当前位置: 仪器信息网 > 行业主题 > >

高浓度瓦斯传感器

仪器信息网高浓度瓦斯传感器专题为您提供2024年最新高浓度瓦斯传感器价格报价、厂家品牌的相关信息, 包括高浓度瓦斯传感器参数、型号等,不管是国产,还是进口品牌的高浓度瓦斯传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高浓度瓦斯传感器相关的耗材配件、试剂标物,还有高浓度瓦斯传感器相关的最新资讯、资料,以及高浓度瓦斯传感器相关的解决方案。

高浓度瓦斯传感器相关的论坛

  • 【原创】红外气体传感器应用于瓦斯发电

    瓦斯或称煤层气,实际上是一种非常规天然气,其主要成分是甲烷CH4。CH4瓦斯易爆,煤矿开采时的瓦斯爆炸给人们的生命财产带来严重祸殃,瓦斯直排大气,其温室效应是CO和CO2的多倍。我国煤层瓦斯资源十分丰富,是继俄罗斯和加拿大之后的第三大储量国。据悉,我国煤矿埋深在2 km 以内的瓦斯估计有30×1012 ~35×1012 M3,其热值较高,煤矿瓦斯每立方米可发电1~ 3.2 kW • h。。我国每年煤矿排出的瓦斯总量大约为135亿m3,可产生470亿kWh电能。而现在利用煤矿瓦斯发电产生的发电量仅为20亿kWh左右,大部分瓦斯都被直接排放到大气中,既浪费了资源,也污染了环境。因此大力发展瓦斯发电,不仅能缓解我们能源紧张问题,而且还可以保护环境,取得巨大的经济效应。我国瓦斯发电技术已经比较成熟,尝试和推广瓦斯发电可以拓展瓦斯应用领域,达到“以抽保用,以用促抽”的目的,保证矿井安全生产,保护环境,实现科学发展。国内现在已有多家瓦斯发电厂,相信不久将会更多,瓦斯发电主要关键技术有电控燃气混合器技术,贫燃技术,数字式点火技术,全电子控制技术。电控燃气混合器技术是针对煤矿瓦斯浓度不稳定、压力波动大的特点而采用先进的电子控制系统。首先,发电机组混合器腔内的氧传感器提供精确控制信号,通过步进电机控制空气和瓦斯的流量,实现对空燃比的精确控制,即甲烷与氧气的体积比为1:2。在机组运行过程中,甲烷的含量控制在5% 一16%爆炸极限之间,电子点火后,甲烷在气缸内充分爆炸做功,内燃机活塞上下往复运动,带动曲轴旋转,从而发电机转子切割磁力线发出电能。这种技术使内燃机无条件地适应了煤矿瓦斯的特点,解决了因瓦斯不稳定而影响发电机组功率波动大的问题。毫无疑问,在电控燃气混合技术中是要用到气体传感器的,只有有气体传感器的存在,才能把气体浓度信号传送给电子控制系统,使电机控制进气量,控制燃烧比,最大的利用热能,适应煤矿瓦斯浓度不稳定、压力波动大的问题。因此好的气体传感器在此技术中至关重要。武汉四方光电科技有限公司(www.gassensor.com.cn)专业生产红外气体传感器和红外气体分析仪器。该公司红外气体传感器采用非分光红外吸收光谱法(NDIR)技术,结合嵌入式的硬件和软件技术,可实现不同浓度、不同气体的高精度连续检测。公司产品已经广泛应用到机动车尾气检测、连续污染物监测系统CEMS、沼气分析、冶金炉气分析、红外可燃气体检测、石油天然气勘探等诸多领域。此外,瓦斯中可能含有H2S和水,这两种气体含量要严格控制,否则对管道及发动机的金属部件产生腐蚀,特别是对铜质及铝质部件腐蚀更为严重,因此,H2S的浓度监测也非常重要,四方光电的产品相信也能派上用场。总之,瓦斯发电在我国这样一个煤炭大国将是一个非常有前景的产业,而气体传感器相信也是推动这一产业进步的技术之一。[color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 红外气体传感器用于瓦斯抽排

    红外气体传感器用于瓦斯抽排

    [img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701050923_37728_1709312_3.jpg[/img]煤矿在开采过程中都会伴随着有瓦斯气体排出,这对于工人生产安全造成很大影响,因此每个煤矿都必须安装有瓦斯抽排系统。瓦斯抽排不仅保证安全生产而且,同时将排除的瓦斯加以利用,如供居民燃气,发电等,不仅取得巨大经济效益而且减少甲烷这种温室气体排放。我国煤炭资源丰富,全国煤矿和废旧煤矿非常之多,我国煤矿煤层气排放量由1987年的63.5亿M3增加到1996年的92.8亿M3占世界烟层气总排放量的1/3。据统计,1953-1998年国有重点煤矿报废矿井459处,报废矿井和生产矿井老空区遗留的煤炭储量有300亿以上,保有瓦斯储量预计为几千亿M3。因此,我国增加煤层气的回收,对减少全球瓦斯排放量有很大潜力。所以瓦斯抽排对于中国这个煤炭大国具有能源和环保等方面的重要意义。瓦斯抽排系统主要由气筒,泵,瓦斯传感器,控制装置组成。瓦斯传感器用来实时监测瓦斯浓度,因此对于瓦斯抽排安全生产,实时监控具有重要意义。一般的气体分析仪,如奥氏的,难以实现气体的实时和连续的监控。而红外线气体分析仪的优点是精度和灵敏度高、测量范围宽、响应速度快、良好的选择性、稳定性和可靠性好、可实现多组分气体同时测量、能够连续分析和自动控制。

  • 在线粉尘浓度传感器

    在线粉尘浓度传感器

    [b]在线粉尘浓度传感器设计依据:[/b]  在线粉尘浓度传感器可直读空气中粉尘颗粒物质量浓度。该传感器根据MT163-1997《直读式粉尘浓度测量仪表通用技术条件》和Q/320581ESD001-2008《GCG1000型粉尘浓度传感器》企业标准及GB3836.4-2000标准中ExibI等级防爆设计,吸收消化了国内外先进的测尘技术,利用光折射原理对粉尘进行检测,由微处理器对检测数据进行运算直接显示粉尘质量浓度并转换成数据信号输出,供矿井监测系统或其他测控系统使用。该传感器由采样头、检测装置、单片机系统及抽气系统组成,具有携带方便,测量快速准确、检测灵敏度高、性能稳定、维护简单等特点。由于采用激光技术及高可靠抽气系统等新技术,使该传感器更具质量与技术优胜。[b]在线粉尘浓度传感器应用范围: [/b]适用于煤矿及其它有爆炸危险性的作业环境中现场连续监测其大气中的总粉尘浓度。能准确、及时地反映粉尘作业场所中粉尘的污染状况。[img=,170,170]http://ng1.17img.cn/bbsfiles/images/2016/12/201612281532_01_3167027_3.jpg[/img][b]在线粉尘浓度传感器主要技术指标[/b][table=500][tr][td][color=#666666]测定原理[/color][/td][td][color=#666666]光散射原理[/color][/td][/tr][tr][td][color=#666666]测定对象[/color][/td][td][color=#666666]含有瓦斯或煤尘爆炸危险的煤矿井下或其它粉尘作业场所的粉尘质量浓度[/color][/td][/tr][tr][td][color=#666666]测量误差[/color][/td][td][color=#666666]≤±10%[/color][/td][/tr][tr][td][color=#666666]总粉尘浓度测量范围[/color][/td][td][color=#666666]0 mg/m3~1000 mg/m3[/color][/td][/tr][tr][td][color=#666666]显示方式[/color][/td][td][color=#666666]四位LED数码管[/color][/td][/tr][tr][td][color=#666666]信号输出[/color][/td][td][color=#666666](200~1000)HZ频率信号,RS485接口任选一种[/color][/td][/tr][tr][td][color=#666666]报警输出[/color][/td][td][color=#666666]一路光电耦合[/color][/td][/tr][tr][td][color=#666666]工作电压[/color][/td][td][color=#666666]18V(本安)[/color][/td][/tr][tr][td][color=#666666]工作电流[/color][/td][td][color=#666666]≤200mA[/color][/td][/tr][tr][td][color=#666666]采样流量[/color][/td][td][color=#666666]2L/min[/color][/td][/tr][tr][td][color=#666666]外形尺寸[/color][/td][td][color=#666666]270×145×73 mm[/color][/td][/tr][tr][td][color=#666666]重量[/color][/td][td][color=#666666]1.6 kg[/color][/td][/tr][tr][td][color=#666666]防爆形式[/color][/td][td][color=#666666] 矿用本质安全型[/color][/td][/tr][tr][td][color=#666666]使用环境[/color][/td][td][color=#666666]温度:0~40℃ [/color][color=#666666]相对湿度:≤95%[/color][/td][/tr][tr][td][color=#666666]大气压[/color][/td][td][color=#666666]86 kPa~110kPa[/color][/td][/tr][tr][td][color=#666666]防爆标志[/color][/td][td][color=#666666]ExibⅠ[/color][/td][/tr][/table][color=#666666]含有瓦斯或煤尘爆炸危险的煤矿井下或其它粉尘作业场所[/color]

  • 【原创】近红外波长瓦斯浓度检测技术

    近红外波长瓦斯浓度检测技术 检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

  • 【转帖】近红外波长瓦斯浓度检测技术

    瓦斯气体浓度的检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为 5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传 感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝 缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直 到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系 用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放 置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度 的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一 波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

  • 色谱仪器常用传感器 气敏传感器

    色谱仪器常用传感器  气敏传感器

    [align=center][font=宋体][font=宋体]色谱仪器常用传感器[/font] [font=宋体]气敏传感器[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]气敏传感器是用来检测气体类别、浓度和成分的传感器,对于环境保护和安全监督方面起着极重要的作用。气敏传感器可鉴别和检测的气体种类繁多,型号和工作原理差异也比较大。气敏传感器的应用主要有:酒后驾驶的现场速测、一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂([/font][font=Times New Roman]R11[/font][font=宋体]、[/font][font=Times New Roman]R12[/font][font=宋体])的检测、人体口腔口臭的检测等。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]简介[/font][/align][font=宋体]气敏传感器又称气体传感器,是将气体成分与浓度变化等信息转变成相对应的电信号,以此达到对气体成分与浓度测量的设备。气敏传感器是传感器领域的非常重要的一个方向,在大气环境、气体监测、航天航空、工业生产、汽车排放监控、食品安全等诸多领域有着广泛的应用。[/font][font=宋体]由传感器的组成及其工作特性,可以将气体传感器分成:半导体型气体传感器、接触燃烧型气体传感器、固体电解质型气体传感器、表面声波型气体传感器、光学型气体传感器、石英型振荡型气体传感器、电化学型气体传感器等。[/font][font=宋体][font=宋体]气敏传感器需要直接接触待测的气体环境,外观特征较为明显,一般情况下带有金属网格外壳以利于气体流通和感知,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,207,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300831065877_198_1604036_3.jpg!w672x363.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]气敏传感器外观[/font][/font][/align][font=宋体][font=宋体]气敏传感器允许温度环境较低,一般不高于[/font][font=Times New Roman]150[/font][font=宋体]℃。色谱工作者或者维修员,可以在某些型号的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]柱温箱中找到此部件。[/font][/font][font=宋体]常规[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]模块的漏液检测,经常采用热敏电阻传感器。当色谱系统泄漏的液体流动相接触传感器表面,由于液体流动相的蒸发,热敏电阻阻值发生变化,色谱系统感知到此电阻变化即确认系统泄漏。对于柱温箱,热敏电阻的检测方式不太适用,如果柱温较高,泄漏的少量流动相可能会较快气化,不能接触热敏电阻表面,而采用气敏传感器可以良好解决这一问题。[/font][font=宋体]对于工作在一定温度下的柱温箱,少量的有机溶剂渗漏和蒸发,都可以迅速被气敏传感器感知到,并发出报警,提醒色谱工作者进行检查和处理。[/font][font=宋体]但是需要注意气敏传感器对于不同化学组成的流动相泄漏,其检测敏感程度不同。一般挥发性较强的有机流动相,气敏传感器的灵敏度较高,水相检测灵敏度相对较低。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明气敏传感器的基本原理。[/font]

  • 溴甲烷气体浓度可以用什么传感器检测?

    溴甲烷,又名甲基溴,是一种有机化合物,化学式为CH3Br,主要用作杀虫剂、熏剂、冷冻剂和溶剂,也可用于有机合成。 [img=,666,480]https://ng1.17img.cn/bbsfiles/images/2024/09/202409110933119221_100_3222636_3.png!w666x480.jpg[/img][img=,666,480]https://ng1.17img.cn/bbsfiles/images/2024/09/202409110933119221_100_3222636_3.png!w666x480.jpg[/img] 溴甲烷,作为一种广泛应用于农业领域的熏蒸剂,其强大的杀虫、杀菌及除草能力为农作物的健康生长提供了有力保障。然而,溴甲烷的广泛应用伴随着不容忽视的健康风险。急性中毒症状涵盖头痛、头晕、恶心、乏力、嗜睡乃至严重的神经系统紊乱与多器官功能损害,极端情况下可因肺水肿、循环衰竭而致命。皮肤直接接触其液体亦可导致灼伤。长期低剂量暴露则可能引发慢性神经毒性症状,包括头痛、乏力、记忆力减退及神经系统功能障碍,其高毒性要求我们在使用过程中必须严格控制其浓度,确保安全。因此,准确、快速地检测溴甲烷的浓度成为了一个至关重要的环节。 在溴甲烷的检测中,传感器的选择至关重要。针对溴甲烷的特性,目前市场上存在多种传感器技术,其中PID光离子传感器因其独特优势而被广泛推荐用于低浓度溴甲烷气体的检测。 PID光离子传感器(Photo Ionization Detector)的工作原理基于紫外光对特定气体的电离作用。当溴甲烷分子通过PID传感器时,它们会被传感器内部的紫外光照射并电离成带电粒子(离子和电子)。这些带电粒子随后被传感器内的电场捕获并产生电信号,电信号的强度与溴甲烷的浓度成正比。因此,通过测量电信号的强度,PID传感器能够准确地反映溴甲烷的浓度。 PID传感器的优点在于其高灵敏度、快速响应以及广泛的适用性。它能够检测到极低的溴甲烷浓度(如PPB级),这对于确保环境安全至关重要。同时,[url=https://www.isweek.cn/category_143.html]PID传感器[/url]的响应速度非常快,能够在短时间内给出准确的检测结果,这对于需要快速反应的场合尤为重要。此外,PID传感器还具有广泛的适用性,不仅可以用于检测溴甲烷,还可以检测其他多种挥发性有机化合物(VOCs)。 在进出口检疫站等需要频繁检测溴甲烷浓度的场所,便携式溴甲烷检测仪成为了不可或缺的工具。这些检测仪通常采用PID光离子传感器作为核心部件,具有体积小、重量轻、操作简便等特点,非常适合现场使用。通过定期检测进口的农作物、木材等物品中的溴甲烷浓度,可以确保这些物品在进入市场前已经达到安全标准,从而保护消费者的健康。 综上所述,[url=https://www.isweek.cn/category_143.html]PID光离子传感器[/url]是检测溴甲烷浓度的理想选择。其高灵敏度、快速响应以及广泛的适用性使得它能够在各种场合下准确地检测溴甲烷的浓度,为农业生产和环境保护提供有力支持。在未来的发展中,随着技术的不断进步和创新,我们有理由相信PID传感器将在更多领域发挥更大的作用。

  • 【原创】无线传感器网络在煤矿环境监测中的应用

    摘 要:煤矿中的突发事故具有一定的随机性和不确定性。利用无线传感器网络采集矿井中的温湿度和瓦斯体积分数数据,再将这些数据通过无线网络传输到矿井上的环境监测中心,并把这些数据通过动态曲线的形式实时直观地示出来 尤其是在被监测的瓦斯体积分数超标的时候,还可发出报警信号[img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=199213]无线传感器网络在煤矿环境监测中的应用.rar[/url]

  • 简述风速传感器的应用领域以及超声波风速传感器优缺点

    简述风速传感器的应用领域以及超声波风速传感器优缺点

    风速传感器是可连续监测上述地点的风速、风量(风量=风速x横截面积)大小,能够对所处巷道的风速风量进行实时显示,是矿井通风安全参数测量的重要仪表。其传感器组件由风速传感器、风向传感器、传感器支架组成。主要适用于煤矿井下具有瓦斯爆炸危险的各矿井通风总回风巷、风口、井下主要测风站、扇风机井口、掘进工作面、采煤工作面等处,以及相应的矿产企业。然而对于气象数据的收集,通常比较受到人们的重视,所以会使用一些高精度的测量工具,当然,风速的收集工作也是如此,目前大多数的风速收集工作其实都是通过超声波风速传感器来完成的。[align=center][img=,378,267]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251531244576_3444_3345088_3.png!w378x267.jpg[/img][/align]在气象领域使用的超声波风速传感器比同类设备相比,在不同的气象环境下可以一更高的精度测量到更加准确的风速变化信息,而且在同一时间内,超声波传感器的响应时间也要高于同类设别,当需要测量周围温度的变化但又没有温度测量设备的时候,这个时候使用超声波风速传感器也可以测量到周围温度的变化,这就是超声波风速传感器的优势。但是超声波风速传感器设备其实并不是完美的,在高精度的背后,有着整体结构复杂,重量大,价格高的缺陷,这也是这种传感器一直没有被广泛使用的主要原因,不过相信随着高新技术的不断投入,这个问题早晚都会别解决。对于气象领域的监测工釆网小编推荐法国LCJ Capteurs [b]超声波风速传感器[/b] SONIC-ANEMO-MICRO[align=center][img=,292,285]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251531054007_844_3345088_3.png!w292x285.jpg[/img][/align] 由于传统的风速计有旋转的机械部分使得这些移动的部分容易使得传感器损坏,因此超声波传感器的设计在于避免任何的机械部分是为了确保更可靠的操作。同时超声波传感器有着长期的稳定性而不需要维护。关于声音方面,声音则是在交叉口由流动的物体传输。传输是是由电子声学传感器(1)用超声波信号(2)在他们之间通信,沿着正交轴, 由风速(3)引起声波传输时间不同。法国LCJ Capteurs 超声波风速传感器 SONIC-ANEMO-MICRO 则是在他们之间通信传输 4 种不同的测试,然而测试得到的食量头部风用于计算。结合测量计算出风速和根据基轴计算出风向。温度测量则是用于校准。传感器的设计减小倾角的影响(4)(传感器倾角的影响能被部分校正是由于传感器空间的形状) 。此外CV7 还可以传输了4 个独立的测试数据以保证检查用于头风矢量计算的正确性,这个方法给出了 0.15m/S的风速灵敏度,卓越的线性度,可达到 40m/S。在超声波传感器的应用中,超声波风速传感器它具有重量轻、没有任何移动部件、坚固耐用的特点, 而且不需维护和现场校准,能同时输出风速和风向。客户可根据需要选择风速单位、 输出频率及输出格式。也可根据需要选择加热装置(在冰冷环境下推荐使用)或模拟输出。可以与电脑、数据采集器或其它具有RS485或模拟输出相符合的采集设备连用。如果需要,也可以多台组成一个网络进行使用。超声波风速风向仪是一种较为先进的测量风速风向的仪器。 由于它很好地克服了机械式风速风向仪固有的缺陷, 因而能全天候地、长久地正常工作,越来越广泛地得到使用。它将是机械式风速仪的强有力替代品。[b] [/b]风速的变化,往往就表现出了当前时间风力数据的变化,所以在气象、地理等领域的许多工作当中往往都会使用到风速传感器这种传感器设备,那么平时我们常见的风速传感器的应用都有哪些呢?[b] 在新型能源开发领域的应用[/b]大多数的新型能源的开发工作其实都是在比较开阔的环境中进行的,尤其是对风能和太阳能的开发领域,往往由于安装环境十分开阔,所以一些重要的设备十分容易受到风速的变化的影响,而为了避免变化的风速影响到太阳能电池板或者风电机组的正常使用,国内的新型能源开发领域风杯式风速传感器的也得到了广泛的应用。[b]在工矿领域的应用[/b]无论是煤矿还是多种金属矿业的开采过程中,往往都需要注意矿井中的一些气体成分的变化,所以大多数的矿井通常在整合了多种气体传感器设备的同时,往往会注意通风系统的运行状况,而风速传感器就是用来监测矿井内部的通风效果的,所以为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器一类设备的规定。[b]塔式起重机上的应用[/b]通常,为了确保建筑工程的进行,大多数的塔式起重机通常都会安装风速传感器设备,它的存在可以让起重机在大风影响起重机工作的时候,发出报警,但是当大风已经开始影响起重机工作的时候,往往就需要注意风向的变化,这样才能针对不同风向的风做出应对措施,所以部分起重机上面已经使用了风向传感器设备。[b]煤矿上的应用[/b]安装在矿井中的通风设备,往往型号不一,而且其工作功率也有着较大的差别,所以需要使用风速传感器设备对各个通风道的风速值进行监视,防止某个位置的通风率过低而出现的有害气体浓度过高的现象出现。其实为了确保各大、中、小型煤矿生产工作安全的进行,根据相关规定,在煤矿中应该安装风速传感器设备,在每一个采矿区、翼回风巷以及总回风巷都应该设置风速传感器设备,而掘进工作面就属于采矿区的一部分,因此掘进工作面,是需要安装风速传感器的。掘进工作面更容易出现有害气体。其实在掘进面中需要安装风速传感器还有一个主要的原因,就是通常煤矿中的甲烷、一氧化碳、瓦斯等有害气体往往从掘进面出现的概率最大,甚至有些气体在地下形成的“气室”中的气体直接就是一些有害性气体,因此煤矿中需要在每个位置都安装风速传感器并连接通风设备。[b]气象上的应用[/b]在气象领域,通常需要对许多种自然现象进行观察,如风速与气象的变化,当然还有风向的变化,对于风向的测量工作,现在基本是使用风向仪或者风向传感器设备来解决这个问题。地面风向变化的测量:在沙漠、高原地区的风沙治理工作中,通常人们需要注意气流流动的速度与风向的变化,这样可以掌握到更多的气象数据,一边制定更完善的治理方案,所以在整个过程中用到风向传感器这种气象设备。海洋风暴预警:可以说海洋气象预警系统是风向传感器在气象领域重要应用之一,它为海洋气象预警系统提供的风向变化数据,是预测台风覆盖范围以及“运行”轨迹的重要参数之一。[b] [/b]

  • 测量三元混合气体浓度,传感器干扰问题

    三元配气:甲烷、氢气和空气的混合物各组分浓度测量时,没有甲烷时用氢气传感器(热导式)测量氢气的浓度没有问题,当有甲烷通入时,氢气传感器明显地不好使,氧传感器(电化学)在通入氢气后一段时间后就中毒,不知道怎么做才能解决?

  • 【分享】气体传感器在气体泄漏事故处置中的应用

    随着石油化学工业的发展,易燃、易爆、有毒气体的种类和应用范围都得到了增加。这些气体在生产、运输、使用过程中一旦发生泄漏,将会引发中毒、火灾甚至爆炸事故,严重危害人民的生命和财产安全。由于气体本身存在的扩散性,发生泄漏之后,在外部风力和内部浓度梯度的作用下,气体会沿地表面扩散,在事故现场形成燃烧爆炸或毒害危险区,扩大危害区域。例如,1995年7月,四川省成都市化工总厂液氯车间发生氯气泄漏,当场造成3人死亡,6人受伤,仅约一小时左右,市区范围数十平方公里范围内都能闻到刺激性的氯气味。因此,这类事故具有突发性强、扩散迅速、救援难度大、危害范围广等特点。一旦发生气体泄漏事故,必须尽快采取相应措施进行处置,才能将事故损失降低到最低水平。及时可靠地探测空气中某些气体的含量,及时采取有效措施进行补救,采取正确的处置方法,减少泄漏引发的事故,是避免造成重大财产和人员伤亡的必要条件。这就对气体的检测和监测设备提出了较高的要求。作为一种重要的气体探测器,气体传感器近年来得到了很大的发展。气体传感器的发展使得其应用越来越广泛。本文介绍了气体传感器的发展情况及在气体泄漏事故处置中的应用前景。 1 气体传感器   国外从30年代开始研究开发气体传感器。过去气体传感器主要用于煤气、液化石油气、天然气及矿井中的瓦斯气体的检测与报警,目前需要检测的气体种类由原来的还原性气体(H2,C4H10,CH4)等扩展到毒性气体(CO,NO2,H2S,NO,NH3,PH3)等。   气体传感器种类繁多。按所用气敏材料及气敏特性不同,可分为半导体式、固体电解质式、电化学式、接触燃烧式、高分子式等。 1.1 半导体气体传感器   这种传感器主要使用半导体气敏材料。自从1962年半导体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量最大、使用最广的传感器之一。按照检测气敏特征量方式不同分为电阻式和非电阻式两种。   电阻式半导体气体传感器是通过检测气敏元件随气体含量的变化情况而工作的。主要使用金属氧化物陶瓷气敏材料。随着近年来复合金属氧化物、混合金属氧化物等新型材料的研究和开发,大大提高了这种气体传感器的特性和应用范围。例如:WO3气体传感器可检测NH3的浓度范围为5 ppm~50 ppm,ZnO-CuO气体传感器对200 ppm的CO非常敏感。   非电阻式半导体气体传感器是利用气敏元件的电流或电压随气体含量而变化的原理工作的。主要有MOS二极管式和结型二极管式,以及场效应管式气体传感器。检测气体大多为氢气、硅烷等可燃气体。 1.2固体电解质气体传感器   固体电解质气体传感器使用固体电解质气敏材料做气敏元件。其原理是气敏材料在通过气体时产生离子,从而形成电动势,测量电动势从而测量气体浓度。由于这种传感器电导率高,灵敏度和选择性好,得到了广泛的应用,几乎打入了石化、环保、矿业等各个领域,仅次于金属氧化物半导体气体传感器。如测量H2S的YST-Au-WO3、测量NH3的NH+4CaCO3等。 1.3接触燃烧式气体传感器   可分为直接接触燃烧式和催化接触燃烧式两种。其工作原理是:气敏材料在通电状态下,可燃性气体氧化燃烧或在催化剂作用下氧化燃烧,产生的热量使电热丝升温,从而使其电阻值发生变化,测量电阻变化从而测量气体浓度。这种传感器只能测量可燃气体,对不燃性气体不敏感。例如,在Pt丝上涂敷活性催化剂Rh和Pd等制成的传感器,具有广谱特性,即可以检测各种可燃气体。接触燃烧式气体传感器在环境温度下非常稳定,并能对爆炸下限的绝大多数可燃性气体进行检测,普遍应用于石油化工厂、造船厂、矿井隧道、浴室、厨房等处的可燃性气体的监测和报警。 1.4 高分子气体传感器   利用高分子气敏材料的气体传感器近年来得到了很大的发展。高分子气敏材料在遇到特定气体时,其电阻、介电常数、材料表面声波传播速度和频率、材料重量等物理性能发生变化。主要有酞菁聚合物、LB膜、苯菁基乙炔、聚乙烯醇-磷酸、聚异丁烯、氨基十一烷基硅烷等。高分子气敏材料由于具有易*作性、工艺简单、常温选择性好、价格低廉、易与微结构传感器和声表面波器件相结合,在毒性气体和食品鲜度等方面的检测中具有重要作用。根据所用材料的气敏特性,这类传感器可分为:通过测量气敏材料的电阻来测量气体浓度的高分子电阻式气体传感器;根据气敏材料吸收气体时形成浓差电池,测量电动势来确定气体浓度的浓差电池式气体传感器;根据高分子气敏材料吸收气体后声波在材料表面传播速度或频率发生变化的原理制成的声表面波气体传感器;以及根据高分子气敏材料吸收气体后重量变化而制成的石英振子式气体传感器等。高分子气体传感器具有对特定气体分子灵敏度高,选择性好,且结构简单,能在常温下使用,可以补充其它气体传感器的不足。

  • 二氧化碳传感器在酿酒厂中的应用分析

    二氧化碳传感器在酿酒厂中的应用分析

    [align=left]酿酒就是利用酵母菌在无氧条件下,做无氧呼吸,产生酒精。在发酵生产中,酿酒酵母有时处在高浓度的CO2环境下,而高浓度的CO2会影响酵母代谢,抑制酵母生长,造成发酵缓慢或停滞。[/align]另外,二氧化碳是一种无色无味的气体.二氧化碳的重量是空气的两倍,因此它会聚集沉到房间的底部,使得氧气减少,CO2极其危险,能以两种方式致人死亡:通过隔绝O2,导致人快速窒息;或本身作为一种有毒气体,人暴露在少量浓度为0.5%的CO2中,就会出现中毒的危险,而浓度超过10%可能会导致死亡。一般二氧化碳会在角落里或者是通风不好的区域里沉积。工采网了解到在酿酒厂中,酒在发酵的过程中会产生大量的二氧化碳,这些二氧化碳通常会聚集在集水坑和储槽,以及发酵室、桶窖和装瓶室等场所。如果员工长时间暴露在高浓度二氧化碳的环境中,身心健康肯定会受到影响的。[img=,334,296]https://ng1.17img.cn/bbsfiles/images/2019/07/201907161556437554_1270_3422752_3.png!w334x296.jpg[/img]因此,酿酒装置中安装非常有必要,可以通过二氧化碳传感器监测控制发酵过程,优化发酵工艺,提高酒的品质。 [color=#ffffff] CO2传感器mall.ofweek.com/123.html [/color] 比方说圣约翰,它是一个美丽的酿酒厂,位于北加利福尼亚州索诺玛山谷,自1973年以来一直在酿造优质葡萄酒。圣约翰城堡的安全委员会已经认识到有必要监测他们酿酒厂中的二氧化碳。两年多来,他们一直依靠便携式二氧化碳传感器检测仪来监测酿酒厂的二氧化碳含量。二氧化碳传感器是由他们公司内的另一个站点推荐的。使用便携式二氧化碳传感器测量仪确定不同区域中二氧化碳额浓度,然后在可能有潜在危险的地方安装了固定监控器,每一个监视器都是由他们的维护技术人员组装的。如果CO2浓度超过了设定的标准水平,二氧化碳检测仪将进入声、光报警模式。一般来说,在CO2浓度达到0.5%时,二氧化碳检测仪会预警;达到1-2%时,主报警器会被激活。大部分二氧化碳检测仪都带有报警阈值选择功能,以避免过于频繁的警报声响,并同时确保容器内工作人员的安全。[img=,330,306]https://ng1.17img.cn/bbsfiles/images/2019/07/201907161556435500_654_3422752_3.png!w330x306.jpg[/img]在便携式二氧化碳检测仪中起主要作用的核心元件其实是二氧化碳传感器,对传感器的要求是要低功耗,在此工采网推荐使用COZIR-LP型号的传感器:[b]GSS 微型[url=https://www.isweek.cn/category_145.html]二氧化碳传感器[/url]/CO2传感器 - COZIR-LP 概述:[/b]COZIR-LP是小体积,低功耗,高性能的 红外CO2传感器。2Hz 的工作频率只消耗 3mW, 由于他的功耗低,它非常适合电池供电和便携式设备。基于 IR LEDF 和检测 技术,创新的光学设计。COZIR-LP是 IR LED CO2 感应的第三代产品。 COZIR LP 的量程:0~2000ppm, 0~5000ppm, 0~1%,适用于HVAC、建筑控制和室内空气 质量监测。[b]二氧化碳传感器/CO2传感器COZIR-LP[/b]特点: 低耗,3mW 量程从0~1% 3.3V 供电 峰值电流只有 33mA 命令控制和与 COZIR 系列产品的接口兼容

  • 光电液位传感器分类特点介绍

    光电液位传感器分类特点介绍

    [align=left][font=宋体]光电液位传感器是一种利用光线在不同介质中的不同折射来检测液位的变化,根据不同的分类方式,光电液位传感器也有不同的类型,每种类型都有其独特的特点和应用场景,以下是对光电液位传感器的分类特点介绍:[/font][/align][align=left][font=宋体]按材质类型分类[/font][/align][align=left][font=宋体]普通光电液位传感器通常采用[/font]pc[font=宋体]或[/font]ABS[font=宋体]材质,价格低、安装方便等优点,[/font][font=宋体]不锈钢光电液位传感器采用不锈钢材质制成,具有优异的耐腐蚀性和机械强度,适用于高浓度液体、腐蚀性液体和高压环境的测量,价格相对较高。[/font][/align][align=center][img=光电液位传感器,601,371]https://ng1.17img.cn/bbsfiles/images/2023/12/202312051649015902_804_4008598_3.jpg!w601x371.jpg[/img][/align][align=left][font=宋体]按检测点分类[/font][/align][align=left][font=宋体][url=https://www.eptsz.com]单点液位传感器[/url]只能检测单个液位点的液位高度,适用于简单的液位检测场合。其优点是简单、易于安装和价格便宜。[/font][font=宋体]多点液位传感器可以同时检测多个液位点的液位高度,适用于需要多点液位控制的场合,具有高精度、多点测量和自动化控制的优势。[/font][/align][align=left][font=宋体]按安装方式分类[/font][/align][align=left][font=宋体]一体式液位传感器与探测器一体成型,安装方便,适用于各种容器液位检测分离式液位传感器与探测器分开安装,棱镜与电子元件部分分离,棱镜设计到用户水箱上,便于清洗水箱,防止细菌滋生。[/font][/align]

  • 一氧化碳传感器在发电机运行产生的CO浓度检测中的应用

    一氧化碳传感器在发电机运行产生的CO浓度检测中的应用

    [align=left]目前,发电机具有广泛的工业和农业生产用途,在日常生活中也比较常见。有许多形式的发电机,其中大多数是基于电磁感应定律和电磁力定律。通常,在停电的情况下,许多商店或购物中心都配备有发电机以应对紧急停电。如果停电时间很长,一些家庭也会准备家用发电机。尽管发电机使用起来很方便,但也有一些事情需要注意,OFweek Mall将详细说明。 [color=#ffffff] 一氧化碳传感器mall.ofweek.com/1824.html [/color] [/align]先来说一下发电机的工作原理吧,在发电机汽缸中,由空气过滤器过滤的清洁空气与从喷射器喷射的高压雾化柴油燃料完全混合,并且柴油发动机由活塞运动达到一定的点燃进而被点燃。在产生机械运动之后,使用“电磁感应”原理,从而发电机输出感应电动势,并且可以通过闭合负载回路产生电流。发电机发电的原料是燃油类的,属于高碳材料,发电机在运行过程中会产生大量含一氧化碳的废气,并且在环境中也会消耗大量的氧气。如果是处于密闭空间内,发电机长时间工作会导致空气中氧气不足,人长时间待在这种环境下有可能会发生一氧化碳中毒。[img=,374,261]https://ng1.17img.cn/bbsfiles/images/2019/06/201906251448129602_541_3422752_3.png!w374x261.jpg[/img]一氧化碳是最常见的有害气体之一,一氧化碳与血液中的血红蛋白结合,使血红蛋白丧失支持人体组织的能力。并且发电机排放的一氧化碳浓度是汽车尾气CO浓度的100倍以上。空气中CO的体积分数超过0.1%,就会导致人体中毒的。因此,为了避免使用发电机造成一氧化碳中毒事件,有必要在使用发电机的环境中安装一氧化碳泄漏报警器,及时作出预警方案。在选择一氧化碳报警器时需要选择灵敏度高的一氧化碳传感器,因为在整个报警器中一氧化碳传感器是相对核心的元件,CO的浓度也是由报警器中一氧化碳传感器进行检测的。OFweek Mall推荐使用电化学原理的一氧化碳传感器,具体型号比如日本figaro的一氧化碳传感器-TGS5042。[img=,332,274]https://ng1.17img.cn/bbsfiles/images/2019/06/201906251448123031_1973_3422752_3.jpg!w332x274.jpg[/img]一氧化碳传感器-TGS5042与现有的其他电化学式传感器相比,有以下优势:它的电解质是环保型的;没有电解液泄漏的危险;一氧化碳可检测浓度高达1%,操作使用温度范围广(-5˚ C ~ 55˚ C);该款一氧化碳传感器对干扰气体灵敏度很低。这种传感器具有使用寿命长,可达10年,长期稳定性好,精度高的特点,是数字显示方面为数不多的可供选择的理想CO传感器。相关传感器分类:氨气传感器丨二氧化硫传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨气体质量流量计丨气体传感器丨紫外线传感器丨水质传感器丨可燃气体传感器丨酒精传感器丨微量氧传感器丨温湿度传感器丨PID传感器丨PM2.5传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器丨CO2传感器丨CO传感器丨UV传感器丨光纤传感器丨光离子传感器丨PH传感器丨单点液位开关丨荧光氧气传感器丨流量传感器丨光纤压力传感器丨双气传感器

  • 【分享】我国研发出新型氧传感器及测氧仪

    一种结构新颖、体积小、成本低、稳定性强、使用寿命长、检测范围广、灵敏度高、具有自主知识产权的新型氧传感器及测氧仪,由中科院长春应用化学研究所研发成功,日前通过了吉林省科技厅组织的专家鉴定。专家认为,该新型氧传感器及测氧仪在检测氧度范围和灵敏度方面达国内领先水平。 据了解,随着科学的进步,氧的分析测定广泛应用于医学、生物学、工业能源、环保等许多领域。氧气传感器的用量也很大,各行业对电化学氧气传感器的需求量基本接近其他各类气体传感器的总和。同时,随着近年来人们健康意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种新型检测机理的气态氧或溶解氧监测装置得到越来越广泛的应用。与此相适应,新机理、新结构的氧传感器及检测仪器也迅速成为国内外传感器领域的研发热点。 目前,我国电化学氧传感器还存在检测范围窄、灵敏度达不到检测指标、受环境制约较大等瓶颈问题,每年不得不花大量外汇引进国外产品。针对这一现状,中科院长春应化所的科技人员以国家需求和提升氧传感器的核心竞争力为己任,在吉林省科技厅的大力支持下同长春大学合作,于2003年承担了吉林省科技发展计划项目“新型氧传感器及测氧仪的研究和开发”。在4年的艰苦拼搏、协力攻关中,他们注重发挥长期从事电化学气体传感器研究的技术、人才优势,坚持把应用基础研究和研制开发紧密结合起来,从实际应用与解决关键技术入手,创新性地突破了催化剂、分流控制气体扩散等技术难题。其中,传感器采用电化学三电极半固态设计,结构新颖、无消耗性物质、使用寿命长;采用半固态及纳米级催化剂,有效地提高了传感器的灵敏度,并使检测下限达到PPM级水平,进一步扩大了氧传感器的检测范围,解决了气体环境中检测PPM级氧气检测的难题;采用扩散垒分流控制气体扩散技术,拓宽了检测上限,使检测上限达100%;采用Pt-Fe合金技术,不仅改变了催化层结构,而且大幅提高了催化剂活性,提高了传感器的灵敏度,使之更适合实际检测的要求。经吉林省计量产商品质量检验站检测,其量程在500×10-6mol/L的低浓度型、25%的普通浓度型和100%的高浓度型3类氧传感器,其示值误差、重复性、响应时间、零点漂移、跨度漂移等主要技术指标,均达到或优于标准要求。 另据介绍,该传感器和测氧仪具有体积小、操作简单、反应灵敏、响应迅速、性能稳定、回零时间短等优点。经长春市工业锅炉厂、吉林省电力系统环境检测中心站等用户使用后一致反映,其符合工业和环境等领域的检测需求。同时,它的研制成功改变了传统意义的氧气气体传感器的设计理念,为氧气的检测提供了一种新型的技术手段,也为其他多种气体检测提供了全新的思路。

  • voc传感器对于挥发物的检测方式

    [align=left]我们都知道,挥发性有机化合物简称为“voc”。一旦空气中挥发性有机化合物的浓度过大,就可能引起不适甚至震动,这将产生严重后果。一般来说,乳胶漆,天花板、壁纸等地最容易出现这种气体。因此,有必要监测这种挥发性有机气体以避免恶劣条件。 voc传感器是专为voc气体开发的监控设备。[/align]过去,voc浓度测量方法非常有限。存在测量和分析悬浮在空气中的voc的方法,包括光电离,火焰离子化,比色管和波长吸收。在实验室中,存在使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和质谱(称为GC-MS)的趋势。然而,这些方法不适用于紧凑的,局部的,低功率的空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感装置,因为它们太笨重或消耗太多功率。这就是为什么引入新一代金属氧化物voc传感器的原因。它现在采用表面贴装IC封装,功率水平仅为毫瓦,这对于IAQ监控非常有前景。这些低成本,紧凑,低功耗的voc传感器可以轻松集成到日常产品中,如灯具,空调,风扇和风扇遥控器,如——甚至手机。分散的局部voc感应是实用趋势之一。因此,空调设备用户应重新考虑是否仍依赖二氧化碳数据。事实上,有两个主要原因导致voc浓度不会随着CO2浓度的变化而增加和减少:首先,并非所有的人声都是由人类制作的 其次,人类产生二氧化碳的速度是连续的,并且在无效时通常是稳定的。然而,人工产生的挥发性有机化合物例如随着时间的推移而在餐中波动。根据美国国家标准与技术研究院(NIST)建筑和火灾研究实验室的说法,“许多污染源不仅来自居住者,而且还来自建筑材料和污染物从外部进入建筑物的排放。它没有提供二氧化碳浓度。与居住者无关的污染物排放浓度数据。“例如,在只有一个人的房间里,二氧化碳传感器在室内空气中记录低浓度的二氧化碳,但最近重新安装了新房屋和地毯,并在房间的墙壁和地板上粘贴了一些固定装置 。在这种情况下,房间中的空调设备通常被配置为在环境中提供最小量的通风,使得唯一的乘客呼吸大量悬浮的voc。室内空气中高浓度的挥发性有机化合物会显着影响乘员的舒适度。二氧化碳是无味的,但是voc很重且(主要是挥发性有机化合物)令人不愉快。然而,voc在空中的影响不仅令人不舒服。美国环境保护署(EPA)网站列出了短期和长期的健康影响,并指出这些影响可能与室内空气中的voc有关。美国环保署指出,这些影响包括:眼睛,鼻子和喉咙刺激 头痛,失去协调和恶心 损害肝脏,肾脏和中枢神经系统 一些生物会导致动物癌症 有些甚至被怀疑或已知会导致人类癌症。因此,这些例子促使原始设备制造商开始在IAQ监控设备中使用表面贴装voc传感器。voc传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压电薄膜传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]超声波传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器https://mall.ofweek.com/1897.html丨称重传感[/color][color=#333333]器[/color][color=#333333]丨[/color]气体传感器[color=#333333]丨气压传感器丨[/color][color=#333333]光纤传感器丨风速传感器丨硫化氢传感器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨光离子传感器丨ph3传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]bm传感器丨电流传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨流量传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]压力传感器丨meas压力[/color][color=#333333]传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 专为室内CO2浓度检测提供的二氧化碳传感器

    众所周知,从气体性质上讲CO2是无毒的,二氧化碳在新鲜空气中含量约为0.03%,人生活在这个空间,不会受到危害;但是,如果室内聚集着很多人,而且空气不流通,或者室内有煤气、液化石油气及煤火炉燃烧,使空气中氧气含量相对减少,产生大量二氧化碳,室内人员就会出现不同程度的中毒症状。国标规定,人群滞留较长的公共场所二氧化碳不得超过0.07-0.10%,短期滞留场所不得超过0.15%。当CO2浓度达到1000-1500ppm时,属于临界空气,人体开始感觉不适;当CO2浓度达到1500-2000ppm时,属于轻度污染,超过2000ppm属于严重污染,人体感觉四肢乏力;当CO2浓度达到3%-4%时,人呼吸加深,出现头疼、耳鸣、血压增加等症状;当CO2浓度达到8%-10%时,会导致人呼吸困难、脉搏加快、全身无力、意识不清;当CO2浓度达到10%-20%时,可能会出现死亡。因此,在室内检测环境质量,特别是人口密集的场所,实时监测CO2浓度、定期通风换气很有必要。根据相关标准,室内二氧化碳气体的浓度和通风率之间有着密切的关系。无论是在空间内,人多或是少的情况下,此系统能有效地节约宝贵的能源和保持室内良好的空气品质。一般上,安装以二氧化碳气体传感器控制为基础的通风控制系统带来的好处显现,设备的投资可在两年内由所节省的能源得到回报。对于较大的楼宇自控公司,各自均已经有了一套完整的通风控制解决方案。楼宇自控中的传感器的主要功能就是为了使整个大楼更安全、节能、舒适。而二氧化碳传感器和其它传感器一样,都属于最底层。它们把自己所测到的值通过数字或模拟信号,传送给数据采集器。之后再通过数据采集器传给中央处理器。中央处理器再通过控制器来控制各设备的动作。通过中央处理器,二氧化碳传感器的主要功能就是调节大楼里的新风量,以保持室内空气清新。节约空调和通风机的能量消耗。[img=113545197,469,259]http://news.isweek.cn/wp-content/uploads/2018/02/113545197.jpg[/img]会议室CO2浓度实时监测目前有很多智能家居方案商苦寻一款合适的二氧化碳传感器,在这里深圳工采网推荐进口红外原理二氧化碳传感器——CDM7160。[b]CO2传感器CDM7160简介:[/b][img=日本FIGARO 红外二氧化碳传感器(NDIR CO2传感器),300,300]http://www.isweek.cn/Thumbs/300/0170920/59c234ce2f6f3.jpg[/img]CO2传感器CDM7160是由日本费加罗公司推出的一款紧凑型NDIR原理二氧化碳传感器,具有体积小、低功耗、高精度,寿命长等优点;采用双传感器,保证绝对测量,长期性能稳定且无需维护; 带UART/I2C 双数字通讯接口,可以进行单独校准;[b]传感器重要参数[/b]:检测范围:300-5000ppm供电电压:5v±0.25v DC平均功耗:10mW工作温度:0-50℃预期寿命:5年精度:±(实测50ppm+3%)尺寸:32*17*7.4(mm)CO2传感器CDM7160是目前世界上最小体积的红外二氧化碳传感器,由于采用了双传感器,可以避免光路变化对检测结果的影响,另外,CDM7160还自带PWM输出功能,将CO2浓度以占空比的形式通过CMOS输出。因此,性能优异、设计精致的二氧化碳传感器—CDM7160,无疑是室内CO2浓度检测的极佳选择。

  • 气体传感器分类_气体传感器检测部件

    [align=center]气体传感器是将气体浓度转换成电信号的部件。在二次开发和升级之后,气体传感器的电信号可以转换成数字信号。人们可以方便地直接检查气体浓度值。[/align]气体探测器的核心部分。气体传感器属于核心部件,不能直接使用。由于传感器信号很小,它只能输出nA电平信号,这很难收集。每个传感器的一致性不同,管理起来不方便。最后它也容易受到温度和湿度的干扰,并且这些值容易出现偏差。原始传感器给用户带来很多不便。没有开发经验的用户不仅开发不好,即使开发出来,检测价值也不稳定,这不仅浪费时间和精力,而且还延误了项目的进度,这不符合成本效益。有许多类型的气体和不同的属性,因此有许多类型的气体传感器。根据待测气体的性质,可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、气体、汽油挥发性气体等 用于检测有毒气体的传感器,如氯、硫化氢、胂 用于检测工业过程气体的传感器,例如氧气中的二氧化碳、炼钢炉中的热处理炉 用于检测大气污染的传感器,如NOx、 CH4、 O3形成酸雨,甲醛等家庭污染。根据气体传感器的结构,可分为干式和湿式 根据传感器的输出,它可以分为两种类型:电阻型和电阻型 根据测试机构的说法,它可分为电化学方法、,电法、,光学方法、化学法等几种类型。气体传感器是气体检测系统的核心,通常安装在探头中。基本上,气体传感器是将特定气体体积分数转换成相应电信号的换能器。探针通过气体传感器调节气体样品,通常包括过滤杂质和干扰气体。、干燥或冷却、样品吸入,甚至样品的化学处理,以便化学传感器更快地进行测量。因此,为了便于信号采集和统一管理,SZC利用其独特的核心技术和多年的传感器技术经验,开发出智能气体传感器模块。气体传感器已经开发和升级。通过比较、采样步骤、滤波、校准、信号放大、温湿度补偿,沉国安智能气体传感器模块已经开发完成。沉国安智能气体传感器模块可以对应数千种气体,每种气体对应数十种气体检测范围。对于该产品系列,智能传感器模块可达数万个。根据用户的情况和选择,沉国安只能根据用户的情况制作适合用户的智能传感器模块。这是沉国安产品独家销售的原因之一。气体传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨[/color]气体压力传感器[color=#333333]丨气压感应器丨[/color][color=#333333]电化学传感器丨数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨风速传感器丨超声波液位传感器[/color][color=#333333]丨流量传感器[/color][color=#333333]丨压电薄膜传感器丨微型压力传感器丨[/color]湿度传感器[color=#333333]丨[/color]气体传感器https://mall.ofweek.com/category_11.html[color=#333333]丨电流传感器丨[/color]微型传感器[color=#333333]丨壁挂式温度变送器[/color][color=#333333]丨[/color][color=#333333]一氧化碳传感器丨[/color][color=#333333]氧气传感器丨[/color][color=#333333]超声波传感器丨光纤传感器丨[/color][color=#333333]超声波风速传感器丨[/color][color=#333333]压阻式压力变送器丨[/color][color=#333333]voc传感器丨称重传感[/color][color=#333333]器[/color][color=#333333]丨气压传感器丨[/color][color=#333333]硫化氢传感器丨光离子传感器丨ph3传感器丨二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨位置传感器丨[/color][color=#333333]bm传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]气压传感器丨压力传感器丨meas压力[/color][color=#333333]传感器丨传感器https://mall.ofweek.com/category_5.html丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【讨论】氧气传感器

    在网上查了一下目前市场上氧气传感器的测试原理,主要有以下几种:电化学氧气分析仪—— 采用完全密封的燃料电池氧传感器是当前国际上最先进的测氧方法之一。燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e=4OH- 2Pb+4OH=2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电极不需定期清洗或更换。样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量,这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程,“金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中,传感器可以非常稳定可靠的工作很长时间。事实上, 燃料电池氧传感器是完全免维护的。磁氧分析仪—— 是利用常温下,氧气分子的顺磁性的原理,也就是可以被磁场吸引的原理制作的,这种仪器对氧气有独特的选择性,其他气体几乎没有干扰(NOx干扰,但不严重),它分为:1、热磁式,2、磁机械式--两种基本结构。热磁式是利用被加热的氧气会失去顺磁性的原理制造的,由于冷的顺磁的氧气不断被吸引到磁场里,而热的反磁的氧气不断被挤出磁场,形成所谓的“氧风”,测定这个氧风的强度,就可以换算出氧的浓度。热磁式氧分析仪虽然具有结构简单、便于制造和调整等优点,但也具有反应速度慢、测量误差大、容易发生测量环室堵塞和热敏元件腐蚀严重等缺点。磁机械式的也是利用相似的原理制造的,空心的不含氧气的石英泡在强磁场附近,不会受到磁场的吸引,而当环境中有氧气存在时,氧被磁场吸引,它必然将石英泡向磁场外排挤,测定这个排挤的力的大小,就可以换算出氧的浓度。磁机械式的氧气分析仪的精度更高一些,它甚至可以测定PPM级的氧浓度,功耗小,耐腐蚀,但是怕震动,价格贵。 二氧化锆式氧传感器—— 多孔体固体电解质内。温度较高时,氧气发生电离。只要锆管内外侧氧含量不一样,存在氧浓度差,则在固体电解质内部氧离子从大气一侧向排气一侧扩散,使锆管形成微电池,在锆管铂极间产生电压。 当混合气体稀时,排气中氧含量多,两侧氧浓度差小,产生的电压小;当混合气体浓时,排气中氧含量少,CO、HC、H2的含量较多,这些成分在锆管外表面的铂的催化作用下,与氧发生反应,消耗废气中残余的氧,使锆管外表面氧浓度变成零,这样使得锆管内、外两侧的氧浓度差突然增大,两极间产生的电压也增大。二氧化钛式氧传感器—— 电控单元ECU将一个恒定的IV电压加在二氧化钛氧传感器的正极,并将传感器负极上的电压降与电控单元控制程序中设定的参考电压相比较。发动机混合气浓度变化时,排出的废气中的氧分子含量也发生变化,氧传感器的电阻也随之改变,使得与电控单元连接的氧传感器负极上的电压降也产生变化。 当发动机的可燃混合气浓(A/F14.7)时,排气中氧含量高,氧化钛管外表面氧浓度大,二氧化钛呈现高电阻。电阻在混合气空燃比理论空燃比14.7(过量空气系数约为1)时产生突变。通过这样的反馈控制,使混合器的浓度保持在理论空燃比附近的狭小范围内。铅氧电池的测试精度与铅的纯度关系密切,之前用过这种传感器,他们做标线的时候用两条直线近似替代对数曲线,其测量值与实际值差别比较大。[color=#DC143C]请教大家:这些传感器有没有特定的适用范围?哪些牌子和型号的传感器测试精度比较高,使用寿命比较长?[/color]

  • 光电液位传感器对比电容式液位传感器

    光电液位传感器对比电容式液位传感器

    [align=left][font=宋体][color=#333333]在工业生产和日常生活中,液位传感器是一种常见的用于检测和测量液体位置的设备。根据检测原理的不同,液位传感器可以分为多种类型,如光电液位传感器和电容式液位传感器。本文将对光电液位传感器和电容式液位传感器进行对比分析,以便更好地了解它们的特性和应用。[/color][/font][/align][align=left][font=宋体][color=#333333]光电液位传感器利用光学原理来检测液位的存在。当光线通过液体时,光线的传播速度会因液体的存在而发生变化,从而改变反射光线的强度。通过检测反射光线的强度,可以确定液体的位置。因此,光电液位传感器不受液体的纯度、浓度或长期使用后沉淀的污垢的影响。相比之下,电容式液位传感器则是利用水位变化而产生的电容量不同来判定水位的高低。由于不同水质具有不同的电阻率,因此电容式液位传感器的准确性会受到水质的影响。此外,电容式液位传感器无法检测某些液体,如导电性较差的液体。[/color][/font][/align][align=left][font=宋体][color=#333333]在周边环境中,金属物体会对电容式液位传感器产生干扰,影响其正常工作。相反,光电液位传感器不受金属物体的影响。这使得光电液位传感器在某些应用场景中具有更好的适应性。[/color][/font][/align][align=center][img=光电液位传感器,600,449]https://ng1.17img.cn/bbsfiles/images/2023/10/202310211530394404_4872_4008598_3.jpg!w600x449.jpg[/img][/align][align=left][font=宋体][color=#333333][url=https://www.eptsz.com]光电液位传感器[/url]的水面精度为±[/color][/font][font='Tahoma',sans-serif][color=#333333]0.5mm[/color][/font][font=宋体][color=#333333],而电容式液位传感器的水面精度为±[/color][/font][font='Tahoma',sans-serif][color=#333333]1.5 mm[/color][/font][font=宋体][color=#333333]。这意味着光电液位传感器在检测液体位置时具有更高的精度和更低的误差。[/color][/font][/align][align=left][font=宋体][color=#333333]光电液位传感器的安装方式更为灵活,可以在机器水箱的任意方位进行安装。而电容式液位传感器的安装方式相对局限,往往需要特定的安装位置和角度。这使得光电液位传感器的使用更加方便,适应性更广。[/color][/font][/align][align=left][font=宋体][color=#333333]光电液位传感器在多个方面相较于电容式液位传感器具有优势。它们对液体性质的要求较低,不受金属物体的干扰,具有更高的精度以及更灵活的安装方式。因此,在选择液位传感器时,光电液位传感器是一个值得考虑的选项。然而,根据具体应用场景的不同,电容式液位传感器也有其适用的场合,具体选用哪种传感器还需根据实际需求进行选择。[/color][/font][/align]

  • 何谓气体传感器-四种气体传感器的检测原理

    所谓[url=https://www.isweek.cn/category_11.html]气体传感器[/url],是一种可以检查出目视不到的气体存在的传感装置。在以家用天燃气丙烷气体报警器为主的空调与空气洁净器、汽车等领域广泛得到应用。现在工采网小编对4种气体检测原理进行说明。[b][b][b]一、半导体气体传感器工作原理[/b][b]简单的架构[/b][/b][/b][url=http://news.isweek.cn/wp-content/uploads/2021/12/shikumi.gif][img=shikumi,300,280]http://news.isweek.cn/wp-content/uploads/2021/12/shikumi.gif[/img][/url][b][b][b]STEP1[/b][/b][/b]在洁净的空气中,氧化锡表面吸附的氧会束缚氧化锡中的电子,造成电子难以流动的状态。[b][b][b]STEP2[/b][/b][/b]在泄漏的气体(还原性气体)环境中,表面的氧与还原气体反应后消失,氧化锡中的电子重获自由,受此影响,电子流动通畅。[b][b][b]传感器的检测原理[/b][/b][/b]当氧化锡粒子在数百度的温度下暴露在氧气中时,氧气捕捉粒子中的电子后,吸附于粒子表面。结果,在氧化锡粒子中形成电子耗尽层。由于气体传感器使用的氧化锡粒子一般都很小,因此在空气中整个粒子都将进入电子耗尽层的状态。这种状态称为容衰竭(volume depletion)。相反,把粒子中心部位未能达到耗尽层的状态称为域衰竭(regional depletion)。使氧气分压从零(flat band开始按照小([O[sup]-[/sup]](Ⅰ))→中([O[sup]-[/sup]](Ⅱ))→大([O[sup]-[/sup]](Ⅲ)))的顺序上升时,能带结构与电子传导分布的变化如下图所示([O[sup]-[/sup]]:吸附的氧气浓度)。在容衰竭(volume depletion)状态下,电子耗尽层的厚度变化结束,产生费米能级转换[i][i]p[/i][/i]kT,电子耗尽状态往前推进则[i][i]p[/i][/i]kT增大,后退则pkT缩小。[b][b][b]■ 随着吸附的氧气浓度增加半导体粒子的耗尽状态在推进[/b][/b]能带结构[/b][table][tr][td][img]http://www.figaro-china.com/img/development/handoutai/zu1.jpg[/img][/td][td][table][tr][td]x[/td][td]:[/td][td]半径方向的距离[/td][/tr][tr][td]qV(x)[/td][td]:[/td][td]势垒[/td][/tr][tr][td][i]a[/i][/td][td]:[/td][td]离子半径[/td][/tr][tr][td][O[sup]-[/sup]][/td][td]:[/td][td]吸附氧气的浓度[/td][/tr][tr][td]E[sub]C[/sub][/td][td]:[/td][td]传导带下端[/td][/tr][tr][td]E[sub]F[/sub][/td][td]:[/td][td]费米能级[/td][/tr][tr][td][i]p[/i]kT[/td][td]:[/td][td]费米能级转换[/td][/tr][/table][/td][/tr][/table][b]传导电子分布[/b][table][tr][td][img]http://www.figaro-china.com/img/development/handoutai/zu2.jpg[/img][/td][td][table][tr][td][e][/td][td]:[/td][td]电子浓度[/td][/tr][tr][td]N[sub]d[/sub][/td][td]:[/td][td]施子密度[/td][/tr][/table][/td][/tr][/table]容衰竭(volume depletion)状态下球状氧化锡粒子表面的电子浓度[e][sub]S[/sub]可用施子密度Nd、粒子半径[i]a[/i]以及德拜长度L[sub]D[/sub]通过式子(1)表示。如果[i]p[/i]增大则[e][sub]S[/sub]减少,[i]p[/i]减少则[e][sub]S[/sub]增大。[e][sub]S[/sub]=N[sub]d[/sub] exp{-(1/6)([i]a[/i]/L[sub]D[/sub])[sup]2[/sup]-[i]p[/i]} ... (1)由大小、施子密度相同的球状氧化锡粒子组成的传感器的电阻值R,可使用flat band时的电阻值R[sub]0[/sub],通过式子(2)表示。[e][sub]S[/sub]减少则将增大,[e][sub]S[/sub]增大则将缩小。R/R[sub]0[/sub]= N[sub]d[/sub]/[e][sub]S[/sub] ... (2)使用了氧化锡的半导体式气体传感器,就是这样通过氧化锡粒子表面的[O[sup]-[/sup]]的变化来体现电阻值R的变化。置于空气中被加热到数百度的氧化锡粒子,一旦暴露于一氧化碳这样的还原性气体中,其表面吸附的氧气与气体之间发生反应后,使[O[sup]-[/sup]]减少,结果是[e][sub]S[/sub]增大,R缩小。消除还原性气体后,[O[sup]-[/sup]]增大到暴露于气体前的浓度,R也将恢复到暴露于气体前的大小。使用氧化锡的半导体式气体传感器就是利用这个性能对气体进行检测。[b][b][b]二、催化燃烧式气体传感器工作原理[/b][/b][/b]催化燃烧式气体传感器由对可燃气体进行反应的检测片(D)和不与可燃气体进行反应的补偿片(C)2个元件构成。如果存在可燃气体的话,只有检测片可以燃烧,因此检测片温度上升使检测片的电阻增加。 相反,因为补偿片不燃烧,其电阻不发生变化(图1)。这些元件组成惠斯通电桥回路(图2),不存在可燃气体的氛围中,可以调整可变电阻(VR)让电桥回路处于平衡状态。 然后,当气体传感器暴露于可燃气体中时,只有检测片的电阻上升,因此电桥回路的平衡被打破,这个变化表现为不均衡电压(Vout)而可以被检测出来。此不均衡电压与气体浓度之间存在图3所示的比例关系,因此可以通过测定电压而检出气体浓度。[b]■ (图1)测定电路[/b][img=,621,257]http://www.figaro-china.com/img/development/sesshoku/img1.jpg[/img][b]■ (图2)测试电路[/b][img=,297,255]http://www.figaro-china.com/img/development/sesshoku/img2.jpg[/img][b]■ (图3)[/b][img=,297,255]http://www.figaro-china.com/img/development/sesshoku/img3.jpg[/img][b][b][b]三、电化学气体传感器工作原理[/b][/b]传感器元件构成与电极反应式[/b][img=,621,255]http://www.figaro-china.com/img/development/denkikagaku/shiki.jpg[/img]传感器由来自贵金属催化剂的检测极、对极与离子传导体构成。当CO等检测对象气体存在时,在检测极催化剂上与空气中的水蒸气发生(1)式所示的反应。CO + H[sub]2[/sub]O → CO[sub]2[/sub]+ 2H[sup]+[/sup] + 2e[sup]-[/sup] …(1)检测极与对极接通电流(短路)后,检测极产生的质子(H+)与同时产生的电子(e-)分别通过离子传导体与外部电线(引线)各自到达对极,在对极上与空气中的氧之间发生(2)式所示的反应。(1/2)O[sub]2[/sub] + 2H[sup]+[/sup] + 2e[sup]-[/sup] → H[sub]2[/sub]O …(2)也就是说此传感器构成了由(1)(2)反应式形成的(3)反应式的全电池反应,可以认为是将气体作为活性物质的电池。CO + (1/2)O[sub]2[/sub] → CO[sub]2[/sub] …(3)当做气体传感器使用时,接通检测极与对极的电流,来测定其短路电流。[b]CO浓度检测原理公式[/b][img=,254,236]http://www.figaro-china.com/img/development/denkikagaku/co.jpg[/img]对流过外部电路的短路电流与气体浓度的关系,通过传感器进行适当的扩散控制(控制气体的流入量),呈现出式子(4)这样的比例关系(右图)。I = F × (A/σ) × D × C × n …(4)这里 I:短路电流;A:扩散孔面积;σ:扩散层长度;D:气体扩散系数;C:气体浓度;n:反应的电子数量[b]特长[/b]反应式(1)所示的氧化电位由于比氧化电极电位的基准值(2H+ + 2e- ? H2)要低(拥有较低电位),因此此反应不需要消耗来自外部的电压、温度等其他能量,可以有选择地进行,与别的检测方式相比在干扰性、重复性、节电方面要优越得多。[b][b][b]四、NDIR气体传感器工作原理[/b][b]NDIR(非色散型红外线)式气体传感器的工作原理[/b][/b][/b]NDIR(non-dispersive infrared)式气体传感器是通过由入射红外线引发对象气体的分子振动,利用其可吸收特定波长红外线的现象来进行气体检测的。红外线的透射率(透射光强度与源自辐射源的放射光强度之比)取决于对象气体的浓度。[img]http://www.figaro-china.com/img/development/ndir-type/zu01.png[/img]传感器由红外线放射光源、感光素子、光学滤镜以及收纳它们的检测匣体、信号处理电路构成。在单光源双波长型传感器中,在2个感光素子的前部分别设置了具有不同的透过波长范围阈值的光学滤镜,通过比较可吸收检测对象气体波长范围与不可吸收波长范围的透射量,就可以换算为相应的气体浓度。因此,双波长方式可实现长期而又稳定的检测。[b]检测原理[/b]用中波段红外线照射气体后,由于气体分子的振动数与红外线的能级处于同一个光谱范畴,红外线与分子的固有振动数发生共振后,在分子振动时被气体分子所吸收。气体浓度与红外线透射率的关系可通过下述朗伯-比尔定律进行说明。对于NDIR式气体传感器来说,对象气体的吸光度ε与光程d是不变的,在与成为对象的气体吸收能(波长)一致的光谱范畴,通过测定红外线的透射率[i]T[/i],即可得到对象气体的浓度c。[img]http://www.figaro-china.com/img/development/ndir-type/zu02.png[/img]来自放射源的入射光强度[i]I[/i][sub]0[/sub],是通过使用不吸收红外线的零点气体校准后设定的。吸光度ε是利用已知浓度的对象气体进行校准后进行初始设定的。[b]特长[/b]因为红外线是根据目标气体固有的红外能量(波长)被吸收的,所以气体选择性非常高成为其最大的特长。即使在高浓度的对象气体中长时间进行暴露,也从原理上避免了灵敏度的不可逆变化。

  • PID和半导体式、电化学式传感器性能优缺点比较

    PID具备优秀的灵敏度,动态范围大,可在较高无机气体浓度背景下测量低ppb的VOC浓度。但还有其他技术测量VOC:[b]火焰电离检测器(FID)[/b]与PID非常相似,FID常常用于在实验室中检测从气体色谱中提取的VOC。FID与PID传感器普遍相似,实际上所有有化合物包括甲烷都是可选的,FID传感器非常灵敏和线性。但FID传感器需要氢分子离子源,体积大且更昂贵。FID传感器可用于实验室或固定装置,但一般不作为便携VOC检测仪的灵活选择。[b]便携GC/MS[/b]这种传统实验分析仪应用于混合结果领域。带有微型机械硅,便携MS和GC仍然是一个实际的选择,但价格太高。因为GC/MS只能循环测试,并不是持续检测仪,大约每几分钟测量一次。选择它的优点在于它并不是宽带分析仪。尺寸,价格,需要真空泵和维护需求使其仅当其他检测仪都失效时才会被选择。[b]热脱附或者聚氟乙烯取样袋[/b]针对所有吸附在土样,其他固体,液体和气体中的VOC的回顾性分析,ASTM建议使用吸附剂管或者聚氟乙烯取样袋。样品一般再送至实验室进行吸附剂管的热脱附,然后使用GC/MS分析。这是调查某种问题的最好方法,但很明显不能提供实时保护。同样,这些是平均测量,昂贵而且非指定点/时间。[b]电化学传感器[/b]可用电化学元件测量多种VOC,分辨率从10-200ppb。这些都是低成本,低功耗和小巧的传感器。Alphasense提供ETO-A1传感器用于测量VOC,PID和电化学元件都是宽带传感器,但PID具备不同的配置,可以比ETO-A1测量更多的VOC,具备更大的灵敏度。如果你想用电化学元件测量VOC,就应针对目标VOC改良电化学传感器:每一种VOC需要不同的理想偏置电压以达到最好的灵敏度,这并不简单。电化学元件约在25秒内反应,而PID则只需3-4秒。[b]金属氧化半导体传感器[/b]金属氧化传感器也可以测量VOC,他们小巧,低成本,功耗与PID相似。MOS传感器存在湿度灵敏度,非线性反应和长期漂移的问题。它们也与无机气体反应,所以如果你想测量低浓度VOC,不应使用MOS,因为NO, NO2 或 CO等气体以更高浓度存在,不幸的,使用MOS技术时很容易得到假阳性和假阴性。如果你想使用MOS,就要确认长期稳定性和湿度灵敏度。如果你要求高灵敏度,特别是不用PID(例如CFC)测量的VOC,不在意精度和交叉灵敏度,MOS传感器可提供可能的解决方案。[b]比色(色斑)管[/b]作为已被大家接受的取样某种VOC的技术,比色管已经存在几十年了,主要由Draeger 或 Kittegawa提供。他们的优势在于一次性费用较低和一些特性,但劣势包括化学废品的处理(废弃管通常包含有毒化学物),精度差,色变的人工判断,取样问题和非连续测量:不能用于保护,只能作质量上取样。转载本站文章请注明出处:仪器仪表应用_传感器应用_智能硬件产品 - 工采资讯

  • 电流氧传感器_电流氧传感器详细概述

    电流氧传感器一般都是比较稳定的,一般是通过气体扩散控制供给阴极的氧而得到期限电流,OFweek Mall针对电流氧传感器做了详细的概述,包括电流氧传感器工作原理、参数等。一、极限电流氧传感器SO-D0-020-A100C描述:SO-D0-020-A100C是极限电流氧传感器,量程为0.01%~2%,线长1米,最低可以检测100ppm的氧气,微量氧传感器SO-D0-020-A100C广泛用于金属激光烧结3D打印机、制氮、发酵等领域。二、极限电流电流氧传感器SO-D0-020-A100C工作原理:因为在氧化锆电解质中电流的载体是氧离子,所以当电压施加到氧化锆电解槽时,氧气通过氧化锆盘被抽到阳极。如果给电解槽阴极加上一个带孔的盖子,氧气流向阴极的速率就会受到限制。受到这个速率的限制,随着所施加的电压逐渐增加,电解槽内的电流会达到饱和。这个饱和电流被称为极限电流,它与周边环境中的氧气浓度成正比。三、极限电流氧传感器SO-D0-020-A100C应用:医疗:氧气浓缩器、恒温箱实验室:惰性气体处理柜(手套式操作箱)、细菌培养箱食品产业:包装、食品检验、监控水果成熟过程(储存/运输)家庭/烹饪:自动化烘焙/烘烤(高温100℃)测量技术:固定式/便携式氧气测量仪、在控制氧含量的情况下进行测量、空气调节和流通安全技术/监控:防火(氮气增加,例如服务器机房)、温室,酒窖、气体贮藏,精炼厂、潜水、发酵单元电气工业:惰性气体处理器和柜、惰性气体焊接监控、在氮气增加的情况下进行储存(防氧化)、干燥设备、氮气浓缩器、废气测量四、极限电流氧传感器SO-D0-020-A100C特点:可以测试100~20000ppm的氧气浓度高精度多款型号呈线性特征传感器信号对温度的依赖性小交叉灵敏度低使用寿命长在多数情况下只需进行一次“单点校准”五、电流氧传感器SO-D0-020-A100C特性数据:测量气体氧气测量介质气体测量原理极限电流氧传感器测量范围0,01~2,0%响应时间(t90)2~25秒(取决于电流氧传感器类型,气流量,测量室)传感器电压0,7~1,6伏特加热电压3.6~4.4伏特功耗1.3~1.8瓦特(取决于应用和封装)冷电阻R(25°C)=3.25Ω±0.20Ω预热时间至少30s最高工作温度350℃取决于电缆和过滤器总成允许流量100~500(250最佳)寿命(MTTF)20.000小时(*)电流氧传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨[url=http://mall.ofweek.com/1787.html]电流氧传感器[/url][/color]

  • 美制成新型生物传感器 可探测唾液及眼泪中的葡萄糖浓度

    中国科技网讯 据物理学家组织网近日报道,美国普渡大学等机构的研究人员制成了新型生物传感器,能够以非侵入的方式进行糖尿病测试,探测出人体唾液和眼泪中极低的葡萄糖浓度。这项技术无需过于繁复的生产步骤,从而可降低传感器的制造成本,并可能帮助消除或降低利用针刺进行糖尿病测试的几率。相关研究论文发表在《先进功能材料》杂志上。 目前的大多数传感器都能测量血液中的葡萄糖,但却不能探测眼泪和唾液中的葡萄糖浓度,而新方法能够应用于唾液、眼泪、血液和尿液中,这在之前还未被证实过。 新型生物传感器包括3个主要部分:石墨烯制成的纳米片层、铂纳米粒子和葡萄糖氧化酶。其中的纳米片仿若微小的玫瑰花瓣,每片花瓣均包含着多个堆叠的石墨烯层。花瓣的边缘也悬挂着不完整的化学键,使铂纳米粒子可以附着在这里。纳米片和铂纳米粒子相结合能够形成电极,随后葡萄糖氧化酶也可附着在铂纳米粒子上。酶能将葡萄糖转化为过氧化物,并且在电极上产生一个信号。 通常情况下,在获得具有纳米结构的生物传感器成品前,需要经历复杂的处理步骤,其中包括光刻、化学处理、蚀刻等。而这些纳米片花瓣的好处就是,它们能够在任一表面上生长,也无需经历这些步骤,因此可称得上是商业化的理想选择。 除了糖尿病测试,此项技术还可用于感测多种化合物以契合其他的医疗状况。例如可将葡萄糖氧化酶替换为谷氨酸氧化酶来测量神经递质谷氨酸,以进行帕金森症和阿尔茨海默症的测试,或是使用乙醇氧化酶来监测体内的酒精。其不仅应用范围很广,同时还兼具快速和便携的优势。 研究人员称,这是首次在这么宽的检测范围内发现如此低的传感极限。这种探测器能探测到浓度为0.3微摩尔的葡萄糖,比其他基于石墨烯、碳纳米管或金属纳米粒子等材质的电气化学生物传感器更为敏感。 此外,这款传感器还能区分源自葡萄糖和其他化合物的信号,如一般存在于血液中的尿酸、抗坏血酸和对乙酰氨基酚等化合物,其通常会导致对传感器的干扰。此外,这些化合物还具有电化学活性,这意味它们自己就能产生电子信号,而不用像葡萄糖一样,需要和酶发生反应后才能生成单个信号。(张巍巍) 《科技日报》(2012-8-28 一版)

  • 光纤折射率传感器在测量油浓度的应用

    光纤折射率传感器在测量油浓度的应用

    关于润滑油浓度比(OCR)对制冷系统效率的影响,已经做了大量的研究。事实上,起到压缩机润滑和密封作用的润滑油在整个制冷系统不可避免地会留下痕迹。即使只有很小量润滑油在系统内被检测到,数量一定会随时间和机械部件磨损的不断扩大而增加。OCR是如何变成人们关注的对象的呢?许多研究已证明制冷剂中含有少量的油将会增加系统的效率,但是混合物中的油含量达到一定水平时,性能将大幅降低。而一些系统随着混合物中油含量过低时(1%),效率也会降低。[img=,494,454]https://ng1.17img.cn/bbsfiles/images/2018/12/201812200944032757_528_3332482_3.jpg!w494x454.jpg[/img]检测制冷剂中油含量最常用的方法就是取样称重法。然而,该方法是非常耗费时间的,在系统中取出一定量的油和制冷剂,而且所得的结果不能反映实时的现象。因此,很多人试图开发其它方法来取代这一传统检测方法,以明确量化混合物的确切成分。多年来, 已经研究出大量的技术方法来成功实现实时检测冷却系统中处于工作状态的流体的浓度。这些方法包括广泛的光谱技术;从液体密度检测到声速法、光吸收法、非传导性常数法、最后是折射率测量法。然而,并非所有这些技术都是令人完全满意的,并使人确信得出的结果是准确的、可靠的和有价值的。因此,FISO技术公司开发出由光纤折射率传感器 -FRI和光纤信号调理器 - TMI组成的系统能精确测量OCR。该OCR检测解决方案满足了工作在制冷领域的工程师们提出的检测要求。[img=,303,301]https://ng1.17img.cn/bbsfiles/images/2018/12/201812200944186370_5754_3332482_3.jpg!w303x301.jpg[/img]FISO公司是一家在光纤传感器方面技术领先的开发商和制造商。其致力于在恶劣环境和具有挑战性应用领域中向客户提供创新的可靠的参数检测的解决方案。光纤传感器除了尺寸小以外,还具有精确高、本质安全和不受射频、电磁波和微波辐射的干扰等优点。 FISO的目标市场是过程控制、医学、航空航天、国防、能源以及科学和学术性研究等领域。FISO的产品由经验丰富的工程师按客户的需求而设计。他们了解工作在具有挑战性环境的客户,了解客户需要尖端技术的产品。FISO一个最强有力的竞争优势是能够快速对客户的需要做出响应。如果必要,还可为客户定制解决方案。我们努力给客户提供最好的产品和技术。自2005年起,FISO公司通过了SGS评估和认证,并日复一日严格实施其质量制度规定,通过提供符合特定要求的产品和服务,努力满足客户的需求FISO量化制冷剂中油含量的解决办法是基于折射率检测的方法。当光纤传感器安装在混合物中时,被测液体填充于FP腔中,FP腔长度的变化与被测液体的折射率(RI)成正比例关系。被测RI相对的有效折射率为信号调理器光源的光谱分布所涵盖。它的中心波长处于800 nm左右。首先,用户要校正并找到折射率与油/制冷剂混合物标样的对应关系。然后,这些初始数据将被用于建立校准公式或校准表。即使系统对非常广的油浓度范围进行检测时,也要限制校准范围,以提高精度。FISO公司的专利技术白光正交相关仪(White-light Cross- Correlator) 提供了独一无二且极具实力的测量FP腔绝对长度的方法。此法的测量结果具有惊人的精确度、非常好的线性和一致性。[img=,690,220]https://ng1.17img.cn/bbsfiles/images/2018/12/201812200944362137_1491_3332482_3.jpg!w690x220.jpg[/img]如图所示,宽带光源发出的光发射到2x2耦合器的一个臂上,然后传到FP仪。经由FP仪波长调制的光信号被反射回信号调理器,聚焦成一线,经专利技术的白光正交相关仪传输之后,由线性CCD组合器检测。白光正交相关仪就象一个立体分布的FP 腔,其腔的长度沿着横向位置而变。面对CCD组合器,每一个像素都与预定义的类似于FP的腔长度有关。因此仪器工作起来就像一台立体长度可变的光学正交相关仪。例如,假定FP仪的腔长度为d微米, 由该FP仪所反射的光被最大限度地传送到d微米长度的CCD组合器的像素上,即立体分布的FP腔的横向位置上长度为d微米。如图所示,FP腔长度的变化被转化成感应最大传送值的像素的位移量。该技术提供了传感器FP腔长度的精确可靠的测量。

  • 在线密度传感器

    FWT系列在线密度和浓度传感器可实时在线的进行密度(浓度)检测。也可以作为监测和密度相关的如:基本密度、波美度,°API、白利糖度以及浓度百分比、质量百分比、体积百分比、比重等参数的传感器使用。FWT在线密度和浓度传感器,它可以运用于以密度为基本参数产品的过程控制或者以固体百分比或浓度百分比为参照质量控制中。典型行业包括,石油化工行业,酿酒业,食品行业,制药行业和矿物加工(如粘土,碳酸盐、硅酸盐等),具体应用于以上行业中的多产品管道中的界面检测,搅拌混合物的密度检测,反应釜终点监测,离析器界面检测,应用于很宽范围的工作温度,工作压力以及流体粘度变化 FWT在线密度和浓度传感器采用法兰插入式安装和三通螺纹安装等形式,广泛适用于管路,开阔的罐体容器和封闭的罐体容器中的介质密度检测。传感器内置温度传感器为其提供温度补偿。具有简洁的工业在线安装方式,无须特殊安装. 适用多种流体。本产品不适用于:絮状溶液(如纸浆等)。 测量原理:传感器是根据元器件振动原理而设计,叉体被稳定在固有谐振频率上。当介质流经叉体时,因介质质量的改变,引起谐振频率的变化。根据谐振频率变化来判断被测液体的密度值。介质的密度的均方根与振动频率变化量符合线性关系 。技术参数测量参数密度/温度响应时间0.5S分辨率0.5CP测量范围精度电源输出联接方式被测流体运行环境maxDC24V或DC12V0.5A1型.频率2型,RS485温度压力粘度A型0.5- 2.5 g /cc2%FS螺纹M36*1580℃40bar1000cpB型2%FS100℃40bar20000cpC型2%FS法兰180℃40bar20000cp1.输 出: 1型: 频率信号500-2000HZ (高电平5V方波 ) 2型: RS485(MODBUS-RTU)(参数:频率值和温度2 材 料: 探头316L不锈钢;壳体304或316L不锈钢3探头联结: 螺纹联接(基本型)M36×1.5mm /标准法兰联接4.内置PT100温度传感器

  • 什么是气体传感器

    气体传感器是用来检测气体的成份和含量的传感器。在上世纪70年代,气体传感器就成为传感器的一个大系列,属于化学传感器的一个分支。目前市场上流行的气体传感器分为: 半导体式气体传感器、催化燃烧式气体传感器、热导池式气体传感器、电化学式气体传感器、红外线气体传感器、磁性氧气传感器、检测仪中的0-100% LEL与0-n PPM、其他。下边介绍下半体导体式气传感器:半体导体式气传感器它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。我公司生产的氧化锆氧分析仪采用的是氧化锆锆管,被测气体(烟气)通过传感器进入氧化锆管的内侧,参比气体(空气)通过自然对流进入传感器的外侧,当锆管内外侧的氧浓度不同时在氧化锆管内外侧产生氧浓差电势(在参比气体确定情况下,氧化锆输出的氧浓差电势与传感器的工作温度和被测气体浓度呈函数对应关系)该氧浓差电动势经显示仪表转化成与被测烟气含氧量呈线性关系的标准信号供显示和输出。半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。我公司产的氧化锆氧分析仪已经达到了日本、美国、德国、韩国等国际水平。

  • 除CO2传感器外气调库中还要用到哪些气体传感器

    除CO2传感器外气调库中还要用到哪些气体传感器

    [align=left]传统的水果和蔬菜储存和保存方法比较简单的,比如通风存储、辐射保存、化学保存、冷藏。这些存储方法虽然设备简单、投资少,但存储效果差,存储周期短,腐烂严重。辐射和化学保存对某些水果有一定的适用性,但有辐射和化学残留污染,并非所有的水果和蔬菜都可以应用。[/align]而气调库气调贮藏是通过在适当的低温条件下改变储存环境气体组合物的相对湿度来创造适合水果和蔬菜的储存环境。其原理如下:气调库需要营造低氧环境(一般O2含量为1%-5%),同时适当的CO2浓度可有效抑制呼吸,减少果蔬中营养成分的流失,抑制病原菌的生长,控制某些生理疾病的发生,增加环境气体的相对湿度和控制温度,减少水果和蔬菜水分蒸发,从而达到长期储存和保存水果和蔬菜的目的。[img=,524,340]https://ng1.17img.cn/bbsfiles/images/2018/11/201811221621156747_5297_3422752_3.png!w524x340.jpg[/img]气调库储藏蔬菜水果有哪些优势?(1)保持水果和蔬菜的原始形状、颜色、香味 (2)果实硬度高于普通制冷,储存时间延长 (3)延长保质期。由于水果和蔬菜长期受低O 2和高CO 2的影响,脱气效果解除后仍存在长时间的“滞后效应”或休眠期 气调库的组成:气调库一般由气调系统、制冷系统、加湿系统、压力平衡系统和温度、湿度、 O2、 CO2、燃气等气体自动检测和控制系统。其中就要用到CO2传感器、O2传感器、温湿度传感器、压力传感器等精密元器件来对气调库内部气体进行监测,保证环境的稳定性。OFweek Mall具体说明一下CO2传感器、O2传感器、温湿度传感器在气调库中具体的应用。二氧化碳传感器(CO2传感器)脱除系统主要用于监测控制气调库储存中的二氧化碳含量。它完全依赖水果和蔬菜呼吸时释放的二氧化碳来增加气调库中二氧化碳的浓度,适量的二氧化碳使得水果和蔬菜储存效果良好。但是,如果二氧化碳浓度过高,会对水果和蔬菜造成损害。因此,需要使用二氧化碳传感器(CO2传感器)对气调库内部CO2浓度进行实时监测,避免浓度过高或过低。OFweek Mall推荐使用[b]英国GSS 4系大量程红外二氧化碳传感器 (NDIR CO2传感器)-MINIR/ExplorIR-M:[/b]红外二氧化碳传感器/CO2传感器MINIR 是具有超低功耗(3.5mW)和高性能的CO2传感器,是应用于电池供电产品和便携式设备的理想选择;基于 IR LED 专利技术和创新的光路设计,使 二氧化碳传感器MINIR成为低功耗的 NDIR传感器;并可选配温度和湿度输出。同时该二氧化碳传感器还有以下特性:超低功率3.5mW测量范围从 0 到 100%供电电压 3.3v峰值电流仅 33mA20mm 直径探头式封装脱氧机它是目前先进的用于气调库中的降低氧含量的设备。脱氧机的工作原理是使用压力低于24KPa的风机进行循环脱氧,然后用真空泵进行解析活化。当气调库中的气体成分含量产生变化时需要使用氧气传感器来监测判断氧浓度是否过高,从而提醒工作人员采取措施降低氧含量。气调库中常用的氧气传感器是[b]英国SST 荧光氧气传感器 (O2传感器)-LOX-02/LOX-01 [/b]荧光氧气传感器 (O2传感器)-LOX-02/LOX-01是应用荧光猝灭原理和出厂校准的氧传感器,用于测量环境氧分压( ppO2)大小。LOX-02有氧压和温度补偿,使得它可以准确工作于宽环境范围而无需额外的补偿系统。不像其他传感器技术,LuminOx 非常稳定和环保,不含铅或其他任何有毒材料,并且不受其他气体交叉干扰的影响。[img=,282,270]https://ng1.17img.cn/bbsfiles/images/2018/11/201811221621355009_5545_3422752_3.png!w282x270.jpg[/img]加湿系统我们都知道蔬菜瓜果生长环境对温度和湿度是有一定的要求的,那么同样蔬果存储过程中也要提供合适的温湿度环境,一旦温度过高水分过少蔬果会脱水,新鲜度会大大降低,所以气调库存贮中必不可少的就是要安装相应的温度传感器与湿度传感器,通过温湿度传感器更有效准确监测蔬果存贮中的温度与湿度的变化情况。OFweek Mall技术工程师推荐使用[b]法国Humirel 模拟电压输出温湿度传感器模块-HTG3535CH[/b] 特点:环保产品全量程可互换性高可靠性和长期稳定性精度:+/-3%RH @55%RH供电电压需在规定范围内通过10Kohm NTC电阻测量温度精度为+/-1%直接输出在5Vdc供电时输出电压值为1~~3.6V 可测量0~~100%RH相对湿度相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨可燃气体传感器丨酒精传感器丨微量氧传感器丨PID传感器丨温湿度传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器丨紫外线传感器丨CO2传感器https://mall.ofweek.com/123.html丨CO传感器丨UV传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤传感器丨光纤压力传感器丨双气传感器丨PM2.5传感器

  • 水质 生化需氧量(BOD)的测定 微生物传感器快速测定法

    1主题内容和适用范围1.1主题内容本标准规定了测定水和污水中生化需氧量(BOD)的微生物传感器快速测定法。本标准规定的生物化学需氧量是指水和污水中溶解性可生化降解有机物在微生物作用下所消耗溶解氧的量。1.2适用范围本标准适用于地表水、生活污水和不含对微生物有明显毒害作用的工业废水中BOD的测定。的测定。 1.3干扰及消除水中以下物质对本方法测定不产生明显干扰的最大允许量为:Co2+5mg/l;Mn2+5mg/l;Zn2+4mg/l;Fe2+5mg/l;Cu2+2mg/l;Hg2+2mg/l ;Pb2+5mg/l;Cd2+5mg/l;Cr6+0.5mg/l;CN-0.05mg/l;悬浮物250mg/l。对含有游离氯或结合氯的样品可加入1.575g/l的亚硫酸钠溶液使样品中游离氯或结合氯失效,应避免添加过量,对微生物膜内菌种有毒害作用的高浓度杀菌剂、农药类的污水不适用本测定方法。 2术语2.1生化需氧量在一定条件下,微生物分解存在于水中的某些可被氧化物质,特别是有机物所进行的生物化学过程中消耗溶解氧的量。2.2微生物菌膜将丝孢酵母菌在保持其生理机能的状态下封入膜中,称之为微生物菌膜或固定化微生物膜。2.3微生物传感器微生物传感器是由氧电极和固定化微生物膜组成。可检测微生物在降解有机物时引起的氧浓度的变化。2.4流通式水样或清洗液在蠕动泵的作用下连续不断的将样品或清洗液在单位时间内按一定量比送入测量池中。2.5间断式(加入式)将缓冲溶液加入到测量池中,使微生物传感器(微生物菌膜)与缓冲溶液保持接触状态,然后加入定量的被测水样,测得被测水样的BOD值。2.6恒温控制装置微生物电极的反应性能依赖于一定的温度条件,因此要求在试验过程中要有一稳定的温场,该装置在仪器中称之为恒温控制装置。2.7清洗液(缓冲溶液)清洗液是由磷酸二氢钾和磷酸氢二钠配置而成。其主要作用是作为缓冲液调节样品的PH值,清洗和维持微生物传感器使其正常工作,并具有沉降重金属离子的作用。 3原理测定水中BOD的微生物传感器是由氧电极和微生物菌膜构成,其原理是当含有饱和溶解氧的样品进入流通池中于微生物传感器接触,样品中溶解性可生化降解的有机物受到微生物菌膜中菌种的作用,而消耗一定的氧,使扩散的氧电极表面上氧的质量减少。当样品中可生化降解的有机物向菌膜扩散速度(质量)达到恒定时,此时扩散到氧电极表面上氧的质量也达到恒定,因此产生一个恒定电流。由于恒定电流的差值与氧的减少量存在定量关系,据此可换算出样品中生化需氧量。 4试剂分析纯试剂和蒸馏水,蒸馏水使用前应煮沸2-5min左右,放置室

  • 【资料】气体传感器的基础知识

    目前按照气敏特性来分,气体传感器主要分为:半导体型、电化学型、固体电解质型、接触燃烧型、光化学型等气体传感器,又以前两种最为普遍。 一、半导体型气体传感器的优缺点自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不理想、功率高等方面。 二、半导体传感器需要加热的原因半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件,其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发生一次氧化反应。传感器内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原因就是没有加热或加热电压过低导致温度太低反应不充分。 三、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测血液中的氧浓度。电化学传感器的主要优点是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年。 四、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 五、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 六、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广。 七、光学式气体传感器光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制