看到这个方法之后,就想到是不是能用这个方法检测牛奶的细菌总数,然后询问了一下师傅,才知道平皿计数法可以用于牛奶细菌总数的检测,但是酶底物法不太合适。因为水中除了细菌分泌产生的东西外,没有其他的物质。但是牛奶不一样,牛奶中含有脂肪,蛋白质,乳糖,矿物质等其他的物质,如果使用酶底物法会产生较大的误差,不适合牛奶的细菌总数的检测。[/size][/font][/align][align=left][font='calibri'][size=16px]虽然没有发现新的检测牛奶中细菌总数的方法,但是也学会了水中菌落总数的方法,希望能够对各位朋友提供帮助。[/size][/font][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制