当前位置: 仪器信息网 > 行业主题 > >

便携式发射光谱仪

仪器信息网便携式发射光谱仪专题为您提供2024年最新便携式发射光谱仪价格报价、厂家品牌的相关信息, 包括便携式发射光谱仪参数、型号等,不管是国产,还是进口品牌的便携式发射光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式发射光谱仪相关的耗材配件、试剂标物,还有便携式发射光谱仪相关的最新资讯、资料,以及便携式发射光谱仪相关的解决方案。

便携式发射光谱仪相关的论坛

  • 原子发射光谱仪的构成

    [url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]是测定每种化学元素的气态原子或离子受激后所发射的特征光谱的波长及强度来确定物质中元素组成和含量。  原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。  原子发射光谱仪,是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。这一类仪器一般包括:光源、单色器、检测器和独处器件。原子发射光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别。原子发射光谱仪有火花原子发射光谱仪,光电原子发射光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空原子发射光谱仪等多种品种。原子发射光谱仪广泛应用于铸造、钢铁、金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检、质检等部门。

  • 发射光谱定量分析的基本关系式

    发射光谱定量分析的基本关系式在条件一定时,谱线强度Ⅰ 与待测元素含量c关系为∶I= a ca为常数(与蒸发、激发过程等有关),考虑到发射光谱中存在着自吸现象,需要引入自吸常数 b,则∶图片发射光谱分析的基本关系式,称为塞伯-罗马金公式(经验式)。自吸常数 b随浓度c增加而减小,当浓度很小,自吸消失时,b=1。[img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205121308468457_8770_2140715_3.png[/img]

  • 【第三届原创参赛】便携式直读光谱仪与手持XRF荧光光谱仪的对比

    【第三届原创参赛】便携式直读光谱仪与手持XRF荧光光谱仪的对比

    [size=4][font=宋体]经常有人问道手持XRF光谱仪与便携式移动直读光谱仪有什么不同,两者之间如何选择呢下面我在原理与应用方面总结了一下。[/font][/size][size=4][font=宋体]便携式移动光谱仪的应用领域与手持XRF光谱仪是不同的,手持XRF光谱仪检测的固体样品直读光谱仪都可以检测,但直读光谱仪器能检测的样品手持XRF光谱仪不一定能检测,如钢铁中的C P S N ,在检测精度方面手持XRF光谱仪检测限在100ppm—500ppm,直读的检测线是小于100ppm,原理方面直读光谱仪原理是[/font][/size][size=4][font=宋体]样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后从基态跃迁到激发态经10[sup]-8[/sup]秒后从激发态又跃迁到基态,产生发射光谱,每种元素发射光谱谱线强度正比于样品中该元素含量,[/font][/size][size=4][font=宋体]通过检测发射光谱强度的能量大小来分析各元素的含量。[/font][/size][size=4][font=宋体]XRF[/font][/size][size=4][font=宋体]光谱仪原理是元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,统称为X射线荧光,根据莫斯莱定律,只要测出荧光X射线的波长,就可以得知元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,也可以进行元素定量分析。[/font][/size][size=4][font=宋体]应用领域X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点,样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业。可以对各种形状样品定性分析和半定量分析,并能给出半定量结果,分析时间短,对样品表面无损害。[/font][/size][size=4][font=宋体]直读光谱仪应用领域是炉前化验分析, 来料检测,成品检测 , 混料识别等领域,是金属成份分析的专用仪器,此外还有商检、质检等部门 ,直读光谱仪在钢铁行业炉前快速分析占有绝大部分市场,是钢铁行业必不可少的一款元素分析仪器,广泛应用于铁基、铝基、铜基、镍基、锌基、钛基、镁基、分析精度可以达到PPM级,可以分析钢铁中的C P S N 等元素。[/font][/size][size=4][font=宋体]在应用方面也需有些人还是不理解,举个例子来说如果是做废旧金属回收,是用便携式直读光谱仪呢还是用手持XRF呢?其实在废旧金属回收这一块两款仪器都可以,手持XRF二十几万 ,便携式移动直读三四十万,如果你只是筛选废旧金属的一个牌号归类,其实手持XRF就可以做了,就没必要去买直读了,在举个例子如果你是铸铁行业检测精度有要求,需要检测C 元素那就得选择直读光谱了,手持XRF就做不了。下面是移动直读光谱仪与手持XRF的图片。[/font][/size][size=4][font=宋体][img]http://ng1.17img.cn/bbsfiles/images/2010/09/201009101709_242973_2122568_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/09/201009101709_242974_2122568_3.jpg[/img][/font][/size][img]http://ng1.17img.cn/bbsfiles/images/2010/09/201009101709_242975_2122568_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/09/201009101710_242976_2122568_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/09/201009101710_242977_2122568_3.jpg[/img]

  • 求助,激发光谱与发射光谱!

    各位老师,由荧光的激发光谱可以看出在某个激发波长下,物质的荧光强度最大。物质的发射光谱表示在固定激发波长下,物质发射的荧光强度与波长的关系。问题是,如果我要测试一个物质是否有荧光,我到底该选用哪一种谱,是激发光谱还是发射光谱?这两个谱到底是为了说明什么?

  • 【求购】射频辉光发电发射光谱仪

    各位: 想大概了解一下射频辉光放电发射光谱仪,价格在什么范围内? 只需知道大概的价格范围,这样也好跟头儿提议是否需要购买的事情。请知情的朋友帮助一下,十分感激。

  • 【原创】原子发射光谱仪的优点和缺点

    [font=宋体]ICP[/font][font=宋体]光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点:[/font][font=宋体] 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。[/font][font=宋体] 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。[/font][font=宋体] 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。[/font][font=宋体] 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。[/font][font=宋体] 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。[/font][font=宋体] 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面:[/font][font=宋体] 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。[/font][font=宋体] 2. 因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体] 3. 因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体] 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。[/font][font=宋体]  ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80 年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl 及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。[/font][font=宋体]  ICP发射光谱法包括了三个主要的过程,即:[/font][font=宋体]  由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;[/font][font=宋体]  将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;[/font][font=宋体]  用检测器检测光谱中谱线的波长和强度。[/font][font=宋体]  由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。[/font][font=宋体]优点:[/font][font=宋体]1. [/font][font=宋体]多元素同时检出能力。[/font][font=宋体]可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。[/font][font=宋体]2. [/font][font=宋体]分析速度快。[/font][font=宋体]试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。[/font][font=宋体]3. [/font][font=宋体]选择性好。[/font][font=宋体]由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。[/font][font=宋体]4. [/font][font=宋体]检出限低。[/font][font=宋体]一般可达0.1~1ugg-1,绝对值可达10-8~10-9g。用电感耦合等离子体(ICP)新光源,检出限可低至 数量级。[/font][font=宋体]5. [/font][font=宋体]用ICP光源时,准确度高,标准曲线的线性范围宽,可达4~6个数量级。可同时测定高、中、低含量的不同元素。因此ICP-AES已广泛应用于各个领域之中。[/font][font=宋体]6. [/font][font=宋体]样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。[/font][font=宋体]缺点:[/font][font=宋体]1. [/font][font=宋体]在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。[/font][font=宋体]2. [/font][font=宋体]含量(浓度)较大时,准确度较差。[/font][font=宋体]3. [/font][font=宋体]只能用于元素分析,不能进行结构、形态的测定。[/font][font=宋体]4. [/font][font=宋体]大多数非金属元素难以得到灵敏的光谱线。[/font][font=宋体]1 [/font][font=宋体]因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体]2 [/font][font=宋体]因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体]3 ICP [/font][font=宋体]发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。[/font][font=宋体]  发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。特别值得一提的是现在很 多的商品仪器已经采用了中阶梯光栅的二维色散方式,使光的色散率和谱线的分辨率得到了明显的提高,这无疑又为我们选择分析线创造了更好的条件。[/font][size=3][font=Times New Roman] [/font][/size]

  • 什么是发射光谱的自吸与自蚀现象

    [b][color=#cc0000]在发射光谱及吸收光谱中,在光源中谱线的辐射是从光源发光区域的中心轴辐射出来的,它将通过周围空间一段路程,然后向四周空间发射。发光层四周的蒸汽原子,一般比中心原子处于较低的能级,因而当辐射能通过这段路程时,将被其自身的原子所吸收,而使谱线中心的强度减弱,这种现象称为自吸收。当自吸现象严重时会使谱线消失就是所谓的自蚀现象。[/color][/b]

  • 荧光发射光谱

    [color=#444444]测荧光发射光谱时测量的是粉末还是把粉末溶解进去溶剂里面呢?[/color]

  • 便携光谱仪的发展趋势

    随着科技进步的飞快,手机,笔记本渐渐替代了台式的电脑,随身携带,随时工作,在这个信息的时代时间越来越宝贵。  又一次朋友对我说,对电脑不敢兴趣了,以前她一天都离不开电脑,每天回家第一件事情就是开机,我非常好奇,忙问为什么,她说现在都玩手机,电脑能做的手机都能。由此可见,便携对人们来说意义非凡。  便携,代表方便随身携带,直读便携式光谱仪,如果有这样一种仪器,可以移动携带,甚至可以拿在手里,那么你会选择它吗?  目前原子发射光谱仪厂家也有直读便携的光谱仪了,公司自主研发了一款移动式的便携光谱仪,并且代理了艾克手持式的便携光谱仪,是全球最先进的RHOS分析技术,速度快,功能多,精度高,适合任何不同的用户,通过多年的发展开发经验,具备了相当的经验。并且这些直读手持便携光谱仪还将不断创新完善发展,在技术上寻求精益求精,不断研发市场更加热衷的直读便携式光谱仪。提供有效的检测技术和精密的检测仪器,积极投身铸造事业的检测。  便携光谱仪适用于必须现场进行检测或者检测样品体积庞大的情况,几秒钟就能显示分析的结果,在工作现场进行快速检测分析,是理想的设备。 用户节省的不仅仅是取样时间,如果样品很昂贵,那么也不需要浪费金钱取样,适合各种复杂环境检测。  [url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]厂家分析仪器用心服务顾客,不断挖掘产品应用潜力,勇于尝试,与时俱进,为客户提供最优质的服务,以此取得长足的发展。

  • 等离子体发射光谱仪分类与“全谱直读”一词

    等离子体发射光谱仪分类与“全谱直读”一词陆文伟上海交通大学分析测试中心, 上海 200030摘 要 本文从仪器结构原理上讨论了当前国内在新型等离子体发射光谱仪分类命名上的问题。指出“全谱直读”一词用于仪器分类的不严谨性。提仪使用固态检测器等离子体发射光谱仪作为分类词。主题词 等离子体发射光谱仪 中阶梯光栅 固态检测器 全谱直读中图分类号:O657131   文献标识码:B   文章编号:100020593 (2002) 0220348202 收稿日期:2000208205 ,修订日期:2000212212 作者简介:陆文伟,1951 年生,上海交通大学分析测试中心高级工程师  早期国外把等离子体发射光谱仪( ICP2OES) 仪器分成同时型(Simultanous) 和顺序型(Sequential) 二类。国内把色散系统区分为多色器(Polychromator) 、单色器(Monochromator) ,仪器则从检测器来区分,命名为多通道型(多道) ,顺序型(单道扫描) 仪器[ 1 ,2 ] 。其仪器的分类命名与仪器功能,仪器结构基本一致,与国外的仪器分类也一致。ICP2OES 仪器在其发展期间,又有N + 1 的单道与多道结合型仪器出现,以及有入射狭逢能沿罗兰圈光学平面移动,完成1~2 nm 内扫描,能获得谱图的多道仪器出现,但总体上仍没动摇仪器的原始分类。1991 年新的中阶梯光栅固态检测器ICP2OES 仪器问世,新的仪器把中阶梯光栅等光学元件形成的二维谱图投影到平面固态检测器的感光点上,使仪器同时具有同时型和顺序型仪器的功能,这样形成了新一类的仪器。从它的信号检出来看,它与同时型仪器很接近,故有的国外文献仍把它简单归为同时型(Simultaneous) 仪器。但更多的是从仪器的硬件结构上出发,采用中阶梯光栅固态检测器等离子体发射光谱仪“Echelle grating solid state detector ICP2OES”的命名。1993 年该类仪器进入中国市场,国内仪器广告上出现“全谱直读”一新名词。随着该类仪器的推广使用,该名词逐渐渗入期刊杂志,教科书,学术界,甚至作为仪器分类词出现在《现代分析仪器分析方法通则及计量检定规程》[ 3 ]中。纵观国外涉及到中阶梯光栅固态检测器等离子体发射光谱仪的期刊杂志,书籍和文献均未使用到该词或与之意思相近的词。甚至各仪器厂家的英文样本中也无该词出现。实际上“全谱直读”是中文广告词,它不严谨,并含糊地影射二方面意思:11 光谱谱线的全部覆盖性和全部可利用性 21 全部谱线的总体信号同时采集读出。从中阶梯光栅固态检测器等离子体发射光谱仪的光谱范围(英文常采用Wavelength coverage range) 来看,一般仪器都在160~800 nm 左右。如有的仪器在167~782 nm ,有的在165~800 nm ,有的在175~900 nm ,有的在165~1 000 nm ,有的是在122~466 nm 基础上另加590 ,670 ,766 nm 的额外单个检测器。有的在超纯Ar 装置下短波段区扩展至134nm ,其长波段区能扩展至1 050 nm。很明显所有此类仪器的光谱范围目前离“全谱”还是有距离的,而且仪器厂家还在扩大其光谱范围。再说此类仪器的“光谱范围”,实际上更确切的意思是指可利用的分析谱线波长跨度范围!实际上中阶梯光栅和棱镜所形成的二维光谱图在目前固态检测器芯片匹配过程中,高级次光谱区可以说是波长连续的,不同级次的光谱波长区甚至重迭。而低级次光谱区级次与级次之间的波长区并不衔接,最大可以有20 nm 以上的间隙,其间隙随着级数增大而变小,严格地说也就是仪器的光谱不连续性存在,尽管对有用谱线影响并不太大。另外中阶梯光栅多色器系统产生的二维谱图闪烁区与检测器芯片匹配的边缘效应,固态检测器的分段或分个处理,都会造成使用全部谱线的困难,甚至发生有用谱线的丢失。大面积的固态检测器芯片可望用于光谱仪,光谱级次间波长区的连续性会进一步改善,其波长区复盖也会增大。但仪器制造成本及芯片因光谱级次间波长过多重叠显得利用效率不高,都会形成其发展的阻力。从仪器可利用谱线上看,目前中阶梯光栅固态检测器等离子体发射光谱仪还只能是多谱线同时分析仪器。当然它可利用的谱线要比以前多道发射光谱仪器的谱线(最多六十多条) 多得多。如目前仪器有6 000 多条的,有2 万7 千条的,有在2 万4 千条的基础上再可由使用者在仪器波长区任意定址添加的等等。但这与“全谱”给人的含糊概念,与数十万以上的全部谱线概念相差甚远。就是从全部可利用谱线讲,该类仪器在定量分析时也不等于纪录全部谱线。有的仪器是在定性分析时能纪录所有覆盖谱线。“全谱直读”一词还常常被沿伸到一次曝光像摄谱仪一样工作。直读一词(Direct reading) 出现在摄谱仪之后、光电倍© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.增管用于发射光谱仪之时。是相对摄片2读片过程变成一步而言。多道发射光谱仪采用该词较多。目前中阶梯光栅固态检测器等离子体发射光谱仪还没有完全达到全部谱线的总体信号同时采集读出的水平。有的仪器分检测器读出,有的仪器分波长区读出,有的仪器分波长区检测器再加几个单个波长检测器读出。固态检测器的曝光与摄片又不同,固态检测器比照相底片更灵活,为了适应样品分析元素高低浓度大小信号的要求,固态检测器灵活处理,有的分区曝光,有的分级扫描曝光,有的级中分二段控制曝光,有的检测器分子阵列(Subarray) 控制曝光,有的从其检测器机理出发分每个感光点(Pixel) 控制曝光。“全谱直读”给人是含糊的印象,不能正确反映仪器的特点。当前新的仪器还在不断涌现,有分级扫描式中阶梯光栅固态检测器等离子体发射光谱仪,有新的多个固态检测器在罗兰圈排列使用的仪器,从检测器硬件结构分类,它们都能方便地归入中阶梯光栅固态检测器等离子体发射光谱仪,或固态检测器等离子体发射光谱仪类别里。而“全谱直读”则明显不能适应。新名词会受到实践和事实的考验。国外文献中名词也有变化的,如电感耦合等离子体原子发射光谱仪的ICP2AES 英文缩写名词,因AES 含义面广,易与俄歇电子光谱[ 4 ]混淆,现在逐渐被ICP2OES 取代。切入实际的名词才会在发展中生存。参考文献 [ 1 ]  化学试剂电感耦合等离子体原子发射光谱方法通则,中华人民共和国国家标准GB10725289. [ 2 ]  发射光谱仪检定规程,中华人民共和国国家计量检定规程J TG768294. [ 3 ]  感耦等离子体原子发射光谱方法通则 感耦等离子体原子发射光谱仪检定规程,1997. (第一版) 科学技术文献出版社,现代分析仪器分析方法通则及计量检定规程. [ 4 ]  英汉仪器仪表词汇,科学出版社,1987 (第一版) .

  • 【原创大赛】ICP发射光谱仪分析技术在冶金、食品、环境行业中的应用

    ICP发射光谱仪是20世纪60 年代提出、70 年代迅速发展起来的一种新型分析技术,具有溶液进样、标准溶液易制备、高灵敏度(亚ppb-)、高精度(CV 1%)、化学干扰少、线性范围宽(ppb~%)、可同时进行多元素定性定量分析、分析速度快等优点,现已成为既简便又具有多功能的元素分析测试手段,广泛应用于ICP发射光谱仪涉及金属材料(包括贵金属、稀有金属)、非金属材料、矿产、地质、土壤、核燃料、煤、石油及其产品、化肥、化工原料、半导体晶片、陶瓷材料、食品、生物医药、血液、水(纯水、废水)、空气等领域。1、 ICP发射光谱仪分析技术在冶金分析中的应用ICP发射光谱仪在冶金分析中的最早应用是1975 年Butler等人用ICP发射光谱仪测定钢铁及其合金钢中12个元素。20 世纪90 年代以来,ICP发射光谱仪已成为钢铁及其合金分析的常规手段。用ICP发射光谱仪可以同时测定铁、低合金钢、不锈钢和高温合金中痕量、低含量和常量元素的多元素分析,也可以应用于钢中碳化物和稳定夹杂物分析、钢中酸溶铝的快速测定等,可以看出ICP发射光谱仪 在冶金分析中的应用范围已迅速扩大。应用ICP发射光谱仪进行钢铁合金样品的分析操作十分简便,不需反复设定每个元素的工作参数,即可在同一个工作条件下、用同一个溶液、不管含量高低、同时测定多个元素。钢铁中常见元素,如Fe、Ni、Co、Cu、Si、Mn、P、B、Cr、Al、Ti、Zr、Hf、W、Mo、V、Nb、Ta、As、Sb、Bi、Sn、Pb、Ca、Mg、La、Ce等的常规分析,均可使用ICP发射光谱仪直接测定。测定这些元素的中、低含量(0.01 %~10 %),测量精度完全达到冶金产品的质量监控要求;含量在1 %~20 %时,分析精度与湿式化学法相同;含量≤1 %时,则优于化学法;含量高于20 %的元素,只要采用内标法消除物理化学因素的干扰,并用相近含量的控制样进行校正,仍然可以达到与化学法相同的测定精度和准确性,可以应用于高合金样品的分析。另外,原材料、铁合金的分析与钢铁产品的常规分析相似,主要问题是样品溶解制备分析溶液,也是ICP发射光谱仪应用于原辅料分析常常碰到的困难之一。除了能溶于酸中的样品外,通常要采用硫酸钠、焦硫酸钠熔融或碱融后酸化。近年来由于微波溶样设备的普及,采用微波溶样技术处理原材料、铁合金样品,既可保存更多的待测成分又可简化溶样处理,最大限度减低引入酸类盐类的量。微波溶样与ICP发射光谱仪测定相结合,将可更充分发挥ICP发射光谱仪的分析效率。由于ICP发射光谱仪灵敏度不断提高,不少元素的检测限已接近石墨炉AAS的水平。因此,ICP发射光谱仪直接测定钢铁合金痕量成分时,可通过采取基体匹配法和干扰校正技术,解决钢铁合金基体及共存元素的干扰;通过优化样品处理操作,降低并稳定痕量分析的空白值,提高测量精度,可以使测定下限降低5-10倍。对于成分复杂的合金或存在严重谱线干扰的元素的样品,只要结合简便的分离富集手段,便可以很好地解决其中痕量成分的测定难题。氢化物发生-ICP[font

  • 直读光谱仪之原子发射光谱仪的由来

    直读光谱仪 的原名叫原子发射光谱仪,叫直读的原因是相对于摄谱仪和早期的发射光谱仪而言,由于在70年代以前还无电脑采用,所有的光电转换出来的电流信号都用数码管读数,然后在对数转换纸上绘出曲线并求出含量值,电脑技术在光谱仪应用后,所有的数据处理全部由电脑完成,可直接换算出含量,所以比较形象的管它叫直接可读出结果,简称就叫直读了,在国外是没有这个概念的。直读光谱仪 和 ICP 都属于发射光谱分析仪器,区别在于激发方式不同,ICP中文名字是 电感耦合等离子体 ,是通过线圈磁场达到高温使样本的状态呈等离子态然后进行测量的,而普通的直读光谱仪一般采用电火花,电弧或者辉光放电的方式把样本打成蒸汽进行激发的,在效果上ICP要比普通直读光谱仪器的检出限小,精度高,但是在进样系统上要求非常严格,无好的进样系统就只能做溶液样本.国外先进ICP可做固体样本。直读光谱仪在什么情况下必须做标准化?直读光谱仪做标准化其实也要是看用的什么品牌的机器,仪器正常使用的情况下,需要定期(一般为一周)做标准化。若测试数据精确稳定,可适当延长标准化周期。但有如下情况之一,仪器必须做标准化,否则可能会影响测试精密度。(如果是用的美国热电的ARL3460或者ARL4460,标准化时间可以适当放长,像在上海宝钢,一般是一个月标准化一次),在以下几项变动后,建议都要做一下标准化。(1)仪器移动后。因实验室或厂址更改,可能需要对直读光谱仪进行转移,为保证测试的精密度,转移后需要重新进行标准化操作。(2)清洗透镜后。长时间使用会导致透镜变脏,在清洗透镜后需要对仪器重新做标准化。(3)清理激发台或更换电极后,建议客户重新做标准化。(4)光谱校正后。

  • 便携式拉曼光谱仪激光器使用寿命是多少

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  便携式拉曼光谱仪激光器使用寿命是多少,便携式拉曼光谱仪的激光器使用寿命并不是一个固定的数值,因为它受到多种因素的影响。以下是一些影响激光器使用寿命的关键因素以及相应的解释:  控制发射功率:合理地控制激光器的发射功率是延长激光器寿命的有效方法之一。控制发射功率可以缓解晶体加热的程度,从而减缓晶体老化的速度。  维护工作环境:保持工作环境的良好通风和恒温状态,控制温度在激光器所允许的范围内,能够有效地延长激光器的使用寿命。  日常维护工作:多关注激光器的运行状态,及时更换性能不佳的部件,定期清洗光学元件和泵浦激光器,做好日常维护工作,也可以有效延长激光器的使用寿命。  具体到数值上,由于不同品牌和型号的便携式拉曼光谱仪激光器存在差异,以及使用环境、操作方式等因素的不同,因此无法给出确切的使用寿命数字。  然而,一般而言,如果正确操作和维护,激光器的使用寿命可以达到数千小时甚至更长。但是,这只是一个大致的估计,实际使用寿命可能因具体情况而异。  为了延长便携式拉曼光谱仪激光器的使用寿命,建议用户遵循以下几点:  仔细阅读并遵守产品说明书中的操作和维护指南。  定期对激光器进行清洁和检查,确保其处于良好的工作状态。  避免将激光器暴露在极端温度、湿度或灰尘环境中。  遵循正确的开关机顺序和操作流程,避免对激光器造成不必要的损害。  总之,虽然无法给出便携式拉曼光谱仪激光器确切的使用寿命数字,但通过正确的操作和维护,可以有效地延长其使用寿命。[/size][/color][/font]

  • 【分享】等离子发射光谱仪招标文件(例子)

    能满足三个以上进口品牌参与投标的电感耦合等离子发射光谱仪预算70~80万(含各种外设)。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=159499]电感耦合等离子发射光谱仪招标文件[/url]

  • 【求助】问一个发射光谱的问题

    用荧光法固定激发波长,测物质的发射光谱时,在激发波长处出峰是正常的吗,是锐利光吗?如果是正常的,它比物质的发射谱最高的峰还高,这正常吗?什么原因可能导致出现激发波长处峰增高的现象? 还有,在比激发波长大,但是比物质的荧光强度最大处发射波长小的位置有一小峰,空白容积的谱中也有这个峰,这是拉曼光吗?它和最大的发射峰有部分的重叠,这个峰对激发波长的选择有影响吗? 还有,发射谱图中峰边缘呈锯齿状,是不是和狭缝宽度有关?还是和别的有关?有解决的办法吗?

  • 怎样做发射光谱?求助

    [em06] 不同激发波长对发射光谱最大强度波长位置有影响吗?为什么我作出的发射谱的位置随激发波长的改变而改变?发射波长和激发波长的大体有怎样的对应关系?我做出结果都是λEm=2λEx,这结果是不是有问题,一般情况下是不是λEm应该位于λEx+20至2λE-20nm之间?谢谢!

  • 原子荧光与原子发射光谱的区别??

    原子发射光谱和原子荧光光谱两者都是电子由基态跃迁到激发态,然后又回到基态,在回的过程中发射特征谱线的光。那原子发射光谱发的光也是荧光吗?从激发态回到基态的光都是荧光吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制