当前位置: 仪器信息网 > 行业主题 > >

西霸士重载连接器

仪器信息网西霸士重载连接器专题为您提供2024年最新西霸士重载连接器价格报价、厂家品牌的相关信息, 包括西霸士重载连接器参数、型号等,不管是国产,还是进口品牌的西霸士重载连接器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合西霸士重载连接器相关的耗材配件、试剂标物,还有西霸士重载连接器相关的最新资讯、资料,以及西霸士重载连接器相关的解决方案。

西霸士重载连接器相关的资讯

  • 金工分享-汽车连接器金相样品的制备
    今日试样制备方法分享之汽车连接器金相样品的制备,详情如下:难点:1. 连接器内部多材质、多结构,切割前必须镶嵌以固定结构件2. 连接器外壳多为聚合物塑料,且都有突出的边沿,切割夹具固定困难3. L型连接器,短边的切割位置非常靠近边缘,需要尽可能地减少切割损耗一、样品尺寸及切割位置二、连接器的连接位置预镶嵌以固定结构件步骤: • 先倒入环氧树脂,再倒入固化剂 • 单方向地缓慢搅拌约2min • 倒入连接器一端 • 重新锁闭连接器,静置2h以上 耗材: • EpoQuick环氧树脂和固化剂 • 固化时间:2h透明度:透明邵氏硬度:80 • 放热峰值温度:110℃体积/重量混合比:5:1三、制备1. 切割机与切割片的选择 切割机:10in手动砂轮切割机METCUT-10 轴承转速: 2865rpm/min 切割能力:90mm 切割片:10in金刚石切割片CD-10-01,厚度1.5mm 冷却液:水基切割冷却润滑液CC-01样品夹具:左右手快速夹具 操作方式:Z轴手动直切负载显示:安培表2. 用快速夹具固定样品3. 以L型的2021493A02为例4. 用P1200#砂纸在METPOL-A型自动研磨抛光机上手动研磨2min,去除橡胶、塑料等聚合物的切割痕迹以上就是有关汽车连接器样品切割的详细介绍,希望对您能有所帮助。如果您还想了解其他材料的制备方法,欢迎联系可脉检测的工程师,我们将为您提供个性化的专业技术服务。
  • 直播干货:全球5G连接器龙头安费诺为什么会选择摩方3D打印
    2020年5月26日下午2点,摩方材料联合安费诺集团在南极熊平台上开展了一场直播,主题为“高精密3D打印技术在5G通讯领域的创新应用”,本场直播由摩方材料周建林先生和安费诺王翔先生主讲。目前直播已经可以回看视频,微信扫描下方二维码即可观看视频回放下面南极熊就带大家以图文的形式来回顾一下本场直播的部分内容,首先我们来了解一下本次直播的两家公司背景以及两位主讲人。摩方材料是高精密3D打印领域全球领导厂商,安费诺(Amphenol)是连接器领域的全球领导厂商。摩方材料周建林的分享主要围以下四个方面:首先,周总展示了当前3D打印技术在5G领域的一些应用案例,主要包括5G天线、5G散热器、滤波器等。而摩方材料与安费诺的合作,主要是聚焦在5G通讯连接器方面,5G连接器主要承载光信号和电信号的转化任务,其不但要实现大量数据的高速传输,而且还在朝着小型化、精密化的方向发展。此外,在壁厚、公差、介电常数、耐高温等方面也有着比较苛刻的要求。根据Bishop&Associates统计的数据,2020年5G通信连接器的市场空间高阿达575亿元。以前,5G连接器的加工方式以开模注塑和机加工为主,而现在摩方材料的高精密3D打印成为新的加工方式。目前,主要用于满足结构验证、功能验证、工程阶段等1000件以下的制造需求,如果进入量产阶段,还是需要用到注塑工艺。直播中,周总将摩方高精密3D打印与常见的光固化3D打印技术以及模具生产、CNC机加工等工艺进行了对比,对比内容主要包括交期、质量、费用三个方面。我们可以看出,摩方的高精密3D打印技术有着自己独特的优势。此时,你可能会很感兴趣,究竟摩方材料的高精密3D打印是一种什么样的技术,周总引出了摩方材料工业级PμSL(面投影微立体光刻)技术的原理。该系统主要包括光源、成型、运动三大部分组成。摩方材料做了很多的技术改进,使其可以达到1μm~10μm的高分辨率,打印幅面可以达到100mm*100mm,此外还能支持50℃加热打印工艺以适应更多的打印材料。目前,摩方材料nanoArch工业级系列3D打印系统主要有5款设备,分别是nanoArch P130、S130、P140、S140Pro、P150。直播中周总主要介绍的是S140 PRO这款设备,同时也是用在5G领域中最多的一款。摩方材料还开发了一系列专用的3D打印材料,可以覆盖工程应用、生物应用和功能材料。周总重点解析了其中的HTL(耐高温树脂)、HKE(高强度韧性树脂)两款材料。目前,除了本次联合直播的安费诺外,还有20多家知名的连接器企业与摩方材料建立了合作。最后,周总列举了摩方材料合作的4个高精密3D打印的应用案例,包括:精密连接器、内窥镜、青光眼导流钉、微流控芯片。3D打印在这些高精密部件的制造中发挥了其优势。随后,安费诺集团的王翔先生介绍了安费诺的业务情况,并分享了公司在研发连接器的过程中是如何从采用快速开模转向摩方高精密3D打印的。安费诺是一家综合性的国际企业,其产品覆盖航空、汽车、移动终端、IT数据、移动网络、连接器等领域,2019年营收高达82亿美元(约585亿人民币)。这样的一家国际巨头,为何会选用摩方材料的3D打印服务,王翔在直播中表示,目前安费诺旗下的4个大通讯生产厂、6个研发与生产点都在与摩方材料进行合作,而且一致满意。探究其主要原因在于,摩方材料解决了他们在研发、制样过程中的难题,不但打印的样品精度等参数完全满足要求,而且制造周期与快速开模相比大幅缩短,大大提高了其研发部门的效率,并降低了试错成本。此外,王翔还列举了多个安费诺与摩方材料的案例,并对双方未来的合作提出了期许和展望。更多精彩直播细节,请观看视频回放。直播中,有3位幸运观众各获得摩方材料3D打印的高精度模型一个:(转载自:南极熊3D打印)
  • 快速驱动连接器行业创新创造之高精密3D打印
    5G通讯和新能源汽车等高端市场领域的快速发展,对于作为信号传输和互联关键元器件的连接器,提出了比以往更大的技术挑战,要满足大容量数据传输和高速高密度连接,微型化、精密化和集成化的连接器创新势在必行,对微型精密加工的需求也越来越迫切。行业背景连接器是系统或整机电路单元之间电气连接或信号传输必不可少的关键元器件,也是许多设备中不可缺少的基础电子元件和电子电路中沟通的桥梁,通过对电信号快速、稳定、低损耗、高保真的传输以保证设备完整功能的正常发挥,目前已广泛应用于军工、通讯、汽车、消费电子、工业等领域。随着世界制造业向中国大陆的转移,全球连接器的生产重心也同步向中国大陆转移,中国已经成为世界上最大的连接器生产基地。中国连接器制造整体水平得到迅速提高,连接器市场规模逐年扩大,中国成为全球连接器市场最有发展潜力、增长最快的地区。由于我国连接器行业起步较晚,连接器市场集中度较低,行业技术水平与先进国家技术水平相比仍有一定差距。目前,连接器高端技术和高端产品基本由泰科,安费诺和莫仕等行业国际巨头垄断,少数国内企业虽然也生产高端连接器产品,但相对于国际巨头而言规模仍较小,国内大多数中小规模的连接器生产企业不具备自主开发设计能力。国内整体技术水平仍与国际水平有一定差距,在国际竞争中技术上处于相对劣势。随着以5G通讯技术、汽车和消费电子为代表的各个应用领域对连接器功能性要求不断提高,微型和精密以及集成化的连接器创新势在必行,对应的微型精密加工的需求也迫在眉睫。市场概况连接器作为电路系统电气连接必需的基础元件之一,是终端应用产品的一个组件,因此,终端应用的发展是推动连接器市场快速增长和技术发展的主要因素,连接器行业发展趋势与下游终端应用行业发展保持着非常明显的一致性。据统计,2018年全球连接器市场将达665亿美元,2018年中国地区连接器市场规模为209亿美元,较上年同比增长9.42%,占据了全球31.4%的市场份额,是全球最大的连接器市场。随着5G通信、新能源汽车、消费电子等领域的发展,未来全球连接器市场规模将不断增长。下游应用领域对连接器的要求不断提高,具有较强研发实力的企业更容易获得竞争优势,市场份额不断向龙头企业集中。从1980年到2016年间,全球前十大连接器厂商市场份额有38%上升至59%,2017年前十大厂商市场份额达到61%,其中泰科、安费诺、莫仕三家厂商市场份额超过30%,几乎垄断了高端连接器市场。国内巨头立讯精密,中航光电,航天电器和得润电子等都在布局高端连接器市场,为了抢占5G通讯和新能源汽车等高端市场先机,将视加大产品快速创新为一种常态和战略,从而来缩小和国外连接器巨头的技术差距。高精密3D打印在连接器行业的应用随着5G技术和新能源汽车以及消费电子行业的快速发展,对于具有大容量数据传输和高速高密度连接等功能性要求的连接器要求越来越多,相应的精密加工技术需求也越来越急迫。尤其对于一些复杂精密微型化的连接器开发,传统CNC和开模注塑等传统加工方式都存在着加工周期长和成本高等问题。从下面摩方高精密3D打印和CNC以及注塑成型对比图中可以用看出,高精密3D打印技术在加工精密连接器方面具有精度高、成本低、和周期短等明显优势。下图是深圳摩方公司3D打印设备加工的微型精密连接器,产品大小为5.65mm*2mm*2.8mm,其中最小pin间距是0.14mm,最小壁厚为0.1mm,公差要求±10~25μm。CNC和开模很难低成本快速加工成型,深圳摩方公司的nanoArch S140和nanoArch P140精密3D打印设备不到1小时就可以加工出高质量合格的产品,最快一天内实现交付。连接器巨头行业客户的一段访谈通讯技术从2G发展到现在的5G,对应的基站数量呈几何级数的上升。目前我国的4G基站数量是339.3万座,根据一些消息各大运营商在这次5G的升级中大约需要5倍的5G基站,大约是1500万座。相应的传输速率也是需要几何级数的提高,这就对基站的小型化提出了越来越高的要求。随着基站体积的不断减小,更多的塑胶和金属结构设计也越来越逼近机械加工的极限,这就给传统的快速模开发方式带来了挑战,不但需要考虑结构的可行性,同时还要考虑在加工中会遇到的不可知的困难。有了摩方精密3D打印技术,加工类问题可以放到最后一并解决,而且在确认投入是有效的前提下,公司会愿意投入更多的资金攻克加工上的难题,而不是在初始开发阶段患得患失。从客户访谈中可以看出,摩方的高精密3D打印技术,可以满足精密连接器加工的设计验证需求,且已经在早期结构设计验证阶段,起到关键作用。3D打印的精密塑料零件,60μm薄壁、230μm圆孔,达微注塑零件水准深圳摩方提供的高精密3D打印加工技术非常契合连接器行业微型化、精密化和集成化的研发需求,目前已和欧美日以及国内连接器行业巨头进行了深入广泛合作。官网:https://www.bmftec.cn/links/10
  • 祝贺2020第二届重载沥青与桥面铺装技术大会圆满结束
    2020第二届重载沥青与桥面铺装技术大会于8月27-28日在山西太原召开,本届大会以“更好的桥面铺装,更耐久的桥梁”为主题,共设置三个分论坛、十三场主题报告、两场圆桌讨论和两场参观观摩,共同探讨国内外桥面铺装现状、桥面铺装的结构形式、桥面铺装设计标准与方法、桥面施工工艺及装备、复合浇注式沥青混凝土铺装、环氧沥青铺装、超高性能混凝土UHPC铺装、桥面防水防腐材料、智能管养与检测技术、其它桥面铺装新技术、新材料、新工艺、新装备等。 上海昌吉地质仪器有限公司携多款新型浇筑式沥青检测设备精彩亮相展会。展会上公司生产的新型浇筑式沥青检测设备吸引了大批专业人士的驻足、咨询与交流。 本次展会,上海昌吉展出的多款新型浇筑式沥青检测设备,其中本公司专门研发的新品SYD-0768 浇筑式沥青混合料贯入度试验仪吸引了大批专业客户的目光,收获广大好评,咱们一起看看吧!SYD-0768浇筑式沥青混合料贯入度试验仪 主要用于测量浇筑式沥青混合料的贯入度,即在指定的温度和荷载作用下,沥青混合料的变形量,从而评价浇筑式沥青混合料的高温稳定性,并指导其配比设计。 下列两款仪器,动稳定度和破坏应变也是浇筑式沥青必须检测指标,仪器名称:SYD-0719C-2自动车辙试验仪和SYD-0730A 多功能全自动沥青压力试验仪。想了解设备详细资料的用户可给小编留言,或关注上海昌吉公众号,联系我们公众号客服。SYD-0719C-2 自动车辙试验仪(三轮科研)SYD-0730A 多功能全自动沥青压力试验仪 本次展会,上海昌吉推出多款浇筑式沥青检测新产品,向来自全国各地的客户多角度、深层次地展示产品与服务。好的产品少不了客户的检验,欢迎新老客户对咱们上海昌吉新产品提出改进意见。立足客户需求,完善产品与服务,上海昌吉地质仪器有限公司始终如一!
  • 虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换
    虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换总述:Media Converter可在车载以太网连接 (100BASE-T1或1000BASE-T1或10GBASE-T1)和任何具有带RJ-45连接器的标准以太网网络接口卡 (NIC) 的设备之间建立物理层转换。在转换过程中,设备不存储或修改任何数据包,并具有高可靠性。 一个镀锌钢板的便携外壳,加上方便配置DIP开关,使用户可以毫不费力地与转换器交互。它的设计使它便于携带,易于安装在测试架上。金属外壳使其具有坚固的IP20保护性能。是理想的智能、易于管理的解决方案,协助高效处理车载以太网的工作。它使用车规级连接器,满足在下一代车辆系统中测试与验证最先进的通信技术解决方案日益增长的需求。Media Converter产品亮点1. 100BASE-T1 &bull 全双工100BASE-T1 (1 x非屏蔽双绞线-UTP) 快速转换为100BASE-TX&bull 应用BCM 100BASE-T1 PHY&bull 2 x DIP开关,便于配置 (Master/Slave HalfOut/FullOut) &bull 2 x状态指示灯 (包括Linkup和Data数据指示灯)2. 1000BASE-T1 &bull 应用Marvell 88Q2112 A2 PHY, 兼容100BASE-T1&bull 1 x RJ-45端口,用于100BASE-TX/1000BASE-TX&bull 1 x 100/1000BASE-T1端口,不同接口:MATEnet、HMTD (若ECU端带有四孔HMTD接口或需要其他接口,可以修改线束来匹配)&bull 4 x DIP开关,便于配置 (Master/Slave 100/1000 Mbit/s 传统/IEEE模式 帧生成)&bull 状态指示灯&bull MQS连接器&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”3. 2.5/5/10GBASE-T1&bull 允许通过2.5/5/10GBASE-T1多千兆的车载以太网端口轻松地连接到ECU&bull 兼容车载以太网的PHY 88Q4364 2.5G/5G/10GBASE-T1 IEEE 802.3ch&bull 1 x H-MTD端口,用于10GBASE-T1&bull 1 x 标准 SFP+模块 (10GBASE-T,光学,直接连接电缆)&bull 4 x 状态指示灯&bull 4 x DIP开关,便于配置 (Master/Slave 10GBASE-T1/other 2.5GBASE-T1/5GBASE-T1)&bull I/O信号,易于与自动化系统接口&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”Media Converter应用领域1. 具体用途有:激光雷达、相机等传感器数据采集;自动化在环HiL测试;下线测试EOL;DV和PV试验等。2. 针对性案例:车载以太网接口的传感器,通过转换器与PC上位机连接,进行数据传输。
  • 2022宁波国际电子元器件产业展览会
    2022中国(宁波)国际电子元器件产业展会时间:2022年 5 月 12-14 日展会地点:宁波国际会展中心同期举办:2022宁波国际照明展览会规模:6大展馆50000平方 参展企业1200家 专业观众50000+主办单位:宁波电子行业协会 中国电器工业协会电工合金分会 支持单位: 宁波市磁性材料商会宁波磁性材料产业集群发展促进中心浙江省磁性材料应用技术制造创新中心浙江省磁性材料产业创新发展服务综合体承办单位:宁波万众展览服务有限公司展会背景电子元器件产业是电子信息产业的基础支撑,汽车电子、互联网应用产品、移动通信、智慧家庭、5G、物联网、消费电子产品等领域成为中国电子元器件市场发展的源源不断的动力,带动了电子元器件的市场需求,也加快电子元器件更迭换代的速度,对我国电子元器件产业的发展既是机遇也是挑战,中国企业要立足当下展望未来,抓住机遇,投入更多的人力、物力、财力,加快新一代具有自主知识产权的新型元器件研发,把中国电子元器件的生产技术提升到新的高度。2022国际电子元器件产业展览会分别于2022年5月12-14日在宁波国际会展中心举办,2022年7月13-15日在厦门国际会展中心举办、2022年12月1-3日在深圳国际会展中心举办。是专注于电子元器件行业国际性、专业化的展会平台,汇聚众多电子元器件具有影响力的参展商,完整展示电子元器件产业链,打造深度的技术交流平台,通过行业趋势解读、政策导向与技术分享,充分挖掘行业发展新需求,共同开拓市场新机遇。展示范围:电子元器件:电阻、电容器、电位器、电感器、电子管、散热器、集成电路、被动元件、敏感元器件、无线技术、存储器件、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电池、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷、印刷电路用基材基板、电子胶(带)制品、EMI/EMC电磁兼容技术等;开关、连接器、接插件及线束展区:电子开关、拨动开关、船形开关、按扭开关、微动开关、旋转开关、键盘开关;端子连接器、防水连接器、防爆连接器、导线连接器、圆形连接器、线缆连接器、射频同轴连接器、矩形连接器、光纤连接器、音频连接器、家用电器连接器、军用连接器、电子连接器、电力连接器、特种连接器、工业连接器、印制电路连接器、重载连接器;插头、插座、开关、端子、端子、连接器接触器、硅胶按键、IC圆孔插座、插针、排针;接线端子、绝缘护套、导线及绝缘包扎材料等;电子线材:电源线、音视频线、电脑周边线、汽车插叛头线、线材、线束、扎线、 电磁线、护套线、视线、高温耐热电线等;尼龙扎线带、配线槽、配线标志、接线头、接线端子、线扣、电线固定头、固定座等各类配线器材等。电子材料:磁性材料、胶粘材料、散热材料、防水材料、焊接材料、防静电材料、介电材料、半导体材料、压电与铁电材料、导电金属及其合金材料、气体绝缘介质材料,纳米材料、绝缘材料、电子五金件、电工陶瓷材料、敏感材料、封装材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电子锡焊料材料、PCB制作材料、光电子材料、电磁波屏蔽材料、电子功能工艺专用材料、电子化学材料及部品等;电子生产设备:线束和连接器生产设备、线圈生产设备、元器件制造设备、表面贴装技术、焊接技术、点胶注胶、涂层设备、测试测量和质量保证、机器人、运动控制、驱动技术、洁净室技术、LED制造设备、材料加工、有机和印刷电子产品、电池和电能存储生产技术、PCB及电路载体制造、电子专用工具等;电子仪器仪表、测试测量及电子生产自动化技术:电子仪器仪表、电子在线测试仪器、电子生产自动化技术产品、环境测试设备仪器、气候环境模拟试验设备、机械环境模拟试验设备、可靠性试验设备等;展示交流1.与全球电子制造、配套中心的长三角地区的电子制造配套企业共同成长。 2.获得范围、高密度的强势宣传,拓展更多的商业机会。 3.与国内外同行业领导厂商同台展示、切磋技术。 4.接触长三角地区最具影响力的业界人士及用户企业最终决策者、实力买家和研发工程师。信息交流这意味着要知道如何与观众的多样化交换信息,展前、展中、展后、更有效地与观众进行对话,直接与他们建立联系。 1.考虑有效的展台风格及布局,便于更多的产品展示,并专注观众视觉焦点着重展示,让观众消息交流方便。 2.制定观众邀请计划,吸引观众莅临展台。不仅发送电子邮件来邀请客户,还可以通过展品快讯发送邀请。 3.展览期间约见重要客户,并创建一个充实的预约日程。 4.准备展品文档,如演示 PPT、视频和小册子,并可为海外观众提供外语版本。专业观众及买家1.消费类、计算机、通讯、工控与自动化、照明、航空航天、军工等行业的采购订单大量涌向展会现场。 2.智能终端、汽车与汽车电子、新能源、电力、医疗、三网融合、云计算、物联网、轨道交通等新的行业也从四面八方汇聚展会现场,寻求合作。 3参观观众50%以上是从事采购和研发工作。 4.团体参观的买家主要包括:中国电子集团、福群集团、比亚迪集团、创维集团、康佳集团、中兴通讯、华为集团、TCL 集团、 天马微电子、珠海格力电器、三星电子、深圳长城开发、富士康科技集团、美的集团、盈科、惠而浦、万和、富信、德力、亚艺 电子、步步高集团以及各个行业协会企业代表等。宣传推广1.数百家行业媒体通过其官网和优质数据库,同时发布展商的最新展品。 2.行业优秀媒体长期对展会进行大规模的宣传、报道。 3.展会档期各大门户网站对展会进行重点的专题报道。 4.广播电台、电视台多时段、多频率的对展会现场进行全方位报道。新闻发布 利用NBIECE的独特宣传能力,有计划的进行企业宣传。 1.展前,未雨绸缪的发布新闻稿、展品技术新闻稿。 2.展中,充分利用组委会邀请的众多媒体资源,更多的做企业品牌,形象推广。 3.展后,做好会后回顾工作,在行业、协会、媒体等渠道进行广泛传播。增值服务1.市场推广服务:门票、新品、微博微信、展商专访及报道、新产品/新技术推介会、买家洽谈活动、会刊、现场广告。 2.除常规方式外,NBIECE还拥有一支专业的队伍协助您充分利用展会平台进行市场推广。参展流程1、参展企业确定面积及选定展位;2、填妥参展申请回执(合同)并签字盖章,然后将该表传真或扫描至承办单位;3、展位选定后,企业3个工作日内须将参展费用汇入指定帐户,否则不予保留所选展位;4、组委会将于展前一个月将参展商手册寄给参展单位;5、大会会刊将免费为参展企业刊登企业简介(200字内)。 大会组委会:宁波万众展览服务有限公司TEL:+86-21-62963333FAX:+86-21-62966328联系人:张先生 19921817222微信同号邮箱:shll1688@vip.sina.com展会预定:联系人:杨女士 17717968860(微信同号) 3571565401展会官网:www.eci-expo.com
  • 富士康科技集团引进德国Baehr-Thermo公司先进的全套热分析仪器
    日前,全球最大的电脑连接器、电脑准系统生产厂商、中国大陆出口200强第一名的台资企业—FOXCONN Technology富士康科技集团深圳热导管事业部在经过严格认真的调研和选型之后,最终选择了北京仪尊时代科技有限公司作为中国总代理的德国著名的热分析仪器专业制造厂商Baehr-Thermo公司制造的热膨胀仪等全套热分析仪器作为其在大陆热导管事业的“帮手”。这将是Baehr-Themo公司在中国大陆提供的产品最集中的用户,也是北京仪尊时代公司首次与中国著名企业联合建立热分析领域的窗口实验室。此举将不仅推动Baehr-Thermo公司在中国的市场推广,而且是北京仪尊时代公司证明其真诚、高效的服务的成功事例,我们将继续发扬公司“天道酬勤”的自勉精神,为广大用户送上我们真诚的售前及售后服务。 德国Baehr-Thermo公司的产品包括:热膨胀仪DIL系列、DSC/DTA、TGA、STA、高温粘度仪系列、塑度计等,详细资料请进入www.esum.com.cn的产品中心浏览或与我们联系。
  • 山东发布2022产业关键核心技术“揭榜挂帅”项目榜单,揭榜金额累计8.7亿元
    近日,山东省工信厅联合省国资委启动了2022年度“揭榜挂帅”核心技术攻关行动,聚焦新一代信息技术、高端装备、新能源新材料、医养健康等省新旧动能转换“十强产业”重点领域,征集并遴选出山东省标志性产业链骨干企业、“专精特新”中小企业等亟需攻关的产业关键核心技术、“卡脖子”技术需求66项。本次遴选的技术需求中,生物医药、航空航天、新能源、新一代信息技术等新兴产业领域项目达到70%以上,产业特色明显,市场潜力巨大。如:威智医药提报的技术需求“核素偶联药物研发”,突破后有望形成针对特定前列腺癌的一类创新药物,填补该领域国内空白,形成巨大的经济和社会效益;临工重机瞄准矿山自动驾驶车辆实际应用与产业化需求,提出的“面向矿区恶劣环境下的重载宽体矿车智能感知与高精度定位技术”有关需求,技术路径及应用场景清晰,突破后将对产业产生重大引领作用。数据显示,本次揭榜金额累计达到8.7亿元,其中,单个项目揭榜金额达到1000万元以上的就有25项,体现了企业强烈的需求愿望,尤其是力博重工提报的“超低功耗散料输送高端装备”有关技术需求,直接服务国家“双碳”和“一带一路”战略,为该领域重大创新项目,揭榜金额达到9600万元,可为领军人才和团队开展创新活动提供可靠保障。2022年度产业关键核心技术“揭榜挂帅”项目榜单序号企业名称技术难题名称榜额(万元)1山东浪潮爱购云链信息科技有限公司综合管控平台系统(供应链控制塔)3002浪潮金融信息技术有限公司鼻阻力动力学仪设备研发1603超越科技股份有限公司自主平台云桌面二三维显示加速技术研究2004山东太古飞机工程有限公司航空MRO数字化平台2000-50005济南磐升生物技术有限公司全自动多种细胞制备系统2006青岛德先新能源汽车制造有限公司1、高环境、高效率重型燃料电池商用车整车集成技术开发;2、高环境大功率燃料电池商用车智能热管理系统开发;3、高效、长寿命多能量源耦合系统控制与能量管理技术研究22507青岛明珠钢结构有限公司工业过程废气燃烧处理及热能综合利用关键技术12008青岛海湾精细化工有限公司基于工业物联网的安全生产与电力安全系统研究与示范500-8009青岛国创智能家电研究院有限公司面向未来智能家电的泛终端操作系统200010青岛澳柯玛生物医疗有限公司多重疫苗安全自动存储技术研发及国产化17011青岛海尔生物医疗科技有限公司应用于智慧疫苗无人接种的无针注射技术109812青岛达能环保设备股份有限公司、青达节能工程研究院(青岛)有限公司基于蒸汽粉碎的钢渣综合利用技术与装备研发200013山东通广电子有限公司流媒体+人工智能10014山东新华医疗器械股份有限公司CT系统校正技术及CT重建核心算法20015淄博欧木特种纸业有限公司生态板新型纸基饰面材料50016山东恒仁工贸有限公司玉米浆及其副产品脱除毒素20017东营昆宇电源科技有限公司磷酸铁锂电池储能系统液冷技术研究与开发50018东营昆宇电源科技有限公司钠离子电池关键技术研究与电池开发90019中芳新材料有限公司复合材料用特种耐高温芳砜纶短纤维及沉析纤维30020振华新材料(东营)有限公司高性能稀土顺丁橡胶产业化关键技术开发及产业化应用50021山东彩客新材料有限公司废旧磷酸铁锂电池全元素回收技术80022山东玲珑轮胎股份有限公司基于轮胎行业的大数据深化应用分析80023烟台中集蓝海洋科技有限公司面向深远海渔业安全的无人智能搜救艇关键技术及装备研制60024蓬莱市超硬复合材料有限公司大直径超细硬质合金棒材的研制50025烟台魔技纳米科技有限公司有机无机杂化的光刻胶制备5026蓬莱中柏京鲁船业有限公司满足EEDI第三阶段的8.5万吨京鲁型节能散货船技术研发600027烟台宋和宋智能科技股份有限公司提花选针模组关键零部件耐磨及润滑技术开发30028山东寿光巨能金玉米开发有限公司基于绿色生物制造的乳酸与聚乳酸全产业链关键技术研发100029山东美晨工业集团有限公司商用车智能驾驶室悬置关键技术300030潍坊力创电子科技有限公司大功率电气化热管理系统开发20031山东永创材料科技有限公司面向航天火箭发动机喷管低烧蚀碳/碳材料的可陶瓷化糠酮树脂合成与应用研究100032潍坊东方钢管有限公司预冲孔分条带钢连续热镀合金防腐技术700033山东中航泰达复合材料有限公司耐高温树脂基透波复合材料研发及关键技术应用100034诸城市中裕机电设备有限公司先进链式种鸡饲喂输送系统用链条产品研发及产业化先进链式种鸡饲喂输送系统用链条产品研发及产业化300035山东天瑞重工有限公司磁悬浮飞轮储能系统关键技术研发50036山东佳士博食品有限公司预制菜(速冻酱卤肉)制品工业化研发及智能生产设备改造40037山东宇鹤智能科技有限公司水下在线清洗机器人项目60038智迈德股份有限公司深熔TIG碳钢厚板智能焊接技术研发及产业化50039潍坊东方钢管有限公司异型钢构新型复合重防腐技术开发及产业化应用100040山东焦易网信息科技有限公司石油焦自动化混配技术300041山东万达环保科技有限公司镁钙粉水化系统装备的研发100042山东焦点福瑞达生物股份有限公司超高分子量透明质酸高效生物合成菌株构建及产业化示范40043济宁全成手套有限公司快递小哥安全急速安全骑行头盔手套一体智能化用品500044通力轮胎有限公司“三低温”橡胶纳米复合材料制造工艺技术研究及产业化项目500045如鲲(山东)新材料科技有限公司高性能钠离子电池关键添加剂的研发与产业化100046山东荣信集团有限公司生物质粉煤耦合气化技术100047山东远联化工有限公司气相法纳米二氧化钛制备技术50048山东润德生物科技有限公司高品质氨糖工业化制备关键技术研究40049山东泰鹏环保材料股份有限公司1、高孔隙率高强可降解聚酯纤维非织造载体材料的制造技术、聚酯纤维材料的绿色改性技术,可解决聚酯纤维非织造细胞载体材料孔隙率低、孔隙均匀度差、纤维结点强度低及不可降解的问题。2、基于表面生物体细胞增殖活性评价的载体材料结构优化技术,可解决现有聚酯纤维非织造生物体细胞载体材料生物活性低及现有贴壁细胞生物反应器细胞培养密度低的问题。460050山东泰开精密铸造有限公司高端铸造铝合金新材料研究及产业化10051力博重工科技股份有限公司复杂地理环境下超低功耗绿色散料输送关键技术研究及产业化960052黑系智能装备(威海)有限公司智慧房车综合服务管理平台66053山东御馨生物科技有限公司大豆蛋白节能降耗生产技术10054德州恒力电机有限责任公司针对海洋风电用三相异步电动机关键技术的研究215055山东阳谷华泰化工股份有限公司绿色安全高效的有机过氧化物连续流合成技术研发项目60056山东时风(集团)有限责任公司船舶与海洋工程用抗蠕变耐水锦纶-6纤维关键技术及装备研发200057中科飞特(山东)科技有限公司高精度磁传感器工艺提升及制造76658山东罗欣药业集团股份有限公司基于非贵金属催化构建多取代烯烃类药物关键核心技术攻关20059山东新港企业集团有限公司新型木质复合工字梁关键技术研究及产业化50060山东昌诺新材料科技有限公司抄造/水刺联合的超纤面料平滑无痕技术30061山东龙立电子有限公司光电液湿式连接器技术研发20062山东常林机械集团股份有限公司高端农业行走机械智能控制核心技术攻关100063山东龙立电子有限公司全海深水下插拔光纤连接器技术研发3064山东精创磁电产业技术研究院有限公司基于SMC材料的电动叉车用新型电机系统研发1065临沂高新区鸿图电子有限公司基于高精度探测技术的商用车EWS系统集成2066成武县晨晖环保科技有限公司高品质PCB-3-戊酮关键技术提升200附件:山东省2022年度产业关键核心技术“揭榜挂帅”项目榜单.xlsx
  • 搞大事!85项食品安全国家标准将在明年实施(附下载连接)
    关于发布《食品安全国家标准 茶叶》(GB 31608-2023)等85项食品安全国家标准和3项修改单的公告(2023年 第6号)2023年   第6号根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准茶叶》(GB31608-2023)等85项食品安全国家标准和3项修改单。其编号和名称如下:(可点连接直接下载)GB   31608 - 2023         食品安全国家标准   茶叶 GB   31639 - 2023         食品安全国家标准   食品加工用菌种制剂 GB   31611 - 2023         食品安全国家标准   食品加工用植物蛋白肽 GB   1886.231- 2023   食品安全国家标准   食品添加剂   乳酸链球菌素 GB   1886. 373 - 2023   食品安全国家标准   食品添加剂甲醇钠 GB   1886. 372 - 2023   食品安全国家标准   食品添加剂L-蛋氨酰基甘氨酸盐酸盐 GB   1886. 371 - 2023   食品安全国家标准   食品添加剂ε-聚赖氨酸盐酸盐 GB   1886. 370 - 2023   食品安全国家标准   食品添加剂辛烯基琥珀酸淀粉钠 GB   1886. 369 - 2023   食品安全国家标准   食品添加剂   蓝锭果红 GB   1886. 368 - 2023   食品安全国家标准   食品添加剂   (2S,5R)-N-[4-(2-氨基-2- 氧代乙 基)苯基]-5-甲基-2-(丙基-2-)环己烷甲酰胺 GB   1886. 367 - 2023   食品安全国家标准   食品添加剂   6-甲基辛醛 GB   1886. 366 - 2023   食品安全国家标准   食品添加剂   β-胡萝卜素 GB   1886. 365 - 2023   食品安全国家标准   食品添加剂   5-甲基-2-呋喃甲硫醇 GB   1903. 61 - 2023     食品安全国家标准   食品营养强化剂碳酸铜 GB   1903. 64 - 2023     食品安全国家标准   食品营养强化剂氯化锰 GB   1903. 63 - 2023     食品安全国家标准   食品营养强化剂甘油磷酸钙 GB   1903. 62 - 2023     食品安全国家标准   食品营养强化剂还原铁 GB   1903. 59 - 2023     食品安全国家标准   食品营养强化剂氯化铬 GB   1903. 60 - 2023     食品安全国家标准   食品营养强化剂L-肉碱酒石酸盐 GB   4789.26- 2023     食品安全国家标准   食品微生物学检验商业无菌检验 GB   4789.35- 2023     食品安全国家标准   食品微生物学检验乳酸菌检验 GB   4789. 45 - 2023     食品安全国家标准   微生物检验方法验证通则 GB   4806.7- 2023       食品安全国家标准   食品接触用塑料材料及制品 GB   4806.9- 2023       食品安全国家标准   食品接触用金属材料及制品 GB   4806.11- 2023     食品安全国家标准   食品接触用橡胶材料及制品 GB   4806. 14 - 2023     食品安全国家标准   食品接触材料及制品用油墨 GB   4806. 13 - 2023     食品安全国家标准   食品接触用复合材料及制品 GB   5009.8- 2023       食品安全国家标准   食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 GB   5009.9- 2023       食品安全国家标准   食品中淀粉的测定 GB   5009.12- 2023     食品安全国家标准   食品中铅的测定GB   5009.15- 2023     食品安全国家标准   食品中镉的测定 GB   5009.16- 2023     食品安全国家标准   食品中锡的测定 GB   5009.26- 2023     食品安全国家标准   食品中 N- 亚硝胺类化合物的测定 GB   5009.35- 2023     食品安全国家标准   食品中合成着色剂的测定 GB   5009.36- 2023    食品安全国家标准   食品中氰化物的测定 GB   5009.43- 2023     食品安全国家标准   味精中谷氨酸钠的测定 GB   5009.88- 2023     食品安全国家标准   食品中膳食纤维的测定 GB   5009.89- 2023     食品安全国家标准   食品中烟酸和烟酰胺的测定 GB   5009.97- 2023     食品安全国家标准   食品 中环己基氨基磺酸 盐的测定 GB   5009.123- 2023   食品安全国家标准   食品中铬的测定 GB   5009.129- 2023   食品安全国家标准   食品中乙氧基 喹 的测定 GB   5009.140- 2023   食品安全国家标准   食品中乙酰磺胺酸钾的测定 GB   5009.154- 2023   食品安全国家标准   食品中维生素B 6 的测定 GB   5009.189- 2023   食品安全国家标准   食品中米 酵菌酸 的测定 GB   5009.210- 2023   食品安全国家标准   食品中泛酸的测定 GB   5009.225- 2023   食品安全国家标准 2 的测定 GB   5009. 297 -   食品中三氯蔗糖(蔗糖素)的测定 GB   31614 .1- 2023
  • 最新!47项强制性食品安全国家标准即将实施(附下载连接)!
    根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2024年第1号公告,发布47项新食品安全国家标准和6项修改单。主要包括:《食品添加剂使用标准》1项通用标准、《乳粉和调制乳粉》1项食品产品标准、《食品接触材料及制品用黏合剂》1项食品相关产品标准、《食品相对密度的测定》等7项理化检验方法标准、《食品微生物学检验 沙门氏菌检验》等16项微生物检验方法标准、《食品营养强化剂花生四烯酸油脂(发酵法)》等7项食品营养强化剂质量规格标准,以及《食品添加剂松 香季戊四醇酯》等14项食品添加剂质量规格和6项修改单。上述标准制定修订符合法律法规规定,充分考虑群众健康权益,兼顾食品产业发展需求,参考国际相关法规和通行做法,标准制定修订过程充分征求了社会各方意见并向世界贸易组织通报。本次公布的《食品添加剂使用标准》(GB 2760-2024)纳入了该标准2014版实施以来,截至国家卫生健康委2023年第5号公告,批准使用的食品添加剂品种和使用规定;基于食品添加剂安全性和工艺必要性的最新评估结果,修订了部分食品添加剂品种和/或使用规定;避免食品用香料滥用,修订了食品用香料、香精的使用原则等。《乳粉及调制乳粉》根据乳品行业发展和消费者需求,进一步规范调制乳粉产品要求,纳入骆驼乳等多种特色乳畜的乳粉要求,维护促进消费者食品安全和营养健康。(可点连接直接下载)GB 1886.96-2024 食品安全国家标准食品添加剂 松香季戊四醇酯.pdfGB 1886.43-2015《食品安全国家标准 食品添加剂 抗坏血酸钙》第1号修改单.pdfGB 1886.98-2024 食品安全国家标准 食品添加剂 乳糖醇(又名4-β-D吡喃半乳糖-D-山梨醇).pdfGB 1886.100-2015《食品安全国家标准 食品添加剂 乙二胺四乙酸二钠》第1号修改单.pdfGB 1886.104-2024 食品安全国家标准 食品添加剂 喹啉黄.pdfGB 1886.174-2024 食品安全国家标准 食品添加剂 食品工业用酶制剂.pdfGB 1886.191-2016《食品安全国家标准 食品添加剂 柠檬醛》第1号修改单.pdfGB 1886.227-2024 食品安全国家标准 食品添加剂 吗啉脂肪酸盐果蜡.pdfGB 1886.256-2024 食品安全国家标准 食品添加剂 甲基纤维素.pdfGB 1886.374-2024 食品安全国家标准 食品添加剂 纤维素.pdfGB 1886.376-2024 食品安全国家标准 食品添加剂 5-戊基-3H-呋喃-2-酮.pdfGB 1886.375-2024 食品安全国家标准 食品添加剂 氢氧化钙.pdfGB 1886.377-2024 食品安全国家标准 食品添加剂 爱德万甜.pdfGB 1886.378-2024 食品安全国家标准 食品添加剂 茶黄素.pdfGB 1886.379-2024 食品安全国家标准 食品添加剂 皂树皮提取物.pdfGB 1886.380-2024 食品安全国家标准 食品添加剂 甲酸钠.pdfGB 1886.381-2024 食品安全国家标准 食品添加剂 酒石酸铁.pdfGB 1903.65-2024 食品安全国家标准 食品营养强化剂 花生四烯酸油脂(发酵法).pdfGB 1903.66-2024 食品安全国家标准 食品营养强化剂 二十二碳六烯酸油脂(发酵法).pdfGB 1903.68-2024 食品安全国家标准 食品营养强化剂 钼酸铵.pdfGB 1903.69-2024 食品安全国家标准 食品营养强化剂 5'-单磷酸尿苷.pdfGB 1903.70-2024 食品安全国家标准 食品营养强化剂 电解铁.pdfGB 1903.71-2024 食品安全国家标准 食品营养强化剂 全反式视黄醇.pdfGB 4789.4-2024 食品安全国家标准 食品微生物学检验 沙门氏菌检验.pdfGB 4789.17-2024 食品安全国家标准 食品微生物学检验 肉与肉制品采样和检样处理.pdfGB 1903.67-2024 食品安全国家标准 食品营养强化剂 植物甲萘醌(维生素K1).pdfGB 4789.18-2024 食品安全国家标准 食品微生物学检验 乳与乳制品采样和检样处理.pdfGB 4789.19-2024 食品安全国家标准 食品微生物学检验 蛋与蛋制品采样和检样处理.pdfGB 2760-2024 食品安全国家标准 食品添加剂使用标准.pdfGB 4789.20-2024 食品安全国家标准 食品微生物学检验 水产品及其制品采样和检样处理.pdfGB 4789.22-2024 食品安全国家标准 食品微生物学检验 调味品采样和检样处理.pdfGB 4789.24-2024 食品安全国家标准 食品微生物学检验 糖果、巧克力和代可可脂巧克力及其制品、可可制品采样和检样处理.pdfGB 4789.23-2024 食品安全国家标准 食品微生物学检验 豆制品采样和检样处理.pdfGB 4789.25-2024 食品安全国家标准 食品微生物学检验 酒类、饮料、冷冻饮品采样和检样处理.pdfGB 4789.33-2024 食品安全国家标准 食品微生物学检验 粮食制品采样和检样处理.pdfGB 4789.40-2024 食品安全国家标准 食品微生物学检验 克罗诺杆菌检验.pdfGB 4789.46-2024 食品安全国家标准 食品微生物学检验 生鲜果蔬及其制品、食用菌制品、坚果与籽类食品采样和检样处理.pdfGB 4789.47-2024 食品安全国家标准 食品微生物学检验 食用油脂制品采样和检样处理.pdfGB 4789.48-2024 食品安全国家标准 食品微生物学检验 蜂产品采样和检样处理.pdfGB 4789.49-2024 食品安全国家标准 食品微生物学检验 产志贺毒素大肠埃希氏菌检验.pdfGB 4806.15-2024 食品安全国家标准 食品接触材料及制品用黏合剂.pdfGB 5009.2-2024 食品安全国家标准 食品相对密度的测定.pdfGB 5009.138-2024 食品安全国家标准 食品中镍的测定.pdfGB 5009.11-2024 食品安全国家标准 食品中总砷及无机砷的测定.pdfGB 5009.191-2024 食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定.pdfGB 5009.299-2024 食品安全国家标准 食品中乳铁蛋白的测定.pdfGB 19644-2024 食品安全国家标准 乳粉和调制乳粉.pdfGB 4789.28-2024 食品安全国家标准 食品微生物学检验 培养基和试剂的质量要求.pdfGB 5009.205-2024 食品安全国家标准 食品中二噁英及其类似物毒性当量的测定.pdfGB 25531-2010《食品安全国家标准 食品添加剂 三氯蔗糖》第1号修改单.pdfGB 28402-2012《食品安全国家标准 食品添加剂 普鲁兰多糖》第2号修改单.pdfGB 29209-2012《食品安全国家标准 食品添加剂 硫酸钠》第1号修改单.pdfGB 31604.60-2024 食品安全国家标准 食品接触材料及制品 溶剂残留量的测定.pdf
  • 明星产品—— 贺利氏Amba® ,紫外固化理想的替代光源
    用于固化应用紫外汞灯贺利氏Amba® 产品系列可提供弧长从12毫米到3.9米的光源。无论是单支光源,或是批量生产,我们都能灵活应对。Amba® 额定功率范围从80W/cm到400W/cm。对于特殊长度、特殊输出特性和MH添加剂,我们定制Amba® 光源能完美匹配您的需求。对于特殊的OEM设计,我们的研发部门和应用中心提供深度技术咨询。 优点: 卓越的品质和可靠性 200%性能保证 超过10000种光源类型(还可提供特殊长度,特殊输出特性和MH添加剂) 在整个光源寿命期间提供稳定的高效的紫外固化辐射 高密封性、高纯度石英玻璃、高品质电极和连接器确保更佳性能 定制光源:满足您的个性化需求Amba® 紫外固化灯是为优质可靠的固化效果而打造的。我们致力于生产始终如一的高品质灯管,不止使用最佳的原材料,还有最新技术和引以为豪的工艺水平。所有Amba® 紫外灯都拥有“200%经测试”性能保证。每根灯管在出厂前都不止经过一次测试,而是两次测试。Amba® 光源始终保证其高品质和高稳定性。 需要灯吗?贺利氏的专业人员就能帮您选择合适的光源! 贺利氏的紫外固化业务部门,拥有从有极灯、无极灯到LED的不同紫外光源,满足您的多种固化需求。 紫外(UV)固化是一种光化学过程,是利用高强度的紫外线进行照射,将工业中广泛使用的油墨,油漆,黏合剂加以瞬间固化。与传统的干燥方法相比,紫外线固化具有诸多优点: 提高生产速度 降低废品率 提高抗划伤性和耐溶剂性 并且易于实现超强粘结 ★ 广泛的应用领域★贺利氏特种光源的紫外固化光源广泛用于多种工业紫外线固化应用,从胶粘固化、汽车零部件、汽车头灯、CD制造、柔版印刷、玻璃雕刻、地板、图画艺术、喷墨打印、大幅面打印、标签打印、金属雕刻、窄幅和宽幅、胶版印刷、光学镜头涂层、包装、PCB制造、电子元器件、医疗仪器、导线标记、紫外清漆、紫外精饰̷̷ 我们拥有专业的研发部门和应用中心,可以提供深度技术咨询,定制光源,满足您的个性化需求,同时,完善的售后服务技术部门,为您的工业生产提供质量保障。
  • 中国国际科技促进会发布《水产品中13 种邻苯二甲酸酯单酯的液相色谱-质谱 质谱检测方法》等八项团体标准公开征求意见稿
    各位专家及各有关单位:《无人机载单波段水深测量激光雷达水下地形测量规范》等八项团体标准已完成征求意见稿,现公开征求意见。请于2024年4月29日之前将《意见汇总表》反馈至中国国际科技促进会标准化工作委员会。序号标准名称起草单位1《无人机载单波段水深测量激光雷达水下地形测量规范》桂林理工大学、武汉大学、中国国土资源航空物探遥感中心、天津大学、南京大学、广西壮族自治区自然资源遥感院、广州南方测绘科技股份有限公司等。2《工业固废装配式蓄热混凝土板》东北大学、沈阳工业大学、沈阳市智联建材有限公司等。3《工业固废混凝土盾构管片》东北大学、沈阳工业大学等。4《超声波控藻设备》杭州瑞利超声科技有限公司、珠江水文水资源勘测中心、广州一坤瑞合科技有限公司等。5《电子氟化液生物毒性安全技术要求和测试规范》华中科技大学、武汉三氟新材料科技有限公司、山东华氟化工有限责任公司等。6《敞开式TBM施工隧道振动监测技术规程》东北大学、中铁第一勘察设计院集团有限公司、川藏铁路有限公司、北方重工集团有限公司、中铁隧道局集团有限公司、中科院武汉岩土力学研究所、曼彻斯特大学、中铁二院工程集团有限责任公司、中铁十二局集团有限责任公司、四川华能泸定水电有限公司等。7《水产品中13 种邻苯二甲酸酯单酯的液相色谱-质谱 质谱检测方法》宁波大学、浙江万里学院、宁波市农业科学院、浙江省农业科学院、南京农业大学等。8《非金属流体连接器》倍仕得电气科技(杭州)股份有限公司、厦门海辰储能科技股份有限公司、瑞浦兰钧能源股份有限公司、浙江南都电源动力股份有限公司、杭州毕博标准化技术有限公司等。地 址:北京市海淀区中关村东路89号恒兴大厦13层F联系人:郑华林 86-10-62652520 13910851718Email : bzw@ciapst.org传 真:86-10-62652068中国国际科技促进会标准化工作委员会2024年3月28日附件下载:附件 (1).zip关于开展《无人机载单波段水深测量激光雷达水下地形测量规范》团体标准公开征求意见的通知.pdf《无人机载单波段水深测量激光雷达水下地形测量规范》编制说明.pdf《无人机载单波段水深测量激光雷达水下地形测量规范》征求意见稿.pdf关于开展《工业固废装配式蓄热混凝土板》团体标准公开征求意见的通知.pdf《工业固废装配式蓄热混凝土板》编制说明.pdf《工业固废装配式蓄热混凝土板》征求意见稿.pdf关于开展《工业固废混凝土盾构管片》团体标准公开征求意见的通知.pdf《工业固废混凝土盾构管片》编制说明.pdf《工业固废混凝土盾构管片》征求意见稿.pdf关于开展《超声波控藻设备》团体标准公开征求意见的通知.pdf《超声波控藻设备》编制说明.pdf《超声波控藻设备》征求意见稿.pdf关于开展《电子氟化液生物毒性安全技术要求和测试规范》团体标准公开征求意见的通知.pdf《电子氟化液生物毒性安全技术要求和测试规范》编制说明.pdf《电子氟化液生物毒性安全技术要求和测试规范》征求意见稿.pdf关于开展《敞开式TBM施工隧道振动监测技术规程》团体标准公开征求意见的通知.pdf《敞开式TBM施工隧道振动监测技术规程》编制说明.pdf《敞开式TBM施工隧道振动监测技术规程》征求意见稿.pdf关于开展《水产品中13 种邻苯二甲酸酯单酯的液相色谱-质谱 质谱检测方法》团体标准公开征求意见的通知.pdf《水产品中13 种邻苯二甲酸酯单酯的液相色谱-质谱 质谱检测方法》编制说明.pdf《水产品中13 种邻苯二甲酸酯单酯的液相色谱-质谱 质谱检测方法》征求意见稿.pdf关于开展《非金属流体连接器》团体标准公开征求意见的通知.pdf《非金属流体连接器》编制说明.pdf《非金属流体连接器》征求意见稿.pdf中国国际科技促进会标准征求意见汇总表.doc
  • PM2.5控制技术等备选项目征集 单项经费最高达4000万
    日前,科技部网站发布通知,针对环境领域、资源领域、海洋技术领域、人口与健康领域、公共安全及其他社会事业领域征集2013年度备选项目,其中在环境领域,大气污染控制涉及PM2.5控制技术,国拨经费高达4000万元。 “十二五”国家科技计划环境领域2013年度备选项目征集指南   一、指南方向与内容   (一)大气污染控制   1.重点行业PM2.5控制技术(研究开发类,国拨经费控制额度4000万元,企业牵头)   针对燃煤电站、工业锅炉、冶金窑炉、化工四个重点行业排放源,开发PM2.5控制技术及装备,开展工程示范。(要求每个申报书只能申请一个行业的研发工作,每个申报书申请的国拨经费不超过1000万元)   2.含氰废气处理技术(研究开发类,国拨经费控制额度1000万元)   针对我国含氰工业废气的排放特征,研发节能高效净化技术与装备,开发含氰废气回收利用技术,并进行工业示范。   (二)重金属污染治理   3.生产过程重金属污染控制技术(研究开发类,国拨经费控制额度2400万元,企业牵头)   围绕铅蓄电池、皮革及其制品、化工原料及其制品五个生产行业重金属减排的需求,研发行业清洁生产技术、重金属排放控制技术、重金属回收技术等,按行业开展工艺集成与工程示范。(要求每个申报书只能申请一个行业的研发工作,每个申报书申请的国拨经费不超过800万元)。   4.重金属污染控制技术(研究开发类,国拨经费控制额度1000万元)   研究开发重金属污染的快速、简便、精确、低成本分析检测技术及装备。   (三)废物资源化   5.废旧物资收运与资源化技术及示范(集成示范类,国拨经费控制额度2700万元,企业牵头)   针对城市生活垃圾、餐厨垃圾、废旧电子电器等三类固体废物,研发废物分质收运与自动分拣技术,废物资源化技术,二次污染控制技术,智能化监测与调控技术等,开展区域集中示范。(要求每个申报书只能申请一类废物的研发工作,每个申报书申请的国拨经费不超过900万元)   (四)生态保护与建设   6.荒漠化综合防治技术模式与示范(集成示范类,国拨经费控制额度2000万元,企业牵头)   针对干旱地区沙化等荒漠化问题,研发沙化治理与修复工程技术,发展荒漠化防治衍生产业技术,形成荒漠化防治产业化技术模式,建立示范应用基地。   7.洞庭湖生态安全体系构建关键技术集成与示范(集成示范类,国拨经费控制在2000万元)   针对洞庭湖流域面临的生态问题,集成研发流域水源地保护及水土生态保育、外源性污染物减排、水质富营养化防治、湿地生态保护与修复、生态安全预警、评估与控制管理决策体系构建技术,并开展应用示范。   (五)二氧化碳监测、捕集与封存   8. CO2驱替深层煤层气与封存CO2技术(应用开发与集成示范类,国拨经费控制额2500万,企业牵头申报)   研发CO2注入深层煤层工艺技术,研发 CO2注入后在煤层中的运移监测技术、数值模拟与预测评价技术,研发CO2注入深层煤层的安全性评价与安全控制技术。   9. CO2矿化利用技术研发(应用开发与集成示范类,国拨经费控制额2500万)   重点研发钙、镁、钾基矿物(包括大宗工业固废和天然矿物)转化固定CO2技术,主要研发钙、镁、钾基矿物高效活化预处理技术,研制强化碳酸化转化多相反应与分离一体化大型装备,建立CO2矿物转化固定工程示范。   10. CO2排放监测技术研发与应用(应用开发与集成示范类,国拨经费控制额3000万,企业牵头申报)   研究钢铁、火力发电、化工、水泥、固体废弃物和HFC-23行业温室气体排放手工监测方法和自动在线监测技术,建立主要温室气体排放源监测方法和技术规范。   二、有关事项说明   (一)实施年限   本指南确定的11个研究内容,实施年限原则上均为3年。   (二)经费额度   本指南每项研究内容标注的国拨经费控制额度为本研究内容申请国家科技计划支持的最高经费额度。   (三)申报说明  每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。   (四)申报咨询   联 系 人:瞿辉 黄圣彪 康相武   电 话:010-58881435   电子邮件:nss_zyhjc@most.cn “十二五”国家科技计划资源领域2013年度备选项目征集指南   一、指南内容   (一)盾构施工煤矿长距离斜井关键技术研究及示范(集成示范类,国拨经费控制额3000万,企业牵头)   针对深层煤炭资源开采,进行盾构施工过程盾构选型、始发施工技术、盾构地下拆解技术、数字化远程监控技术、特殊不良地段专有施工技术等研发及示范。   (二)微生物采油关键技术(研究开发类,国拨经费控制额1000万元,企业牵头)   开展微生物驱油过程中代谢产物定量化表征与定向调控技术研究,开发微生物采油数值模拟软件,优化微生物驱油工艺,建立微生物驱油先导试验示范工程,并进行采油效果评价研究。   (三)喀斯特地区水资源安全利用与保障关键技术研究与示范(集成示范类,国拨经费控制额1500万元)   针对喀斯特地区地表水资源易渗漏的特点及水资源严重短缺的现状,开展喀斯特地表水与地下水转换规律研究,进行喀斯特地区水资源开发利用及保护的实用技术研发及示范。   二、有关事项说明   (一)实施年限   实施年限原则上均为3年。   (二)经费额度   本指南每项研究内容标注的国拨经费控制额度为本研究内容申请国家科技计划支持的最高经费额度。   (三)申报说明   每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。   (四)申报咨询   联 系 人: 唐松 徐俊   电 话:010-58881435   电子邮件:nss_zyhjc@most.cn “十二五”国家科技计划海洋技术领域2013年度备选项目征集指南   一、指南方向与内容   (一)深水油气勘探开发技术   1. 水下分离器关键技术(前沿技术研究类,国拨经费控制额2000万元,企业牵头申报)   研发适用于2000米深水环境下的紧凑型水下分离器,形成一套适应深水环境的分离器结构设计方法,制造出水下分离器实验样机,进行水池与高压舱测试,并进行在模拟深水海洋环境下的模拟运行。   2. 深水油气田智能完井关键技术(前沿技术研究类,国拨经费控制额2000万元,企业牵头申报)   研制出一套适合具有自主产权的适用井深大于5000米的深水油气智能完井技术及其关键装备,完成智能井系统集成测试,并编制智能井完井设计指南。   3. 海上天然气液化存储关键技术研究(前沿技术研究类,国拨经费控制额1000万元,企业牵头申报)   开展海上天然气液化存储关键技术研究,初步形成海上天然气液化与存储装置的设计与制造技术。   4. 通用型深水水下生产系统连接关键技术与装备(前沿技术研究类,国拨经费控制额2000万元,企业牵头申报)   研究适用于2000米深水环境下水下生产系统非潜水员用的通用型连接系统设计、制造、安装、测试技术,制造出一套2000米水深的水下连接器及及专用安装工具工程样机,进行高压舱测试及海上海试。   (二)海底观测网试验系统   5. 应用于海底长期观测网的新型海洋探测传感器(前沿技术研究类,国拨经费控制额500万元)   研发适用于海底长期观测网的海洋物理、化学、生物等深海环境原位观测新型传感器工程样机,完成接入海底观测示范网测试。   6. 深海移动平台与海底观测网接驳技术(前沿技术研究类,国拨经费控制额700万元)   研发适用于深海海底观测网与移动观测平台系统对接设备,实现海底观测网试验系统与移动观测平台的能源补给和信息传输,完成海上测试试验。   (三)深海探测与作业技术   7. 重载作业型遥控潜水器作业系统(前沿技术研究类,国拨经费控制额5000万元,企业牵头申报)   针对南海深水油气开发的需求,特别是针对海上油气田水下设施应急维修作业需求,研制具有强作业能力的最大作业水深3000米的重载作业型遥控潜水器及其配套的水下安装、井口作业、水下维修等作业工具,完成海上试验并形成油田开发水下设施安装、维修等作业能力。   8. 基于AUV的小型合成孔径声纳探测系统研制(前沿技术研究类,每个型号国拨经费控制额800万元,企业牵头申报)   针对不同规格的AUV平台,研制适用水深300—1000米、小型化、模块化的合成孔径探测系统工程样机并完成海试。   (四)海洋生物资源开发利用技术   9. 海洋生物功能天然产物发掘、优化与合成(前沿技术研究类,国拨经费控制额4000万元)   开发海洋生物功能天然产物高通量筛选、功能评价、结构优化以及化学合成等技术,获取一批结构全新的活性物质,优化并获得一批新结构/活性衍生物,建立若干类活性先导化合物高效的全合成技术路线,形成我国海洋生物天然产物和药物先导化合物研究网络平台。   10. 海洋传统药源生物(中药)资源开发利用(前沿技术研究类,国拨经费控制额2000万元)   针对我国海洋传统药源生物资源开发利用,从药物资源、质量标准、品种开发三个层面开展技术开发,完善和提升一批海洋中药质量标准并纳入2015版中国药典,获取一批针对重大疾病和疑难杂症的候选药物和制剂。   二、有关事项说明   (一)实施年限   实施年限原则上均为3-5年。   (二)经费额度   本指南每项研究内容标注的国拨经费控制额,为本研究内容申报国家科技计划支持的最高额度。   (三)申报说明   每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。   (四)申报咨询   联系人:孙清、张书军   联系电话:010-58884871,58884872   电子邮件:sunqing@acca21.org.cn, zhshujun@acca21.org.cn “十二五”国家科技计划人口与健康领域2013年度备选项目征集指南   一、指南内容   (一)头部疾患的防治研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)   头部肿瘤规范化手术治疗研究 基于分子病理学的个性化及综合治疗研究 多模态脑功能区定位技术研究等。   (二)多发免疫性疾病和变态反应性疾病的防治研究(应用开发与集成示范类,每个研究内容国拨经费控制额400-600万)   干燥综合征的诊断和规范化治疗 系统性红斑狼疮中西医结合治疗 变态反应性疾病早期诊断及治疗技术研究 强直性脊柱炎的临床诊治技术研究 免疫功能评价技术等。   (三)妇女常见多发疾病防治研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)   更年期综合症综合治疗 盆底功能障碍性疾病规范化诊疗 妇科微创治疗技术 多囊卵巢综合征诊治新技术研究 妊娠合并急危重症的早期干预和规范化治疗研究等。   (四)环境污染对人群健康影响的监测评估技术研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)   典型地区环境污染物相关人群生物监测技术 化学污染物对人群健康影响综合监测技术研究 环境污染导致健康危害甄别技术 不同类型环境健康风险的预警和疾病风险评估的关键技术等。   (五)基层常见多发病防治适宜技术评价与推广研究(应用开发与集成示范类,每个研究内容国拨经费控制额200-300万)   重点开展高血压规范化治疗、乳腺癌筛查、慢阻肺筛查、哮喘规范化治疗、功能性胃肠病检测与规范化治疗等基层多发疾病适宜技术的规范化评价与推广研究。   (六)基层重点医疗装备应用评价、技术提升与示范服务研究(应用开发与集成示范类,每个研究内容国拨经费控制额200-400万)   重点开展数字化X线机、彩超、手术内镜、生化分析仪、五分类血细胞分析仪、免疫分析系统、微生物分析仪、十二导联心电图机等基本医疗器械产品的应用评价、技术提升和新型服务模式示范研究,建立重点基本医疗器械产品的专业化技术评价体系、现场应用评价体系、可靠性评价体系,提高产品性能和可靠性,降低综合成本,促进普及普惠装备。   (七)呼吸麻醉关键技术和设备研发(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)   重点开发多功能、高性能、高精度、高可靠性的呼吸机、呼吸麻醉机、肺功能仪等产品,获得产品注册证。   (八)医疗器械前沿关键技术及创新产品开发(应用开发与集成示范类,每个研究内容国拨经费控制额300-500万)   重点开展太赫兹波检测、光学活体生化分析、微型超声成像、磁共振成像导航、医用色/质/光谱检测、微弱磁信号检测、新型模态成像、新型物理治疗、医用微光机电系统等前沿关键技术应用及产品开发研究,相应关键技术指标达到国际先进水平,相关技术产品获得原型样机或取得产品注册证。   (九)提高中医药疗效的“病证结合”研究(应用开发与集成示范类,每个研究内容国拨经费控制额300-800万)   围绕临床疗效的提高,重点开展恶性肿瘤、代谢性疾病、中风、慢性阻塞性肺病、抑郁症等重大疾病和常见多发病临床评价研究。   二、有关事项说明   (一)申报要求   1、上述指南内容共9个方面,每个方面下列若干研究内容,申报单位原则上只可申报其中的一个内容。   2、产品开发类课题必须由企业牵头申报,鼓励产、学、研、医联合申报。前沿关键技术研究必须与临床应用和产品开发紧密结合。   3、“基层常见多发病防治适宜技术评价与推广研究”申报的适宜技术应有较好的前期研究工作基础,并有明确的疗效、技术和经济优势。   4、“基层重点医疗装备应用评价、技术提升与示范服务研究”要求由临床医院、企业等联合申报。   5、申请“提高中医药疗效的‘病证结合’研究”的单位应开展过该病种的前期研究,所提出的治疗方法、方案应具有明确的比较优势。   (二)实施年限   截止到2015年12月。   (三)经费额度   本指南每项研究内容标注的国拨经费控制额度为本研究内容申请国家科技计划支持的最高经费额度。   (四)申报咨询   联系人:张兆丰、郑忠   电话:010-58881468、010-58881479   电子邮件:zhangzf@most.cn、zhengzhong@most.cn “十二五”国家科技计划公共安全及其他社会事业领域2013年度备选项目征集指南   一、指南内容   (一)主动便携式及中低空全天候生命探测与搜索装备(应用开发与集成示范类,单一产品国拨经费控制额500万元,企业牵头申报)   研发适用于建筑破坏、地质塌方、火爆毒等灾害环境,可克服温度、湿度、噪音、地形等不利因素影响,穿透土壤、岩石、混凝土、木材、烟气、水雾等障碍介质,全天候探测与搜索生命迹象,可根据现场环境快速组装的主动便携式及适配于飞艇、无人机等平台搭载的中低空全天候生命探测与搜索装备。   (二)灾害现场大型破拆装备(应用开发与集成示范类,国拨经费控制额2000万元,企业牵头申报)   研发适用于复杂地面条件和灾害环境,具备破拆、挖掘、起重、搬运、举高等多种功能的超高程、远距离、重荷载的大型破拆装备。   (三)面向突发事件的其他应急装备(应用开发与集成示范类,单一产品国拨经费控制额500万元,企业牵头申报)   适用于各类突发事件现场监测、现场救助、快速安置保障等环节的应急装备。   (四)面向文化事业及其科技产业的科研课题(应用开发与集成示范类,每一课题国拨经费控制额500万元,优选10个课题试点)   推动文化科技创新,发展文化公益性事业,培育文化科技产业,为社会主义文化大发展、大繁荣提供科技支撑。   二、有关事项说明   (一)实施年限   实施年限原则上均为3-5年。   (二)经费额度   本指南每项研究内容标注的国拨经费控制额,为本研究内容申报国家科技计划支持的最高额度。   (三)申报说明   每个申报书只能申报上述研究内容的一项内容 申报单位不能对一项研究内容进行重复申报。   (四)申报咨询   联系人:陈其针、麻名更   电 话:010-58881480、010-58881434   电子邮件:chenqz@most.cn、mamg@most.cn
  • 聚势向新!正泰鑫辉与无锡市检验检测认证研究院达成战略合作
    8月3日,正泰电器(601877)控股子公司——浙江正泰鑫辉光伏有限公司(以下简称“正泰鑫辉”)与无锡市检验检测认证研究院(以下简称“无锡检研院”)在乐清举行战略合作签约仪式。双方将在产品标准研发与制订、测试仪器设备研发、正泰鑫辉产品高端品质认证及零碳工厂、绿色工厂评价、博士后工作站共建等NQI国家质量基础设施和科研领域进行全方位互利合作。  乐清市科学技术局科技局党组书记、局长苏海坚,市场监督管理局副局长刘东,无锡检研院副院长、国家太阳能光伏产品质量检验检测中心副主任张栋兵,国信认证无锡有限公司副总经理钦卫国,国家太阳能光伏产品质量检验检测中心光伏产品检测部部长马超,国家高端储能产品质量检验检测中心储能市场发展部部长王勋,正泰电器总裁、正泰鑫辉董事长张智寰,正泰低压研究院总经理何胜,正泰鑫辉副董事长吴春光,董事、总经理何爱会,董事李云桂,常务副总经理彭祁军等出席签约仪式。  在全球化不断加速的今天,推进产学研协同创新是必由之路,此次合作不仅彰显了专业技术服务机构对正泰鑫辉质量技术水平和品牌价值的高度认可,更是正泰鑫辉依托专业技术平台的综合服务能力,助力其在光伏行业开启绿电连接产业链绿色低碳高质量创新发展的新局面。  苏海坚代表乐清市政府对顺利签约表示热烈祝贺,他表示,在全球文化进程不断加速的今天,深化企业科技、对外开放合作,推进产学研协同创新,是推动企业快速发展的重要因素,他希望以此次签约仪式为契机,成功打造乐清市院企合作示范样板。  张栋兵为仪式致辞,他表示光伏中心是我国首个建成运行的国家级光伏产品质检机构,院所属多个国家质检中心技术服务平台,同时也是国家市场监管总局、工信部等国家部委的示范基地、评价实验室、科技创新平台和装备评定中心,在各自服务行业领域具备一定的权威性与影响力。双方于前期已开展良好合作,未来将继续深入、再延续,合作共赢再升级,助力正泰鑫辉提炼优势技术指标,打造差异化产品和绿色低碳高质量发展。  随后,张智寰表示,正泰鑫辉在敏捷开发、产品研发方面思路清晰明确,未来还将积极推动产品标准研发,拓展双方合作,使正泰鑫辉真正成为优秀的绿电连接系统解决方案提供商。  此次签约仪式为正泰鑫辉与无锡检研院所属的光伏中心(CPVT)、国家储能质检中心(CEST)、国信认证无锡有限公司(CBC)达成战略合作。会上,正泰鑫辉获颁国内首张接线盒连接器产品CBC碳足迹证书。  此外,双方就绿色工厂和零碳工厂、光伏储能产品认证、光伏产品海上典型气候户外实证检测、CBC“国品优选”高端品质认证等领域举行了系列合作签约。正泰鑫辉始终坚守双碳之路,助力绿电发展,为实现国家碳达峰碳中和战略目标贡献自身力量。  心向往之,行必能至。正泰鑫辉将依托自身技术、产业化创新方面的强大动能,与无锡检研深度合作,共同打造更高效、更可靠、更绿色、更可持续的产品,致力于成为光伏电力绿电连接系统解决方案的优秀提供商。  正泰鑫辉  正泰鑫辉为浙江正泰电器股份有限公司控股子公司,于2023年3月成立,是专业从事太阳能光伏组件接线盒、储能连接器等绿电连接系统研发、设计、生产、销售、服务及技术咨询于一体的高新技术企业,以不懈的努力为国内外顾客研制更好的光伏连接器,提供令顾客满意的产品和服务。
  • 【首度突破】听十位专家剖析汽车零部件及材料检测热点
    p style=" text-indent: 2em text-align: justify " 近日,由仪器信息网主办的“汽车零部件性能测试及材料分析”主题网络研讨会成功召开,该会议是仪器信息网在汽车检测行业的首次突破性尝试,会议共云集了10位业内知名的技术及应用专家就当下汽车零部件研究热点、汽车零部件检测新技术及难点进行了深度解析与探讨。机会难得,仪器信息网将专家们分析的精髓汇总整理如下,以飨读者: /p p style=" text-indent: 2em text-align: justify " strong 追本溯源 ——一根红线牵起仪器检测与汽车材料评估 /strong /p p style=" text-indent: 2em text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 318px " src=" https://img1.17img.cn/17img/images/201906/uepic/8386b95f-e071-4756-99e0-9d8e8e793129.jpg" title=" 052ca893e8f47d873c59c771bc71779e_640_wx_fmt=jpeg.jpg" alt=" 052ca893e8f47d873c59c771bc71779e_640_wx_fmt=jpeg.jpg" width=" 500" height=" 318" border=" 0" vspace=" 0" / /strong /p p br/ /p p style=" text-indent: 2em text-align: justify " 汽车是由上万个零部件组装而成,而这些零部件又是由几百个品种、上千个规格的材料加工制成的,可以说材料是汽车工业的基础。随着低能耗、轻量化、低排放逐渐成为汽车工业发展的主流趋势,各企业开始加大在高强度钢、镁铝合金、复合材料等新型材料方面的研发。这也对材料的强度、各向异性等有了更高的测试要求。吉林大学机械与航空航天工程学院教授,吉林省材料服役性能测试技术与智能装备创新中心执行主任/教授呼咏结合吉林大学原位测试技术实验室研发的多载荷-多物理场耦合原位测试仪器,主要介绍了材料微观力学性能原位测试仪器在汽车材料中的应用。 /p p style=" text-align: justify text-indent: 0em " script src=" https://p.bokecc.com/player?vid=D78815AFB7037C799C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=550& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-align: center text-indent: 0em " strong 呼咏《材料微观力学性能原位测试仪器在汽车材料中的应用》报告视频 /strong /p p style=" text-indent: 2em text-align: justify " 创新是一个国家兴旺发达的不竭动力,随着国家产业转型升级,由制造转为创造,对产品创新要求日益提高。新能源汽车及轻量化快速发展,对汽车相关材料也提出了更高的要求。岛津企业管理有限公司的方瑛,为大家带来了《汽车零部件金属材料品质管理及评估》。她基于对汽车材料品质管理要求的提高,重点介绍了汽车零件金属材料品质管理及评估维度。( a href=" https://www.instrument.com.cn/webinar/video_105297.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span /strong /a ) /p p style=" text-indent: 2em text-align: justify " XRF应用于汽车工业中的材料分析有其自身很大的优势,马尔文帕纳科的产品经理熊佳星结合汽车材料的特点以及XRF分析的优势及限制,为大家带来涵盖金属定量分析、玻璃陶瓷定量分析、微小区域分析、油品分析等多维度的马尔文帕纳科汽车分析的解决方案。这些解决方案广泛应用于汽车工业的方方面面。例如润滑油和磨损金属油品检测、黑色金属及有色金属质量检测、应对汽车ELV欧盟指令、焊接件/缺陷分析,以及板材镀层分析等等应用领域。( a href=" https://www.instrument.com.cn/webinar/video_105302.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span /strong /a ) /p p style=" text-indent: 2em text-align: justify " TA仪器的首席科学家马倩则带来了车用材料系列性能评估技术管窥。根据大类归属及应用,车用材料主要包括金属/合金,塑料、橡胶、陶瓷/玻璃、复合材料等,在发动机、底盘、车身、电气设备等方面都有显著应用,马倩结合车用材料的工艺、应用环境和设计方法,从热性能、热物性能、力学性能等维度介绍了不同车用材料在不同应用场景下的系列性能检测方法。( a href=" https://www.instrument.com.cn/webinar/video_105303.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span /strong /a ) /p p style=" text-indent: 2em text-align: justify " strong 马无蹄不驰 车无轮不行——汽车轮胎检测技术面面观 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201906/uepic/2b0e8183-b192-4008-a6ad-f17f61ea2c20.jpg" title=" 2385b05583fab0a30485439c1df2120b_32754766_1396499607461.jpg" alt=" 2385b05583fab0a30485439c1df2120b_32754766_1396499607461.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /strong /p p style=" text-indent: 2em text-align: justify " 说到汽车,其实最基础的特征就是4个轮子的代步工具,因此轮胎无疑是汽车零部件的核心之一。青岛市产品质量监督检验研究院 国家轮胎及橡胶制品质量监督检验中心部长何宁为听众带来了《汽车轮胎测试技术综述》。( a href=" https://www.instrument.com.cn//webinar/video_105305.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span /strong /a ) /p p style=" text-indent: 2em text-align: justify " 汽车轮胎的动态损耗传统测量方法有转鼓试验等,费用高昂且操作繁琐。耐驰科学仪器(商贸)上海有限公司市场与应用总监曾智强的《汽车轮胎的动态损耗测量方法与应用》则展示通过动态机械方法,结合专属的动态损耗测量模块,嫩够简便地测量轮胎的动态损耗。此方法不局限于常规的“理想”动态测量,还可以根据车辆实际工况,制定更切合实际的动态模式,以得到更可靠的数据。除此之外,曾志强还介绍了轮胎压缩生热的多种测量模式,并通过案例进行比较。( strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span ) /strong /p p style=" text-indent: 2em text-align: justify " strong 探究危险边缘——汽车零部件失效分析 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/201906/uepic/a139ffb9-aaad-481e-9ed8-f00492852ec3.jpg" title=" b1b99fc403a1b1e6ea2e76bd770b0b3b_085637hhbho81f4ewh3mdl.jpg" alt=" b1b99fc403a1b1e6ea2e76bd770b0b3b_085637hhbho81f4ewh3mdl.jpg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-indent: 2em text-align: justify " 如前所述,汽车由成千上万个零部件组成,一些零部件如发动机里面的曲轴、轮胎轮轴等,在服役一段时间后,由于各种原因可能会发生一些断裂,造成安全事故,甚至有时会造成人伤亡。国家钢铁材料测试中心-失效分析中心主任钟振前通过大量的失效分析案例介绍汽车金属材料的断裂原因分析,为设计和工艺的改进提高提供了方向。在报告中钟老师特别分析了螺栓断裂现象。螺栓断裂是从表面裂纹密集分布区域起裂,属于在氢和应力共同作用下的氢致延迟开裂,裂纹扩展到后期出现疲劳开裂并最终断裂。钟老师强调,螺栓制造时形成的前期氢损伤及渗入较多的氢是导致螺栓断裂的主要原因。(由于保密需要,钟老师报告的视频完整版无法公布) /p p style=" text-indent: 2em text-align: justify " 华碧实验室研究院负责人邓钦球则主要为大家讲解了汽车连接器的检测与失效分析,连接器一般由接触件、基座、壳体、结构附件以及安装附件组成,由于腐蚀、正向力丧失,焦耳热等内在机理和污染、微动磨损等外在机理,以及温度、电流、安装等方面的误用,汽车连接器在生产和应用的全流程都可能发生失效,邓钦球系统阐述了连接器设计的关键准则和基本原理,并结合设计,讲述了连接器的测试与失效分析要点。( a href=" https://www.instrument.com.cn/webinar/video_105301.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span /strong /a ) /p p style=" text-indent: 2em text-align: justify " strong 从VOC检测到全生命周期评价 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 323px " src=" https://img1.17img.cn/17img/images/201906/uepic/af2268e9-9e21-49d6-a774-30db8584aca4.jpg" title=" a0e677a1881dcfe26a9a953e6ee77ad2_u=2319547506,1366214741& amp fm=214& amp gp=0_看图王.jpg" alt=" a0e677a1881dcfe26a9a953e6ee77ad2_u=2319547506,1366214741& amp fm=214& amp gp=0_看图王.jpg" width=" 500" height=" 323" border=" 0" vspace=" 0" / /strong /p p style=" text-indent: 2em text-align: justify " 由于汽车空间窄小,加上汽车密闭性好,因此汽车内有害气体超标比室内有害气体超标对人体危害更大,车内空气质量管控已成为汽车主机厂和车用材料供应商迫切需要解决的课题。在“汽车零部件性能测试及材料分析”主题网络研讨会上,安捷伦科技(中国)有限公司的售后服务工程师带来了《汽车内饰及车内空气VOC检测技术实用技巧》,从标准方法和实验方案的设计、采集方法的建立和优化、示范标准曲线、精密度和检出限的验证方案、标样配置及报告输出的操作指导,VOC检测的日常维护和故障排除等几个维度介绍了分析空气和材料中VOC的方法。( a href=" https://www.instrument.com.cn//webinar/video_105300.html" target=" _self" strong span style=" color: rgb(0, 176, 240) " 点击观看完整版报告视频 /span /strong /a ) /p p style=" text-indent: 2em text-align: justify " 汽车内饰及空气的VOC检测正是汽车全生命周期评价中的维度之一。生命周期评价(LCA)则被誉为21世纪最有效的环境管理工具,汽车工业又是能源和资源消耗较多,污染物排放较严重的部门之一。在资源、能源与环境的多重压力下,近年来,汽车全生命周期评价受到了国家和整个行业的高度重视。湖南大学汽车全生命周期评价中心的杨沿平教授,从汽车产品绿色可持续发展视角,讲解了如何对汽车产品从“摇篮到再生”的整个全生命周期(包括汽车使用前、中、后三个阶段)的“能源与资源消耗和环境排放影响”进行科学评估。(由于杨老师网络设备出现问题,讲座虽然精彩,但录制的声音效果不理想,根据杨老师个人意愿,视频暂不回放,请各位网友谅解。) /p p style=" text-indent: 2em text-align: justify " 针对汽车全生命周期评价这一潜力热点,仪器信息网也将在7月15日, span style=" text-indent: 2em " 与湖南大学汽车全生命周期评价中心联合举办“汽车全生命周期评价主题网络研讨会”。机会有限,欢迎有意向的小伙伴号搜索微信号XCZ3i66,或扫描下方二维码添加仪器信息网小材子个人微信,了解会议及报名详情并可进入汽车检测交流群互动交流。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/201906/uepic/100f94f8-07c4-43dd-be8c-aedf1ff42ad0.jpg" title=" 小材子.jpg" alt=" 小材子.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p
  • LabSolutions DB/CS软件处理方案 | 异常退出后不能连接仪器
    LabSolutions DB/CS软件日常运行过程中会遇到程序崩溃闪退、电脑异常关机或突然停电,这时候我们再连接仪器的时候往往显示仪器已被占用无法连接,那么我们应该怎么处理呢? 解决方案 以仪器原使用者登录DB/CS,选择原来的项目,看仪器能否正常使用。 1、首先再次打开软件,进入仪器界面,选择“表格式显示“,这时候我们就能看到对应仪器的使用者是谁,目前使用的是哪个项目。 2、使用对应账户登录,选择相应项目,打开此仪器,看是否可以正常登录,如还是无法登录,则右击对应仪器,选择“批处理队列”,在显示的批处理队列中删除所有批处理队列后,再尝试连接仪器。 如果仪器当前使用人员不在现场,也可以用具有“编辑批处理队列,Edit Batch Queue”权限的账号登录LabSolutions软件。在黄色的仪器图标上点右键,点“编辑分析“。在脱机状态下点击窗口上方菜单栏的“数据采集”-“显示批处理队列”,将“待机”的批处理从队列中删除,再连接仪器。 拥有“继续分析 Take over data acquisition“权限的账号也可以用同样的方法将待机的批处理转移到自己名下,然后继续操作。 在一些特殊情况下,仪器早已停止采集数据,但是批处理仍然显示为“正在运行”状态,“删除”“编辑”等操作均为灰色。无法通过正常手段联机。 注意:如果一台计算机控制多台仪器,以下操作需要特别小心,不要误操作影响其他正常运行的仪器。 在仪器对应的计算机上用Windows管理员登录;进入C:\LabSolutions\System\BatchQueueManager,找到以数字命名的文件夹。这里的数字和仪器编号是对应的。这里以仪器编号为4的LC-2为例。 把对应的文件夹剪切走。如果剪切的时候提示文件被占用,说明还需要结束后台相关进程。 在C:\Program Files (x86)\LabSolutions窗口右上角的搜索框里输入LSSEND,显示出LSSEndProcess.exe。 用管理员身份运行LSSEndProcess.exe之后。在弹出的对话框里选择需要处理的仪器,点OK。仪器对应的进程就被结束了。
  • 30项教育行业标准明起实施 包括这些仪器分析方法(附下载链接)
    p   按照教育部2020年9月29日发布的通知,30个教育行业标准明起实施(2020年12月1日)起实施。这30项教育行业标准中,涉及了电感耦合等离子体质谱、电感耦合等离子体发射光谱 /p p 气相色谱分析、荧光光谱、激光拉曼光谱、电子顺磁共振波谱、波长色散X射线荧光光谱等多类别仪器方法。 /p p   详细信息如下,点击即可下载: /p p span a href=" https://www.instrument.com.cn/download/shtml/973372.shtml" span    /span JYT 0565-2020 span span 电热原子吸收光谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973373.shtml" span    /span JYT 0566-2020 span span 原子荧光光谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973374.shtml" span    /span JYT 0567-2020 span span 电感耦合等离子体发射光谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973375.shtml" span    /span JYT 0568-2020 span span 电感耦合等离子体质谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973376.shtml" span    /span JYT 0569-2020 span span 波长色散x /span /span span span 射线荧光光谱方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973377.shtml" span    /span JYT 0570-2020 span span 紫外和可见吸收光谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973378.shtml" span    /span JYT 0571-2020 span span 荧光 span 光谱分析方法通则 /span /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973379.shtml" span    /span JYT 0572-2020 span span 圆二色光谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973380.shtml" span    /span JYT 0573-2020 span span 激光拉曼光谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973381.shtml" span    /span JYT 0574-2020 span span 气相色谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973382.shtml" span    /span JYT 0575-2020 span span 离子色谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973383.shtml" span    /span JYT 0576-2020 span span 氨基酸分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973384.shtml" span    /span JYT 0578-2020 span span 超导脉冲傅里叶变换核磁共振波谱测试方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973385.shtml" span    /span JYT 0579-2020 span span 电子顺磁共振波谱分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973386.shtml" span    /span JYT 0580-2020 span span 元素分析仪分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973387.shtml" span    /span JYT 0581-2020 span span 透射电子显微镜分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973388.shtml" span    /span JYT 0582-2020 span span 扫描探针显微镜分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973389.shtml" span    /span JYT 0583-2020 span span 聚焦离子束系统分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973390.shtml" span    /span JYT 0584-2020 span span 扫描电子显微镜分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973391.shtml" span    /span JYT 0585-2020 span span 金相显微镜分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973392.shtml" span    /span JYT 0586-2020 span span 激光扫描共聚焦显微镜分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973393.shtml" span    /span JYT 0587-2020 span span 多晶体X /span /span span span 射线衍射方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973394.shtml" span    /span JYT 0588-2020 span span 单晶X /span /span span span 射线衍射仪测定小分子化合物的晶体及分子结构分析方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973395.shtml" span    /span JYT 0589.1-2020 span span 热分析方法通则 span & nbsp /span /span /span span span 第1 /span /span span span 部分:总则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973396.shtml" span    /span JYT 0589.2-2020 span span 热分析方法通则 span & nbsp /span /span /span span span 第2 /span /span span span 部分:差热分析 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973397.shtml" span    /span JYT 0589.3-2020 span span 热分析方法通则 span & nbsp /span /span /span span span 第3 /span /span span span 部分:差示扫描量热法 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973398.shtml" span    /span JYT 0589.4-2020 span span 热分析方法通则 span & nbsp /span /span /span span span 第4 /span /span span span 部分:热重法 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973399.shtml" span    /span JYT 0589.5-2020 span span 热分析方法通则 span & nbsp /span /span /span span span 第5 /span /span span span 部分:热重- /span /span span span 差热 span 分析和热重- /span /span /span span span 差示扫描量热法 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973400.shtml" span    /span JYT 0590-2020 span span 旋转流变仪测量方法通则 /span /span /a /span /p p span a href=" https://www.instrument.com.cn/download/shtml/973401.shtml" span    /span JYT 0591.1-2020 span span 物性测量系统方法通则 span & nbsp /span /span /span span span 第1 /span /span span span 部分:直流磁性测试 /span /span /a /span /p p br/ /p
  • 高效链接供需两端,开启智能制造新篇章,2022华南激光展圆满闭幕
    11月17日,第二十四届中国国际高新技术成果交易会成员展——2022华南国际智能制造、先进电子及激光技术博览会(简称:LEAP Expo)终于在深圳国际会展中心(宝安新馆)圆满闭幕啦!LEAP Expo下辖慕尼黑华南电子展、慕尼黑华南电子生产设备展、华南先进激光及加工应用技术展览会及同期举办的中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会(VisionChina深圳),华南电路板国际贸易采购博览会共同亮相第二十四届高交会。五展联动,且依托高交会平台,为智能制造相关业界同仁们奉献了一场能够饱览技术、了解趋势、沟通商贸、促进合作的秋季盛宴。2022 LEAP Expo大数据80000平米展示面积1100家参展商及品牌LEAP Expo通过十多个特色展区,联合产业优质企业,集中呈现了表面贴装、点胶注胶及材料、线束加工、电子组装自动化、机器人及智能仓储、质量控制、元器件制造、半导体、传感器、电源、无源元件、连接器、测试测量、PCB、汽车电子、激光智造技术及装备、光源和先进激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、激光加工服务、3D打印/增材制造技术,机器视觉核心部件和辅件等多个板块的新品及技术研发成果,同时配套智慧汽车、ADAS与自动驾驶、电动车驱动与充电技术、5G+工业互联网、第三代功率半导体、嵌入式系统、物联网、医疗电子、碳中和碳达峰、点胶与胶粘剂技术、电子制造技术、半导体领域扇出型封装、3C柔性制造、数字化工厂、汽车线束加工、激光技术聚焦行业应用、机器视觉与5G、人工智能、边缘计算、PCB企业供应链管理、安全生产等热门话题举办不同主题的行业论坛与活动,为专业观众带来丰富参展体验。慕尼黑展览(上海)有限公司首席运营官路王斌先生表示:“华南地区是备受关注的制造业核心地。激光技术相比许多传统制造技术更具成本效益。华南制造业转型升级对激光技术的市场需求量猛增,其中3C和电子行业就是一个非常大的应用场景。华南激光展不仅是展示激光技术、设备和器件,更是联动激光产业链的供应端和应用终端,提供更多创新前沿的激光解决方案,希望能促进垂直市场的合作、产生实际效能。”整合行业资源,推动智能制造开启新篇章激光技术以其优异性、高效率等特性正不断帮助汽车、电子、医疗、新能源、PCB、通信、家电、照明等行业实现制造工艺升级。经过多年的迅猛发展,我国已经成为激光产业的大国,激光产品国产化实现了大跃进,为国内智能制造发展提供了强大武器。高交会作为中国高新技术领域对外开放的重要窗口,集中展示新一代信息技术、生物技术、新能源、新材料、高端装备、绿色环保、航空航天等战略性新兴产业科研成果及先进技术。今年高交会携手华南先进激光及加工应用技术展览会,链接多方行业资源,为满足激光产业链企业的成果展示、产品发布、接洽贸易等需求提供了更高端的商贸平台,也为广大华南地区的激光技术潜在用户寻找个性化的产品及行业解决方案拓宽了通道。展会现场各知名品牌展商大放异彩,充分呈现激光技术在消费电子、半导体、锂电、医疗、智能检测等重点终端应用场景的创新发展。大族激光每年都有参与华南激光展,而今年,大族激光带来的是国内领先完全拥有自主知识产权一款半导体封测领域明星产品——“悍狮”系列高速高精度全自动半导体焊线机。现场引来一片驻足咨询。集团品牌推广运营部部门负责人叶创波说到,“这款产品适合于目前主流封装形式,包括分立器件和集成电路封装,填补了国内空白,其技术与工艺水平接近或达到目前国际先进水平。”此外,他还表示:“大族激光在去年做了一次大的组织调整,分拆出100+个产品中心,相当于服务于100+个行业客户。公司加大了推广力度,期望着能在行业重点展会亮相,华南激光展也是我们期待的一大盛会。从现场的情况来看,无论是人流和展商质量都超预期。”可应用于微电子/半导体、集成电路及医疗/生物技术的复合式二维平台是隐冠半导体推出的二维机械导轨+空气轴承复合式运动平台。公司总经理吴立伟向前来咨询的买家介绍道:“该平台其采用模块化、正交性等设计理念,包含YG的MZT模块和复合式XY台模块。MZT模块集成在复合式XY台模块之上,能实现X、Y、Z和T轴4自由度的高精度、高刚度直线和旋转运动。MZT模块的垂向采用了独特的大行程磁浮重力补偿技术,降低了垂向电机的载荷,很大程度地提高了垂向运动性能和寿命。同时,复合式XY台模块采用驱动质心匹配、柔性龙门以及轻量化设计技术,具有降低对对高精度机械导轨的偏质心冲击,提高运动系统的可靠性和寿命的能力,并具有对Y1及Y2电机轻微平移不同步的修正功能。”上海隐冠半导体技术有限公司总经理吴立伟:“我们很感谢主办方周密的组织。隐冠半导体这次带来了很多先进技术产品,希望通过华南激光展这个平台服务于华南地区的客户,对展会的期望很大,收获也颇丰。”提到3D打印,不得不推出创鑫激光的MFSC 300W 3D 打印单模连续光纤激光器,产品基于模块化设计,拥有极佳的光束质量和极高的稳定性。创鑫激光技术主管钟相进表示,“这款激光器激光功率连续可调,采用光纤配 QBH/QCS头输出,可配合激光加工头与机器人、机床等进行系统集成,已经在3D 打印、精细切割、薄板焊接、3C 焊接等有广泛应用。”深圳市创鑫激光股份有限公司技术主管钟相进:“参加本次展会,不仅和同行、老客户进行了交流,也结实了很多新客户。华南激光展在这个行业以及整个华南地区还是有比较大的影响力的,对创鑫激光的宣传以及未来的发展都有积极的正向引导作用。”武汉锐科光纤激光技术股份有限公司副部长夏早兵介绍到:“我们的新一代光束可调激光器RFL-ABP可应用于新能源汽车等领域,填补了国产光纤激光器光束模式可调技术的空白。运用锐科研发的定制化光纤合束器,可以实现高斯光斑、环形光斑、混合光斑等不同模式输出,根据加工要求,任意切换。同时,纤芯、环芯功率可独立调节,实现纤芯/环芯任意功率比。”武汉锐科光纤激光技术股份有限公司副部长夏早兵:“因为近一两年的疫情影响,展会还是受到比较大的阻碍,今年也是经过了千辛万苦参加了华南激光展。我们希望借这个平台,整合上下游,了解更多的客户需求,让行业内的人能把激光应用得更好;同时参展也可以让我们了解到应用在新能源焊接切割方面的一些新产品。“飞博激光销售总监冷学鹏向观众热情地推荐了手持焊专用光纤激光器,“这款激光器是针对焊接市场研发设计的激光器。电光转换效率大于40%,节能稳定。可搭配10米输出光缆,操作更加灵活。配备的输出头轻而短,且小巧,节省更多集成空间。速度快效率高,焊接能力强。无耗材,焊缝光滑细腻,不易变形。操作灵活、简便,可满足多角度、多位置焊接。”上海飞博激光科技有限公司销售总监冷学鹏:“这次飞博激光带了很多款新产品包括升级迭代的产品,在和客户朋友们沟通交流的时候大家都非常感兴趣。我们觉得这次参展机会非常好,华南激光展为我们逐渐打开更大的市场领域,比如精密加工、精密焊接,甚至是医疗、科研等新兴领域。”顺应制造升级需求,打造激光特色展区近年来,激光核心零件、激光器、激光设备等都国产化方面频频传来傲人进展,国内制造业已进入高质量发展阶段。为强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能,华南激光展精心打造“激光创新技术及智能检测展示区”,涵盖激光创新技术、工业智能检测技术及核心部件,现场为来自消费电子、半导体、新能源、智能检测等终端应用买家讲解或演示光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等、应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等技术方案。光惠激光此次特地带来新一代智能风冷激光手持焊搭YLPS- Weld- 1500- A。公司市场专员赵振程自豪地表示:“这款产品配光惠自主研发的“ 不怕热”的焊接头,独特的非球面光学技术,重量比其他同类型焊接头减轻35% ,一体化的设计可以有更好的送丝效果, 焊缝完美无变形,机器可以在-10-50 ℃正常运行,操作简单内置55组应用工艺数据包,可以根据应用场景智能化选用,彻底解决工艺摸索问题,而且是全铝机身,重量仅有45kg,较第一代重量减轻30%,提升了征集移动的可靠性。另外还配备了多重安全保障,除急停按钮以外,单独安全的电路设计彻底解决了漏电的可能性。”他还表示:“本次参展总体体验感觉比较良好,对展位人流量比较满意,有很多客户也了解过我们的产品。同时主办方在我们参展期间,对我们也给予了较多的支持和帮助。”助力初创企业,技术人才两不误疫情常态化给不少初创企业造成了冲击,面临着运营及人才缺乏的困境,而激光初创企业往往缺少的不是技术,而是发现他们的“伯乐”。今年,11家初创企业看准了华南激光展的资源整合优势,齐聚展会“Start-ups初创专区”,通过华南激光展不仅借机展示了与汽车、微电子、医疗等终端应用领域适配的涵盖光学元件、光学模组、光学系统及仪器、激光腔体、激光器、激光打标机、激光切割机、激光焊接机、激光打标机、激光清洗机等种类丰富的产品,更是推出了人才招募计划,吸纳了不少目光。秉持着光学科技创造美好生活的使命,成立于2018年的麓邦,在液晶微纳技术的研发与应用领域已走在全球前列,且成为国内唯一实现量产的企业。这次展会现场,也不时有观众前来咨询他们的液晶维纳技术。据麓邦透露,该技术在航空航天、激光雷达、激光加工、VR/AR、医美医疗等领域都有着广阔的应用前景。谈到这次参展,麓邦销售经理周芬京表示:“此次展会,不乏有各地过来的光学专业观众过来指导交流,对我们麓邦的产品非常赞赏。希望下一届展会能办得更好,引导更多行业相关的专业观众,帮助麓邦把产品和服务推向更广的领域。”浙江法拉第激光科技有限公司是依托北大-温州激光与光电子联合研发中心产-学-研模式孵化的国家高新技术企业。法拉第总工程师刘珍峰称:“我们的窄线宽法拉第激光器产业化后,铯钟的频率稳定性指标有了量级的提高,为铯钟的国产化奠定了重要基础。”供需配对,一键触达核心资源同时,除了展台交流外,华南激光展现场专设商贸配对区,联合行业协会、媒体及相关业界机构共同邀请了由消费电子、微电子、工业电子等应用领域专业人士组成的近百个买家团莅临参观,基于展前供需双方线上填写的采购及配对需求,特邀有采购意向的决策层与展商一对一线下开展贸易洽谈,旨在促进产业上下游的无缝对接、满足终端应用需求、帮助展商拓展商机、获取意向订单、提高参展效率。电子终端应用代表华为:“我是来自3C行业的,主要是来看一下3C的检测技术,包括激光类、射线类。看到有中图仪器的检测类的产品,以及大恒激光,锐科等。总体来说比较满意,展会内容也很广,收获很大。”智睿国际:“慕尼黑主办的展会一直都有参加,人气很旺。我们是做智能家居的,类似于通过语音控制小米家电。参加展会主要是想观摩学习一下,同时我们公司也会使用大族激光的激光打标。疫情下能举办展会实属不易,希望华南激光展能越办越好。”深挖激光技术热点,同期论坛输送工艺养分展会同期举办华南国际光子智能制造及应用技术大会,分设《激光工艺赋能消费电子创新制造研讨会》和《激光技术助力半导体制造,合力打造中国芯》两个主题,邀请激光、光电、高端装备制造领域的企业核心代表、技术学者、院校专家等汇聚一堂,与观众分享不同应用场景下的技术难点等,探讨话题涉及激光技术在3C产品制造中的应用、激光加工设备用于手机盖板精细化切割的工艺难点、超快激光加工OLED柔性材料、柔性显示面板生产中的激光切割解决方案、激光微纳制造技术在消费电子领域的创新应用、紫外激光在晶圆划片中的应用、超快激光用于晶圆的精密切割、准分子激光在半导体光刻及退火中的应用、激光精密打标用于半导体芯片及器件的标识、激光技术在钻通孔中的应用、激光技术用于半导体晶圆清洗、不同激光器在半导体芯片及材料方面的加工工艺革新等。在此,我们要感谢所有支持华南激光展的展商、观众以及各合作方,你们的真诚付出与奉献成就华南激光展的收获满满,更是成就了展会新老朋友的相识与相聚。华南激光展始终致力于促进激光产业链上下游积极合作,为华南地区制造业升级献力、为国内智能制造发展添砖加瓦。希望展会的举办能为激光人增添信心,在外部客观因素冲击行业的影响下,积极应对挑战,坚定不移努力提升技术及核心竞争力,不断推陈出新,探索未来发展新格局。结束意味着新的开始相信四个月后,我们又能在上海相聚咯~~2023年3月22-24日上海新国际博览中心慕尼黑上海光博会等你来逛!
  • “新能源汽车”重点专项2021申报指南:拟安排8.6亿元启动18个项目
    5月11日,科学技术部发布国家重点研发计划“新能源汽车”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“新能源汽车”重点专项2021年度项目申报指南本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。专项实施周期为5年。2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台6个技术方向,按照基础前沿技术、共性关键技术、示范应用,拟启动18个项目,拟安排国拨经费8.6亿元。其中,围绕全固态金属锂电池技术方向,拟部署不超过3个青年科学家项目,拟安排国拨经费不超过1500万元,每个项目500万元。原则上共性关键技术类项目,配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。1. 能源动力1.1 全固态金属锂电池技术(基础前沿技术,含青年科学家项目)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、 电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电 化学场以及失效破坏等实验表征技术及固态电池综合评价方法。考核指标:固态复合正极比容量>400mAh/g;复合金属锂负极比容量>1500mAh/g;固体电解质厚度<15μm,室温电导率>1mS/cm,锂离子迁移数>0.8;全固态金属锂电池:容量>10Ah,比能量>600Wh/kg,循环寿命≥500 次。有关说明:支持一般项目的同时,并行支持不超过3个不同技术路线(互相之间、与一般项目之间技术路线均明显不同)的青年科学家项目;实施周期不超过5年。1.2 车用固体氧化物燃料电池关键技术(基础前沿技术)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能、高可靠电池结构设计及可控制备技术;优化连接体材料及结构,开发低成本连接体加工及涂层致密化技术;开发高一致性、长寿命电堆组装技术,形成千瓦级电堆批量制造能力;研发氢气、天然气、醇类等不同燃料处理技术及关键部件;集成不同燃料应用 场景的SOFC系统,研究系统快速启动响应技术,研究系统在模拟行驶工况下的应用安全。考核指标:建立车用SOFC关键部件、电堆与系统技术及理论体系。完成高性能、高可靠电池的结构设计和验证,电流密度 ≥300mA/cm2条件下,电压衰减≤4‰/千小时(运行时间≥1000h);形成低成本金属连接体及涂层材料加工工艺,连接体高温服役5000h,ASR≤30mΩ‧cm2;掌握SOFC电堆组装技术,单电堆功率≥1.0kW,电堆功率密度≥1.0kW/L,电效率≥60%;完 成氢气、天然气以及醇类等为燃料的SOFC系统开发,额定发电功率≥50kW,启动3分钟达50%输出功率,发电效率≥55%(DC,LHV),建立系统安全性能评价体系。有关说明:实施周期不超过 5 年。1.3 高密度大容量气氢车载储供系统设计及关键部件研制 (共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律,获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。考核指标:车载70MPa大容量IV型瓶储氢系统有效储氢质量≥32kg,氢气泄漏率≤10mL/h,供氢能力≥7g/s,系统服役寿命≥10年;形成相应气瓶与瓶阀的自主知识产权及产品标准,制 定系统零部件、总体结构、集成设计等安全设计准则。其中,70MPa氢Ⅳ型瓶满足T/CATSI 02007—2020要求、容积≥400L,单瓶质量储氢密度≥6.8wt%,单位储氢能力碳纤维使用量<10.7kg/kg H2;集成瓶阀设计压力≥70MPa,内置电磁阀寿命≥50000次, 瓶阀功耗≤8W,瓶阀质量≤1.2kg,瓶阀集成电磁开关装置、过流量装置、超温超压泄放装置(TPRD)、温度检测装置和手动操作装置;调压阀组循环寿命≥50000次,输出压力波动范围10~15%,波动持续时间≤10s,输出流量≥7g/s,质量≤1.2kg;车载氢系统控制器具备独立加氢模式、红外通讯、6路以上氢安 全检测通道,具备加氢状态控制与停车氢安全巡检策略;加氢口及加氢枪加注速率≥7.2kg/min,加氢口使用寿命≥20000次,加 注过程瓶内气温≤85℃。大流量氢气流量控制阀组最大喷射流量≥7g/s(阀组流量),内外氢气泄露率≤0.3mL/h@30bar,耐久性: 喷射阀开闭次数不小于4亿次(比例电磁阀全开闭次数不小于500万次);大流量氢循环引射器压升≥50kPa,引射比≥2.2,电堆功率覆盖范围60~400kW;大流量氢气循环泵系统压升≥50kPa(采用氢气混合气体,循环流量≥3000slpm,氢气浓度≥90%),功耗≤1.5kW,效率≥46%,噪音≤70dB,寿命≥20000h。建立快速加注机械接口标准、通信协议和加注操作规范,并形成标准送审稿;加注协议标准符合国际通用需求。2. 电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础前沿技术)研究内容:在电驱动系统集成与控制方面,研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系 统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。在新材料与新器件方面,研究高性能超级铜线(包括但不限于基于铜合金和铜/纳米管等复合材料的高性能超级铜线)及电机绕组制备技术,探索大电流SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模 块与组件协同优化技术,实现材料与器件优化。考核指标:超级铜线在20℃的电阻率≤1.90×10-8Ωm,180℃的电阻率≤2.57×10-8Ωm,并应用于高性能电机样机;1200V SiC MOSFET单芯片通流能力≥ 250A@150℃,导通压降≤2.5V@250A/150℃,最高结温250℃ , 阈值电压偏移≤0.1V@150℃;SiC电机控制器峰值功率体积密度≥70kW/L@峰值功率300kW,EMC 达CISPR等级4要求;提交电驱系统产品对标测试与技术分析报告共5份,每年样本量2套,提交电驱系统健康管理标准规范1项。有关说明:实施周期不超过5年。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:在高性能轮毂电机及总成方面,突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑;在高密度轮毂电机方面,研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技 术(包括冷却结构、动密封等)。考核指标:轮毂电机总成30s峰值转矩重量比≥20N∙m/kg;轮毂电机总成系统最高效率≥92%,系统CLTC工况综合使用效率≥80%;轮毂电机在额定转速点(额定转矩转折点),1米噪声总声压级≤72dB(A),防护等级不低于IP68,冲击振动标准不低于传统轮毂指标,电磁兼容性能满足Class4级及以上,轮毂电机总成产品实现装车运行。形成可靠性与耐久性测试规范。2.3 混合动力专用发动机及高效机电耦合技术(共性关键技术)研究内容:研究高效清洁燃烧(包括但不限于新型喷射、高EGR率、新型点火、高压缩比、可变机构技术等)结构优化、高效热管理、高效后处理、先进控制策略、低摩擦和低噪声等混合动力专用发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究先进混动控制系统、高效混动控制策略、混动专用电机及电池、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性,通过整车高效优化控制实现整车级行业领先动力和能耗指标。考核指标:专用发动机最高热效率≥45%,整车排放满足国六b+RDE;机电耦合系统机械传动效率≥95%,机电耦合系统综合效率≥85%(注:WLTC工况电平衡工况下的发电和驱动的加权综合效率);产品可靠性及寿命满足整车要求,实现装车运行。所搭载的整车0~100km/h加速时间≤7s,A级车在电量维持模式下油耗≤0.0018×(CM-1415)+3.8L/100km。混合动力专用高效发动机在额定功率下,1米噪声总声压级≤90dB(A);机电耦合系统在其基速点(转矩转折点),1米噪声总声压级≤78dB(A), 完成产品公告的量产车。3. 智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础前沿技术)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,探索高内聚、低耦合架构新形式,研究混合关键级任务调度与分配机理,建立域内、域间高可靠软件动态资源共享协议,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信机制,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余体系,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。考核指标:架构支持车路云一体化协同的高级别自动驾驶系统,可实现软硬件独立和域间协同计算,架构支持算力集中的弹性中央计算平台和分布区域管理控制器实现整车软件定义功能开发,形成具有自主知识产权的标准化软硬件接口≥400 个,接口包括:智能化传感器接口,原子服务接口,车—云标准接口和车与路侧设备接口等,标准接口支持2种以上的操作系统。电子电气架构一体化技术平台支持C-V2X信息交互,车辆相关软件升级时间≤20分钟,车载网络通讯速率可达10Gbit/s,时间敏感业务流转发时延小于50微秒,时间同步精度小于20纳秒。具有高可靠的冗余防失效机制,形成架构冗余设计准则和预期功能安全的解决方案。满足复杂电磁环境下的电磁安全要求,通过GB/T 18387和GB 34660标准 测试。建立信息安全纵深防御设计准则和防护策略。形成整车电子电气架构仿真、评估、优化和测试验证评价体系。在2家以上整车企业获得应用,完成相关技术标准或草案 3 项。有关说明:实施周期不超过5年。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知—决策—控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、 以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。考核指标:典型交通参与者行为预测时域不少于5s,长时域 轨迹预测误差≤0.6m(横向)和≤2m(纵向);支持L3级及以上自动驾驶功能的自我进化训练,涵盖典型道路场景≥5类和交通参与者≥4类,在线学习系统的更新周期≤30min;车载计算装置运行L3级及以上自动驾驶算法模块时,单位功耗算力≥2Tops/W,主要功能模块平均延迟150ms;边缘场景的自然驾驶 样本片段≥1万个,边缘场景类型≥80类,自动驾驶性能评估模 型的准确性≥90%;训练平台支持≥100个交通节点虚拟交通场景,支持不少于20辆实车的封闭测试场或开放示范道路的验证; 制定国家/行业标准≥3项。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安 全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。考核目标:开发预期功能安全实时防护系统一套,实现预期功能安全的实时保障,并在不少于20个边缘场景下进行技术验证;搭建面向大数据的数字孪生高性能云计算平台1套;开发自动驾驶系统预期功能安全分析、仿真测评和管理工具软件1套;开发有条件自动驾驶及以上级别的智能网联汽车预期功能安全测试案例库1套,测试用例≥300条;搭建预期功能安全实车测试平台1个;完成≥100万公里实车道路数据采集,构建预期功能安全场景≥1000个;完成预期功能安全量化开发及测试评价体系标准或草案1项。4. 车网融合4.1 智能汽车信息物理系统(CPS)技术(基础前沿技术)研究内容:面向智能汽车与信息通信及智能交通一体化,建立智能汽车信息物理系统基础理论,研究智能汽车信息物理系统架构体系构建、分析与构型优化方法;研究智能汽车信息物理融合机理,解构系统要素功能间协同机制与耦合规律,研究智能汽车信息物理系统建模方法;研究智能网联汽车信息物理系统开放性、涌现性和演进性特性,研究智能网联汽车信息物理系统全生命周期数字孪生重构设计与系统工程方法;研究智能汽车信息物 理系统测试验证与量化评估方法,建立智能汽车信息物理系统关键指标体系;研究智能汽车信息物理系统协同实现方法,构建典型参考系统以及系统确认方法。考核指标:建立智能汽车信息物理系统架构、特性分析、建模、设计、评估、验证、协同实现、系统确认与系统工程方法; 架构体系包含设计分析维度≥7个;总系统架构包含系统需求定义≥2000项,系统功能、逻辑和物理架构要素不少于4500个; 系统建模工具原型可支持不少于4个类别的模型融合;系统设计工具原型可支持不少于7个维度的系统全生命周期重构设计考量,且可支持不少于50个用户端的数据库并发访问修改和唯一设计版本溯源;智能汽车信息物理系统关键指标体系包含不少于7个维度的量化关键指标且总数不少于50个;智能汽车信息物理系统典型参考系统原型的可支持不少于16类智能汽车运行场景和不少于3000项测试用例的测试验证;完成相关理论著作不少于3项,技术指南或路线图不少于3项,完成系统工程应用手册1套。有关说明:实施周期不超过5年。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术(共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车—路—云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车 载定位、导航、授时一体化系统,研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。考核指标:地图模型支持动静态多层数据调用,包括自动驾驶感知与决策的应用接口协议,地图覆盖公里数≥1万公里;高精度地图每100米相对误差≤15厘米,基于专业采集车地图更新 准确率≥99%,基于众包数据地图更新准确率≥90%;超视距无盲区感知检测准确率≥90%,动态信息传输延迟≤1秒;基于车载北斗卫星定位终端,多源信息融合实现高精度定位,试验场条件下,静态高精度增强定位误差≤1厘米,动态高精度增强定位误差≤10厘米,有卫星信号覆盖的常规城市综合路况下,动态高精度增强定位误差≤20厘米;支持具备车路协同感知功能的高精 度地图示范区域2个以上,完成相关技术标准或草案≥5项。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人—车—路—环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制,研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术,开发场景批量生成与高并发大规模云计算测试平台;车—云—场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人—车—路—环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。考核指标:高精度自动驾驶仿真软件的极限工况动力学模拟精度≥90%;开放道路自动驾驶事故场景案例≥1000例;云控平台数据规模支持PB级,仿真任务执行成功率≥99.9%,达到10000个/分钟用例生成速率及 10000个/小时用例测试速率;数字孪生测试系统支持车速200km/h,最大制动强度10m/s2,最大转向角 40°;数字孪生支持虚、实传感器信号叠加;工具链支持L3级以上自动驾驶全流程测试,完成相关技术标准或草案不少于2项, 服务自动驾驶车型不少于20个。5. 支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具,实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。考核指标:汽车电控单元软件开发及验证的关键工具链能够满足V型开发流程,研制覆盖软件建模、软硬件测试、通讯总线仿真与测试等环节的关键工具不少于4种;汽车电控单元模块级软件建模工具能够支持系统图形化建模、连续与离散仿真、状态机建模等不少于3项的基本功能;汽车电控单元软件测试验证工具支持图形化测试用例搭建、支持自定义测试用例库、测试用例库及测试计划统一管理等不少于3项基本功能;汽车电控单元软 硬件集成测试与标定工具能够支持不少于2种类型标定协议,支持用户可定制的图形标定界面,支持标定数据的记录以及刷写等 不少于3项基本功能;车辆通讯总线仿真与测试工具支持总线监测分析、总线激励、诊断服务等不少于3项基本功能;自主开发工具的云上服务平台实现云端用户登录不少于1000人次/12个月,工具链包含的云端模型库中有效模型数量不少于50个。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。考核指标:搭建支持多样本(≥20个)同步试验、试验温度范围-40~250℃、湿度相对湿度65%、压力≥15psig(磅/平方英寸)的环境应力试验系统,以及可施加电源(电压范围0~20V且分辨率10mV)偏置的寿命试验系统;搭建EMC测试环境,支持传导干扰(20Hz~108MHz)、辐射干扰(20Hz~40GHz)、HBM_ESD(10kV)、电源间断跌落实验(时间≤1ms);搭建支持1024数字通道资源,5G通讯速率,激励电压范围-0.5~+1.5V且分辨率为10μV的ATE测试系统;开发车规计算芯片测试系统,支持GPU/AI 等多种架构车规计算芯片在不同系统配置下(内核可配置、主频测试精度最小100MHz)的算力测试(范围覆盖 5~20TFlops、5~300Tops)及能耗测试(最高精度0.1W);设计开发支持车规芯片半实物和实物芯片的功能安全测试系统,测试范围覆盖车规计算芯片的总线、存储、DDR、时钟、IO、中断等硬件模块及底层软件,完成1~2款芯片功能安全测试用例开发至少1000条;开 发车规信息安全芯片国密算法(SM1~SM4)检测系统,支持被测芯片≥5000次/秒签名验签测试,开发支持置信度(ɑ值0.02~0.05) 任意定义且不少于4个真随机源任意开关的随机数据采集及随机性水平的测试平台,开发信息安全测试用例(包含安全攻击用例)至少100条;在车规芯片测试方面形成5项以上标准提案。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技 术,研究车端感知、线下检测、云端数据协同的在役动力电池系统 安全性风险评估技术;开发智能无损检测装备及软件。研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立 车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技 术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。考核指标:建立动力电池多维度安全性评价体系和装备;开发在役动力电池系统安全性智能无损检测系统不少于2套,测试准确度不低于90%;搭建车载氢系统安全性定量化评价体系和在线监测系统,在商用车和乘用车上进行应用验证,在线监测系统安全响应时间小于1秒;车载氢系统微量泄漏检测精度高于50ppm;车载氢系统严重泄漏预判准确率>95%;形成5项以上动力电池系统和车载氢系统安全性评价相关标准提案。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车—桩(站)—云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于用户行为识别与充电设施状态感知协同的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车—桩—云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电 池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。考核指标:建成车桩数据交互平台,实现跨平台车桩数据互联互通,跨平台的数据互通与调用平均响应时间≤1s,高并发服务能力≥200万个,接入充电桩≥100万个,车≥100万台,车型≥100个,抗DDoS攻击能力≥200G/s;数据传输可靠性>99.95%, 信息安全通过三级等保评测;构建城市公共充换电场站建设规划模型和技术规范;充电桩利用率提高≥30%,车辆充电等待时间降低≥30%;快换电池系统兼容电池包类型≥3种,可更换车型≥3个,电池更换时间≤90s;无线充放电系统双向功率≥30kW, 工作间隙≥20cm,输出电压范围 DC250-900V,10%到 100%负载 范围内系统效率≥92%,最高效率≥94%,满足多车型互操作性, 实现3个以上车型搭载验证。6. 整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空 调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。考核指标:12米纯电动客车:整车能耗≤52kWh/100km (CHTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥300km(CHTC 工况);-30℃环境下,车辆续驶里程不低于常温续驶里程的 85%,车辆冷启动时间≤8min,空调制热功率≥14kW,COP≥1.3。55℃环境下,空调制冷功率≥22kW,COP≥ 1.7;研制车型≥2个,30分钟最高车速≥100km/h,0~50km/h 加速时间≤15s,最大爬坡度≥25%,实现百辆级验证应用。B级乘用车:整车能耗≤14kWh/100km(CLTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥500km(CLTC工 况);-30℃环境下车辆续驶里程不低于常温续驶里程的85%,车 辆冷启动时间≤5min,空调制热功率≥4kW,COP≥1.3。55℃环境温度下,空调制冷功率≥7.5kW,COP≥1.7;研制车型≥2个,最高车速≥180km/h;0~100km/h加速时间≤4s,满载最大爬坡度≥30%;实现千辆级验证应用。6.2 智能电驱动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构,研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统, 研究颠簸路面大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究大幅变载荷工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的新型驱动系统拓扑结构,研究湿滑坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展典型场景下智能电驱动重载车辆的无人化协同作业示范 应用。考核指标:开发智能电驱动重载车辆的整车平台原理样机1套;小尺寸(0.5m×0.5m×0.5m)障碍物检测距离≥100m,距离检测误差≤0.3m,重载车辆在100吨及以上载重条件下停靠控制误差≤0.5m,可实现16%坡道的坡停坡起;开发自主可控的电驱动系统,与国际同类产品相比,特定场景与工况下综合能效提升20%,在 1km/h车速下仍可有效电制动;开发智能电驱动重载车辆仿真验证平台1套;在典型场景下开展不少于50台100吨及以上载重车辆的无人化协同作业示范运行,并稳定运行1年以上,与国际同类产品相比,平均能耗降低 15%;形成相关技术标准或草案1项。附件:“新能源汽车”重点专项2021年度项目申报指南.pdf揭榜挂帅榜单.pdf形式审查条件.pdf编制专家名单.pdf
  • 抢位!汽车及零部件材料分析与测试评价网络大会,30+车企已报名
    2021年2月,日本汽车零部件巨头曝大规模造假,约有11.4万件产品存在伪造刹车装置及其零部件的检查数据,引发网友热议和消费者信任危机。3月5日,十三届全国人大四次会议开幕,李克强作政府工作报告,报告中指出要扎实做好碳达峰、碳中和各项工作,力争今年单位国内生产总值能耗降低3%左右。我国是世界汽车产销第一大国,汽车产业可在实现碳达峰、碳中和目标中起中流砥柱作用,尤其是汽车轻量化、新能源汽车发展是大势所趋,对于节能减排有着积极意义。同时,汽车产品全生命周期评价 (LCA)可以对汽车全生命周期所产生的物耗、能耗与排放进行系统分析与科学评估。基于此,仪器信息网将于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,特设汽车零部件测试技术、 汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。主办单位:仪器信息网 湖南大学汽车全生命周期评价中心 国联汽车动力电池研究院有限责任公司23位专家齐聚 聚焦四大热点本次会议为期2天,规模空前,内容涉及汽车零部件测试技术,汽车材料轻量化与测试技术,以及更加低碳环保的新能源汽车测试技术,广受国家和行业高度重视的汽车全生命周期评价。20余位报告人将于云端为我们带来一场关于汽车测试评价技术的行业盛会!会议日程公布 精彩内容抢先看01. 汽车零部件测试技术3月16日上午 汽车零部件测试技术时间报告题目报告人09:00-09:30汽车零部件典型缺陷检验及分析思路潘安霞 中车戚墅堰机车车辆工艺研究所有限公司09:30-10:00工业内窥镜在汽车零部件检查的应用程业杰 奥林巴斯(北京)销售服务有限公司上海分公司10:00-10:30汽车零部件分析技术与实例探讨陈党文 某车企研究院10:30-11:00汽车轻量化道路上的材料分析技术陈翔 日立分析仪器(上海)有限公司11:00-11:30汽车零部件失效技术偏离问题探讨刘柯军 汽车工程学会材料分会理化及失效专业委员会02. 汽车新材料测试技术3月16日下午 汽车新材料测试技术时间报告题目报告人14:00-14:30汽车用铝合金板材弯曲性能测试技术张仲荣 中汽研汽车检验中心(天津)有限公司14:30-15:00车用复合材料及纺织材料的功能技术及测评龚龑 北京服装学院15:00-15:30超高强度汽车用钢的组织性能调控及表征与评价宋仁伯 北京科技大学15:30-16:00汽车用高分子材料检测技术与应用研究李琴梅 北京市理化分析测试中心16:00-16:30车用涂料关键性能测试及缺陷分析丁帮勇 中海油常州涂料化工研究院有限公司03. 新能源汽车测试技术3月17日上午 新能源汽车测试技术时间报告题目报告人08:30-09:00纯电动汽车变速箱台架试验测试技术刘焕伟 中车戚墅堰机车车辆工艺研究所有限公司09:00-09:30安全评价技术在动力电池风险分析与预警中的应用崔义 国联汽车动力电池研究院有限责任公司09:30-10:00动力电池安全评价与防护设计朱阳阳 北京汽车股份有限公司10:00-10:30荧光光谱仪应用在新能源汽车产业链中的检测方案谈思涵 奥林巴斯(北京)销售服务有限公司上海分公司10:30-11:00动力电池标准体系动向及安全性测评技术林春景 中国汽车研究技术有限公司11:00-11:30锂离子动力电池仿真技术应用张杭 国联汽车动力电池研究院有限责任公司11:30-12:00DEKRA-CQC大功率充电连接器标准倪文超 德凯质量认证(上海)有限公司 04. 汽车全生命周期评价3月17日下午 汽车全生命周期评价时间报告题目报告人14:00-14:30纯电动汽车用典型材料体系的动力电池LCA研究余海军 湖南大学14:30-15:00增程式电动汽车全生命周期评价及经济性分析陈轶嵩 长安大学15:00-15:30新能源汽车绿色制造关键技术探讨刘迪辉 湖南大学15:30-16:00动力电池典型负极材料的生态设计效果分析龚先政 北京工业大学16:00--16:30中国碳中和愿景下天然气汽车减碳贡献分析——全生命周期视角欧训民 清华大学报名从速 免费名额不足200席!无需下载报名软件与付费,长按识别下方二维码或点击报名链接即可免费报名。一键报名页面:https://www.instrument.com.cn/webinar/meetings/car2021/温馨提示1、报名成功,通过审核后您将收到通知;填写不完整或填写内容敷衍将不予审核。2、通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。3、扫码加入“汽车测试技术交流微信群”,实时了解会议动向、进一步技术交流。扫码加入汽车测试交流群
  • 高效易用,智能坚固——奥林巴斯新款在线光谱仪Vanta iX登场
    新款Vanta iX在线X射线荧光(XRF)分析仪现已上市。该分析仪可以对生产线上的产品进行自动材料分析和合金牌号辨别,并即时提供结果,从而可对生产过程进行实时监控,并对产品进行无遗漏检测。 全天候,高效易用Vanta iX可以全天时、全天候(24/7)运行的分析仪,简化了金属制造和地质选矿的质量检测过程。金属制造过程需要受到全天时、全天候(24/7)的控制,以确保产品由正确的合金制造,避免出现代价高昂的材料混淆错误。 Vanta iX分析仪可以在几秒钟内提供明晰的材料成分和合金牌号信息,因此金属制造商可以此证明他们的产品经过了无遗漏检测和验证。分析仪可提供通过/失败结果,或完整的材料化学成分信息。在地质选矿和采矿方面,分析仪可以对岩芯进行扫查,对传送带上的矿石进行分析,并提供实时结果,以监控选矿和采矿过程中发生的变化,并确保矿石品位的一致性。强大的性能通过硅漂移探测器(SDD)和奥林巴斯业已成熟的Axon技术,这款分析仪可以对包括轻元素在内的多种金属和合金进行检测和牌号辨别。这款分析仪具有与其他Vanta系列分析仪相同的高计数率和稳定性。智能整合传输Vanta iX分析仪易于安装在制造环境中:使用其两侧的安装孔就可将其安装到机器人或其他系统上。通过Vanta Connect API(应用程序编程接口)或一个PLC(可编程逻辑控制器),并借助离散导线,可以轻松控制分析仪。连接器选项包括用于以太网供电的以太网(RJ-45)、USB、离散I/O(16针)和辅助DC电源。坚固,适合生产 这款分析仪通过了振动测试(MIL-STD-810G),符合IP54评级标准,可在-10 °C至50 °C的温度范围内连续工作,可以承受住生产设备的剧烈振动、强烈的电磁噪声和声学噪音、灰尘和湿气的侵扰。内置散热器可以降低分析仪内部的温度,如果需要进一步冷却,还可以通过风扇连接点连接一个风扇。无需使用工具,就可以更换分析仪的窗口,从而实现快速维护的目标。
  • 219项推荐性国家标准公开征求意见 涉多项分析测试及科学仪器相关标准
    日前,全国标准信息公共服务平台对《眼科光学 接触镜 第8部分:有效期的确定》等219项推荐性国家标准(征求意见稿)在公开征求意见,其中包含多项分析测试及科学仪器相关标准。涉及火花源原子发射光谱、波长色散X射线荧光光谱、气质联用仪、辉光放电质谱、扫描探针显微镜、液相色谱柱、表面分析以及无损分析等多类别。社会各界人士可登录全国标准信息公共服务平台的推标草案征求意见栏目反馈意见。详细标准列表如下:219项推荐性国家标准(征求意见稿)(点击下方计划号查看更多详情)序号计划号项目名称制修订截止日期120211712-T-464眼科光学 接触镜 第8部分:有效期的确定修订2022/6/26220210643-T-464二氧化碳激光治疗机修订2022/6/26320211713-T-464眼科光学 接触镜和接触镜护理产品 兔眼相容性研究试验修订2022/6/26420210642-T-464氦氖激光治疗机通用技术条件修订2022/6/26520204829-T-609智能玻璃术语制订2022/6/26620211056-T-607皮革 化学试验 杀虫剂残留量的测定制订2022/6/26720211054-T-607皮革 化学试验 关键化学物质的测试指南制订2022/6/26820212025-T-607皮革 物理和机械试验 针孔撕裂强度的测定修订2022/6/26920213457-T-607皮革 色牢度试验 耐唾液色牢度制订2022/6/261020213460-T-607皮革 色牢度试验 旋转摩擦色牢度制订2022/6/261120210762-T-605厚度方向性能钢板修订2022/6/251220210761-T-605建筑结构用钢板修订2022/6/251320214768-T-604步进电动机通用技术条件修订2022/6/251420214786-T-604永磁式直流力矩电动机通用技术条件修订2022/6/251520204767-T-605核电站仪表引压用不锈钢无缝钢管制订2022/6/241620204727-T-604内燃机 主轴瓦及连杆轴瓦 技术条件修订2022/6/241720211185-T-416天气预报检验 降水和温度制订2022/6/241820211742-T-604工业车辆 稳定性验证 第21部分:操作者位置起升高度大于1 200mm的拣选车修订2022/6/241920213037-T-604工业车辆 稳定性验证 第17部分:牵引车、货物及人员载运车制订2022/6/242020211821-T-605钻探用无缝钢管修订2022/6/242120214830-T-604内燃机 活塞环 第11部分:楔形铸铁环修订2022/6/242220211184-T-416短时强降雨危险等级制订2022/6/242320214831-T-604内燃机 活塞环 第12部分:楔形钢环修订2022/6/242420211133-T-326畜禽养殖污水监测技术规范修订2022/6/242520211820-T-605锅炉、热交换器用不锈钢无缝钢管修订2022/6/242620201503-T-605镍铁 碳、硫、硅、磷、镍、钴、铬和铜含量的测定 火花源原子发射光谱法制订2022/6/232720204679-T-603煤矿用金属材料摩擦火花安全性试验方法和判定规则修订2022/6/232820211897-T-610铜及铜合金切削料及其回收规范修订2022/6/232920204782-T-605锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)制订2022/6/233020214948-T-339挂车支承装置修订2022/6/233120194044-T-604铸铁管法兰 第1部分:PN系列修订2022/6/213220194043-T-604铸铁管法兰 第2部分:Class系列修订2022/6/213320204890-T-469电子特气 一氧化氮制订2022/6/213420214336-T-604矿渣水泥立磨 能耗指标制订2022/6/213520214179-T-604矿用高压辊磨机选型试验方法制订2022/6/213620204889-T-469电子特气 六氯乙硅烷制订2022/6/213720214177-T-604立式搅拌磨选型试验方法制订2022/6/213820214726-T-491空间环境 宇航用半导体器件在轨单粒子事件率预计模型选用指南制订2022/6/213920204671-T-524电化学储能电站并网性能评价方法制订2022/6/204020213249-T-469卡及身份识别安全设备 无触点接近式卡对象 第4部分:传输协议制订2022/6/204120211741-T-604集装箱空箱堆高机修订2022/6/204220204991-T-469废矿物油回收与再生利用技术导则修订2022/6/204320213619-T-348城市轨道交通运营安全评估规范 第3部分:有轨电车制订2022/6/204420213567-T-339道路车辆 液化天然气(LNG)加注连接器 3.1MPa连接器制订2022/6/204520213568-T-339道路车辆 压缩天然气(CNG)加气连接器制订2022/6/204620212968-T-524电化学储能电站后评价导则制订2022/6/204720213566-T-339道路车辆 压缩天然气(CNG)燃料系统 第1部分:安全要求制订2022/6/204820213618-T-348城市轨道交通运营安全评估规范 第2部分:单轨制订2022/6/204920213248-T-469卡及身份识别安全设备 无触点接近式对象 第3部分:初始化和防冲突制订2022/6/205020213565-T-339道路车辆 压缩天然气(CNG)燃料系统 第2部分:试验方法制订2022/6/205120214753-T-524电化学储能电站环境影响评价导则制订2022/6/205220202693-T-605船舶及海洋工程用不锈钢复合钢板制订2022/6/195320205047-T-606丙烯酸共聚聚氯乙烯树脂制订2022/6/195420201788-T-333建筑幕墙热循环和结露检测方法制订2022/6/185520211984-T-469真空热处理修订2022/6/185620211007-T-469移动真冰场技术规范制订2022/6/185720205104-T-326非洲马瘟诊断技术修订2022/6/185820214707-T-469船舶与海上技术 LNG燃气供应系统(FGSS)性能测试要求制订2022/6/185920214652-T-610再生铜合金原料修订2022/6/186020214897-T-469船舶与海上技术 LNG燃气供应系统(FGSS)高压泵性能测试要求制订2022/6/186120214656-T-610再生铜原料修订2022/6/186220203862-T-524发电机设备状态评价导则制订2022/6/176320213278-T-469平流层飞艇测试安全性要求制订2022/6/176420213096-T-605装配式钢结构建筑用热轧型钢制订2022/6/176520214697-T-469有机热载体安全技术条件修订2022/6/176620203857-T-469量子计算 术语和定义制订2022/6/176720203659-T-469微滤膜除菌过滤系统技术规范制订2022/6/176820213277-T-469浮空器术语制订2022/6/176920214722-Z-491空间环境 太阳能量质子注量和峰值通量的确定方法制订2022/6/167020214723-T-491空间环境 地磁参考模型制订2022/6/167120214728-T-491空间环境 宇航用半导体器件单粒子效应脉冲激光试验测试方法制订2022/6/167220214729-T-491空间环境 材料空间环境效应地面模拟试验装置通用要求制订2022/6/167320214552-T-469非金属材料辐射暴露地面模拟指南制订2022/6/167420213456-T-607玻璃量器 质量分级技术要求制订2022/6/157520213243-T-469石油及相关产品 测量方法与结果精密度 第3部分:试验方法已发布精密度数据的监测和确认制订2022/6/147620202569-T-607珍珠分级修订2022/6/147720211813-T-604低压成套开关设备和控制设备 第1部分:总则修订2022/6/147820211812-T-604低压成套开关设备和控制设备 第2部分:成套电力开关和控制设备修订2022/6/147920210752-T-604户外严酷条件下的电气设施 第2部分:一般防护要求修订2022/6/148020213169-T-339印制电路用材料 第8-8部分:不导电薄膜及覆盖层分规范 可剥离阻焊层聚合物制订2022/6/148120213168-Z-339电子材料、印制板及其组装件的测试方法第5-1 部分:印制板组装 件通用测试方法 印制板组装件导则制订2022/6/148220213495-T-424植物源产品中戊聚糖含量的测定 气质联用法制订2022/6/148320214670-T-610再生铸造铝合金原料修订2022/6/148420211211-T-312公共安全 生物特征识别应用 算法评测数据库要求制订2022/6/138520214501-T-604高压直流输电系统换流阀阻尼吸收回路用电容器修订2022/6/138620204657-T-466公开实景地图技术要求制订2022/6/138720203907-T-442羊肚菌菌种制订2022/6/138820204102-T-469信息技术 生物特征识别性能测试及报告 第7部分:卡内生物特征比对算法测试制订2022/6/128920202774-T-469锗酸铋(BGO)晶体 痕量元素化学分析 辉光放电质谱法制订2022/6/129020204678-T-524三相交流系统短路电流计算 第1部分:电流计算修订2022/6/1291p
  • 【阿拉丁】连接子 - 抗体与药物结合的关键因素
    连接子 - 抗体与药物结合的关键因素抗体-药物偶联物(Antibody-drug conjugate, ADC)结合了抗体的高特异性和小分子药物的强细胞毒性。这种组合结合了抗体的独特和非常敏感的目标能力,可以区分健康组织和癌组织。它还具有细胞毒性药物的细胞杀伤能力,可能最大限度地减少剂量限制性毒性,同时最大限度地提高所需的治疗效果。ADC的主要优点是可以在体循环中作为药物使用,最终在靶肿瘤细胞中释放游离药物。在这一过程中,连接子在释放有效药物靶向肿瘤细胞,决定ADC的药代动力学特性、治疗指标和选择性,甚至整体成功方面发挥着关键作用。目前使用的连接子可分为可切割连接子和不可切割连接子两大类,它们之间的区别在于它们在细胞内是否会被降解。一、用于连接的可切割连接ADC连接子的主要类别是可切割连接子。可切割连接子被设计为对细胞外和细胞内环境差异(pH、氧化还原电位等)表现出化学不稳定性,或者可以被特定的溶酶体酶切割。在大多数情况下,这种连接子被设计成在键断裂后释放有效载荷分子。这种无迹可循的药物释放机制使研究人员能够根据已知的游离有效载荷的药理学参数估计共轭有效载荷的细胞毒性。2.1 可切割接头的类型可裂解接头腙是一种酸不稳定基团,当ADC被转运到核内体(pH 5.0-6.0)和溶酶体(pH约4.8)时,它被用作可切割的连接子,通过水解释放游离药物。组织蛋白酶B响应连接子组织蛋白酶B是一种溶酶体蛋白酶,在多种癌细胞中过表达,参与人类许多致癌过程。组织蛋白酶B的底物范围相对较广,但它优先识别某些序列,如苯丙氨酸-赖氨酸(Phe-Lys)和缬氨酸-瓜氨酸(Val-Cit)。这种序列的c端切割肽键。Val-Cit和Val-Ala连接物偶联p -氨基苄氧羰基(Val-Cit- pabc和Val-Ala- pabc)是adc最成功的可切割连接物。PABC片段使自由有效载荷分子以无迹方式释放。双硫键连接子谷胱甘肽敏感连接子是另一种常见的裂解连接子,其策略依赖于细胞质中较高浓度的还原分子(如谷胱甘肽)(1-10 mmol/L)。二硫键嵌入在连接子中,在循环中抵抗还原性裂解。然而,内化后,大量细胞内谷胱甘肽减少二硫键,释放自由有效载荷分子。为了进一步提高循环中的稳定性,通常在二硫键旁边安装一个甲基。焦磷酸二酯连接子该阴离子连接子具有比传统连接子更高的水溶性和优良的循环稳定性。此外,在内化后,焦磷酸二酯通过内核体-溶酶体途径快速裂解,释放未修饰的有效载荷分子。图1. 可切割连接子。(Kyoji Tsuchikama & Zhiqiang An. 2018)二、不可切割的连接子不可切割连接子由稳定的键组成,抵抗蛋白质水解降解,确保比可切割连接子更高的稳定性。不可切割连接子依赖于细胞质和溶酶体蛋白酶对ADC抗体成分的完全降解,并最终释放与降解抗体衍生的氨基酸残基连接的有效载荷分子。与可切割连接子相比,不可切割连接子的最大优点是其等离子体稳定性增强,与可切割连接子相比,这可能提供更大的治疗窗口。此外,与可切割的偶联物相比,它有望降低脱靶毒性,因为不可切割的adc可以提供更大的稳定性和耐受性。图2. 不可切割的连接子。不可切割连接的化学稳定性可以承受蛋白质水解降解。单抗的细胞质/溶酶体降解可以释放与降解的单抗衍生氨基酸残基相连的有效载荷分子。(Kyoji Tsuchikama & Zhiqiang An. 2018)三、总结结论保证游离药物在肿瘤细胞内的特异性释放是选择Linker的最终目的。该连接子对ADC的稳定性、毒性、PK特性和药效学等具有重要意义。每个环节都有其优点和缺点。在选择连接子时,必须考虑许多因素,包括单克隆抗体和细胞毒性药物中的现有基团、反应性基团和衍生功能基团。最后,需要通过个案分析确定如何优化选择合适的连接物、靶点和毒性分子,平衡ADC药物的有效性和毒性。表1. 连接子类型及优缺点比较参考文献1. Kyoji Tsuchikama & Zhiqiang An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & Cell. 2018 9:33-46.2. Jun Lu. Feng Jiang. Aiping Lu. and Ge Zhang. Linkers Having a Crucial Role in Antibody–Drug Conjugates. Int J Mol Sci. 2016 Apr 17(4):561.3. Monteiro Ide P, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA. Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics. 2015 16(3):257-71.阿拉丁提供相关产品,详情请见阿拉丁官网:Linkers - A Crucial Factor in Antibody–Drug Conjugates (aladdin-e.com)
  • 钯价大涨!专家预计2022年均价2763美元
    近日,金价持续走高,价格比黄金更贵的钯金价格更是“一飞冲天”。据最新数据,现货钯金的价格一度上涨超过5%,最高至3173美元/盎司,年内涨幅超过65%。半导体生产对钯金有一定需求,钯金可用于传感器等半导体元器件中,也是半导体封装环节的重要原料之一。但记者在采访中了解到,俄罗斯的钯金产量约占全球总量的40%,钯金出口量占比达到35%。由于半导体产品中使用的钯金相对较少,钯金价格上涨对全球半导体供应链扰动有限。但半导体厂商还是应该寻求多元化的原材料供应体系。3月29日金投网最新钯金价格走势钯在半导体里有少量使用钯金是世界上最稀有的贵金属之一,具有不褪色、耐高温、耐腐蚀、延展性好等优良品质。但是,钯金很稀有,它的储量只有铂金的1/6,年总产量还不到黄金的1/8。有人戏称,钯金是比黄金还值钱的“贵”金属。更重要的是,世界上只有俄罗斯和南非等少数国家出产钯金,其中俄罗斯是全球最大的钯金生产国。据了解,俄罗斯的钯金产量约占全球总量的40%,钯金出口量占比达到35%。钯金在半导体行业有一定的“存在感”,在电子元器件和集成电路等领域均有所应用。赛迪顾问集成电路中心负责人滕冉向记者表示,钯可用于生产多层陶瓷电容器(MLCC)。MLCC可应用于移动电话、笔记本电脑、传真机,以及汽车和家用电子产品的电气元件。在其他微电子领域,钯主要应用于电子电路、混合集成电路的连接器和引线框架的电镀。再将目光聚焦到半导体行业的元器件和电子封装领域。有研亿金新材料有限公司副总经理何金江对记者表示,钯及银钯合金等是制备MLCC电容器、谐振器的重要材料;在半导体后道的封装环节,钯合金及镀钯丝主要用作电子封装的引线键合,用来替代金丝;此外,钯可以用于元器件精密连接的钯合金焊料,基于钯的特性,新的材料和应用也在开发中。“钯在半导体领域有所应用,但实际需求较少。”何金江对记者表示,钯在汽车尾气催化中的应用超过80%,占据其市场应用最大份额,特别是国六排放标准推行之后,钯的需求量正在增长。钯价格上涨对半导体影响不大受当前市场供需关系影响,近日钯金价格持续走高,上涨幅度十分明显。近期数据显示,现货钯金的价格一度上涨超过5%,最高至3173美元/盎司,年内涨幅超过65%。钯金涨价会给半导体行业带来什么传导效应?半导体行业专家莫大康在接受记者采访时表示,俄罗斯不是半导体材料大国,此次涨价事件对半导体行业整体影响不大。钯金在半导体产品中的应用比重较低,目前不会对半导体生产造成大规模影响,特别是对于那些原材料库存水位较高的企业。滕冉对记者表示,现阶段,钯金价格的上涨会导致半导体行业的成本有所增加。但是,考虑到单个半导体产品对钯金的需求量比较少,从中短期角度来看,钯金涨价对原材料库存水位较高的企业影响较小。据记者了解,由于钯金的价格很高,所以在半导体领域,国内部分公司对钯金的需求量并不大。也正是因为这个原因,这些公司目前还没有感受到钯金涨价对下游半导体产品的传导效应。而在钯金的主要应用场景——汽车尾气催化领域,汽车制造商极有可能会加速转向更便宜的铂金来寻求替代,这也为钯金明年价格的下降埋下伏笔。渣打银行分析师Suki Cooper预测,2022年钯金的均价为2763美元,明年将降至2275美元。多样化的供应体系愈显重要尽管就眼下情况而言,钯金的供应问题对半导体行业的影响有限,但确实为半导体供应链上的不少企业敲响了警钟,也为各个厂商带来了启示。半导体产业的供应链条很长。创道投资咨询总经理步日欣对记者表示,电子特气、靶材和特种材料等半导体上游原材料供应领域,往往具备种类多、品质要求高、市场规模却又相对较小的特性,所以会呈现出供应商集中、区域集中的特点。在这样的市场状态下,产业的抗风险性能较差,很容易受到外围因素的干扰。因此,从半导体产业长期健康发展的角度,业界需要建立响应的备份机制,完善产业链条,提高抗波动和抗风险能力。针对钯金这种全球储量分布非常不均衡、产量又集中在少数几个国家的特种材料,步日欣认为,相关厂商有必要提前储备原材料,以应对产业发展的不稳定因素。半导体企业有必要在全球范围内寻找原材料的替代供应商。滕冉对记者表示,基于材料的不可替代性和对原材料价格波动的非敏感性,部分关键核心工艺还将继续使用金属钯。在非核心关键制程方面,工程师们将会寻找替代金属,以降低对钯金的依赖度。以下几个例子或许能够证明,打造多样化供应链体系,并寻找核心材料的替代供应商,是企业保障稳定供应的重要任务。英特尔拥有多元化的全球供应链,可最大限度地降低潜在的供应中断风险;受益于多元化材料来源,三星的生产正在照常进行;SK海力士目前已经获得了大量半导体原材料;晶圆代工厂商格芯可以灵活地寻找资源。未来,各大企业将更加重视半导体产业链供应链的完整性与稳定性。滕冉表示,缺乏稳定的供应链体系,将导致半导体企业的技术研发与规模量产处于不可控状态。此外,半导体行业素有“一代材料、一代技术、一代产业”之说。未来半导体技术的发展,需要工艺制造和材料企业联合攻关。材料技术突破对国内半导体厂商的发展至关重要,有望给国内半导体制造工艺的发展带来新的可能性。滕冉表示,国内半导体材料技术水平和供应能力的提升,不仅是材料企业自身的问题,还需要产业链上下游进行联动。半导体制造企业需要给国内配套企业更多应用、试错、提升的机会,这样国内半导体材料企业才有快速成长的可能。
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • 新能源汽车重点专项2021申报指南:拟6个技术方向启动19个任务
    2月1日,科技部发布“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿)。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,认真研究收到的意见和建议,修改完善相关重点专项的项目申报指南。征集到的意见和建议,将不再反馈和回复。征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱gxs_njc@most.cn。附件:“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿).pdf关于“新能源汽车”重点专项2021年度项目申报指南(征求意见稿)稿中提到,本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。按照分步实施、重点突出原则,2021年度指南拟在能源动力、电驱系统、智能驾驶、车网融合、支撑技术、 整车平台6个技术方向,启动19个指南任务。1.能源动力1.1 全固态金属锂电池技术(基础研究)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电化学场以及失效破坏等实验表征技术及固态电池综合评价方法。1.2 高安全、全气候动力电池系统技术(共性关键技术)研究内容:研究动力电池低温环境充放电性能衰减的电化学机理,研究加热方式、加热策略对电池安全、电池寿命的影响机制,研发动力电池系统无损极速加热新结构、新方法及其加热安全控制技术;研究全气候环境条件下动力电池系统安全充放电方法和控制管理技术,极端低温和高温条件下的耐候性,研发全气候电池系统技术;研究动力电池可靠性与车载振动、环境温度、动态载荷等交变应力的耦合关系及其疲劳损伤规律,高挤压强度下的安全性防护方法,电池系统故障诊断、安全评估与预警方法;研究动力电池系统热失控爆炸当量估计方法、热失控扩展路径及特性、热失控延缓和阻断控制机制;研发基于以上关键技术的高安全、全气候的新结构动力电池及动力电池系统。1.3 车用固体氧化物燃料电池关键技术开发(基础研究)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能高可靠长方形电池结构设计及可控制备技术;优化连接体结构及流场设计,开发低成本连接体加工及涂层致密化技术;开发一致性长寿命电堆组装技术,形成电堆批量制造能力;研发不同燃料处理技术及关键部件;开发不同燃料场景应用的SOFC冷热电联供系统,研究与SOFC耦合的快速启动响应技术,提出效率优化与冷热电管控策略。1.4 高密度大容量气氢车载储供系统设计及关键部件研制(共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律, 获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。2.电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础研究)研究内容:研究基于铜合金和铜/纳米管等复合材料的高性能超级铜线及电机绕组制备技术,探索大电流 SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模块与组件协同优化技术,实现材料与器件优化。研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:高密度轮毂电机:研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技术(包括冷却结构、动密封等)。轮毂驱动系统集成:突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑。2.3 混合动力专用发动机及高效机电耦合技术(共性关 键技术)研究内容:研究结构优化、高压喷射、高压缩比、高效燃烧、电动气门、低摩擦和低噪声等混合动力发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究结构集成优化、动态协同控制、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性。搭载专用动力电池,通过整车高效优化控制实现整车级行业领先动力和能耗指标。3.智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础研究)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,研究高内聚、低耦合架构技术,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信技术,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余技术,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知-决策 -控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括结合系统开发“V”字流程的正向危害分析、风险辨识以及机器学习算法不确定性及可解释性研究,构建预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。4.车网融合4.1 智能汽车信息物理系统(CPS)技术(基础研究)研究内容:面向车路云网的智能汽车信息物理系统通信与系统动力学融合构型建模技术,研究异构可组合模型形式化表达和模块化开发技术,建立系统设计模型库;研究智能汽车和智能交通系统高效协同的体系架构框架构建技术,突破智能汽车信息物理系统架构设计和构型优化关键技术,建立系统需求、功能、逻辑和物理架构;研究智能汽车信息物理系统并发组件设计技术,研发可溯源连续传递数据库,建立系统云协作总体设计软件工具;研究实验系统评估和验证 技术,研发智能汽车信息物理系统在环半实物试验装置及测试案例集;研究智能汽车信息物理系统应用实现技术,研究建立智能汽车与智能交通系统协同的示范平台。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术 (共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车-路-云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车载定位、导航、授时一体化系统, 研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人-车-路-环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制, 研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术, 开发场景批量生成与高并发大规模云计算测试平台;车-云-场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人-车-路-环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。5.支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具, 实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技术,研究车端感知、线下检测、云端数据协同的在役动力电池系统安全性风险评估技术;开发智能无损检测装备及软件。 研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车-桩(站)-云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于新能源汽车运行应用大数据的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车-桩-云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。6.整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。6.2 智能电动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构, 研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统,研究多尘、颠簸等场景下大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究连续大长坡、大幅变载荷等工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的主辅一体式永磁电机驱动系统拓扑结构,研究多态湿滑大坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展露天矿山等典型场景下智能电驱动重载车辆的无人化协同作业示范应用。
  • 闪联国家工程实验室阶段性成果集中亮相
    电子信息产品协同互联(闪联)国家工程实验室   深圳市政府在国家创新型城市建设规划中,明确把建设国家工程实验室列为应用能力提升工程内容之一。电子信息产品协同互联(闪联)国家工程实验室作为该规划实施中获批的深圳市第一家国家工程实验室。其建立对于提升深圳市电子信息产业的技术创新能力,推动整体产业升级与发展,加快国家创新型城市建设步伐,具有重大的意义。闪联国家工程实验室去年七月份正式揭牌时,当时的代市长王荣和常务副市长许勤亲临现场,其重视程度可见一斑。      闪联国家工程实验室第一届理事会      闪联国家工程实验室具有两大特色,一是联合创新模式 该实验室由深圳市闪联信息技术有限公司联合国内领先企业联想、TCL、创维、康佳、长虹、长城共同建立。二是其拥有基于ISO/IEC领域中国首个国际标准作为技术支撑。在技术创新模式中,闪联自主制定的国际标准为深圳电子信息产业技术创新提供强有力的保障。   一年来,实验室采取边建设、边研发的方式,目前已取得了许多阶段性成果。近日,记者在座落深圳市科技园的闪联国家工程实验室里见到了其中一些成果展示,包括闪联电力线传输(IGRS-PLC)技术在家庭和电动车中的应用、灵犀系列产品的网络应用、“三屏共享三网融合”组合应用等成果展示,这些成果都是基于IGRS技术标准,从家庭和办公场合,扩展到移动和远程访问场合,从局域网应用扩展到互联网领域与移动网络的应用,在电子信息领域和互联网产业具有广泛的应用。   闪联IGRS技术标准产业成果集中亮相   闪联国家工程实验室中已经开展了闪联IGRS 2.0技术的具体协议设计及其协议栈实现。目前闪联已有六项标准提交ISO/IEC国际标准组,其中已有两项获得批准并公开发布,在国内已提交18项标准提案,累计已申请20多项发明专利。其属下各研究室专注于闪联标准的共性技术和应用平台的研发,实现了IGRS2.0在网络连接技术、网络多媒体娱乐共享及三屏互动等多个应用方面的突破及一系列功能的场景演示。      闪联电力线传输(IGRS-PLC)技术在电动车中的应用   此次成果展最吸引人关注的场景是闪联电力线传输(IGRS-PLC)技术在电动车中的应用,电动车的电源线插入电源插座后,基于IGRS协议,内置在电动车中的IGRS-PLC模块和可视装置中的IGRS-PLC模块进行通信,实现可视装置显示电动车的充电状况。通过车上的场景切换装置,同样基于IGRS协议,可视装置会显示车内IP Camera拍摄到车内场景,显示一段时间后会自动切换到电动车的充电状态。在电动车充电过程中,如果电动车电源插头被拔掉或脱落,IGRS-PLC通信机制会检测到此情况,并且启动电动车报警装置,此时电源会自动切断。      闪联电力线传输(IGRS-PLC)技术在多媒体高清播放娱乐系统中的网络应用   此项应用是来自闪联和日本松下在国家工程实验室中共同建立的“闪联-松下PLC联合实验室”,该实验室致力于闪联电力线传输(IGRS-PLC)技术的研究和PLC相关技术及产品在中国市场的推广应用。      灵犀无线连接器   在灵犀系列产品的网络应用成果展示中,作为闪联最新推出的无线连接设备,闪联灵犀无线连接器由闪联自主研发、全球首创,是全球第一款让电脑和电视无线互联的设备。灵犀无线连接器基于闪联技术,用户只需通过简单设置并将其插入电视USB接口中,电视即可与闪联电脑之间,基于IGRS1.0技术自动建立起无线连接,将电脑中的多媒体内容直接无线传输至这些设备之上,使用户可以随心所欲的在电视上欣赏电脑中的经典电影、天籁音乐和精美图片。在新一代基于IGRS2.0技术中,灵犀无线连接器将不需通过电脑连接到互联网,用户只需要电视遥控器点播互联网上的多媒体服务,带来更便捷的智能数字生活享受。      “三屏共享三网融合”场景   在成果展示中最为突出的是“三屏共享三网融合”场景,此项成果将海信电视、闪联手机、闪联笔记本进行组合,通过全新闪联IGRS 2.0技术,可以使海信电视、闪联手机与闪联笔记本之间互相无线推送图片、视频、音频等影音文件。闪联工作人员介绍说:“在用户外出旅游时,可以将手机拍摄的照片与视频图片直接通过异构网(电信网、互联网、广电网)发送到家中的电视或笔记本之上,让家人可以通过大屏幕欣赏异域风光和用户的感受,真正实现了全新的三网融合应用,让用户的生活更加多姿多彩。”随着三网融合的深入推进,三屏互动作为最能体现闪联标准协同与应用互联技术,将成为闪联未来的重点打造与推广的应用成果。   除此三项成果之外,还有闪联互联网电视应用场景、闪联电力线传输(IGRS-PLC)技术在多媒体高清播放娱乐系统中的网络应用、家庭网络存储娱乐中心场景等,新的闪联产品和应用在闪联国家工程实验室中不断涌现。未来3年,闪联国家工程实验室将通过闪联技术标准建立跨信息技术、消费电子和通信领域的“虚拟跨界数字技术平台”,带动闪联创新技术与产业应用。   从局域网到广域网的全线扩展   闪联国家工程实验室所取得的成果是基于新一代的闪联技术-闪联IGRS2.0.闪联标准的早期版本主要关注于实现3C设备在局域网上的互联互通,但伴随着互联网及移动设备的普及,已经出现了越来越多的广域网范围内的协议服务应用需求。新一代的闪联技术-闪联IGRS2.0突破区域局限,实现无缝连接,对现有技术进行了扩展,将其从家庭、办公场合,扩展到移动和远程访问场合,从局域网应用扩展到互联网领域与移动网络的应用,并为设备引入了内容与在线服务。新一代闪联技术使得大量设备在任何地方都可以无缝接入,并形成资源共享和协同服务。即家庭的信息设备组成一个内部网络,同时这个内部网络与Internet互联,所有的信息设备都可以与Internet上的服务和内容互联,享受更丰富的信息和娱乐。用户不仅可以在PC上浏览新闻、聊天、打游戏,还可以在Internet上购买高清电影,并高速下载。   无缝、科技、节能、环保、互动是深植IGRS2.0的核心思考灵魂,也将成为引领未来世界数字家庭生活的风向标。人们能够享受最简洁便利的操作,随时随地连接3C(计算机、通讯和消费类电子产品)产品,实现无界的信息互动与量身服务,从而突破原有数字家庭的局限,真正感受到智能生活所带来的便利和优越性。   闪联打造全球领先的3C协同产业技术创新基地         闪联智能家居控制平台      闪联智能家居实时监控系统      闪联智能家居展示   闪联国家工程实验室的建立是闪联2009年的一项重大突破,实验室以具有自主知识产权的核心技术和国际领先的IGRS标准为核心,以建设全球3C协同领域研发和创新基地为目标,面向整个电子信息产业提供标准、技术、开发平台、产品方案和测试认证等方面的支撑,凝聚、培养3C协同领域技术创新人才,开展产业技术研发的国际交流与合作。   闪联国家工程实验室将以深圳这个全国电子信息产业重镇为平台,借助深圳完备的上下游产业链,和闪联的核心成员企业都集聚深圳的地域优势,加快闪联产业化进程,巩固闪联的3C国际地位和联盟优势。闪联国家工程实验室的创新技术应用期待未来全国各个实验室也能应用此项技术,共同推动中国电子信息产业技术进步,提升产品的国际竞争力和附加值,为中国电子信息产业提供更有力的支撑。
  • 重磅宣布| MTS-SANS推出新型控制器SANSFLEX™
    作为深耕仪器行业多年的老牌仪器生产商,MTS一路走来凭借其先进的技术和专业的知识,为仪器行业源源不断地输送了众多优质产品。近期,经过科研团队不断深入研究开发,MTS公司面向全社会再次重磅推出一款全新力作—— SANSFLEX™ 控制器。SANSFLEX™ 控制器适用于电子万能试验机和静态液压万能试验机SANSFLEX 控制器为SANS产品线开发的新型SANSFLEX控制器能够获取更多数据点并收集更准确的测试数据。 控制器使用的以太网连接支持更高的速度,并提供比DCS-300控制器和绝大部分有竞争力的控制器更可靠的连接。与市场上的DCS-300及其他旧控制器不同, SANSFLEX 控制器是由美国、欧洲和中国的工程开发团队按照最新的质量标准设计的。制造和组装由欧洲和中国的行业领先团队完成。 小贴士:SANSFLEX名字由来我的名字由MTS试验机品牌名字SANS以及英文单词灵活(Flexible/Flexibility)的前半部分组成哦,性能更强,更灵活、更可靠,我是三思弗莱克斯,想了解我的更多细节请往下看~更高的闭环控制速率1提高数据采集速率可确保您在测试期间不会错过重要事件。 数据采集速率是指可以测量真实世界信息和物理条件并将其转换为计算机可以使用的数值的速度。 该速率也称为采样率,实际上采样速率有多快,下载数据并将其用于进一步分析也可以达到同样快的速率,或以较慢的速率用于满足测试需求。更高的分辨率3SANSFLEX 控制器提供增强和改进的通信,减少了对外部数据采集(DAQ)系统的需求。可选的模拟I /O和数字I / O板允许您升级系统以满足特定的测试要求,因此拥有比DCS-300更多的附件连接端口,以及集成多个外部设备的能力。TEDS功能5控制器使用 RJ50 和以太网连接器RJ45 提供闹牢固可靠的电缆连接,这与其他控制器上常见的USB连接器不同。在测试操作过程中信号通道丢失时,会发生损坏负载的机架、夹具或试样,而牢固的连接可防止此类事件的发生。RJ50 和以太网RJ45连接器具有锁定机制,有助于确保牢固的连接。以太网通信7SANSFLEX 控制器允许您通过选择其他控制板来定制基础模型之外的内容。您可以选择现在和将来需要的功能,提供最高的灵活性和最大的整体价值。凭借极快的数据采集速率和更高的分辨率,您可以比以往更准确地运行测试。 当您能以更高的信心进行测试时,您可以更快地将产品推向市场。新增控制器通道功能**运行GWT(Creep)和CMT带大变形需要使用编码器套件说了那么多,总结一下SANSFLEX都有哪些大亮点呢?? 2000Hz的闭环控制速率--在整个测试期间更好地控制? 高速的数据采集速率,比 DCS-300 控制器提升 66 倍--速度更快? 提高分辨率,为数据提供更高精确度;? 拥有集成外部设备的能力。如果需要,可以集成外部数据采集,以及灵活定制控制板配置--更灵活? TEDS功能及分流校准功能可以助您更准确地运行试验,对测试数据更有信心? 更准确地测定屈服应力,极限应力和试样的精确断裂点? 可靠电缆连接--更牢固? 以太网通信--支持更高速率,更稳定可靠? 能够捕获详细的测试过程如果您想进一步了解咨询新控制器的情况或是对我司 的其它产品和服务有任何需求和疑问,欢迎致电联系我们。
  • 德国Comemso电动汽车与充电桩互操作性测试中间人模式
    德国Comemso电动汽车与充电桩互操作性测试中间人模式德国科尼绍Comemso EV充电分析仪/模拟器,通过对充电过程中控制信号和负载回路的监测与评价,为充电中各种问题的分析和解决提供有效的途径。CCS, ISO 15118 / DIN 70121 ,IEC 61851测试系统方案 充电桩通信协议DIN70121、ISO15118、GB/T 27930区别要点DIN70121、ISO 15118、GB/T 27930三者都是针对电动汽车充电设施的充电接口通信这种特定应用场景设计的通信协议。ISO15118、DIN70121基于PLC通信,GB/T27930基于CAN通信。GB/T 27930是针对我国国标GB/T20234.3的直流充电接口制定的协议,而ISO15118除了传统传导式充电外,还涉及到了V2G(向电网回馈电能)和无线充电部分内容。DIN70121是针对欧洲和北美充电接口(Combo,交直流合二为一的一种充电接口)定义的一种通信协议。从分层结构上讲,ISO 15118分为三层,即应用层、互联层和物理层,ISO15118的物理层涵盖了部分数据链路层的功能(因此,称为物理层或许也不太确切)。DIN70121标准中明确指出主要参考了ISO/OSI的7层参考模型,并在规范中进行了描述。GB/T 27930在ISO/OSI的7层参考模型基础上的简化模型,简化后分为三层:物理层、数据链路层以及应用层。CCS一致性测试系统解决方案通信协议一致性及互操作测试保障了互操作,但是真正做好非常不易。首先要求测试规范定义者及测试系统开发者有通信专业知识,需要精通要待测试的通信技术和协议细节。在精通技术和通信协议基础上,还需要制定协议实现一致性声明(PICS),测试套结构和测试目的(TSS&TP),抽象测试集及部分协议实现测试的额外信息(PIXIT)三个主要协议测试规范文档等工作。PASSIVE GATEWAY “comemso是一家创新型公司,在汽车和电子移动领域建立了自己的地位。我们很高兴能将客户的需求作为新产品的基础,并用我们的创新技术与之互补,从而创造出具有卓越功能的新系统。” 德国科尼绍充电测试仪CCS,CHAdeMO3.0,GBT标准 CCS, ISO 15118 / DIN 70121 ,IEC 61851测试系统方案PLC-SNIFFER(PASSIVE)德国科尼绍Comemso公司发源于德国斯图加特企业工业的摇篮;科尼绍Comemso作为CharIN.e.v的会员,德国科尼绍Comemso GmbH是ISO15118-4 、ISO15118-5, DIN70121测试规范的主要起草者。MANIPULATING GATEWAY德国科尼绍Comemso电动汽车充电桩分析仪,能够用于测试充电功能和互操作性,高精度、准确的测试数据,符合欧标、日标、国标;戴姆勒和宝马等知名德国企业的合作伙伴。符合交流AC标准:IEC61851-1,SAEJ1772和GB/T18487.1-2015符合直流DC标准: IEC 61851-1, DIN 70121, ISO 15118, SAE J1772 和IEC 61851-23.通讯协议分析标准:GB/T27930-2011和GB/T27930-2015标准专为不同类型的使用而设计1、充电全过程中进行实时测试分析(Man-in-the-Middle模式):放在EVSE-EV中间,对充电过程进行监测;可以长时间进行数据记录l 电流负载回路品质监测:设定负载电流的允许波动范围,自动纪录超过设定范围的片段数和位置。l CP信号品质监测:设定控制信号的平台值、频率、占空比等参数的误差允许范围。2、EV Test模式 电动汽车测试模拟EV Test模拟充电桩,和电源组合进行动作,检测电动汽车l EV端响应速度测试l CP信号耐受性模拟测试l PP响应模拟测试3、 EVSE Test模式测试EVSE充电桩EVSE Test模拟电动汽车,搭配电源电子负荷,检测充电桩l EVSE输出CP信号的品质检测l 负载响应速度测试lEV端R误差模拟测试l EV端故障模拟测试l 线路、接口故障、老化测试l CP信号短路测试产品优势1、 领先的测量技术在充电系统分析领域2、 交流充电分析符合IEC 61851-1 充电模式1, 2 3, SAE J1772 和GB/T 18487.1-2015 (AC).3、 充当PLC跟踪器(纪录SLAC,V2G消息),实时测量AC / DC电流和电压4、 DC直流充电分析符合IEC 61851-1 充电模式4, DIN 70121, ISO 15118 和 SAE J1772, 同时也满足IEC61851-23附件 CC (可选).5、 对整个充电过程进行长期分析6、 无需示波器!在几个小时的每个时段内进行硬实时和自动化测试,以符合控制传输信号的标准。7、 可以检测和记录电流中断或组件损坏的原因,例如, 关于具有特定充电站的特定电动车辆之间的“不兼容”。8、 适用于不同充电连接器接口和应用的大量连接器和适配器。9、 可实现CAN接口功能测试(EV测试/ EVSE测试)的实时测量, 分 析和控制,半自动化和测试库。10、模块化扩展选项,适用于软件和硬件。11、坚固的外壳,适合移动户外使用,电池供电,IP66封闭式外壳,IP54开放式外壳。12、直观的操作/简便的测试自动化。13、国际知名的新能源汽车厂、充电桩制造商中广泛的成功使用。Head-office:Unit 2309, BANK OF AMERICA TOWER 12, HARCOURT ROAD CENTRAL,HONG KONGMainland-office:21/F, PEARL RIVER TOWER, NO.15 ZHUJIANG WEST ROAD, TIANHE DISTRICT, GUANGZHOU热线电话:400-8018-534, 400-860-5168转3111 020-83655027, 0755-23228005FAX:400-860-5168E-mail:order@freeboard.com.cn
  • 近亿元预算!工信部电子五所4至6月仪器采购意向盘点
    为优化政府采购营商环境,提升采购绩效,《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等规定要求各单位公开采购意向,内容应包括项目名称、需求概况、预算金额、采购时间等。近两年来,各大高校、科研院所等纷纷在相关平台公布各类采购意向。工业和信息化部电子第五研究所(中国赛宝实验室),又名中国电子产品可靠性与环境试验研究所,始建于1955年,是中国最早从事可靠性研究的权威机构。其广州总部现有占地面积122万平方米,科研生产用房面积10万多平方米,各类试验、分析测试和计量设备仪器上万台/套。所内现有职工4500多人,各类科技人员占80%以上。为方便仪器信息网用户及时了解工业和信息化部电子第五研究所采购信息,本文特对其政府采购意向进行了盘点。截至4月12日,在工业和信息化部电子第五研究所已公布的政府采购意向中,预计采购意向在2022年4至6月的共44项,预算金额相加达9144.8万元,采购品目涉及X射线检查系统、可靠性试验设备、激光共聚焦显微镜、扫描电子显微镜等。工信部电子五所2022年4至6月政府采购意向汇总表序号采购项目名称预算金额(万元)预计采购日期项目详情1华东分所静电敏感评价系统采购8004月详情链接2华东分所模拟测试系统采购项目1004月详情链接3华东分所三温机械手采购2504月详情链接4汽车电子产品EMC及性能测试系统采购5744月详情链接5LED显示屏系统2204月详情链接6X射线检查系统2004月详情链接7钨灯丝扫描电镜EV0181504月详情链接8光波测试系统1704月详情链接9模拟器件测试系统4004月详情链接10连接器性能参数测试系统1704月详情链接11综合应力阻容参数测试系统1904月详情链接12高速传输线缆试验系统1244月详情链接13阻容元件寿命评价系统584月详情链接14射频阻容元件环境适应性试验系统224月详情链接15连接器可靠性试验系统机械部分804月详情链接16连接器可靠性试验系统可靠性寿命部分1164月详情链接17变压器测试系统304月详情链接18线缆性能参数测试系统84月详情链接19光电耦合器高低温在线测试系统484月详情链接20精密测试直流电源2230404月详情链接21电机产品负载测试台924月详情链接22高精度压力传感器测试系统CPC6050984月详情链接23阻燃性能评价系统304月详情链接24微纳结构选区制备系统204月详情链接25扭矩仪C612M(Labthink)304月详情链接26继电器参数测试及可靠性试验系统26.84月详情链接27精密电源254月详情链接28高速数字示波器304月详情链接29电流负载154月详情链接30酸性大气试验系统1255月详情链接31酸性盐雾试验系统1255月详情链接32温度冲击试验系统4505月详情链接33云服务器系统4005月详情链接34CAE软件1605月详情链接35激光共聚焦显微镜1505月详情链接36机械部件仿真试验验证系统2005月详情链接37金属增材制造产品验证系统2205月详情链接38强化箱1805月详情链接39扫描电子显微镜1785月详情链接40华东分所集成电路测试系统采购项目12005月详情链接41华东分所工业测试系统采购5605月详情链接42可靠性与环境试验设备管理系统2105月详情链接43保障性仿真组件采购2706月详情链接44CAVE仿真实验室建设项目6006月详情链接
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制