当前位置: 仪器信息网 > 行业主题 > >

织物感应式静定仪

仪器信息网织物感应式静定仪专题为您提供2024年最新织物感应式静定仪价格报价、厂家品牌的相关信息, 包括织物感应式静定仪参数、型号等,不管是国产,还是进口品牌的织物感应式静定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合织物感应式静定仪相关的耗材配件、试剂标物,还有织物感应式静定仪相关的最新资讯、资料,以及织物感应式静定仪相关的解决方案。

织物感应式静定仪相关的论坛

  • 【求助】海水检测用感应式盐度计

    [em0715] 各位达人:我不知道大家对海水盐度检测有没有接触过,以前知道国内有单位生产感应式的盐度计,不知道各位知道日本那边哪个厂家在生产??因为单位想用好点的,现在好象用电极式的盐度计比较多点.比如加拿大高联公司等.

  • 有无这类感应器

    有无这类感应器---电感应式的应器,或激光的.用于金属微量原素测试,主要是测铅含是测铅含量的,测试精度是在0.05%,,一定不破坏物体本身的感应器.

  • 真的会洗手吗?手真的洗干净了吗?

    俗话说病从口入,手部消毒对我们的健康至关重要,要保持手干净卫生,防止病毒污染。手洗干净到底有多难?大部分人都会说手是最容易洗的。其实手是最容易被病原微生物污染的部分,对每一个人来说,洗手消毒是一种最基本也是最重要的消毒工作。传统的消毒方式已不能满足现代化生产的要求,既达不到消毒标准,又浪费了大量的消毒材料。尽管在生产过程中有严格的消毒程序,但传统的消毒器械已很难保证这一程序的顺利执行。在发达国家,已建立了“感应式水龙头洗手——感应式手消毒——感应式烘干”的全套自动控制消毒程序,以适应现代生活快节奏、高效率。

  • 哪种形式液位计比较好?

    液位计有多种形式的,机械玻璃管式、空心浮子式、磁翻转板式、浮球杠杆式、磁伸缩感应式、金属导电感应式、雷达感应式、超声波反射式、浮力差压式、静压投入式,吹气压力式等等,哪种液位计比较好?

  • [经验交流] 工艺性质测试仪器的分类

    工艺性质测试仪器的分类  测试纤维长度、细度、卷曲性、纱线拈度、纱线毛羽和回潮率等工艺性质的仪器。有纤维长度仪、纤维细度仪、纤维卷曲仪、纱线毛羽仪、纱线拈度仪、回潮率测试仪等。   纤维长度仪:测试纤维伸直长度的仪器。中国测试棉纤维长度主要采用罗拉式长度测定仪,把一端整齐排列的纤维放在仪器上,按一定间距分组称重后求出重量加权平均长度和其他指标。羊毛纤维长度一般采用梳片式长度仪测定。生丝和化纤长丝的长度用一定周长的纱框测长仪测定。   纤维细度仪:这种仪器是根据分散于液流中的纤维在通过1毫米的激光时,激光的散射量与纤维直径成正比关系设计的。用这种仪器可测定单根纤维直径及其分布。   静电仪:有摩擦式和感应式两种。摩擦式静电仪是使试样摩擦生电后直接测定试样上的静电压;感应式静电仪是使试样在电场中感应带电后测定试样的静电压或半衰期。   摩擦系数测定仪:测定纤维摩擦系数的方法有多种,一般用绞盘法摩擦系数测定仪测定短纤维摩擦系数,这种仪器又称为罗德(R?der)法摩擦系数测定仪。用这种仪器不仅能测试纤维与纤维之间的摩擦系数,而且也能测试纤维与金属、纤维与其他材料之间的摩擦系数。此外,还有各种型式的纱线和长丝的摩擦系数测定仪。80年代以来国际上还制定了能自动测定和记录的动、静摩擦系数测定仪。   卷曲性测定仪:测定纤维单位长度上卷曲数的仪器。测定卷曲性的方法一般有目测法和投影法两种。日本生产的机械式卷曲弹性仪可测定卷曲率和卷曲弹性。中国研制的用光栅法测定位移的纤维卷曲弹性仪精度较高,对测定化纤短纤维的卷曲有一定特点。   纱线毛羽仪:测试短纤维纱线表面毛羽的仪器。这种仪器大多是采用光电计数原理设计的。日本生产的毛羽试验仪能自动统计毛羽数和毛羽长度,并能打印出结果。仪器可测定3000旦以下的短纤维纱,可测的毛羽长度为0~10毫米,纱速为30米/分。另外一种毛羽计数仪有两个传感器,可同时用于1500旦以下的短纤维纱和长丝。纱速为10~1500米/分,四位数字显示。还有采用暗视场检测毛羽的仪器,精度较高(0.2毫米),并可将毛羽长度分为 3、5、7毫米三档进行检测。中国80年代初研制出的光电式毛羽试验仪,性能较好。   纱线拈度仪:测试纱线单位长度内的拈度数和拈缩的仪器。测试纱线拈度的方法有完全退拈法和“退拈-加拈”法两种。完全退拈法适用于粗纱和股纱。测试单纱的拈度大多采用“退拈-加拈”法,使用的仪器是电动式拈度仪。  回潮率测试仪:有直接烘干和间接测量两种,直接烘干除了最常用的烘箱外,还有利用红外线、高频和微波的快速烘干仪。

  • 【讨论】电力仪表风靡国际市场 并购重组成必然

    导读:智能电表作为智能电网的核心设备,必将随着智能电网部署的增长,呈现迅速增长势头。目前在全球范围内已经在开始淘汰感应式电表,易观国际研究预测,在2015年,全球智能电表和网络基础设施技术应用将超过150亿美元的市场规模。    中国在“十二五”规划纲要中明确提出“推进智能电网建设,切实加强城乡电网建设与改造,增强电网优化配置电力能力和供电可靠性”,发展智能电网已成为社会共识。我国为实现智能电网的健康可持续发展,国家电网分阶段稳步推进电网智能化建设,其中过去的2009-2010年为规划试点阶段,2011-2015年为全面建设阶段,2016-2020年为引领提升阶段。    中国电能表的产量在2006年后进入平稳发展阶段,每年均保持小幅增长。易观国际预计,2010年电能表产量为12229万台销量,同比2009年增长3%。    易观商业公司解决方案公司认为:    电子式电能表已占据我国电能表市场的主导地位    电子式电能表替代感应式电能表已是大势所趋。随着电子信息技术的飞速发展以及用户对电能表计量准确度和功能的要求,电能表的产业结构在逐步发生变化。电子式电能表凭借多功能、高精度、多费率、自动抄表等优势,在2005年产量首次超过感应式电能表并呈逐年上升的趋势,到2009年,电子式电能表销量达6,930万块,比感应式电能表多近6,000万块。    智能电能表将成为行业未来发展主流    智能电网建设将给电能表市场提供巨大的发展机遇。“特高压”和“智能化”成为“十二五”电网发展主题,为加快建设统一坚强智能电网,国家电网公司组织编制了智能电能表系列标准,并提出未来将大规模推广使用智能电能表,现有电能表产品也将逐步更换为智能电能表。    国网于2009年底进行了第一次电表集中招标,2010年电表集中招标全面实施,招标额大幅上升,四次集中招标量远超市场预期,全年智能电表招标数量达到4533万块左右。预计2012年以前国家电网对智能电表的招标将维持高位,未来两年每年需改造和更换的电能表总量将达到6000万只,以单只300元的价格计算,市场容量将达到180亿元。    国际市场已成为我国电能表销售的重要市场    电能表出口以电力用户招标采购为主、市场开拓周期较长,近几年来随着中国电能表生产企业国际竞争力的提高,出口产品已经从低档产品向电子化、智能化的中高档产品发展,市场也从不发达国家进入到了欧美等发达国家,出口已经初步形成规模。2010年我国电能表产品出口量为1895万台,其中电子式电能表占比高达71.1%。    在大规模的全球性智能电网建设的大趋势下,未来国际电能表市场尤其是智能电表市场将有更广阔的需求,同时随着我国电能表生产企业自主创新能力和技术水平的不断提升以及综合竞争优势的增强,将在国际市场占有更大的市场份额。    行业竞争日趋激烈,并购重组势在必行    经过几年的发展和市场竞争,电工仪器仪表生产企业的生产集中度、集约化、规模化得到进一步提高,并形成了以少数电能表企业为龙头引领整个行业发展的局面。国内行业生产能力出现结构性过剩,尤其是感应式电能表表及中低端产品市场竞争非常激烈,价格已经成为竞争的重要手段。而在电能表行业由感应式向全电子式产品转型,智能电网新技术的应用和国网集中招标对投标人资质的严格要求等因素的作用下,加速了电能表行业重新洗牌,行业竞争态势发生变化,市场份额将向大企业集中,行业并购重组势在必行。

  • 气压感应器功能_气压感应器是做什么的

    随着科学技术的进步,人们的生活水平跟质量得到逐步的提高,同时科技使得社会进步,很多靠人工才能完成的东西现在由一些科技就能轻松搞定,节省了大批的人力物力,也做到了资源合理利用,像气压感应器这一块就应用的比较多了,很多领域都会有的,OFweek Mall传感器商城网对于气压感应器有详细的说明。气压感应器用于测量气体的绝对压强。主要适用于与气体压强相关的物理实验,如气体定律等,也可以在生物和化学实验中测量干燥、无腐蚀性的气体压强。  国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。气压感应器是由一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动化检测和控制的首要环节。气压感应器除了模拟输出的产品外,数字输出产品在市场上也占有了很大市场。一般数字输出的产品多为贴片式、微小型、模块化产品(例如BA5803、BP5607、BT5611等)。数字输出的产品在使用中无需在进行放大电路、温补电路、标定零点等处理,使用起来更为方便。气压感应器的参数理化性质外壳:不锈钢和聚酯压力接头:1/8" (i.d.) 倒钩接头电气连接: 5针端子块尺寸: 12x8x75px重量: 约135g电气数据电气线路: 3 或 4 线励磁: 9.5 ~ 28 Vdc输出: 0~ 2.5 Vdc, 0 ~ 5 Vdc输出电阻: 10 Ohms输出噪音: 50 毫伏流耗: 3 mA 常规 (操作模式), 1 μA (睡眠模式)气压感应器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨[url=http://mall.ofweek.com/1428.html]气压感应器[/url]丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【原创】如何建立“确保质量安全的食品加工环境”

    为了确保食品实验台质量万无一失,必须依靠洁净的生产环境及先进的消毒设备来实现,这个过程应包括从员工进入车间到成品入库为止的所有各个环节。在食品生产链中,“微污染”的控制是一个脆弱的环节,一旦控制不严必将影响食品安全。   针对这一问题,据专业从事食品杀菌技术研发和设备制造的上海康久消毒技术有限公司经理金大海先生介绍:所谓的“微污染”即员工新陈代谢物、手部细菌、车间环境细菌、地面扬尘中霉菌、空调滋生细菌等轻微污染源的总称,其中任一点若控制不当,均可导致食品在保质期内霉变或腐败。因此,为了严格控制食品生产过程中微污染源,必须具备以下各项起关键作用的重要条件:   一、控制员工的微污染源   1、控制工人自身新陈代谢物最直接有效的方式为:在生产前换工作鞋、换工作服、戴工作帽、佩一次性口罩,工作衣、帽应穿戴整齐,头发不得露在衣帽外面,禁止涂口红、化妆、喷香水、涂指甲油、佩戴任何饰品、手表等。   2、进车间前手部彻底消毒,建议安装“Q8自动感应手消毒器”,如采用75%医用酒精作为消毒介质流程为:“感应给皂机洗手—水龙头冲洗—感应式烘干—感应式手消毒”;采用其他消毒液作为消毒介质流程为:“感应给皂机洗手—水龙头冲洗—感应式手消毒—感应式烘干”;建议选择第一种方式,因为酒精挥发后手部无任何残留。以首次手部杀菌后时间计算,建议河南装饰公司每隔60-90分钟对手部消毒一次,阻隔手部细菌的滋生及繁衍。   3、生产过程中接触成品的操作必须戴上一次性手套,手套要完整、无破损、不透水,当手被污染后必须按上述洗手消毒程序重新洗手消毒。   二、控制车间空气中的微污染源   1、白天工人工作的时候采用动态消毒设备:如食品动态杀菌机,近年来这一设备广泛用于食品企业的包装、冷却及灌装环节,采用最新的NICOLER发生腔杀菌原理,消毒过程为:通过特殊的脉冲信号使得NICOLER发生腔产生逆电效应,生成大量的等离子体杀灭带负电的细菌,整个杀菌过程只需0.1秒。由于在对车间消毒时,人可同时在车间内工作,对人体没有任何伤害,所以,该杀菌技术也可称作为“NICOLER消毒技术”。   2、晚上工人下班后采用静态消毒设备,如在包装、冷却及灌装环节采用紫外线杀菌对空气消毒,有效地灭活致病病毒、细菌和原生动物,不产生任何消毒副产物,但紫外线能破坏人体皮肤细胞,严重时引起癌变或损伤眼睛。对于配料、半成品车间及成品仓库建议使用臭氧对空气消毒,其不但可以抑制物体表面细菌生长且臭氧的气味可有效驱赶鼠虫,有效降低生物对食品的危害,需要注意的是无论使用臭氧还是紫外线对人体均有危害,需要在工人下班走清后开启,上班前关闭,然后开窗通风后工人方可进车间。   三、控制净化洁净室的微污染源   正压净化室是目前保证食品加工环境安全的重要方式之一,由于本身不具备杀菌功能,且只能通过控制尘埃的方式降低微生物含量。只要开机运行,其“微污染源”将逐一显现,如空调表冷器滋生细菌、管道内壁繁衍细菌、过滤器蔓延细菌等。为避免食品企业重资金投入无尘洁净室保证食品生产安全,却未能完全杜绝“微污染”隐患,对于此:   1、员工之管理,在洁净室内污染来源80%来自作业人员,若能使作业人员依洁净室管理办法确实执行管理,而所有人员也均配合实施,则污染源的产生可说已减少大半。   2、进入洁净室员工,必须要具备有达成高洁净度标准,并要维持最好状态的观念。   3、员工进入洁净室数目以维持最小限度为原则(愈小愈好),并须依洁净室进出标准流程进出洁净室。出则相反方向进行,唯不须经缓冲通道或风淋室脱尘处理。   4、对洁净室的空调系统及通风系统内安装动态杀菌装置,下面将对洁净室污染控制领域中最新的技术进行介绍:   采用NICOLER动态杀菌技术,安装位置在风道的主管、支管或空调表冷器的前面。等同于将整个净化空调送风系统做成大型的空气消毒机,只要空调开启:车间空气中所滋生细菌、工人身上新城代谢物、管道回风中细菌、新风中含有细菌、系统自身的二次污染物(表冷器、管道内壁、过滤器等所滋生及蔓延细菌),将迅速被分解杀灭,使得食品在真正意义上的“无菌无尘”车间安全生产。   四、结语   本文说明,为了能够更好地控制食物的安全性,必须引入和采用一些新的概念。随着先进的NICOLER杀菌技术在食品净化工程加工中的应用,最终成品的安全性有了明显的提高;随着各种“微污染”控制措施的成熟运用,有效构建保证质量安全的优质加工环境。

  • 【原创大赛】CrMo钢感应调质热处理研究

    【原创大赛】CrMo钢感应调质热处理研究

    对于普通碳钢及合金钢,调质处理可以改善钢的综合性能,调质工艺(高温淬火+高温回火)已应用多年,工艺也比较成熟。调质工艺中的淬火过程是加热钢使其完全奥氏体化后快速冷却,使得碳和合金元素完全固溶到铁素体基体中而形成一种过饱和铁素体而形成马氏体,这种马氏体的强度很高,在随后的高温回火过程中使得碳化物析出,起到析出强化作用,改善钢的性能。通过控制回火处理的温度及时间来调配钢的强韧性。 CrMo钢主要应用于伴有腐蚀环境的油气田中,高钢级CrMo钢需要在保持高强度的同时满足抗腐蚀的条件,这就需要对钢管进行相应的处理,如细化晶粒、改善碳化物构成等。大量研究表明,使用感应热处理的方式可以明显的改善钢管的性能[sup][/sup]。感应热处理方式具有低成本、高效率的特点,并且在钢管制造中可以超越常规热处理,在提高晶粒度、改善析出相构成,降低位错密度等多方面有优良的表现。快速的加热淬火可以使晶粒度同比提高2级以上,快速的加热回火可以抑制析出相(碳化物)长大,使其更加细小、均匀、弥散分布于基体组织,有益于提高钢管的综合性能。采用中频感应加热的方式对CrMo钢进行调质处理,通过细化试验钢的晶粒及调整回火过程中析出相的形态和分布,使感应热处理后的试验钢力学性能相对常规热处理有了较大的提高。[b]1 试验材料和方法[/b] 试验中采用CrMo作为试验钢,样管规格为88.9mm*6.45mm。试验钢经EAF电弧炉冶炼、LF炉精炼后使用VD炉真空脱气,采用连铸的方式制成管坯,,使用PQF三辊连轧机制成无缝钢管。采用中频感应炉对样管进行感应淬火和感应回火处理,从调质处理后的管材上切取样品,对所切取的样品进行粗磨、细磨、抛光、浸蚀(浸蚀剂采用4%HNO[sub]3[/sub]+96%C[sub]2[/sub]H[sub]5[/sub]OH,浸蚀时间为5~10秒),然后在金相显微镜上进行显微组织观察。为了进一步观察回火索氏体中碳化物的形态,用扫描电子显微镜进行显微组织观察,采用X衍射仪进行X射线衍射试验并采用透射电镜确定析出相种类。 为了研究感应热处理过程中试验钢在感应淬火和感应回火两个不同阶段的变化以及方便和传统电阻炉加热热处理进行对比,我们采用以下热处理方式进行试验,分别为:I、中频感应炉淬火+电阻炉回火;II、电阻炉淬火+电阻炉回火;III、电阻炉淬火+中频感应炉回火;IV、中频感应炉淬火+中频感应炉回火。感应热处理过程中的加热时间,采用5~10分钟,短时间内的感应热处理加热方式可以避免试验钢的晶粒长大,保证试验钢通过热处理试验得到更好的宏观力学性能。[b]2 试验结果及讨论2.1 感应淬火对试验钢的性能影响[/b] 使用中频感应炉和电阻加热炉对CrMo钢进行了感应淬火与常规淬火的比较试验,分别使用热处理方式I和II,结果如表一所示:表一 不同热处理淬火方式下试验钢的力学性能[table=565][tr][td] [align=center]试样号[/align] [/td][td] [align=center]热处理制度[/align] [/td][td] [align=center]屈服强度[/align] [align=center](Mpa)[/align] [/td][td] [align=center]抗拉强度(Mpa)[/align] [/td][td] [align=center]延伸率[/align] [align=center](%)[/align] [/td][td] [align=center]冲击功[/align] [align=center](J)[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center][i]950°C×10min[/i][/align][i] [/i][align=center]+670°C×60min[/align] [/td][td] [align=center]917[/align] [/td][td] [align=center]957[/align] [/td][td] [align=center]17.5[/align] [/td][td] [align=center]76[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center][i]950°C× 5min[/i][/align][i] [/i][align=center]+670°C×60min[/align] [/td][td] [align=center]934.5[/align] [/td][td] [align=center]965[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]70[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×60min[/align] [/td][td] [align=center]830[/align] [/td][td] [align=center]847[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]75[/align] [/td][/tr][/table] 表一采用了三种热处理制度,前两种都采用热处理方式I,不同的是淬火前的感应加热时间不同,1#试样采用10分钟的加热时间,2#试样采用5分钟的加热时间,用于比较在不同淬火加热时间情况下试验钢的力学性能变化。3#试样采用热处理方式II进行调质处理,主要用于和1#试样比较不同淬火热处理方式下试样钢的力学性能变化。通过比较可以发现,经过感应热处理淬火的1#试样在保持近似冲击功性能的同时,屈服强度比常规热处理淬火的3#试样提高近90Mpa,达到125ksi钢级,这主要是因为感应热处理淬火保温时间较短,奥氏体晶粒形核后长大时间相对较短,使淬火后的试验钢晶粒细化。[img=,674,300]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020914_01_2984502_3.png[/img] 图1是1#和3#两种试样的原奥氏体晶粒图。从图1中可以看出,经过感应热处理淬火的试样相对常规热处理的试样,晶粒细化程度明显。为了准确评价试样的晶粒度级别,我们采用比较法对试验钢进行奥氏体晶粒度的评级,因为标准中没有9级以上的晶粒度评级,因此采用200倍金相评级+2的方法,得到1#试样的晶粒度为10级,3#试样的晶粒度为8.5级。 晶粒度细化是提高钢管性能的主要因素,因此经过感应热处理的试样力学性能相对常规热处理有所提高。[img=,554,388]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020914_02_2984502_3.png[/img] 图2是2#试样在200X显微镜下的晶粒度图,晶粒度为11级,通过对比1#和2#试样的感应热处理制度和晶粒度级别可见,随着感应淬火加热时间的减少,晶粒度呈细化的趋势。 通过对比1#和2#试样的力学性能发现,在同样的感应淬火热处理中,缩短加热时间虽然可以使晶粒度进一步细化,但这种晶粒度的细化无法同时提高试样钢的屈服强度和冲击功。从表一中可以看出,随着缩短感应淬火加热时间,试样钢的屈服强度有所提高,但冲击功性能相对降低,因此,试样钢要得到满意的力学性能需要合理的制定感应淬火加热时间。同时我们也可以看出,在感应热处理中通过灵活的调整感应淬火加热时间,可以控制试验钢力学性能的配比。[b]2.2 感应回火对试验钢的性能影响[/b] 感应淬火热处理可以通过细化晶粒提高试验钢的力学性能,感应回火热处理则通过改变析出相的形态和位错密度来改善试验钢的性能。试验中同样使用中频感应炉和电阻加热炉对抗腐蚀无缝钢管27CrMo27Vs进行了感应回火与常规回火的比较试验,分别使用热处理方式III和II。在感应热处理回火前,三种样品都采用常规热处理淬火的方式,热处理制度为950°C×40min,不同回火制度的试验结果如表二所示:表二 不同热处理回火方式下试验钢的力学性能[table=565][tr][td] [align=center]试样号[/align] [/td][td] [align=center]热处理制度[/align] [/td][td] [align=center]屈服强度[/align] [align=center](Mpa)[/align] [/td][td] [align=center]抗拉强度(Mpa)[/align] [/td][td] [align=center]延伸率[/align] [align=center](%)[/align] [/td][td] [align=center]冲击功[/align] [align=center](J)[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×5min [/align] [/td][td] [align=center]902[/align] [/td][td] [align=center]949[/align] [/td][td] [align=center]18.0[/align] [/td][td] [align=center]73[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×3min [/align] [/td][td] [align=center]922[/align] [/td][td] [align=center]968[/align] [/td][td] [align=center]18.0[/align] [/td][td] [align=center]70[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×60min[/align] [/td][td] [align=center]830[/align] [/td][td] [align=center]847[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]75[/align] [/td][/tr][/table] 表二采用了三种热处理制度,前两种都采用热处理方式III,不同的感应回火热处理的加热时间不同,4#试样采用5分钟的加热时间,5#试样采用3分钟的加热时间,用于比较在不同回火加热时间情况下试验钢的力学性能变化。3#试样采用热处理方式II进行调质处理,主要用于和4#、5#试样比较不同回火热处理方式下试样钢的力学性能变化。通过比较可以发现,经过感应热处理回火的4#、5#试样在保持近似冲击功性能的同时,屈服强度比常规热处理回火的3#试样提高70Mpa以上,达到125ksi钢级。在感应热处理回火过程中,不同于传统热处理。传统热处理需要较长的时间使在淬火过程中固溶的碳及合金元素充分析出,从而满足冲击性能,而感应热处理方式可以在短时间内提供试验钢较高的能量,造成短时间内就可以满足析出相的充分析出。图3是使用扫描电镜得到的3#和4#试验钢的析出相形貌照片,照片中3#试样的析出相形态以棒状和带有尖端的条状为主,球状及椭圆状析出相很少,而4#试样的析出相形态以球状和椭圆状为主,很少出现棒状和带有尖端的条状形态,这是因为传统热处理是一个渐变的过程,满足性能必然要提高加热时间,提高加热时间伴随着析出相的长大和偏聚,形成棒状或带有尖端的条状,增加材料的脆性;而感应热处理的回火过程时间很短,析出相来不及长大,形成分布均匀,偏重于球形或椭圆形的形态,使试验钢减少由于析出相的偏聚而带来的性能下降,从而达到提高力学性能的目的。[img=,690,309]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020915_01_2984502_3.png[/img][b]2.3 感应热处理对试验钢的影响[/b] 通过以上的分析,我们可以看出感应热处理淬火和回火都可以利用不同的微观机理达到提高试验钢力学性能的目的。表三中的6#试样是采用IV热处理方式的力学性能结果,与3#试验钢对比发现两种热处理方式下冲击功变化较小。采用感应调质热处理(淬火和回火)后的试验钢相对传统调质处理,屈服强度可以提高超过100Mpa。表三 不同方式调质处理后试验钢的力学性能[table=553][tr][td] [align=center]试样号[/align] [/td][td] [align=center]热处理制度[/align] [/td][td] [align=center]屈服强度[/align] [align=center](Mpa)[/align] [/td][td] [align=center]抗拉强度(Mpa)[/align] [/td][td] [align=center]延伸率[/align] [align=center](%)[/align] [/td][td] [align=center]冲击功[/align] [align=center](J)[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]950°C×10min[/align] [align=center]+670°C×5min [/align] [/td][td] [align=center]945[/align] [/td][td] [align=center]998[/align] [/td][td] [align=center]18.5[/align] [/td][td] [align=center]74[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]950°C×40min[/align] [align=center]+670°C×60min[/align] [/td][td] [align=center]830[/align] [/td][td] [align=center]847[/align] [/td][td] [align=center]16[/align] [/td][td] [align=center]75[/align] [/td][/tr][/table][img=,690,299]http://ng1.17img.cn/bbsfiles/images/2017/07/201707020916_01_2984502_3.png[/img] 使用感应热处理的方式对抗腐蚀无缝钢管进行热处理不仅仅可以提高材料的力学性能,同时需要值得注意的是感应加热这种热处理方式带来的析出相及位错密度的改变。图4是3#试样和4#试样的透射电镜图象,通过图4可知,经过感应回火热处理的4#试样具有更低的位错密度。27CrMo27Vs钢主要以抗H[sub]2[/sub]S为目的,在腐蚀过程中H离子往往存在于材料的位错位置,位错密度高会引起H离子的聚集并形成氢分子,随着氢气团的增大使材料产生氢致开裂,在使用中会出现材料失效的现象,因此更低的位错密度有利于提高油井管的抗腐蚀能力。图4 3#和4#试样的析出相的TEM图[b]3 结论[/b] 通过以上研究,可以看到感应热处理方式可以提高CrMo钢性能、改善微观析出相的形态、降低材料位错密度。感应热处理的特点使CrMo钢在感应淬火后得到晶粒的细化,在感应回火过程中得到更为适合抗腐蚀性能的析出相形态,有利于提高材料的抗腐蚀性能。 本论文从试验的角度比较了感应热处理方法与常规热处理方法在材料力学性能、微观析出相、微观位错形态等方面的不同,并提出了感应热处理的优势,在机理性研究和最终产品的抗腐蚀试验性能方面仍需进一步的研究。 CrMo钢的感应热处理试验结果为油井管的生产提供了很好的借鉴,推动了同类产品的工艺进步。对油井管感应热处理的深入研究,系统的掌握感应热处理工艺的相关规律,可以提高产品性能以能使CrMo钢得到更好的应用。

  • 【原创】基于感应耦合比率臂的高精度位移测量系统

    常用的电气测量方法有很多种,依据测量误差与测量方法相关联的特点,可以将现有的各种测量方法分为如下三大类:(1)直接测量法:直接测量未知量的数据;(2)差值测量法:测量未知量与已知量之差,间接获得被测量的值;(3)比率测量法:测量未知量与已知量之比值,间接获得被测量的值。测量的过程就是要在未知量和已知量间建立起一定的关系,最后获得被测量的大小。在采用上述不同的测量方法的,测量装置和过程引入的误差是不一样的。如在直接测量法中,因为测量时间与环境的变化会引入一个系统误差;而采用差值测量法时,由于两个被比较的元件的外界条件相同,检测它们的差值可在很大程度上消除上述系统误差,尤其是利用零偏法时,差值测量可以获得相当精确的结果,不过所测得的两个量之差值仍随着外部条件的变动而变化。采用比率测量法能够显著减小在一级近似下被测量中依赖于外界条件以乘积因子形式出现的误差项,从而具有优于差值测量法的抗干扰性能。1 比率测量法 一个物理量f,其值取决于外界因素如t(温度)、u(电压)……等,其一阶展开式为: f=f0+(аf/аt)0Δt+(аf/аu)0Δu+A (1)为简化数字运算,只考虑存在一个干扰因素的情况,参考量f1与被测量f2可以分别写作:f1=f01(1+β1Δt)和f2=f02(1+β2Δt),此处β1=1/(f01)(аf1)/(аt)0, β2=1/(f02)[(аf2)/(аt)]0,且有β1Δt1,β2Δt1。容易求出上述三种方法中的相对测量误差各为: а绝对=β2Δt=Lβ1ΔT (2) а差值=[(f02β2-f01β1)Δt/(f02-f01)]=[(LK-1)/(K-1)]β1ΔT (3) а比率=(β2-β1) Δt=(L-1)β1Δt (4) 其中L=(β2)/(β1),K=(f02)/(f01)。图1表示取L=1.5时相对误差随元件值的分布情况。可以看出,比率测量法在很宽的测量范围内均具有良好的抗干扰能力。当存在多个影响因素或者在分析由上述方法组合成的测量装置时,可根据叠加原理按系统误差的理论综合评定其精度。 2 电容位移传感器与比率测量 电容式微小位测量系统是近年来发展最快的位移测量技术之一。众所周知,用两块平行的金属板就可以构成一个电容位移传感器,其电容量由极板的相对有效面积、极板间距以及填充的介质特性所决定。只要被测特体位置的移动改变了电容器上述任何一个结构参数,传感器的电容量就会发生变化,通过测量电容量的变动即可精确地知道特体位移的大小。 电容位移传感器的三种基本类型如图2所示。其具体结构可视实际运用的场合灵活多变,电容极板可以是平面的或者球面的;运行电极可以采用水银等导电液体。图2所示的三种基本类型均可组成差动式结构,如各分类中下部图形所示。采用差动式结构能够提高传感器线路的输出灵敏度,减小非线性,还能在一定程序上抑制由静电吸引带来的误差。当要求测量系统具有很高的分辨力时,一般是保持极板面积相对固定而使电容传感器极板间隙随被测位移改变,即如图2(a)所示的结构。反之,采用保持间隔恒定而让极板相对面积可变的结构,则可以在相当大的动态范围内获得线性的响应。一般情况下,电阻、电感和电容等电子元件均被盾作双端元件。两端电容器的等效电路示如图3(a)。由于各端钮对附近导电物体的分布电容C1G、C2G是变化的,所以其总电容C12+[(C1G×C2G)/(C1G+C2G)也是不稳定的。如果电容式传位移传感设计成这种简单的结构,外界干扰会很大。为了消除上述分布参数的影响,必须对电容传感器进行完善的静电屏蔽,形成如图3(b)的结构,称之为三端电容器。这样的三端电容元件中,由极板形成的直接电容C12是确定的,但是C13、C23仍受引线芯屏间电容的影响。如何排队三端电容中分布参数的影响?怎样准确测量与位移相关的直接电容的大小呢? 上世纪五十年代在电力工学和计算学领域出现了一种新型的电压比率器件——感应耦合比率臂,它的突出特点是分压精度高,可达10 -8量级以上;输出阻抗低,能做到10mΩ以下;长期稳定性非常好,年漂移率保持在10 -9的水平。其后,感应分压器的理论与工艺日臻完善,极大地提高了电工测量和标准计量的精度,实现了对小电容的高精度测量,进而以计算电容与感应分压器为基准导出了电阻、电感等的计量标准。这一成就也对精密测量领域产生了积极的推动作用。如果将两个三端电容串接起来,分别用两个信号源供电,就形成了如图4所示的等效电路,其中,Y12=jωC12,Y’12=jωC'12。在公共点D与接地端之间连接一个检流计,调节两个外加电压的幅值和相位,使通过两个直接电容流向D点的电流大小相等、方向相反,直道检流计指零,便可得到下面的关系式: C12/C’12=-(U2/U1) (5)可见,只要知道了两个电压之比也就知道了两个三端电容的直接电容之比,于是就可以准确测量传感器相应的位移。两个电压源如果用感应耦合比率臂来实现,端钮对屏蔽的导纳对测量结果将没有明显的影响,因为Y23、Y’23在电路不平衡时只影响灵敏度,而当线路达到平衡状态时就没有影响了。至于Y13、Y’13引起的分压误差,则可以得到极大的降低,只要信号源的内阻足够小即可。如前所述,感应耦合比较率臂正好具有这一优良特性。 现以设计一个测量微小位移的系统为例来说明上述测量方法的应用。首先,用高导磁率环形铁芯绕制出感应耦合比率臂,再设计适当的可变间距三电极差动式电容位移传感器的结构,并采用比率测量线路,就有如图5所示的微位移测量系统原理框图。对双极板电容传感器,不考虑电场的边缘效率,两个直接电容为:C12=[(εA1)/(3.6πd1)](pF),C’12=[(εA2)/(3.6πd1)](pF)。不失一般性,对两个差动电容器可假定极板相对面积相等,即A1=A2=A(cm2)。极板间介质的介电常数也有ε1=ε2=ε(譬如均为空气)。d1、d2(cm)分别为两传感器的极板间距。N1、N2系感应分压器两部分电压对应的匝数,N1+N2=N0。将两个电容表示式代入(5)式,可得: d1=KN1 (6) d2=K(N0-N1) (7) 式中,K=(d1+d2)/N1+N2为测量系统的灵敏度系数,表示比率臂单位读数变化所对应的传感器中心电极的位移。现估算一下这个测量系统可能达到的指标。感应耦合比率臂的总的分压比不难做到1/N0=10 -7,两个传感器极板间距之和是个常量,取d1+d2=1mm,则位移灵敏度系数K=10 -8cm,只有0.4纳米。N1为仪器面板上的读数,其变化范围为从0到N0。从最后获得的极板位移与比率变压器读数的关系式(6)可知,读数随中心电极的位移呈线性变化。实际完成的系统由于结构的不完善性,在接近量程的两端会出现一定程度的非线性,如果采取等电位屏蔽等措施,可以把输出特性的非线性降低到可以忽略的程度。可见,将差动式电容位移传感器与比率测量方法结合起来,设计的测量系统既有很高的分辨能力及较强的抗干扰能力,也能够获得很好的线性响应。还有更多的资料,我在这里就不添了,大家感兴趣的话到这个网站上去下载吧!http://www.yiqi120.com/zlzxInfo.asp?id=1676

  • 电能表行业对于温度老化室的离不开

    电能表行业对于温度老化室的离不开

    [url=http://www.instrument.com.cn/netshow/SH101384/][b]温度老化室[/b][/url]定义又叫高温老化试验室,是针对高性能电子产品仿真出一种高温、恶劣环境测试的设备,是提高产品稳定性、可靠性的重要实验设备、是各生产企业提高产品质量和竞争性的重要生产流程,该设备广泛应用于电源电子、电脑、通讯、生物制药等领域。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/10/202210191620031545_8732_1760631_3.jpg!w600x600.jpg[/img][/align]  电能表可分为单相电能表和三相电能表:  1、单相电能表是用来计量用电设备消耗电能的仪表。按照采样原来分为机械式电能表、电子式电能表和机电一体式电能表。根据智能电网建设,未来3-5年内,基本被电子式的智能电能表取代。根据相数分,分为单相和三相电能表。目前,家庭用户基本是单相表,工业动力用户通常是三相表。  2、三相电能表折叠三相有功电能表分为三相四线制和三相三线制两种。常用的三相四线制有功电能表有DT系列。  三相四线制有功电能表的额定电压一般为220V,额定电流有1.,3A,,6A,10A,1,20A,2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路;三相三线有功电能表的额定电压(线电压)一般为380V,额定电流1.,3A,,6A,10A,1,20A2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路。  按用途:工业与民用表、电子标准表、很大需量表、复费率表  按结构和工作原理:感应式(机械式)、静止式(电子式)、机电一体式(混合式)  按接入电源性质:交流表、直流表  按准确级:常用普通表:0.2S、0.5S、0.2.0.5.1.0、2.0等  标准表:0.01.0.05.0.2.0.5等  按安装接线方式:直接接入式、间接接入式  按用电设备:单相、三相三线、三相四线电能表  科技功能:普通电表、智能电表  所以综合以上,我们看到不管是什么类型的电能表,都离不开温度老化室的检测。

  • 【讨论】讨论: 关于测试木材含水率的木材湿度计

    请教达人: 我们公司使用的两种木材湿度计,一种是针插式的,上海研究所研制的,按照说明书,哪些木种用哪个档位进行测试,一种是感应式的,美国瓦格纳的,没有档位区分,直接放置在被测试件表面即可。 但是,这两种湿度计测试同一件原木,尤其是端面,竟然相差10度。 但是拿出去校准,又合格。 不知道是怎么回事? 还请指点。[em09512]

  • 针/机织物顶破强度测试工作指示

    针/机织物顶破强度测试工作指示

    针/机织物顶破强度测试工作指示 1.0 目的与范围1.1本方法是用于测定针织物顶破时所需的压力。1.2本方法是适宜于下列标准方法。1.2.1 中国GB/T7742.1-20051.2.2 美国ASTMD37861.2.3 国际标准ISO 13938-1(2)1.2.4 日本JIS L10182.0原理将一定面积的试样放在橡皮隔片与一个规定尺寸的环形压罩之间,在隔片下平缓地增加流体压力当隔片顶涨时,使试样受到顶涨力至破裂点。3.0设备3.1 机械式液压顶破试验仪或数码显示气压顶破试验仪。3.2 橡皮隔片。(橡胶或其它相同材料具弹性的垫片)3.3 环形压罩a内径为(30.5±0.05mm),外径至少55mm; b底面应平整、光滑以使夹住试样时做到各处与膜片密接,并能均匀受压 ;3.4流体a可采用液体或气体,本标准采用的是液体(80%甘油液体);通过底板中心孔的流体的速度在整个测试过程中波动不能超过20%;通过底板中心孔的流体产生的压力能使试样在20±5秒内破裂;3.5 压力表: a量程:0-50Kgf/cm2 或根据产品需求量选择适当量程。精度: ±1%[color=white]论坛对你有帮助,请告诉你[/color]4.0标准温湿度环境相对温度:20±2℃湿 度:65±2%5.0试样5.1 试验布样之大小约为15cm×15cm及以上。5.2 取样需具代表性,不能同一部位取两个相同的试样。各试样呈梯形排列取样。5.3 每种织物取五个试样。5.4 取样需离布边3英寸以上位置。6.0测试程序6.1 机械式液压顶破试验仪。6.1.1将试样置于标准温湿度环境中至少4小时。6.1.2将试样放于橡皮隔片与压罩之间,夹试样时切忌使织物折皱与扭歪。6.1.3将液压表上指针复位到零,压下手柄打开起动开关,逐渐增加橡皮隔片的顶涨力,使织物破裂,达破裂时关闭液压由,从液压表上记录每一试样在顶裂时不回转指针所指示的压力P[sub]D[/sub]+F,记录回转指针显示在破裂时隔片P[sub]D[/sub]。6.1.4 松开压罩,除下试样,将隔片还原,把压力表指针调至零点,继续下一试样。[u]6.2数码显示气压顶破试验仪:[/u] 6.2.1 参照程序6.1.1至6.1.2。 6.2.2 将试验仪调整到测试画面,打开起动开关,逐渐增加橡皮隔片的顶涨力,使织物破裂。 6.2.3 测试结束后,自动关闭气压,测试结果将以数字显示。 6.2.4 除下试样,继续下一试样的试验。7.0计算测试结果a. 机械式液压顶破强度计算公式用PF=PD+F-PD计算织物的顶破强度PFPD+F=试样破裂时的压力PD=隔片顶至破裂时所需的压力b:全自动气压顶破试验仪,直接记录织物顶裂强度PF。备注:平均数结果填入报告。8.0附图:(布样)[img=,547,376]http://ng1.17img.cn/bbsfiles/images/2018/05/201805041036198474_7582_2154459_3.png!w547x376.jpg[/img]9.0 注意事项9.1仪器的校正;(换膜片时校正、按设备校验周期校正)9.2必须经常检查仪器是否能使试样在规定时间范围内顶破;9.3检验各部件能否正常的工作;9.4弹性膜片与标准膜片差异在5%内合格,若发生明显形变时必须更换.即在没有试样的情况下,使膜片膨胀至不定期的高度观察膜片形状,若与正常的球冠形有明显的差异应更换膜片;

  • 【原创大赛】【开学季】+织物摩擦色牢度仪‘不听话’的‘内因’

    【原创大赛】【开学季】+织物摩擦色牢度仪‘不听话’的‘内因’

    织物摩擦色牢度仪‘不听话’的‘内因’摩擦色牢度是纺织品色牢度检测中的一个重要检测项目,在强制性标准中对摩擦色牢度也有明确要求,同时摩擦色牢度也是评价纺织品质量的一个重要的标准,在实际的检测中有着重要的意义。摩擦色牢度仪一般分为手动和电动两种,两种仪器各有优势,一般国标用电动摩擦仪的较多,电动摩擦仪是有一个小型电机带动,带动导杆,运用由一个直径MM的圆柱体摩擦头,并施以向下的压力为N,直线往复动程MM,然后完成一个摩擦过程,电动摩擦仪的优点就是运行速度和运行的距离是固定死的,能有效控制,减少人为误差;缺点就是有一定的声音,使用和保养不当的话会容易损坏这不,我们的电动摩擦仪‘不听话’了,竟然不能自己计数了,也就是说,本来每个样品摩擦十次,电动摩擦仪计数显示自动从十到零,然后自动停止,但是现在不能自动计数了,哪怕你摩擦100次也会不停止,当然也可以人工计数,手动停止,但是这样对仪器不好,也容易造成计数有偏差,有可能看错了会计数多一次少一次的,这样的话,就失去电动摩擦仪的作用了。停止使用,立即通知电工,但是对于这样的问题,电工也搞不懂,说这个还是不别乱拆,万一拆了造成更多的损坏就麻烦了,这么简单的问题都解决不了,估计只能叫做电工了,没有办法,立即和仪器厂家联系,安排检修事宜,厂家工程师的建议是让电工查看一下,应该不是什么大问题,我只能说电工搞不定,没有查出原因,请帮忙处理一下。第四天,厂家来人了,挺酷的一个小伙子,看看吧http://ng1.17img.cn/bbsfiles/images/2014/09/201409251616_515607_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409251617_515608_2154459_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/09/201409251617_515609_2154459_3.jpg 首先通电试机,不行,关电http://ng1.17img.cn/bbsfiles/images/2014/09/201409251618_515610_2154459_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/09/201409251618_515611_2154459_3.jpg 内部构造,是不是挺简单 http://ng1.17img.cn/bbsfiles/images/2014/09/201409251618_515612_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409251619_515613_2154459_3.jpg 经简单查看,最后是感应的问题,也就是正常情况下,转一圈计数一次,那个感应点,在电机的转轴上,马达转一圈,计数一次,但现在计数感应的那个象纽扣电池一样的东西,竟然掉下来了,竟然就是用胶水粘上去的,不可思议 http://ng1.17img.cn/bbsfiles/images/2014/09/201409251619_515614_2154459_3.jpg不知道还能不能用,用胶水粘上试试吧,赶忙找胶水去,平时不用,现在用的时候,只能到小仓库找了,竟然有一瓶不知道多少月前的胶水,粘上后,试试看 http://ng1.17img.cn/bbsfiles/images/2014/09/201409251620_515615_2154459_3.jpg 装上外壳,再试机,成了小结:仪器是我们实验室检测分析人员手中的战斗武器,我们不能仅仅会使用它,还要学着去了解它,了解它的构造,了解它的原理,这样我们才能真正的成为一起的好朋友,就不会在仪器出现问题的时候再手忙脚乱了,掌握了这些知识,也会成为我们的一种能力,且会更好的服务检测工作。

  • 智能感应泡沫洗手机常见故障排除及使用注意事项

    智能感应泡沫洗手机常见故障排除及使用注意事项

    新冠肆虐这2年多时间,实验室配备了不少防疫小仪器、小设备,如红外测温仪、空气臭氧消毒器、智能感应泡沫洗手机等。这类东西价格不高,不太耐用,购买时号称实行“三包”,实际很难享受到。使用中出现一些故障,只能自己动手维修。一、基本情况一款充电智能感应泡沫洗手机见下图,是公司给各个部门配置的,都是在使用一段时间后,出现不出泡沫故障:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949414042_3693_1807987_3.jpg[/img]机器工作原理:整机由一枚18650锂电池及充电电路供电。按下机器背后的电源开关按钮一直到机器头部红LED灯闪烁,MCU及红外检测电路工作。当手掌处于红外检测窗口下方被感应到后,MCU发出指令,接通洗手液加压隔膜泵电机工作,将洗手液从储存瓶中泵至起泡头,经两层金属微孔网起泡后输出洗手泡沫。约一秒钟后,电机停止工作。当手掌再一次处于红外检测窗口下方后,机器又开始工作。若要关机,按下机器背后的电源开关按钮一直到机器头部绿LED灯闪烁。要注意,即使关机后,MCU也一直处于微功耗的状态,等待开机按钮命令。机器长期不用,也应定时充电。二、检修拆机顺序机器后背,有电源开关按钮、电池盒(内部有充电插座):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949417372_456_1807987_3.jpg[/img]揭开头部的不干胶贴,卸下两颗固定螺丝:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949418817_9501_1807987_3.jpg[/img]再卸下电池盒内部的4颗固定螺丝,很轻松地拆开机器:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949417115_7822_1807987_3.jpg[/img]机器内部各部份名称:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949419645_5183_1807987_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949423632_1749_1807987_3.jpg[/img]三、无泡沫输出故障检修这种机型的这类无泡沫输出故障,大多数情况下,电路工作正常(能听见泵电机工作声响),但没有泡沫输出,都是由于起泡头内的起泡金属微孔网堵塞引起的。松开电路板上固定螺丝,取下起泡头:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949422106_9538_1807987_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949425917_9167_1807987_3.jpg[/img]拔下起泡头的出口管:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949424332_8726_1807987_3.jpg[/img]出口管一端的金属微孔网被渣滓堵塞:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949428378_6054_1807987_3.jpg[/img]起泡头内部还有一片金属微孔网,也有渣滓堵塞:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949426774_6352_1807987_3.jpg[/img]用热水泡洗两个金属微孔网。下面是清洗干净后的出口管一端的金属微孔网,它不是普通的金属滤网,是一种特殊结构的金属发泡网:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949427965_8437_1807987_3.jpg[/img]安装还原,工作正常了:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210040949432001_992_1807987_3.jpg[/img]四、常见故障及处理方法故障一,机器有动作,不出泡沫,或出泡沫量明显减少原因:起泡头堵塞。解决方法:拆开机器,取下起泡头,清洗金属微孔发泡网。使用干净无杂质颗粒的洗手液补充液。故障二,机器有动作,不出泡沫,机器底部有液体溢出原因:起泡头堵塞,机器内部液体输送胶管压力大,致使胶管连接处脱落,液体溢出。解决方法:拆开机器,取下起泡头,清洗金属微孔发泡网。用扎线捆绑液体橡胶输送管,防止压力大时脱落。用电吹风机低温吹干电路板。故障三,开机状态,伸手接泡沫时,机器无动作原因:红外感应窗口被泡沫遮挡或受到污染。解决方法:用布擦干净红外感应窗口,使用合适的洗手液。故障四,充电口时能充、时不能充电原因:充电插座引脚松动。解决方法:重新焊接充电插座松动的引脚。故障五,不开机,不能充电原因:机器内部18650锂电池失效,或由于长期搁置,电池电压极低。解决方法:更换新18650锂电池。或尝试取下锂电池进行激活处理。故障六,不开机原因:机内液体输送胶管脱落,液体污染电路板解决方法:清洗干净电路板、烘干。如果不行,更换电路板。维修后结语:这类泡沫洗手机比较娇气。要使用质量好的补充液,不能含有杂质颗粒,不同品牌补充液不要混合使用,避免发生化学反应生成不溶物,堵塞起泡头内部的微孔发泡网。根据机器电路结构,当机器关机后,仍处于微功耗状态。即使不用,也应2个月充一次电,防止电池亏电后无法使用。

  • 海水盐度分析

    国标中,海水盐度检测的感应式实验室盐度计,大家用的哪个厂家什么型号的?过计量的。谢谢!

  • 电能表行业对于温度老化室的离不开

    电能表行业对于温度老化室的离不开

    温度老化室定义又叫高温老化试验室,是针对高性能电子产品仿真出一种高温、恶劣环境测试的设备,是提高产品稳定性、可靠性的重要实验设备、是各生产企业提高产品质量和竞争性的重要生产流程,该设备广泛应用于电源电子、电脑、通讯、生物制药等领域。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204291606252109_5211_1385_3.jpg!w600x600.jpg[/img][/align]  电能表可分为单相电能表和三相电能表:  1、单相电能表是用来计量用电设备消耗电能的仪表。按照采样原来分为机械式电能表、电子式电能表和机电一体式电能表。根据智能电网建设,未来3-5年内,基本被电子式的智能电能表取代。根据相数分,分为单相和三相电能表。目前,家庭用户基本是单相表,工业动力用户通常是三相表。  2、三相电能表折叠三相有功电能表分为三相四线制和三相三线制两种。常用的三相四线制有功电能表有DT系列。  三相四线制有功电能表的额定电压一般为220V,额定电流有1.,3A,,6A,10A,1,20A,2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路;三相三线有功电能表的额定电压(线电压)一般为380V,额定电流1.,3A,,6A,10A,1,20A2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路。  按用途:工业与民用表、电子标准表、很大需量表、复费率表  按结构和工作原理:感应式(机械式)、静止式(电子式)、机电一体式(混合式)  按接入电源性质:交流表、直流表  按准确级:常用普通表:0.2S、0.5S、0.2.0.5.1.0、2.0等  标准表:0.01.0.05.0.2.0.5等  按安装接线方式:直接接入式、间接接入式  按用电设备:单相、三相三线、三相四线电能表  科技功能:普通电表、智能电表  所以综合以上,我们看到不管是什么类型的电能表,都离不开[b][url=http://www.instrument.com.cn/netshow/SH101384/C27608.htm]温度老化室[/url][/b]的检测。

  • 转速传感器

    转速传感器从原理(或器件)上来分,有磁电感应式、光电效应式、霍尔效应式、磁阻效应式、介质电磁感应式等。另外还有间接测量转速的转速传感器:如加速度传感器(通过积分运算,间接导出转速),位移传感器通过微分运算,间接导出转速),等等。测速发电机和某些磁电传感器在线性区域,可以直接通过交流有效值转 转速表换,来测量转速 ;大多数都输出脉冲信号(近似正弦波或矩形波)。针对脉冲信号测转速的方法有:频率积分法(也就是F/V转换法,其直接结果是电压或电流),和频率运算法(其直接结果是数字)。

  • 非接触式液位检测传感器

    非接触式液位检测传感器

    [size=24px][font=宋体][font=宋体]非接触式液位检测传感器顾名思义就是在不接触到液体的情况下检测出液位的状态变化。电容式液位传感器就是属于非接触式的,其内部安装了精密触摸[/font][font=Calibri]MCU[/font][font=宋体],通过感应有水和无水状态时的电容值变化差异,来判断水箱是否缺水。[/font][/font][font=宋体][font=宋体][url=https://www.eptsz.cn/Product/89459.html][b]电容式液位传感器[/b][/url]比较适用于常温环境下,安装也很方便简单,将传感器紧贴于水箱容器外壁,即可检测,无需调试。因其是电容感应式原理,所以传感器周围[/font][font=Calibri]2cm[/font][font=宋体]内不能有金属或磁场干扰,会导致传感器无法正常工作。[/font][/font][font=宋体]电容式液位传感器体积小、反应灵敏、精度高,可以实现缺水报警满水断电等功能。[img=,500,284]https://ng1.17img.cn/bbsfiles/images/2022/11/202211051033568889_5648_4008598_3.png!w500x284.jpg[/img][/font][/size]

  • 高低温冲击试验箱的感应器有何作用

    高低温冲击试验箱的感应器有何作用

    感应器对高低温冲击试验箱来讲能影响设备的准确度,试验箱设备中感应器具体有何作用呢?通过以下的文章大家简单了解一下吧。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2022/02/202202221646077176_6502_1037_3.jpg!w348x348.jpg[/img][/align]  在高低温冲击试验箱中感应器检测的基本概念是:在容栅测温仪表中,热电偶和热电阻是常用的检测温度电子设备,温差电偶测温的基础是热电效应,热电偶可以根据电器设备测量仪表的相互配合,正确地测量被测温度,是一种可以把温度信号转化为热电位差信号的温度传感器电子器件,当两个接触点a,还有b在不同温度的c和d处时,这是使用两种不同材料的a跟b之前会构成闭合回路,回路中的控制电路中会产生一定的热点位差值,这就是常说的“塞贝克效应”,导线a和b被叫做热电级,高温的一端(c)叫工作上端(通常弧焊接电焊焊接在一起);低温的一端(d)叫随意端(通常在一定的平滑温度下)。根据温度函数和温差的关系式,可以算出热电偶测量仪量程表。根据任意端温度d=00C规范给出了探测范围表,不同类型的热电偶有不一样的检距表格。如果热电偶控制电路中连接了第三金属材料聚合物材料,当由第二金属材料聚合物材料连接的2个接触点温度相同时,由热电偶产生的温差会保持不变,所以不容易受到第三金属复合材料连接控制电路中的伤害。因此在热电偶温度检测时,可把测量仪连接起来,测出热电位差后,就可以掌握测试箱中化学物质的温度。  关于高低温冲击试验箱中感应器作用小编就为大家介绍到这里,想要更深入的了解设备,大家可持续关注网站阅读相关技术文章。

  • 如何选择融片机?

    各位大侠,请问你们使用什么品牌的融片机?如何选择?高频感应式与电加热式哪一种好?各有什么优缺点以及耗材?

  • 一台感应调压器高压侧10kV绕组相间短路故降的处理

    若一台感应调压器高压侧10kV绕组相间短路出故降如何处理呢?某厂一台感应调压器,额定电压为低压侧三相380V、高压侧三相I0kv.。1000kVA.调压器为一台T频感应加热炉提供高压电源。 一天,调压器开关突然跳闸。跳闸后,经用2500V兆欧表测量,调压器绕组对地绝缘电阻正常。判定无接地故障,重新试送电,再次跳闸,判定有短路故障。将高压侧的电缆拆去,首次送入380v电压。.但将调压器旋转较小角度,输出较低电压,结果测得输出电压为30V、 50v、 90V。再次输入电流为2A.、5A、 7A三相电压和三相电流都严重不平衡。由此可以判断,调压器绕组间有相间短路故障。 吊芯检查:调压器定子绕组上端头两相绕组间绝缘有明显击穿痕迹,由于高压绝缘击穿,导致高压闪络放电造成相相间短路,开关跳闸。 处理:用远红外线板对短路的两绕组进行局部加热,取出槽楔,趁热将两个饶组的上层线棒取,清理干净端部故障点的绝缘。因导线并没有明显烧伤,故只对故障处重新处理绝缘:在匝间用黄蜡绸包扎,层间垫以青壳纸,外面又用黄蜡绸包14层,再用绸带外包一层,最后进行绕组整形,重新将两个绕组的上层线棒放入槽内,打进槽楔。用2500V兆欧表测量绝缘正常。之后,用红外线板烘干12b,再以25kv高压进行耐压试验1min,正常.,重新组装后,运行正常.

  • 【原创大赛】【我爱学习】全自动织物缩水率试验机程序运行自停‘追查’

    【原创大赛】【我爱学习】全自动织物缩水率试验机程序运行自停‘追查’

    全自动织物缩水率试验机程序运行自停‘追查’ 织物缩水率试验机,外形基本上和普通家用洗衣机有点相似,所以有的人员也叫它洗衣机,国产缩水率试验机体积一般比较大,外形也比较中规中矩,但是给人很稳当很安全的感觉,哪怕高速脱水时也会很稳当,不会感觉仪器有多大噪音和很大的晃动。一直还是比较钟爱这台仪器的,其操作也比较简单,首先打开电源,仪器稳定后,仪器显示开机界面,出现生产厂家名称,显示‘标准程序’,‘手动操作’,这时就可以进行要求的操作了。 这几天,检测员反应,织物缩水率试验机洗涤时间有问题,有时半个小时就就停止了,有时20多分钟就停止了,屏显界面返回到主界面,屏幕的显示和正常那个洗涤结果显示是一样的,但是机器内要么很多水,要么就是样品湿漉漉的,这样情况我初步判断仪器可能是有时没有正常排水,有时没有正常脱水。 为了验证我的判断是否正确,我按正常测试要求,进行操作,然后仪器程序5A运行,我拿一个櫈子,坐在仪器旁边一直观察,正常洗涤时间十五分钟,没有问题,然后排水,再进水第一次漂洗,一般是漂洗3分钟,但是我发现漂洗3分钟后,仪器就停止了,没有运行下一步的程序,下一步应该是排水,但是没有运行,再观察显示屏,显示屏也返回主界面,这就意味着这个程序默认完成整个洗涤过程了,但是实际上还有3次漂洗和最后一次的脱水都没有完成,那现在的情况就证实了仪器有问题了。 ‘有问题,找厂家’,打电话给厂家,厂家售后人员让检查一下电压,是不是我们公司的电压不稳,然后再试试,我虽然不太懂仪器维修,但是对厂家这样的说法不太认同,毕竟电源上个月刚换的,应该和电源关系不大,但是没有办法,还是测量一下吧,用螺丝刀拆除侧板,测量电压,电压还是比较稳定,然后边开机,边测量,相对而言还是比较稳定的。[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151042_01_2154459_3.jpg[/img] 经过和检测员分析,每次的自动停机的时间都不同,这个就不好办了,经过检查,仪器控制系统也没有问题,那是什么问题呢,看着圆桶试验机的把手,突然眼前一亮,每次运行都是要压下手柄,关紧机门,是不是试验机用的时间久了,磨损了,关上机门后,没有卡住呢,说干就干,找到缩水机的工具箱,把试验机的前门的挡板卸下,看到确实磨损的比较厉害,简单清洁一下,找到一个内六角,一试正合适,又把把手卸下来,在把手处加了一点黄油,又装上去,调节把手的感应装置的高度,要正好能接触上,但是目测接触的是有点偏,简单点说就是把手的接触点偏仪器外测和感应装置偏仪器内测,接触面只有一半左右的样子,这样的话,如果仪器洗涤振动,或者排水振动,但洗涤程序运行一半的时候,接触面可能会更加偏移,甚至接触分离,这样就是造成感应传输给仪器控制系统的信号是‘洗涤程序完成,该停机了’,所以就停机了,但实际并没有完成程序运行过程,这就是停机的原因。[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151042_03_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151042_04_2154459_3.jpg[/img] 找到故障原因,就要想办法进行处理,这个主要是仪器用了8年了,可能真的是磨损很厉害了,那么怎么才能让二者的接触面能重合呢,想来想去,还是用最简单的办法1. 调节把手的长度,用内六角卸下仪器把手处,把把手向仪器内部拉长0.5CM,然后再旋紧把手上的螺丝丝,但是发现这样不行,因为旋紧的时候,把手也是在在动的,要是这么固定螺丝,那么把手就是反方向了,那以后开关仪器门就不方便操作了。也很别扭.[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151043_01_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151043_03_2154459_3.jpg[/img]2. 那就用第二个办法,在感应装置这里,把感应装置垫高,因为感应装置是直接用螺丝固定在仪器内部的钢板上,只能先把感应装置卸下来,然后在两个固定螺丝中间贴了一个双面胶,因为手头没有其他东西,就想用药品箱的包装纸皮粘上面,纸皮看起来很硬,但是用手指一压就不行了,因为纸皮是瓦楞的,一按就凹下去,这样肯定不行,不能固定住,然后把纸皮扯下来,然后找到一个废旧的橡皮垫,长度差不多,就直接贴上去了,然后用螺丝固定感应装置,最后关仪器门,观察感应接触情况,目测完全接触到位,欣喜.[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151046_02_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151046_03_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151046_04_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151046_05_2154459_3.jpg[/img]打开电源,我们一般做国标试验,那最常用的就是程序5,那就可以直接选定程序5,点击界面,出现开机界面,选择‘标准程序’,选择程序‘5’,点击‘运行’,仪器开始进水,程序运行开始,在正常情况下进水需要2分钟,仪器为全自动洗涤,当通过加水达到设定水位后,接着自动运行洗涤、漂洗、排水、脱水等程序完毕后,机器发出鸣叫,洗涤结束[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151049_01_2154459_3.jpg[/img]小结:观察整个洗涤过程,运行良好,未出现停机状态,然后再用样品正常检测要求,正常运行一次,发现状态良好,运行时间,运行程序都正常。仪器维修完成。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制