当前位置: 仪器信息网 > 行业主题 > >

多光谱成像光谱仪

仪器信息网多光谱成像光谱仪专题为您提供2024年最新多光谱成像光谱仪价格报价、厂家品牌的相关信息, 包括多光谱成像光谱仪参数、型号等,不管是国产,还是进口品牌的多光谱成像光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多光谱成像光谱仪相关的耗材配件、试剂标物,还有多光谱成像光谱仪相关的最新资讯、资料,以及多光谱成像光谱仪相关的解决方案。

多光谱成像光谱仪相关的资讯

  • 全球首个完全可配置多光谱成像仪问世
    上海2011年8月19日电 海洋薄膜全新的研发平台推出了SpectroCamTM多光谱成像仪(MSI),该平台融合了科研级电荷耦合器件阵列和精密的旋转式光学滤光片转盘,创造出世界上第一个完全可配置的多光谱成像仪。应用领域包括水质测量、产品筛选、机器视觉、医疗成像、监控以及验证。 SpectroCamTM多光谱成像仪   SpectroCam 成像仪通过添加新的光谱测量量纲来补充单点光谱。利用单点光谱仪,用户可以分析不同样本上光谱的差别。然后选择差异最显著的光谱区域内以及周边的离散滤波器,之后用户可使用SpectroCam成像仪创造一幅生动的样品差异图。   SpectroCam成像仪的中心是一个宽频带电荷耦合器件,该器件对于穿过近红外光谱的可视物很敏感。系统的精密滤光片转盘以及光学器件可定制以满足各种应用需求。成像速度为满分辨率下20fps,标准的F-Mount配置可兼容一系列的镜头、焦距和视野。每套系统包括一个镜头、八个标准可互换式滤光片以及软件。   海洋薄膜与微型光谱仪领军企业海洋光学合作发明了这套设备,从大学研究人员到具备强大生产能力的原始设备制造商,让多光谱成像仪走进每个人的生活。互换式光学滤光片和持续旋转滤光片转盘克服了许多棱镜多光谱成像系统会遇到的问题。有了可互换式滤光片,用户可以尝试多种滤光片,经过对比之后对最好的滤光片进行缩窄处理,极大减少了研发时间以及客户产品的市场投放时间。   SpectroCam平台可方便与多种原始设备制造系统相整合,经过改良可符合特殊的机械和环境要求。   关于海洋薄膜公司和豪迈:   海洋薄膜公司(OTF)总部设在美国,设计和生产精密光学涂层、元件和组件,可广泛用于多种产品和定制应用领域。基于在开发薄膜涂层方面的全面知识,我们的团队提供专家级的设计支持,用于合作式的定制工艺解决方案,通过大量合约生产,提供快速样品。OTF 是英国豪迈集团(HALMA p.l.c.-www.halma.cn)光电部旗下子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约36家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 多光谱和高光谱成像技术透视丝路壁画
    如何充分获取古代珍贵壁画内部信息,有效保护人类珍贵遗产?这一曾经困扰文保专家的难题,在非介入式成像技术广泛应用下迎刃而解。12月1日至3日,由英国诺丁汉特伦特大学发起,英国研究理事会支持,陕西历史博物馆、西安文保中心等单位协办,西北大学文化遗产学院主办的“成像科学与丝绸之路沿线壁画保护研究国际学术研讨会”在陕西省西安市召开。来自英国、法国、德国、俄罗斯及中国等从事文化遗产保护及科学研究领域的专家、学者约80人进行了研讨和交流。   在古代壁画以往的保护研究中,采用的主要手段包括湿法化学分析、仪器分析等,这些手段大多数都要从文物上取样,并且测试分析只是局部、点上的结果,无法给出保护所需的准确数据和壁画的全面信息。   最近10多年来,中外文保专家经过长期探索,将非介入式成像技术应用于文物保护和考古研究领域,其先进的科学理念和良好的技术手段获得广泛认同。   多光谱和高光谱成像系统属于专门为高分辨率远距离检测壁画而设计的技术系统,通过对壁画残片和标准样品进行多光谱成像分析,并结合X荧光光谱仪、扫描电镜能谱仪和傅里叶红外光谱,就可以判定壁画绘制时所使用原始材料(例如青金石、赭石)的类别,从而为壁画修复提供科学的依据。   OCT技术系统在文化遗产保护领域也得到广泛的应用。该技术以非介入或非接触式的工作方式对文物内部结构进行成像,从而给出壁画的三维层位信息。   数字成像技术系统则应用高清晰数字摄影、虚拟漫游等多种技术,对壁画等文物遗存进行全方位采集数据,全面展示数字成像技术在文物领域的应用前景。另外,激光全息摄影成像可以诊断壁画表面病害特征。   丝绸之路沿线分布着大量的历代壁画,如何有效地保护好这一全人类的文明见证物,是国际社会的共同责任。此次会议旨在为各国科学家提供一个相互交流的平台,为将来更加有效地保护各类壁画成就更多更有效的技术体系。
  • 我国首台星载超光谱成像仪通过鉴定
    由中科院西安光机所研制的“HJ-1-A卫星超光谱成像仪”填补了我国在航天超光谱遥感领域的空白,达到国际当前先进水平。记者昨日获悉,这一重大自主创新科研成果已通过项目鉴定。   西安光机所为我国“HJ-1-A卫星”研制的我国第一台星载超光谱成像仪,主要承担环境与灾害的监测、评估及定量化分析等任务,广泛应用于土地沙化、盐碱化、石漠化监测,冰雪灾害与森林、草原火灾探测,国土资源及广域土地分类调查,植被分类、植树造林及退耕还林效果评估,农业估产、病虫害监测及生态环境破坏等领域;为我国环境与灾害监测预报小卫星提供及时、可靠和科学的信息支持。   截至目前,“HJ-1-A卫星”超光谱成像仪顺利随卫星在轨运行一年多,设备性能稳定、运行正常、数据可靠;经民政部、环保部、农业部、中科院等70余家用户单位使用,已经在灾害监测、环境评估、资源调查、土地分类、农业林业等诸多领域发挥了重要作用,并取得良好的应用效果和经济效益。   鉴定委员会成员一致认为,该项成果既有理论突破和技术发明,又有集成创新和成功应用,国内领先、达到国际当前先进水平,有力促进了我国光谱成像及相关技术的发展,填补了我国在航天超光谱遥感领域的空白,具有重大意义。
  • 新型干涉光谱成像技术研究取得重要进展
    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。   面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限 离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。   此次研究工作取得重大进展的过程,充分体现了我所科研人员勇于攻关、勤于奉献、努力进取的精神。由于是在国内首次开展基于干涉光谱成像的离轴三反光学系统的研究,研制难度大,时间进度紧。在所各级领导的关心支持下,项目负责人胡炳樑研究员积极牵头组织专家进行方案论证,为项目设计、加工和装调,在人员、技术、设备等多方面提供了强有力的支持 白清兰研究员、熊望娥副研究员勇于攻坚克难,通过多次与领域内专家研讨,并组织科研人员无数次的讨论、论证,最终确定了新型离轴三反光机系统的设计和初步装调方案,并亲自带领年轻科研人员赵强、赵稳庄、孙剑、李勇、李立波、邹纯波、张宏建、赵瑞萍等参与项目的设计调试工作,实现了预期的研制目标 刘学斌研究员带领王爽、皮海峰、张雯、王彩玲等年轻科研同志,加班加点顺利完成了低噪声短波红外电路的设计工作,为全系统调试的顺利进行做出了极大贡献 王忠厚研究员、白加光研究员等为项目的前期方案论证和整个过程的研制提供了大量的技术支持和帮助 系统调试过程中,在系统工程部李华主任、检测中心赵建科主任的支持下,段嘉友、张建、李智勇等与项目组密切配合,出色完成了离轴三反光学系统装调任务。   日前,短波红外干涉光谱成像系统的研究工作仍在深入进行中,科研人员将不断创新进取,力争取得更大成绩。
  • 联光元和完成1亿元天使轮融资 将用于超光谱成像仪等的研发
    日前,联光元和(上海)企业发展有限公司完成天使轮融资,由上海联和1亿元独家投资。本轮资金将用于超光谱成像仪、连续波白光激光器等高端科学仪器与应用装备研发。联光元和创立于2021年1月。凭借研发团队在空间光调制技术、表面耦合诱导等离子体及其多级放大技术在光学中的应用、基于高熵玻璃材料实现的BPAWR-SACM光过程等诸多领域形成的基础研究成果和大量原始技术创新,企业将致力于在光谱成像、光源系统与光加工技术三大板块形成系列产品,在科学仪器与先进加工领域为中国制造提供核心力量,并积极参与全球顶尖科研仪器与高端装备的市场竞争。目前,联光元和在研产品透射式时间分辨角分辨超光谱成像仪和连续波白光激光器进展顺利。首台超光谱成像仪原型机将于2022年9月问世,涵盖瞬态/稳态、能级寿命、散射/振动谱、高光谱/光谱等分析功能,可替代大部分传统光学仪器,如紫外可见分光光度计、红外吸收光谱仪、荧光光谱仪、拉曼光谱仪等,广泛应用于材料分析、环境监测、生化检测、医疗诊断等。6月15日,公司科研团队参与的项目成果以“Design of coherent wideband radiation process in a Nd3+-doped high entropy glass system” 在线发表于自然杂志子刊Light:Science&Applications,首台连续波白光激光器亦将于2022年10月问世。该激光器可实现宽谱段(400-800 nm)的空间相干光输出,或调制后以单一频率窄线宽的激光模式进行输出,未来可实现将传统的车、铣、刨、磨、铸、锻、焊与新兴的3D打印技术整合在光加工中心系统上。通过控制光束的束腰半径,可实现从10μm-100nm范围的高效率加工,填补了既有的机械加工与电子束刻蚀间的空白,为MEMS尺度的加工提供更多的手段和空间。
  • 三星开发CMOS超光谱图像传感器,有望成为光谱成像的新平台
    光谱仪在材料分析、天文学、食品化学以及医学诊断等许多领域都有应用。市场需求正在迅速增长,但光谱仪的尺寸阻碍了其在更广泛领域的普及。因此,市场急需高性能的紧凑型光谱仪,不断缩小光谱传感器尺寸已成为当前的研究热点。为了使光谱仪小型化,已经进行了各种尝试,例如传统的色散方法、傅里叶变换干涉技术(FTI),以及使用带有随机滤波器阵列和窄带通滤波器的探测器等。与色散和傅里叶变换干涉系统相比,滤波器阵列与探测器的集成,由于无需长光路和光学元件的精确对准来获得高分辨率而具有优势。此外,将滤波器阵列与电荷耦合器件(CCD)或CMOS图像传感器(CIS)等探测器集成,可以通过单次捕捉二维图像实现高光谱成像。特别是,与随机滤波器方案相比,窄带通滤波器阵列的集成无需进行后处理分析。然而,为了获得高分辨率需要大量的信道,意味着更复杂的制造工艺,例如蚀刻和沉积,因为每个信道都需要不同厚度的薄膜。为了解决这个问题,有研究使用组合蚀刻技术来制造多信道。业界对光谱仪中使用的窄带通滤波器的谐振结构进行了研究,但大多数研究仅限于改变电介质多层膜的厚度,以形成不同波长和品质因数的光学腔。这对于器件的大规模生产很麻烦,因为它需要过多的电介质沉积、蚀刻和光刻步骤,尤其是在像素尺寸级别的制造工艺。据麦姆斯咨询介绍,三星高级技术研究所光子器件实验室的Jaesoong Lee及其同事通过将被称为超表面的亚波长纳米结构集成到直接位于CMOS图像传感器顶部的带通滤波器阵列中,开发出了一种紧凑型超光谱(meta-spectral)图像传感器。由于窄带通滤波是通过亚波长光栅结构而不是通过改变层的厚度来调谐的,因此所有信道都可以通过一步光刻工艺制造。这种方案简化了制造,并且与CMOS工艺完全兼容。这种紧凑型超光谱图像传感器具有窄带高效率、与相邻信道的低串扰和高光谱分辨率。利用该器件,研究人员从波长混合图像中获得了高光谱图像。超光谱图像传感器示意图超光谱图像传感器制造研究人员在CMOS图像传感器晶圆(三星S5K4E8)上采用标准的洁净室工艺(包括PECVD和干法蚀刻)制作了超表面带通滤波器阵列。首先,研究人员为底部介质反射器沉积了多层硅和二氧化硅;然后利用电子束光刻定义纳米柱阵列;再使用电感耦合等离子体反应离子刻蚀(ICP-RIE)形成纳米柱阵列,并再次沉积二氧化硅以填充纳米柱之间的间隙;然后进行化学机械抛光(CMP)工艺,以平整二氧化硅顶面;最后,为顶部反射器沉积了一层由硅和二氧化硅制成的多层膜。超光谱图像传感器制造过程示意图高光谱成像为了验证演示其高光谱成像性能,研究人员拍摄了由3 x 5颗多波长LED组成的LED面板的光谱图像。每颗LED可以发射多个波长的组合,这些波长被选择以显示以下大写字母:770 nm显示“S”,810 nm显示“I”,850 nm显示“A”,950 nm显示“T”,如下图(a)底部所示。超光谱成像仪的高光谱成像演示作为概念证明,研究人员拍摄了一张所有LED都打开的面板照片,如上图(b)顶部所示。图像中的所有字母都无法区分,因为面板上的所有LED都已打开。通过将这个组合图像分成20个信道,如上图(b)底部所示,研究人员发现了隐藏的“SAIT”字母。在对应829.1 nm的信道11处,由于810 nm和850 nm LED的宽带发射,“I”和“A”被结合在一起。对于更长的波长(信道12和信道13),研究人员观察到字母“I”变得更模糊,而字母“A”变得更清晰。通过实验结果,研究人员证实了这款超光谱图像传感器具有良好的光谱成像性能。
  • 我国首台光谱成像日冕仪通过工艺测试
    近日,国家重大科技基础设施“空间环境地基综合监测网(子午工程二期)”新建设备光谱成像日冕仪顺利通过工艺测试,并成功获得首批日冕观测图像,标志着我国自主研制的首台常态化运行地基日冕仪正式建成。日冕是太阳最外层大气,利用日冕仪对低日冕开展观测,对日冕加热和太阳风起源等太阳物理/空间物理核心科学问题的研究具有重要价值。同时,低日冕作为日冕物质抛射这一空间环境主要扰动源的发生和加速区域,对其开展监测可为空间天气学应用领域提供关键数据。然而,由于日冕本身辐射极其微弱,可见光波段亮度仅为太阳光球层亮度的几十万至百万分之一,且受限于地球大气散射光的影响,使得在地面对日冕开展光学成像观测尤其是光谱学观测面临巨大挑战。新建的光谱成像日冕仪安装于海拔3200米的中国科学院云南天文台丽江天文观测站园区内,由山东大学与云南天文台、北京大学共建,山东大学与中国科学院长春光学精密机械与物理研究所、南京天文光学技术研究所、云南天文台共同研制。该日冕仪的主要工作波段聚焦日冕红线这一低温日冕辐射谱线,可对低日冕精细磁流体结构进行准同时成像和光谱观测,弥补了国际同类设备在该波段观测数据的欠缺。经专家评估,该日冕仪所获科学数据的质量达到了国际一流水平,成为当前国际上工作于该波段最优秀的地基日冕仪。该日冕仪的设计还容许其工作于日冕绿线这一波段,从而可通过两条谱线的准同时观测对日冕大气温度进行诊断。基于该设计,项目组顺利完成了数据定标和光谱反演算法的开发工作,有效减少了多普勒频移和谱线宽度的测量误差,为高质量科学数据的持续产出奠定了坚实基础。据悉,光谱成像日冕仪是国家重大科技基础设施“空间环境地基综合监测网(子午工程二期)”太阳-行星际监测链分系统的重要组成部分,也是日地空间全链条监测的重要一环。
  • 清华大学超光谱成像芯片成果发表在Optica
    近日,清华大学电子工程系黄翊东教授课题组的副教授崔开宇、博士生熊健、博士后蔡旭升等人的论文《基于可重构超表面的实时超光谱成像芯片及动态脑光谱获取》(Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces)于美国光学学会旗舰期刊Optica上发表。光谱是物质的指纹,实时光谱成像可获取成像视场内各像素点的动态光谱,将为人工智能及感知技术开拓一个新的信息维度,在诸多领域有着巨大的应用需求。本工作研制成功了国际首款实时超光谱成像芯片:提出基于图像自适应的可重构超表面超晶胞,通过超表面单元结构的空分复用,解决了计算光谱难以兼顾频谱分辨率和空间分辨率的局限;在实验上成功制备出的国际首款实时超光谱成像芯片,将单点光谱仪的尺寸缩小到百微米以下,空间分辨率超过15万像素,即在0.5 cm2芯片上集成了15万个微型光谱仪,可快速获得每个像素点的光谱,工作谱宽450-750nm,分辨率高达0.8nm;使用实时超光谱成像芯片首次测量了活体大鼠脑部血红蛋白及其衍生物的特征光谱的动态变化,时间分辨率可达30Hz,可进一步利用神经血氧耦合的机制得出脑部神经元的活跃状态。作为一种非侵入式的检测手段,展示出光谱成像芯片在实时传感领域的巨大潜力。相关工作已创立成果转化企业“北京与光科技有限公司”。Jian Xiong†, Xusheng Cai†, Kaiyu Cui†*, Yidong Huang, Jiawei Yang, Hongbo Zhu, Wenzheng Li,Bo Hong, Shijie Rao,Zekun Zheng, Sheng Xu, Yuhan He, Fang Liu, Xue Feng, and Wei Zhang, "Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces," Optica 9,461-468 (2022)
  • 革命性4D成像光谱仪和四维高光谱成像仪问世
    孚光精仪日前在上海发布革命性的四维成像光谱仪和4D高光谱成像仪。 据悉,这种4D成像光谱仪是革命性的新型成像光谱仪,它突破传统的推扫扫描方式,以高速成像方式获取图像和光谱数据,一套系统可同时获得空间,光谱和时间分辨(瞬态)的高光谱信息,具有特殊的捕捉快速事件的能力,从而使得成像光谱仪体积更小,更为方便携带和野外现场使用。这种4D成像光谱仪每秒可获得10000个高光谱图像立方体数据,可监测到包括火箭发射,爆炸等快速过程,在生命科学和医学领域,它可以监测到血氧变换等信息。 4D成像光谱仪产品特色可获取动态物体的空间,光谱和时间分辨信息配备光纤,可灵活安装镜头与图像传感器多样的前置光学镜头,可选择显微物镜,普通镜头和望远镜头实时显示和处理高光谱数据,不需要全部光谱定标和辐射定标 详情浏览: http://www.f-opt.cn/gaoguangpu1.html4D高光谱成像仪产品参数参数普通型高速型光谱范围400-1100nm 400-1000nm 光谱分辨率2.4nm 2.2nm 光谱波带数300270空间分辨率44x40像素21x 19像素最大高光谱立方体采集频率30Hz 10000Hz 4D高光谱成像仪产品应用:实时自动目标探测火箭或导弹尾羽分析爆炸分析燃烧诊断http://www.f-opt.cn/gaoguangpu1.html 运营中心2--上海, 负责华东、华中、华南地区业务 Tel: +86-21-51300728Email: info@felles.cnWeb: http://www.f-opt.cn/gaoguangpu1.html
  • 推帚式超光谱成像仪交付验收
    中招国际招标公司受中国水利水电科学研究院委托,就遥感影像接收与处理设备购置项目——推帚式超光谱成像仪设备进行国内公开招标,中科院上海技物所受招标机构邀请参加了投标且一举中标。日前,该项目圆满完成并顺利交付验收。 水利水电科学研究院订购置的推帚式超光谱成像仪PHI-1307的主要技术指标为:光谱范围为450~1000nm、波段数为120、IFOV:0.5×1.0 mrad、光谱分辨率为5nm、工作帧频为50Hz、量化位数为12bits。 该设备在青岛进行了航空遥感飞行信息获取现场验收。近日,北京水利水电科学研究院通过了整套设备的交付验收工作。上海技物所将在努力做好售后服务的基础上继续与购置方合作,为该设备在水利水电科学研究领域发挥更好的应用作用。
  • 【网络讲座】拉曼超光谱成像在药物中的应用——3月30日
    了解拉曼超光谱成像在药物中的应用!拉曼超光谱成像技术可以反映样品的空间(成像)信息和光谱(拉曼)信息,因此越来越多的R&D和工业用户将它用于表征固体样品的诸多特性。拉曼超光谱成像技术为药物固体制剂的定性和定量分析提供了准确的工具。在此次讲座中,Ziemons副教授将介绍高光谱成像的数据分析及其在制药和生物医学领域的主要应用。时间:3月30日星期四 北京时间16:00或23:00语言:英语报名:https://events.r20.constantcontact.com/register/eventReg jsessionid=1637759E2AC18945DF3B5666B987B842?oeidk=a07edws7owufc7c08bd&oseq=&c=&ch=主要学习目标近些年来,拉曼超光谱成像技术一直被认为是一项昂贵且需要专业人员操作的复杂技术。事实上,对于常规样品的分析来说,这是一个误解。本次讲座将以制药和生物医学样品的多个应用来阐述这个技术,并分析其优势和局限性。谁应该参加只要您从事制药相关的工作,无论是实验室技术人员、科研人员、经理、还是研发专家和质控人员,都可以在Ziemons副教授的网络讲座中学到丰富的、具有启发性、且具有挑战性的知识。讲师Eric Ziemons 博士副教授University of Liège (ULg)Center of Interdisciplinary on Medicines Research on Medicines,Laboratory of Pharmaceutical Analytical Chemistry Mathieu Boiret 博士HORIBA Scientific应用经理 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 清华大学黄翊东团队研制出国际首款实时超光谱成像芯片
    近日,清华大学电子工程系黄翊东教授团队崔开宇副教授带领学生在超光谱成像芯片的研究中取得重要进展,研制出国际首款实时超光谱成像芯片,相比已有光谱检测技术实现了从单点光谱仪到超光谱成像芯片的跨越,期刊《科学》(Science)综述论文“光谱仪的小型化”(“Miniaturization of Optical Spectrometers”)将这一超光谱成像芯片技术列为该领域最新的研究成果。光谱作为物质的指纹,光谱成像可以获取成像视场内各像素点物质的组分和含量,为智能感知技术开拓了一个新的信息维度,在工业自动化、智慧医疗、机器视觉、消费电子等诸多领域有着巨大的应用需求。然而传统基于分光原理的单点光谱仪体积庞大,已有的光谱成像技术一般只能采用逐点逐行扫描或波长扫描的模式,无法获取视野场景中各像素点高精度的实时光谱信息。该成果研制的国际首款实时超光谱成像芯片如图1所示。通过硅基超表面实现对入射光的频谱域调制,利用CMOS图像传感器完成频谱域到电域的投影测量,再采用压缩感知算法进行光谱重建,并进一步通过超表面的大规模阵列集成实现实时光谱成像。该款实时超光谱成像芯片将单点光谱仪的尺寸缩小到百微米以下,空间分辨率超过15万光谱像素,即在0.5 cm2芯片上集成了15万个微型光谱仪,可快速获得每个像素点的光谱,工作谱宽450~750 nm,分辨率高达0.8nm。研究团队与清华大学生物医学工程系洪波教授团队合作,基于该实时超光谱成像芯片首次测量了活体大鼠脑部血红蛋白及其衍生物的特征光谱的动态变化,时间分辨率高达30Hz。通过实时光谱成像,可获取大鼠脑部不同位置的动态光谱变化情况,结合血红蛋白的特征吸收峰,分析获取对应血管区和非血管区血红蛋白含量的变化情况,并可利用神经血氧耦合的机制得出脑部神经元的活跃状态。图1. 国际首款实时超光谱成像芯片及其性能指标团队进一步提出了一种自由形状超原子(Freeform shaped meta-atoms)的超表面设计方法,突破了规则形状的超表面设计限制,研制出基于自由形状超原子的超表面光谱成像芯片,取得了更优异的光谱成像性能(图2)。对宽谱光和窄谱光进行测量重建的结果表明,窄谱光重建的中心波长偏差标准差仅为0.024 nm。24色标准色卡的平均光谱重建保真度达到了98.78%。该研究工作进一步提升了超表面光谱成像芯片的性能,推动了未来光谱成像芯片的发展及其在实时传感领域的应用。图2. 基于自由形状超原子的超表面光谱成像芯片及其性能指标该项成果的实时超光谱成像芯片是微纳光电子与光谱技术的深度交叉融合,作为光谱技术的颠覆性进展,展示出在实时传感领域的巨大应用潜力,相关成果已进行产业化。上述研究成果以“基于可重构超表面的实时超光谱成像芯片及动态脑光谱获取”(Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces)为题在《光学设计》(Optica)发表。电子系2017级博士生熊健、博士后蔡旭升、副教授崔开宇为该论文的共同第一作者。崔开宇为论文的通讯作者。该工作得到了包括科技部重点研发计划、国家自然科学基金、北京市科技计划、北京市自然科学基金、北京量子信息前沿科学中心、北京量子信息科学研究院的支持。同时,研究成果还以“基于自由形状超原子超表面的超光谱成像”(Ultraspectral Imaging Based on Metasurfaces with Freeform Shaped Meta-Atoms)为题于期刊《激光与光子学评论》(Laser & Photonics Reviews)发文。电子系2018级博士生杨家伟为该工作的第一作者。崔开宇副教授、黄翊东教授为论文的通讯作者。该工作得到了包括科技部重点研发计划、国家自然科学基金、北京市科技计划、北京市自然科学基金、北京量子信息前沿科学中心、北京量子信息科学研究院的支持。
  • 中科院光谱成像技术重点实验室揭牌
    9月29日,中国科学院光谱成像技术重点实验室成立揭牌仪式暨实验室第一届学术委员会第一次会议在西安光机所举行,这是继9月22日中科院超快诊断技术重点实验室在我所举行实验室成立揭牌仪式后,西安光机所历史上第二个院重点实验室正式宣告成立。我所赵卫所长,马彩文、汶德胜、高立民副所长等所领导班子全体成员,该实验室第一届学术委员会委员顾逸东院士、王家骐院士、朱能鸿院士等十余位我国光谱成像技术领域内的知名专家及有关方面领导出席了会议,我所机关有关部门领导及光谱成像技术重点实验室部分科研人员参加了实验室成立揭牌仪式。 中科院光谱成像技术重点实验室成立揭牌仪式暨实验室第一届学术委员会第一次会议在西安光机所举行   光谱成像技术是20世纪80年代出现的一项集光学、光谱学、机械结构、电子学、计算机科学于一体的新兴学科,作为现代科学仪器的前沿和光学传感器的发展方向,光谱成像技术具有光谱探测与几何成像双重功能,能够在连续的谱段上对同一目标成像,并从获得的光谱图像数据中反映出物质的存在状态和物理化学属性,因而,它被誉为光学仪器发展史上的一次革命。  西安光机所在我国率先系统、深入地开展了干涉成像光谱技术的研究,经过十多年的努力具备了从基础理论创新,关键技术攻关到工程项目研制的能力,已成为我国光谱成像技术研究的重要力量。新成立的中国科学院光谱成像技术重点实验室将在我所已取得研究成果的基础上,进一步强化创新能力建设,面向国家战略需求和学科前沿,以光谱成像技术研究为核心,以高光谱、高空间和高时间分辨信息获取为目标,以原理创新、关键技术突破、集成创新、应用研究牵引为途径,积极推动我国光谱成像理论、技术与应用的持续发展,为国家安全和国民经济建设服务,并努力将实验室建设成为我国光谱成像理论、技术、应用研究,人才培养和国际交流合作的基地。 赵卫所长宣布实验室主任、学术委员会主任以及实验室学术委员会组成人员名单   在实验室成立仪式上,赵卫所长宣读了关于聘任汶德胜研究员为中科院光谱成像技术重点实验室主任、顾逸东院士为实验室第一届学术委员会主任的任命文件以及实验室第一届学术委员会组成人员名单,并为新一届的实验室主任、学术委员会主任和学术委员会委员一一颁发了聘书。在与会人员的热烈掌声中,赵卫所长和顾逸东院士共同为中国科学院光谱成像技术重点实验室成立揭牌。 赵卫所长和顾逸东院士共同为中国科学院光谱成像技术重点实验室成立揭牌   根据大会议程,随后由顾逸东院士主持召开了中科院光谱成像技术重点实验室第一届第一次学术委员会会议。会议听取了汶德胜主任所作的《中国科学院光谱成像技术重点实验室2009年工作报告》,审议了《中国科学院光谱成像技术重点实验室学术委员会章程》,同时对实验室发展目标与学科规划、学科与研究方向设置、开放课题指南与自主前沿部署、队伍建设及管理运行、研究进展情况与工作重点等有关议题进行了认真的研究和讨论,与会的专家和领导一致认为:中国科学院光谱成像技术重点实验室建设目标明确,发展规划可行,学科及研究方向设置合理,符合院重点实验室定位;2009年开放课题指南与课题设置注重与国家重大需求衔接,符合学科发展趋势;组织结构和科研队伍结构合理,科研条件及设施良好,管理运行规范,实验室各项研究工作进展顺利,整体发展态势良好。 中科院光谱成像技术重点实验室学术委员会主任顾逸东院士主持第一届学术委员会第一次会议中科院光谱成像技术重点实验室主任汶德胜研究员在会议上讲话   学术委员会还就进一步做好实验室的发展工作提出了一些建设性的意见和建议:应积极关注光谱成像学科发展趋势的研究,进一步提升光谱成像关键核心技术和工程技术等创新能力的建设;进一步做好学科凝练工作,加强学科的布局与规划,应坚持突出重点,强化学科特色;进一步加强高水平人才队伍建设,加大学术带头人等优秀人才的引进和培养,注重开展国内外的科技合作与交流。 中科院光谱成像技术重点实验室第一届学术委员会委员(部分)
  • 中科院光谱成像技术院重点实验室接受评估
    6月10日,中科院计划财务局与高技术研究与发展局组织专家组来到中科院西安光学精密机械研究所,对中科院光谱成像技术重点实验室进行了现场评估。   光谱成像技术院重点实验室2008年12月经中科院批准成立,以干涉式光谱成像技术及其他光谱成像技术为主要研究方向。成立以来,实验室面向世界科技前沿和国家战略需求,以光谱成像技术研究为核心,以高光谱、高空间和高时间分辨信息获取为目标,以原理创新、关键技术突破、集成创新、应用研究牵引为途径,不断提高持续创新能力,符合国家中长期科技发展规划和中国科学院的学科布局。   实验室在光谱成像理论、空间调制型干涉成像光谱技术、时空调制型光谱成像技术、新型光谱成像技术、光谱数据综合处理技术等研究方面取得了一批创新性成果,所研制的高光谱成像仪成功应用于我国探月工程、环境减灾等领域,获得包括国家科技进步二等奖在内的省部级以上奖励6项。实验室形成了以中青年为主结构合理的研究队伍,同时积极开展国内外合作,形成了全方位、多层次的科技合作格局。学术交流活跃,成效显著。实验室规章制度完善,管理运行规范,科研协作融洽,学术氛围浓厚。依托单位支持有力,实验室发展态势良好。   在所期间,专家组认真听取了实验室主任杨建峰研究员从实验室概况、承担的任务与取得的成果、队伍建设与人才培养、合作交流、总结与展望等五个方面所做的工作报告。胡炳樑等5位科研骨干分别代表各自的科研领域和学科方向做了代表性成果学术报告,并回答了专家的提问。   评估组对光谱成像技术院重点实验室进行了现场考察,实地了解了实验室的科研进展、仪器设备、科研团队建设等情况,查阅了实验室的实验记录、设备运行记录和有关规章制度,并与科研人员进行了交流。专家们对重点实验室的定位、取得的成果、人才队伍建设、与国内外的合作、实验室的运行机制等方面的情况给予了客观、公正的评价。专家组还对实验室存在的问题提出了意见和建议,希望实验室在下一阶段进一步加强高层次人才引进及团队优化工作。
  • 拉曼光谱成像技术获突破 肝癌早期检测成可能
    据媒体报道,日前由中国科学技术大学侯建国院士领衔的单分子科学团队董振超研究小组,在高分辨率化学识别与成像领域取得重大突破。这项研究结果突破了光学成像手段中衍射极限的瓶颈,将具有化学识别能力的空间成像的分辨率提高到一个纳米以下,这对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造,以及包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。据悉,该研究工作是在科技部、科学院和国家自然科学基金委的资助下完成的,是该研究团队继2005年实现单分子磁性调控(文章发表在《科学》杂志上)后在单分子科学领域取得的又一项重大进展。   据文章通信作者之一董振超教授介绍,印度科学家拉曼于1928年发现了光子被物质分子散射后能量发生变化的光散射现象,并在两年后因此贡献获得了诺贝尔物理学奖,是亚洲第一位获此殊荣的科学家。拉曼散射中光子的能量变化通常起源于分子振动能量与入射光子能量的叠加,因此拉曼散射光中包含了丰富的分子振动结构的信息。而由于不同分子的拉曼光谱的谱形特征各不相同,因此可作为分子识别的&ldquo 指纹&rdquo 光谱,就像人的指纹可以用来识别人的身份一样。如今,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   据介绍,激光光镊拉曼光谱技术是将激光光学囚禁技术和拉曼光谱技术相结合应用于悬浮细胞、生物大分子等进行研究的一种光子技术,更是一种无损、快速、灵敏的光谱学的检测方法。   专业人士表示,鉴于水的拉曼散射非常微弱,该技术适合于对水溶液中生物大分子、细胞等进行研究。该技术应用光镊把细胞俘获或囚禁在玻片上方10微米左右的位置,可以消除其他拉曼光谱技术将细胞囚禁在溶液中和玻片上所引起的不良影响。并且光镊将细胞长时间囚禁在激光的焦点附近,在优化了散射光的收集光路的同时,还可以得到更高信噪比的光谱。虽然激光光镊拉曼光谱技术已经具有如此多的优势,但这种技术只是对直径较小的细胞有很好的针对性,对像肝癌细胞这样直径较大的细胞并不能全部获取其中的光谱信息。   目前肝癌已经成为死亡率仅次于胃癌、食道癌的第三大常见恶性肿瘤,但初期症状并不明显。因此,对肝癌的检测就成为了目前医学研究的重要课题。而拉曼光谱成像可以在降低分子成像成本的同时,提供更高的图像敏感度、还有更强的空间分辨率以及更完善的浏览多重信号的能力。   分析人士指出,拉曼光谱成像已经成为当前所有成像技术中较为优越的一种技术。这种重构的激光拉曼光谱成像系统对肝癌细胞进行了成像研究,获得了单个肝癌细胞微区的拉曼光谱图谱,同时计算出786cm-1、1450cm-1和1658cm-1等特征峰的峰面积,这些特征峰分别归属于DNA、脂类和蛋白质,并根据归一化后的数值在相应的细胞扫描位置给出不同颜色值成像,进而重构出这些物质的拉曼特征峰在肝癌细胞中的分布图。结果表明,应用这种方法可以很明确的看到DNA、脂类及蛋白质特征峰在细胞中的分布情况,并且通过荧光染色验证了成像系统的可靠性。因此通过特征峰的成像图确定物质在细胞中的微区分布情况,为拉曼方法检测和诊断肝癌提供了可靠的依据和重要的参考价值。
  • 西安光机所超光谱成像仪项目获国家科学技术奖
    1月14日,中共中央、国务院在北京人民大会堂隆重举行2010年度国家科学技术奖励大会,党和国家领导人胡锦涛、温家宝、李长春、习近平、李克强等出席大会。胡锦涛等党和国家领导人向获国家科学技术奖的代表颁奖。中科院西安光学精密机械研究所“环境与灾害监测预报小卫星超光谱成像仪项目”荣获国家科学技术进步奖二等奖。   超光谱成像仪具有“图谱合一”的宽谱段(0.45~0.95mm)和精细光谱(5nm)的探测能力,其在轨获取的干涉图经滤波、相位修正、辐射度修正、光谱反演、光谱修正后,得到每一个像元的超光谱图(曲线)。把每一个像元复原光谱图中具有同一波长的相对应的光谱强度值(光谱辐射功率密度)集合在一起,并以二维空间排序,即可重构超光谱图像序列,即每个谱段的准单色图。再进一步可以合成色彩非常丰富的真彩色图像。   西安光机所研制的超光谱成像仪装载在HJ-1-A卫星上。它是国内首先采用静态干涉型成像光谱技术新原理,研制的一种新型有效载荷。超光谱成像仪在环境与灾害监测预报中发挥特有的作用。它可以监测土地的沙化、盐碱化、石漠化 探测冰雪灾害与森林、草原火灾 调查国土资源及广域土地分类 进行植被分类、植树造林及退耕还林效果评估以及发现森林砍伐与破坏 服务于农业估产、监测病虫害以及生态环境破坏等。对自然灾害、环境污染、危及人类的危险事故等的发生、定量化分析、评估等将起着重要作用。   2008年9月6日,我国在太原卫星发射中心通过一箭双星方式将首颗环境卫星(也称为环境与灾害监测预报小卫星星座)A、B卫星成功送入太空。2009年3月30日,国家国防科技工业局在京组织环境与灾害监测预报小卫星A、B星在轨交付仪式。中国航天科技集团公司和中国卫星发射测控系统部将卫星正式交付给民政部和环境保护部投入使用。
  • 动态光谱成像:化工安全监测的“火眼金睛”
    历时近3年,完成“看见并定位”气体泄漏的创新之举,丰富安全预警监测手段… … 在前不久落幕的全国大学生课外学术科技作品“挑战杯”上,由南京大学电子科学与工程学院教授曹汛带领的科研团队,凭借项目“化工气体泄漏智能眼——光谱视频相机及预警系统”荣获主体赛道一等奖。指导老师曹汛年轻有为,他不仅是最年轻的国家科技三大奖一等奖完成人之一、“80后”国家重大仪器项目负责人,还是今年“中国青年五四奖章”获得者。“从实验室阶段的技术路径调研、原理验证与光学系统搭建,到样机阶段设计完善硬件、进行算法研发,最后对系统进行测试与优化,历时近3年。最终,在曹汛老师的悉心指导下,团队成员们攻坚克难,完成了‘看见并定位’气体泄漏的创新之举。”信息与通信工程专业博一学生周凯来是南大计算成像实验室成员之一,从研究生阶段便跟着曹汛从事光谱成像领域的科学研究。“永远保持兴趣和热爱,凡事只要热爱,就不会觉得太苦闷。”这是曹汛对学生最常说的话。也正是凭着自己对科研的热爱,为了攻克动态光谱成像“卡脖子”难题,他甘坐“冷板凳”,始终保持专注,钻研处于空白地带的动态高光谱成像技术,推动光谱成像由“静”至“动”跨越,引领动态高光谱成像国际科技前沿。这项研究成果不仅得到诺贝尔奖得主的积极关注和引用,还被多个国际权威机构评价为该领域数十年以来的“革命性进展”。对于普通大众来说,动态光谱成像是个完全陌生的新名词,然而在化工企业领域,这项技术却扮演着化工安全监测“智能眼”的重要角色。气体泄漏是化工企业火灾爆炸事故的基本原因之一,传统监测技术存在易受环境影响、监测范围小、报警滞后等问题,新兴的光谱视频监测技术也面临着被国外所垄断的困境。气体监测最大的困难在于要监测的泄漏气体看不见、摸不着,形状在不断变化,也没有清晰的边界和颜色特征,所以比传统目标的监测难度大大增加。“经过不断试验打磨,我们针对常见的化工泄漏气体,专门设计了光谱智能预警监控系统,实现气体泄漏的快速感知、实时监测与及时预警,优先防范和化解化工生产和环境污染的重大危险源。”在很长一段时间里,曹汛和团队成员马不停蹄,跑遍了全国上百个化工生产园区,“目前该系统已成功应用于全国10余个省市的大型化工园区和重点企业,大大降低了各类化工安全生产重大事故的发生。”在课题组成员眼里,曹汛是他们的“科研领路人”,而在曹汛的科研探索道路上,也有一位令他印象深刻的“人生导师”——南大校友、“两弹一星”元勋程开甲院士。“作为南京大学的一名教师,程院士第一次踏入罗布泊后,把一生中最好的20多年时光献给了茫茫戈壁,为科研倾注了全部的心血和才智。如何做一个纯粹的青年科技工作者,在所在领域作出成绩,程院士就是最好的榜样。”曹汛说,除了科研,他最喜欢做的事便是和学生们一起,未来还将带领他们将个人发展与国家需求相结合,在科研领域继续“追光之旅”。
  • 陕西省光谱成像工程技术研究中心成功验收
    p   记者5月15日从光机所获悉近日,陕西省科技厅组织专家验收委员会,对依托西安光机所组建的“陕西省光谱成像工程技术研究中心”进行了验收。 /p p   陕西省光谱成像工程技术研究中心是由该所申报的经陕西省科学技术厅认定的第一个省级工程技术中心,中心成立后将依托中国科学院光谱成像技术重点实验室的技术优势,拓展光谱成像技术在经济和民生领域的应用,按照市场需求进行产品研发和产业化发展,重点开发附加值高、技术含量高、市场潜力大的产品,持续提供成熟配套的技术、工艺、装备和产品,促进成果转化和技术辐射,带动相关产业和领域的技术提升和科技进步,成为陕西省重要的行业技术服务和工程技术人才培养基地。 /p
  • 聚焦光谱成像与智慧餐饮 求是光谱与吉大通信签署战略合作协议
    据相关网站消息,2022年11月15日,吉林吉大通信设计院股份有限公司(以下简称“吉大通信”)与吉林求是光谱数据科技有限公司(以下简称“求是光谱”)开展了座谈交流并签署战略合作协议。签约仪式上,吉大通信董事长周伟与求是光谱董事长兼总经理姚治海教授签署了战略合作框架协议。未来双方将一起探讨、联合建立研发光谱成像技术在智慧餐饮领域的优先合作方案,也可在智慧农业、智慧应急等方面展开多方位、多层次的合作。双方将以统一的资源整合优势形成长期共同的发展联盟,共同发挥技术优势,共同构建智慧创新应用场景,打造智慧场景应用标杆,实现双方在技术、资源、市场、资本等方面的资源共享、互利共赢。相关信息显示:吉林求是光谱数据科技有限公司成立于 2017 年,以长春理工大学教授为创办主体,是从事多光谱芯片的设计与应用、光谱数据的研究与开发的创新型高科技企业。公司研发的产品主要有三类:一类为以智能手机为平台在线检测识别日用消费品中有害物质的易谱系列;一类为“光谱芯片”,光谱芯片是公司的核心产品;一类为围绕“光谱芯片”在智能制造领域的应用产品。
  • 清华大学黄翊东团队:基于深度学习的高空间分辨率片上快速光谱成像
    近日,清华大学电子系黄翊东、崔开宇团队以「Deep-learning-based on-chip rapid spectral imaging with high spatial resolution」¹为题在Chip上发表研究论文,提出将深度展开神经网络ADMM-net与基于自由形状的超表面光谱成像芯片相结合,实现了高空间分辨率的片上快速光谱成像,并消除了光谱图像的马赛克现象。光谱成像扩展了传统彩色相机的概念,可以在多个光谱通道捕获图像,在遥感、精准农业、生物医学、环境监测和天文学等领域得到了广泛应用。传统的基于扫描方式的光谱相机存在采集速度慢、体积大、成本高等问题。基于超表面宽带调制和计算光谱重建的片上光谱成像为实现消费级的便携式光谱相机提供了一种很有前景的方案。图1展示了超表面光谱成像芯片的基本结构,由硅基超表面层和带有微透镜的CMOS图像传感器组成,超表面层包含了360 × 440个超表面单元,每个超表面单元对应于成像空间中的一点,入射光经过每个超表面单元的频谱调制后被下方的传感器像素所探测。任一点处的光谱可以由该点附近的若干个光强探测值重建得到,重建过程对应于求解一个欠定线性方程组。现有的光谱图像重建算法需要通过逐点光谱重建来得到整个数据立方,存在计算耗时长和重建图像存在马赛克现象的问题。图1 | 超表面光谱成像芯片的结构示意图由于不同的超表面单元具有不同的光谱调制特性,整个超表面光谱成像芯片在不同波长下具有不同的空间调制特性,因此本文受启发于编码孔径快照式光谱成像算法,采用深度展开神经网络ADMM-net²进行光谱图像的快速重建,其基本架构如图2所示。网络包含K=12个阶段,每个阶段都包含线性变换W()和降噪卷积神经网络(通常采用U-net结构)两部分。网络的输入是包含所有超表面单元光谱调制特性的传感矩阵Φ和测量图像y,输出为重建的光谱图像数据立方。图2 | 深度展开神经网络ADMM-net的基本架构图3展示了利用超表面光谱成像芯片对标准色卡进行实际成像测量后,采用不同算法重建数据立方的结果。从RGB伪彩色图中可以看出,ADMM-net的图像细节重建效果显著优于采用传统的CVX算法进行逐点光谱重建的结果,有效消除了图像的马赛克现象。并且,相比于传统迭代算法GAP-TV³和端到端神经网络λ-net⁴的重建结果,ADMM-net的光谱重建准确性也更优。此外,采用ADMM-net进行单次重建仅需18毫秒,而逐点光谱重建则需要4854秒,本工作在重建速度上实现了约5个数量级的提升。图3 | 对标准色卡进行实际成像测量后,利用不同算法进行光谱图像重建的结果进一步,本工作利用ADMM-net实现了对户外驾驶场景的实时光谱成像,如图4所示,光谱成像速率达到约36帧/秒。从RGB伪彩色图中可见,车辆的色彩重建准确性较好;并且,从第20、100帧图像中的采样点A和B的重建光谱来看,天空和白色车辆的光谱具有明显的差异,有望解决自动驾驶场景中的同色异谱识别问题,避免相撞事故的发生。此外,具有视频帧率的高空间分辨快速光谱成像,也展示出实时光谱成像芯片在机器视觉领域的巨大应用潜力。图4 | 户外驾驶场景的实时光谱成像结果
  • 电子光学品牌PIXELTEQ推出用于多光谱成像的缩微成像滤光器
    美国佛罗里达州的拉哥于2016年2月2日传来消息,英国豪迈的电子光学品牌PIXELTEQ(pixelteq.com)推出了缩微成像滤光器,其缩微成像光学涂层结合了显微光刻法专利技术和最先进的涂层专利技术,帮助创造了简便且具有性价比的光学设备,可应用于生物医学、安防、航空航天、精细农业和机器视觉等领域。PIXELTEQ的缩微成像滤光器。PIXELTEQ公司的技术使多个电介质、金属和颜料的图案结构能在单一基质上获得滤波阵列涂层。到位的标准化流程为模仿玻璃和半导体晶片奠定基础,且优化了PIXELTEQ获取客户需求的流程、减少了产品投放市场的时间。该公司的高技术性能使其产品可以满足各种市场需求,不管是高精准度、低容量的装置还是高容量的消费者导向产品。PIXELTEQ公司的营销和销售副总裁马尔科?史尼克斯(Marco Snikkers)说:“凭借数十年的经验和努力,我们的专利薄膜涂层流程不断完善。我们能肯定我们是唯一只专注于缩微成像技术的光电公司”。去年,PIXELTEQ公司花费了数百万美元用于发展并升级了生产设施,其缩微成像滤光器的产出已翻两倍。到目前为止,PIXELTEQ是全球市场上专注于缩微成像技术性能的唯一光电企业。欲了解更多信息,请访问www.pixelteq.com,发送电子邮件至info@pixelteq.com,或拨打电话+1-727-545-0741。关于PIXELTEQ和英国豪迈:PIXELTEQ公司提供OEM光谱传感和成像产品、缩微成像滤光器、自定义的电子光学设备,可应用于航空航天、生物医学、工业制造、科研和安全等领域。在每台多光谱设备的核心,都有一个为特定应用而制造的像素级滤光器阵列。为了推动薄膜涂层、缩微成像和光电集成的综合知识技能,PIXELTEQ的专家们与客户合作,通过高产能的OEM方式快速来进行原型制作,从而提供专业的设计帮助和定制的解决方案。PIXELTEQ是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂和生产基地。业务合作联系人:曲盛滨(Jerry Qu)PIXELTEQ中国区商务拓展经理电话:010-51261868邮箱:jerry.qu@pixelteq.com
  • 测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像
    测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像产品简介Nanobase XperRam C 紧凑型共聚焦拉曼光谱仪采用高于竞争对手30%效率的透射式光栅和高效率的自研CCD,可实现超高灵敏度。不同于传统的拉曼光谱设备采用平台移动的方式,它选择的独特的振镜扫描技术,保持位移平台不动,通过振镜调节激光聚焦的位置完成扫描成像,不仅速度快、扫描面积大,且精度也高。产品配置显微镜反射LED照明,右手控制的机械x-y载物台,物镜10×/20×/40×/50×/100×(选配),进口正置型显微镜扫描模块扫描模式:振镜扫描,分辨率: 焦长35mm光谱范围蕞大8150cm-1光谱分辨率低至3个波数检测器TE制冷CCD,1932×1452pixels,4.54um width 光栅 光栅刻线光谱范围分辨率2400lpmm70~2340cm-13cm-11800lpmm70~3400cm-14.4cm-11200lpmm70~5000cm-16.4cm-1600lpmm70~8150cm-19.8cm-1 其他选配项ND功率控制衰减片光电流源表、探针台实现光电流mapping偏振控制 目前我们针对XperRam系列光谱仪推出以下限时免费测试项目限时时间:2022.6.1-2022.12.31申请条件:微信朋友圈转发公众号文章,获取10个赞,并截图发给联系人即可享受测试项目测试内容测试条件激发波长探测器水平 拉曼测试 拉曼光谱、二维拉曼成像成像范围:200um×200um(40×物镜下),空间分辨率:激发波长:532nm/785nm,光谱分辨率:0.12nm 2000 × 256 pixels, 15 μm 像素宽度 (iVAC316, Andor) PL测试 PL光谱、PL二维成像激发波长:405nm/532nmTCSPC测试瞬态荧光寿命曲线、二维荧光寿命成像激发波长:405nm系统响应度:<200ps测量范围12.5ns-32us 光电流测试 I-V曲线、I-t曲线、二维光电流成像激发波长:405nm,532nm,785nm Semishare高精度探针台 Keithley2400源表蕞大电压源/量程:200v测量分辨率:1pA/100nV 设备优势1、拉曼光谱分析不同浓度的环境干扰物,体现了低浓度样本中仪器检测的高灵敏度。2、拉曼成像分析二维材料MoS2的分布3、拉曼测量硅片:透射式体光栅VPH和少量光学元件可以实现高通量和高S/N信噪比 典型应用介绍拉曼光谱在宝石鉴定中的应用 在1200cm-1~3600cm-1区间,没有明显的峰值出现,说明其中没有环氧树脂或有机染料等基团,是chun天然宝石。 1123cm-1、1611cm-1是环氧树脂中苯环特有的峰,因此属于被环氧树脂或其他胶填充裂纹的改善翡翠。拉曼光谱在二维材料中的应用 G峰和G、峰强度之比常被用来作为石墨烯层数 的判断依据,G峰强度随层数增加逐渐变大;G、 峰的半峰宽随层数增加逐渐变大,且往高波数蓝移。拉曼光谱在植物研究中的应用 不同浓度的胡萝卜素的拉曼成像图中红色和绿色区域分别代表高浓度和低 浓度的羰基。在Control样品中,绿色区域连续 分布在粉末中,表明淀粉在微胶囊内部和外部 的分散相对均匀。在掺入海藻糖后,在微胶囊 的外部周围检测到含有高浓度和低浓度羰基的混合区域。该结果证实了海藻糖和淀粉由于其 亲水性而在微胶囊中具有良好的相容性。拉曼光谱在光波导中的应用 光波导主要通过对折射率的调控来实现,折射率分布影响导波性能。 光刻过程材料吸收能量发生热膨胀,导致应力变化、晶格破坏和化学键键 长变长,从而使拉曼位移发生变化。拉曼光谱在催化中的应用——原位升温拉曼 Ag/CeO2在不同温度和气 氛中的原位拉曼光谱。 目前我司的光电测试系统已在国内外各个高校均有服务,欢迎各位老师同学前去调研。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 2018重大仪器专项明确任务方向 高速激光共聚焦拉曼光谱成像仪名列其中
    p   2017年5月23日,科技部高新司发布“重大科学仪器设备开发专项”2018年度申报指南建议(征求意见),明确关键核心部件、高端通用科学仪器和专业重大科学仪器3个任务方向。 /p p   在高端通用仪器工程化及应用开发方面,涵盖了16大类仪器设备,包括高精度光热电位分析仪、气相分子吸收光谱仪、高精度光声光谱检测仪、高灵敏紫外成像仪、高速激光共聚焦拉曼光谱成像仪、磁共振脑图谱测量仪、有机物主元素分析仪、高速网络协议与安全检测仪、材料高温高频力学性能原位测试仪、微纳结构动态特性测试仪、大型复杂结构件力学性能检测仪、太赫兹三维层析成像仪、差分高能电子衍射仪、固态量子材料自旋信息测量仪、低场量子电阻测量仪、高精度三维螺纹综合测量仪、 /p p   其中,高速激光共聚焦拉曼光谱成像仪的研究目标:针对物理化学、生物医学、材料工程等领域微区物质化学结构空间分布探测与分析的需求,突破低波数、高分辨、高速光谱成像关键技术,开发具有自主知识产权、质量稳定可靠、关键部件国产化的高速激光共聚焦拉曼光谱成像仪,实现激光拉曼光谱远场扫描探测与光谱成像。开展工程化开发、应用示范和产业化推广。 /p p   考核指标:探测光谱范围200nm~1000nm,激发波长覆盖紫外到近红外三个以上波段,拉曼光谱探测分辨率≤0.7cm-1,低波数≤50cm-1 图像横向分辨率≤200nm,轴向分辨率≤500nm,样品轴向定焦分辨率≤10nm,成像时间 a href=" mailto:≤10min@1024× 1024" ≤10min@1024× 1024 /a 平均故障间隔时间≥3000小时。 /p p   更多详细内容请查看: /p p    a title=" " href=" http://www.instrument.com.cn/news/20170523/220292.shtml" target=" _blank" strong “重大科学仪器设备开发专项”2018年度申报指南征求意见(全文) /strong /a /p p    /p p & nbsp /p
  • IRIS机载一体式激光雷达高光谱成像仪在评估杂草抗性方面的应用
    “倘若有什么植物妨碍了我们的计划,或是扰乱了我们干净整齐的世界,人们就会给它们冠上杂草之名。可如果你本没什么宏伟大计或长远蓝图,它们就只是清新简单的绿影,一点也不面目可憎。” ——《杂草的故事》清新简单的绿影自然面目可爱,惹人注目,但人类生存之下,繁多冗杂的一片蔓延,确是明目张胆地抢了农作物的地盘,伤了农业发展。世界上的杂草有1000多种,它们通常生长迅速、繁殖能力强,会对农业产生一定的影响。杂草不仅会与农作物争夺土壤养分和水分,传播病虫害,从而影响农作物的生长和产量,含有毒素的杂草还会影响农作物品质。因此,对于农业生产来说,防治杂草对保证农作物的正常生长和产量至关重要。IRIS机载一体式激光雷达高光谱成像仪在评估杂草抗性方面的应用杂草防治是现代农业生产管理的重要组成部分。然而,过度依赖常用除草剂进行化学防治已导致大量抗性杂草的出现,对可持续农业构成重大威胁。因此,开发一种大面积准确评估和量化田间杂草抗性的方法对于农场管理和可持续发展至关重要。目前的方法,例如目视检查,既费时又费力。酶测定虽然准确,但只能在实验室环境中进行。热成像技术可能会受到环境因素的影响,导致在室外使用时精度较低。因此,无法大规模应用。无人机(UAV)和各种传感器已经成为植物表型研究中不可或缺的工具。在这项研究中,作者于2021年6月7日在中国黑龙江省哈尔滨市向阳农场(位于北纬45°61′,东经126°97′)使用LR 1601-IRIS 机载一体式激光雷达高光谱成像仪(北京理加联合科技有限公司)进行了相关试验。旨在(1)根据杂草表型和鲜重提出新的抗性指数,来有效地量化田间杂草的抗性;(2) 利用高光谱传感器识别抗性杂草和敏感杂草之间的内在差异和敏感光谱区域;(3)通过多模态数据融合和深度学习研究光谱、结构和纹理信息及其组合在抗性评估中的贡献;(4)评估所提出的模型针对不同杂草密度和绘制抗性杂草的能力。机载杂草抗性评估方法的工作流程。结果(a) 不同抗性和密度的高光谱反射率曲线;(b)高光谱一阶导数。虚线代表抗性杂草,实线代表敏感杂草,颜色代表杂草密度。CRS测量和预测值散点图。结论(1)敏感杂草和抗性杂草的光谱响应存在明显差异,连续投影算法(SPA)选择的最佳波段与抗性表达波段的最佳波段相吻合;(2)通过多模态数据融合提高了抗性评估的准确性,后期深度融合网络表现出最佳的准确性,R2为0.777,RMSE为0.547;(3)多模态融合网络模型在不同密度的抗性评估中表现出强大的适应性,并有效地生成杂草抗性图。总的来说,这项研究证明了使用多模态数据融合和CRS,结合深度学习,实现准确和可靠的农田杂草抗性评估的有效性。本研究为农田抗性杂草管理提供了一种更有效、更准确的方法,并为可持续农业的发展提供助力。
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • 死海古卷有隐形文字?考古学家用多光谱成像,发现2300年前短语
    1946年,几个牧羊人在死海北部的库姆兰洞穴,发现了一批被灰尘覆盖的纸卷。经过一些考古学家的辨认,这些纸卷有2300年历史,撰写于公元前3世纪,大多数纸卷上有古代希伯来文,从此之后,这批古代文献就被称为死海古卷。经过70多年研究,死海古卷的秘密不断被揭开,然而今年英国的一位考古学家,在空白的死海古卷上,又发现了一些隐形文字,似乎预示着过去的很多研究需要推倒重来。死海古卷实际上由900份手稿组成,被认为是古老的犹太教分支艾塞尼(Essenes)派学者撰写的,目前有一部分手稿收藏在曼彻斯特大学。伦敦国王学院的琼泰勒(Joan Taylor)教授在曼彻斯特大学研究死海古卷时,用放大镜检查几片被当做白纸的手稿,然后她隐隐约约发现了一个希伯来字母“L”。一开始,她以为自己看花了眼,或者出现了幻觉,但后来她注意到羊皮纸上还有其他字母。她说:“通过放大镜,我以为我看见了一个褪色的小字母,希伯来语字母‘L’。”“坦率地说,由于这几片手稿本来都是空白的,所以我也认为我可能出现了幻觉。”“但是后来,我检查了好几片手稿,它们也带有看不清的字母。”“每个手稿碎片上只有几个字母,发现它们就像找拼图碎片一样。”后来,琼教授使用了一种称为多光谱成像的技术,该技术使用不同的波长来捕获难以看见的图像。经过电脑辨认,最终手稿上的文字显示了出来,其中包含可读的单词、字母和格子线。第一个能完全辨认的希伯来短语是“Shabbat”,意思是犹太人的安息日,也就是星期日的意思。琼教授认为,这些褪色的文字,可能是旧约的一部分,破解它们或许可能帮助人们深化了解古代以色列和犹太人社会。自从死海古卷被发现以来,学者们就对其十分着迷,这些古老的羊皮纸包含希伯来圣经、犹太人的社会规则、犹太日历甚至天文观测记录。完好保存2300年的手稿,本就是一种能够激发人们好奇心的文物,仿佛古人撰写的武功秘籍,人们对其记录的内容特别看重,期望它能够解开很多未解之谜。不过,以前破译的死海古卷,内容无外乎旧约,了无新意,此次琼教授发现的“隐形文字”,重新激起了人们的兴趣。这几片此前被忽视的死海古卷,文字为什么是隐形的?难道说仅仅是褪色了吗?这显然说不通,因为那么多古卷,为什么就它们褪色了?很多人认为,这是艾塞尼学者有意为之的手段。至于说当年这批学者为什么要隐去文字,恐怕他们有自己的难言之隐,现代人想要破解其中的奥秘,只能等待考古学家的新发现了。你认为死海古卷隐去文字是为什么了?
  • 奥谱天成全球发布会|ATR8800共聚焦拉曼光谱成像仪
    奥谱天成将于6月2日举办ATR8800共聚焦拉曼光谱成像仪全球发布会活动,将会采用线上线下同步直播形式进行,线下活动位于徐州科技创新谷A座一楼路演中心举行。届时,徐州市副市长、铜山区委书记、徐州高新区党工委书记、徐州市科技局、商务局、环保局、土地局、工信局等领导将会出席,同时中科院合肥物质研究院黄青主任、物理研究所刘玉龙教授、浙江大学戴连奎教授、华中科技大学朱丽华教授、巴基斯坦费萨拉巴德农业大学Muhammad Irfan Majeed等国内外有关高校院所专家、教授都将会出席和连线参与发布会。在此,奥谱天成诚邀您参加ATR8800共聚焦拉曼全球发布会!
  • 980万!山东大学全光谱成像分选流式细胞仪采购项目
    一、项目基本情况项目编号:SDJDHD20230645-Z405/SDAK-GK-2023087项目名称:山东大学全光谱成像分选流式细胞仪采购项目预算金额:980.000000 万元(人民币)最高限价(如有):980.000000 万元(人民币)采购需求:本项目山东大学全光谱成像分选流式细胞仪预算金额:人民币980万元(包含外贸代理和汇率浮动费用)。本项目共分为 1个包,投标人不得对包中所投货物和服务分解后进行响应。合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月01日 至 2023年12月07日,每天上午8:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:山东大学招标采购管理系统方式:在线下载(投标人在山东大学采购网,点击“投标人注册”,完成后,通过“校外用户登录”,报名并免费下载招标文件电子版。未报名的投标人,不能参加本项目采购活动)。本项目为资格后审,投标人获取招标文件不代表资格审查通过。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:马老师 0531-88365560      2.采购代理机构信息名 称:山东安康建设项目管理有限公司            地 址:山东省济南市历下区经十路17175号            联系方式:唐老师0531-88909828            3.项目联系方式项目联系人:唐老师电 话:  0531-88909828
  • BioTools发布全球首创的便携显微拉曼分子光谱成像系统
    仪器信息网讯 2015年3月10日,在Pittcon 2015开幕第一天的新闻发布会上,美国BioTools公司推出了全球首创的u-Raman便携式显微拉曼分子光谱成像系统和u-BioRaman便携式生物分子显微拉曼分子光谱成像系统。该款产品由手性振动光谱先驱Prof. L.A. Nafie教授带领的专家团队研发而成。   该项新产品的推出构建了显微成像和分子光谱的桥梁,将显微拉曼分子成像系统从实验室带入更广阔,更多新视野下的现场应用。   该款系统比便携式缝纫机还要小,新型移动设计使得光路设计更短更有效率,集成的PTZ样品台设计极大地增加了扫描速度使得样品无需任何处理,采用SERS可轻松测量低至1微升或PPm量的细菌、血液以及代谢物等。其操作及其简便的设计,将使其成为工业、药物、法检、博物馆、医生办公室、输液诊室以及食品和水的测试领域里的强大的工具。   BioTools预计将于下半年向全球发货。   展位合影(右三为Prof. L.A. Nafie教授)
  • 成功召开 | 第三届高光谱成像应用研讨会暨怀柔光电产业发展论坛,首日现场精彩呈现
    第三届高光谱成像应用研讨会暨怀柔光电产业发展论坛于8月12日在北京成功开幕。来自全国各大知名高校及研究院的近百位名专家学者出席了本次会议,围绕高光谱遥感展开精彩学术分享与讨论。主持人张永强(左)、孔令迪(右)本次会议聚焦光谱成像新技术介绍、农业光谱遥感应用、光谱图像分析算法、食品光谱检测应用、林业光谱遥感应用、高光谱目标检测六个议题,涉及食品检测、植被遥感、分析检测、农业遥感、地质探矿、水体遥感、分析算法、工业应用、林业遥感、成像技术、海洋遥感等多个领域。会议以邀请学术报告为主线,其间穿插学术前沿展示和高端国产仪器展示,呈现出高光谱遥感技术的全新精神面貌。会议现场会议伊始,双利合谱法人代表丁良成感谢各位专家老师的莅临,丁总强调,本次研讨会的成功举办离不开各位专家老师的支持和参与,希望通过本次会议能够进一步加强高光谱技术的交流与合作。随后,怀柔区副区长兰雄景为研讨会友好致辞,在致辞中表示,怀柔区一直以来都非常重视科学仪器的发展,希望通过本次研讨会让科学家走进怀柔,共同建设百年科学城,加快形成新质生产力,为推动高质量发展、推进中国式现代化作出更大贡献!北京市怀柔区人民政府副区长 兰雄景北京市卓立汉光仪器有限公司创始人兼董事长 丁良成双利合谱总经理张永强代表公司开场主持,并感谢北京市怀柔区人民政府副区长兰雄景、北京卓立汉光仪器有限公司董事长丁良成、怀柔区经济和信息化局副局长崔元甲、北京卓立汉光仪器有限公司总经理张志涛、怀柔仪器董事长张鸣剑、中国农业大学彭彦昆教授、中国科学院空天信息创新研究院副院长张兵研究员等重磅嘉宾莅临现场。嘉宾合影(部分)中国农业大学教授彭彦昆为大家带来《高光谱成像技术在农产品品质检测分级中的应用现状和趋势》的报告。彭教授在报告中介绍高光谱成像的技术特征的基础上,同时介绍了在农产品品质无损检测分级装备中的应用。针对农产品生产、加工和贮运物流等产销链关键环节品质检测分级技术的现状和需求,报告实用检测分级技术装备案例和应用场景,并展望未来发展趋势。中国农业大学教授彭彦昆来自中科院空天信息创新研究院研究员张兵为大家做了《遥感大数据与智能解译》的报告。报告主要介绍以下几个方向1.智能遥感卫星2.无人机遥感3遥感大数据4.遥感大数据区域时空分析讲述了遥感原理与应用方向;从智能遥感卫星的变革层次以及发展趋势让大家了解最新的遥感卫星技术,以及无人机遥感在遥感成像、信息提取等方面的优勢介绍。并强调了遥感大数据对遥感应用的重要性,人工智能为遥感大数据发展提供了重大机遇,人工智能深度融入遥感数据分析使得遥感解译工作更加贴近人类对客观世界的视觉认识,并超越人类。中科院空天信息创新研究院张兵怀柔区经济和信息化局党组成员、副局长崔元甲报告题目为《怀柔高端科学仪器装备和传感器产业推荐》,主要介绍了北京市怀柔区,怀柔是综合性国家科学中心,称为怀柔科学城,怀柔是有独特定位的,就是打造与国家战略需要相匹配的世界级原始创新承载区。以及怀柔科学城的5个重点的发展领域是生命科学、空间科学,物质科学、地球系统科学和信息与智能科学,也是国家对于怀柔科学城布局的5个主要方向。并在产业空间方面,构建了“一核三区多点”的园区布局。一核,国家高端科学仪器装备产业基地,三区,怀柔科学城产业转化示范区。诚挚地欢迎全球的科学家,企业家和投资人走进怀柔、扎根怀柔、筑梦怀柔、共创未来!怀柔区经济和信息化局党组成员、副局长崔元甲南京大学的教授张永光老师报告题目为《植被日光诱导叶绿素荧光遥感方法与应用》,报告介绍了植被日光诱导叶绿素荧光作为新兴的遥感技术之一,能够准确感知植被光合作用动态信息,实现陆地生态系统的高效动态、监测。并重点围绕日光诱导叶绿素荧光遥感方法、监测系统、反演算法及其光合作用探测等研究进展进行汇报,阐述结合“天-空-地”多源遥感数据植被监测中的应用。南京大学教授张永光中国科学院空天信息创新研究院研究员祁志美老师为大家带来的报告是《高光谱SPR传感技术在材料表征、细胞与组织分析方面的应用》。报告系统介绍HSPRM系统集成、性能指标、数据处理算法、及其在材料表征、细胞与组织分析方面的应用研究成果。中国科学院空天信息创新研究院研究员祁志美老师北京理工大学教授李伟老师报告题目为《图谱特征耦合的多源遥感智能解译技术》。李老师在报告中以数据融合、特征优化、协同解译为主线,介绍了高光谱图像具有“图谱合一”的特性,其纳米级光谱探测能力能够对不同类型目标进行精细化解译,在湿地地物类型精准监测任务中独具优势。高光谱多源协同能够集成不同传感器的优势,进一步提升解译性能。然而高光谱多源协同信息提取手段存在不同维度无法同时高分成像、特征异质冗余协同表征不足、跨域分布差异解译泛化性低的问题,严重制约其效能发挥。北京理工大学李伟老师南京农业大学程涛老师做了题为《粮食作物农情参数高光谱遥感混合反演技术》的报告,报告介绍了农情参数遥感反演是农业遥感领域的重要方向,对于粮食安全监测预警和智慧农作具有重要支撑作用。如何构建适用于不同场景的农情参数高精度遥感反演模型,是当前的热点前沿方向之一。由于混合模型可综合经验模型的简便性和物理模型的机理性,它逐渐成为农情参数遥感反演的主流。团队以多年水稻、小麦小区试验和区域散点试验为基础,运用植被指数分析、作物先验知识支撑的辐射传输建模等方法,系统开展了农情参数高精度普适性遥感估算研究。同时介绍了团队在稻麦农情参数高光谱反演方面的最新进展,包括叶绿素敏感指数、遥感氮分配理论、半经验模型标定等创新性成果。研究成果对于作物生长监测仪自主研制、生长动态高频次卫星遥感监测、产量品质智能化遥感预测等具有重要价值。南京农业大学程涛来自扬州大学的孙成明老师报告题目为《基于多源数据的作物生长智能监测》。报告主要介绍围绕稻麦等主要作物,利用图像分析、机器视觉、光谱分析、机器学习等技术与方法,从籽粒计数、麦苗计数、麦穗计数、氮素含量估算、病虫害监测、生长状态监测以及生物量与产量估算等方面开展了研究与探索,得到了一批基于图像技术的计数方法以及基于光谱技术的估测方法,为稻麦生长的智能监测与调控提供了理论支撑与技术途径。扬州大学孙成明老师浙江大学刘飞教授报告题目为《作物信息无人机遥感监测技术与发展趋势》。报告介绍了针对无人机遥感中飞行高度对单位时间作物信息监测面积(效率)和图像空间分辨率(质量)难以统一的难题,研究构建了含29万张作物图像的数据集CropSR用于自监督训练,并基于无人机正射影像和定点航拍数据,构建了真实匹配数据集CropSR-OR/FP用于模型测试;提出并创建了方差-均值-空间注意力(VASA)扩散模型(EVADM),实现了无人机遥感高效率与高质量的融合统一;融合结构和感知相似度,提出了超分相对保真指数(SRFI),实现了超分模型综合一致性评估。在×2和4的真实SR数据集上,EVADM相较于基线模型FID降低14.6和8.0的,SRFI提升27%和6%。在Agriculture-Vision公开数据集和多个任务表现优越,为无人机遥感高效率高质量大面积监测提供支撑。浙江大学刘飞教授中国科学院植物研究所严正兵研究员报告题目为《基于高光谱遥感技术的植物功能生态学研究》,本报告将从多尺度植物功能性状的高光谱遥感监测方法、植物功能性状对环境变化响应预警、景观尺度植物功能性状对关键生态系统功能调控等方面加以汇报,希望有助于促进高光谱遥感技术在植物生态学中的应用。中国科学院植物研究所严正兵研究员河南农业大学乔红波教授为大家带来题为《作物病虫害成像高光谱监测研究》的报告。报告针对作物上重要的病虫害,利用成像高光谱技术,在地面和无人机平台对病虫害发生程度进行定量遥感建模和评估,生成病虫害发生危害空间分布,并对其精准防治进行了初步研究。河南农业大学乔红波教授北京师范大学副教授刘志刚老师为大家带来《日光诱导叶绿素荧光(SIF)和光化学指数(PRI)在干旱监测中的应用》的报告。为大家主要介绍利用SIF和PRI监测干旱的原理和研究现状,同时介绍了高光谱遥感可以提取日光诱导叶绿素荧光(SIF)和光化学指数(PRI)。SIF和PRI与植被的光合作用和非光化学淬灭密切相关,能反映干旱胁迫下植被的生理异常。北京师范大学副教授刘志刚老师江苏双利合谱科技有限公司销售总监邓新强报告题目为《科研级高光谱成像系统介绍》。报告主要从光谱技术发展,以及高光谱成像在机载、地面、室内暗箱、显微等不同尺度上的应用,GaiaSky系列的机载高光谱的应用案例介绍、GaiaField 系列在植被冠层,表型等应用,以及 GaiaSorter、GaiaMicro 在反射光谱和荧光光谱的应用案例介绍。江苏双利合谱科技有限公司销售总监邓新强山东农业大学刘平教授报告题目为《高光谱在智能设计育种中的应用》。报告介绍了小麦长势和产量的高效准确估算对小麦评估和田间管理至关重要。为了提高小麦生长和产量估算的准确性,提出了一种基于遗传算法改进的支持向量回归(GA-SVR)算法的估算方法。通过对光谱数据计算的植被指数与小麦生长表型和产量之间的相关性分析,获得具有高度相关性和良好估算性能的最佳植被指数组合。在12个小麦品种和3个梯度氮肥施用的试验中,构建了小麦生长监测的最佳模型并建立了产量估算模型,在不同氮肥施用水平下验证其适用性。结果表明,所构建的叶面积指数、株高和产量估算模型表现良好,决定系数分别为0.82、0.71和0.70,均方根误差分别为0.09、2.7和68.5。无人机遥感技术可用于监测小麦生长状况和估算产量为小麦产量评估和田间管理提供技术支持。山东农业大学刘平教授中国人民公安大学姜红教授报告题目为《高光谱技术在法庭科学中的应用》。报告介绍了高光谱技术在法庭科学中的应用,主要有三点:1.利用高光谱技术检验常见的微量物证、2.利用高光谱技术检验中药材、3.高光谱结合卷积神经网络对食源性致病菌的快速识别。中国人民公安大学姜红教授中国矿业大学(北京)赵恒谦副教授报告题目为《高光谱技术在矿产勘查中的应用》。报告介绍了高光谱遥感技术作为一种重要的辅助手段,能够弥补传统技术的不足,并提高找矿的效率和精确性。选取河北兴隆县花市铷矿床为研究对象,利用GF-5数据进行光谱角制图处理,获取精细的蚀变遥感异常信息分布,并对比分析ASTER多光谱数据的蚀变矿物提取结果,为下一步的蚀变矿物信息提取研究提供技术参考。针对地面采集的刻槽岩石样本,利用ASD便携式地物光谱仪采集样本的点光谱数据,并结合深度学习技术进行岩性分类实验,同时与基于可见光数据的岩性分类结果进行对比,为高光谱技术在矿产勘查中的应用提供了参考。中国矿业大学(北京)赵恒谦副教授厦门大学助理教授郭伟杰报告题目为《基于显微分辨高光谱的Micro-LED发光机制研究》。报告为我们展示了Micro-LED显示已经成为倍受关注的新一代显示技术。然而,尺寸效应制约着Micro-LED显示的分辨率。随着尺寸缩小,Micro-LED的侧壁表面积与其体积之比显著增大,侧壁缺陷密度相应增大,导致载流子非辐射复合加剧、量子效率大幅降低。侧壁区域对Micro-LED的光电性能有重要影响,侧壁缺陷影响载流子的注入分布、非辐射复合,侧壁后处理以及绝缘层沉积影响漏电流,侧壁的粗糙程度影响光提取效率。通过采用显微分辨高光谱,研究Micro-LED侧壁区域的显微分辨发光机制,能够揭示侧壁区域微观构造对光电性能的影响规律,为Mesa蚀刻、侧壁处理、外延设计、二次光学设计等多个方面提供有效支撑,具有重要的科学价值和实际意义。厦门大学助理教授郭伟杰西南交通大学副教授郭裕钧报告题目为《输电线路绝缘子状态高光谱检测方法及应用》。报告介绍高光谱技术在输电线路绝缘子污秽和老化状态检测方法及应用的最新进展。绝缘子是电力系统使用量最大的设备之一,起到杆塔和线路间的机械支撑和电气绝缘作用,电网运行的复合绝缘子已达上千万只。由于长期在户外运行,绝缘子表面易沉积污秽,且受到电、热、紫外等因素长期老化作用,绝缘性能下降可能引发闪络事故,严重时甚至造成大范围停电。传统的输电线路绝缘子状态检测依赖运维人员登塔取样,需要线路停电且检测效率低下。高光谱可反映物质对不同波长光的吸收、反射特性,可在紫外、可见光、近红外等波段对目标区域进行成像,并包含图像与光谱双重信息,在输电线路绝缘子状态非接触、大范围检测方面具有很好的应用潜力。西南交通大学副教授郭裕钧华南理工大学食品科学与工程学院副教授蒲洪彬报告题目为《食品加工过程高光谱快速检测技术与深度学习研究》。报告先是介绍了高光谱技术的原理和现状,接着介绍冷冻、真空预冷等食品加工过程高光谱快速检测方法,最后为我们介绍了食品加工过程高光谱数据的深度挖掘方法。华南理工大学食品科学与工程学院副教授蒲洪彬无锡谱视界科技有限公司销售总监王宇斐报告题目为《跨越光谱技术应用的“门槛”-从科研成果到“实战”场景》。报告主介绍了谱视界公司主要涉及领域以及光谱发展历程,随后介绍了谱视界成像光谱仪的核心技术,和数据分析平台光谱智云,光谱智云的构建模型确保硬件精度的逐步提升。并阐述了目前谱视界的现阶段“实战”方向,主要包含水环境监测、智慧农业、食物数字化、工业分选等领域。最后介绍了目标“实战”的“产学研”合作内容。无锡谱视界科技有限公司销售总监王宇斐会议期间的学术前沿展示区和仪器展示环节也吸引了老师们进行参观和热烈的讨论。同时在第一天的会议圆满结束之后,我们特别举办了一场精彩纷呈的晚宴,并在晚会上进行了抽奖活动。仪器展示环节
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制