当前位置: 仪器信息网 > 行业主题 > >

临床分析试剂检测

仪器信息网临床分析试剂检测专题为您提供2024年最新临床分析试剂检测价格报价、厂家品牌的相关信息, 包括临床分析试剂检测参数、型号等,不管是国产,还是进口品牌的临床分析试剂检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合临床分析试剂检测相关的耗材配件、试剂标物,还有临床分析试剂检测相关的最新资讯、资料,以及临床分析试剂检测相关的解决方案。

临床分析试剂检测相关的论坛

  • 【概念知识7】什么叫临床化学试剂

    临床化学试剂 clinical chemical reagent   又称临床诊断试剂,指用于临床诊断检查用的一类化学试剂。它与电子工业用试剂并列为化学试剂工业中两大新型系列。这类试剂以人或动物的活体材料作为被检体,而利用其在生物体外所实施的生物学反应进行检验,以作为医生临床诊断病因、观察病情、判断病程、分析疗效的主要手段之一。根据检验项目,临床化学试剂分为9类。①一般检验试剂;②血液检验试剂 ③生化试剂;④免疫血清学检验试剂;⑤细菌学检验试剂;⑥病理组织学检验试剂;⑦机能试剂;⑧自动分析用检验试剂;⑨同位素标记试剂。根据具体用途,又可分为简易检测、常规分析、细菌培养及自动分析仪器用的配套试剂。随着临床医学和科研的发展,临床化学试剂中下列门类发展的速度较快:   酶试剂  这是临床化学试剂的发展方向,适用于生化自动分析。其突出的优点是灵敏度高、特异性强,在成分异常复杂的液体标本中,可以避免或减少成分的相互干扰,从而提高测定结果的精确性和线性范围。而且测定时间短、对环境污染少、方法简便可靠。如血清或尿用淀粉酶的测定作为胰腺炎的早期诊断指标,就比用淀粉和碘产生蓝色反应的化学法要准确、简捷得多。又如测定血糖用的己糖激酶法和测定尿素氮用的脲酶法,比测定血糖用的邻甲苯胺和测定尿素氮用的二乙酰一肟的化学方法(旧方法),不但专一性强、灵敏度高、线性范围宽,而且避免使用对人体有毒害作用的化学品,减少了环境污染。因之在生物化学-血液诊断领域中的胆甾醇测定和中性脂肪测定中,酶法已占70%~80%,在葡萄糖测定中酶法也达到了50%。据不完全统计,在国际市场上供应的酶试剂(不包括辅酶和基质)已有 186种。   试纸  简易快速诊断用的定性和半定量临床诊断试纸。目前已有八联尿试纸,可同时测定pH、蛋白、葡萄糖、胆红素、酮体、亚硝酸盐、隐血和尿胆原;有测定血清用 9种化学成分的试纸,即胆红素、胆固醇、尿素氮、葡萄糖、尿酸、三酸甘油酯、血红蛋白、谷草转氨酶及乳酸脱氢酶。试纸法的优点是:①取材方便(尿、耳血、指血),用量少,适合于婴儿、老年人、病危而又需连续观察病情的病人 ②既适合于大医院使用,也适合于农村、工矿、边疆、部队等基层使用;③医务人员可以使用,病人也很易学会使用 ④可作常规、急诊使用,也适合于大规模健康普查、流行病学研究或个人保健使用。   最近,国际上又开发出一种准确定量测定血液中化学成分的新型临床检验胶片。这种多层分析胶片操作快而准,检验时只需将血样滴在胶片上,即能测得所需结果。   试剂盒  测定某项目所供应的全部配套试剂,对用户极为方便。这类试剂盒多以三种形式提供:①冰冻干燥的试剂混合物。②分开的单独溶液和固体,使用前按比例混合。③已预先测好体积的备用试剂溶液。试剂盒都附有详细的说明书。   随着临床检验技术的发展,已出现多种临床诊断试剂盒,如放射免疫试剂盒、酶免疫试剂盒、生化检验试剂盒、毒物和药物检验试剂盒。   ①放射免疫试剂盒 是利用放射性同位素技术与免疫化学技术相结合的体外测定超微量(一般 1ml血可测10-9 ~10-12 g)物质的一种新型药盒。它具有同位素技术的高灵敏度、精确性和抗体免疫反应的专一性,现已应用于很多医学领域,可测定蛋白质、多肽激素和非肽类激素、酶、血液中非激素蛋白质、病原体、抗体药物等。放射免疫试剂盒必须具备:标记抗原(高纯、高比度);特异性抗体;抗原的标准;有效的分离剂。其操作基本步骤为加试剂、培育、分离、计数、整理数据。   ②酶免疫试剂盒 是利用酶来标记抗原或抗体,不用放射性示踪,不用分离,没有辐射危害,酶标试剂制备容易、稳定,试剂盒保存期长。测定时用一般分光光度计即可,方法简便,用途较广,可用于流行病毒的抗体(乙型大脑炎等)、病毒(流感、麻疹病毒等)、病原性细胞检定,免疫病理学的检测(如用抗核酸抗体、甲胎蛋白、肿瘤抗原等试剂盒),寄生虫病的论断(吸血虫病、疟疾病等),内分泌疾病及血液病的诊断。80年代,酶免疫试剂盒有取代放射免疫试剂盒的趋势。   ③生化检验试剂盒 将化学试剂经过配方处理而配制的一种很方便的试剂盒,可作一般临床生化检验使用。   ④毒物和药物检验试剂盒 是用以检验人血中某一特定药物或毒物含量的配套试剂。

  • 质谱技术在临床微量元素检测中的应用共识

    质谱(MS)是利用各种离子化技术将化合物转化为离子,按其质核比的差异进行分离测定,从而进行物质结构和成分分析的方法。近年来,质谱技术凭借其高通量、高特异性、高灵敏度的特点,在医学检验领域飞速发展,在临床生化检验、临床微生物检验、免疫检验等方面都成为了不可或缺的重要技术。微量元素在生物体生长发育及代谢过程中起着重要的作用,同时它们也可以作为人体内某些疾病的检测指标。质谱法可以实现多元素同时检测,且灵敏度高、检测限低、动态范围宽、分析速度快,可以直接对血液样品进行检测。其中,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]) ,已成为临床最为推荐的微量元素检测方法之一。与国外发展水平相比,我国质谱技术的临床应用还非常有限,很多相关部分还需要进一步完善,例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立等等。其中,方法学和质量管理体系是检测结果和应用的关键。在中国医师协会检验医师分会临床质谱检验医学专业委员会的指导下,首都医科大学北京妇产医院检验科质谱中心携手国内顶尖临床质谱应用专家,结合目前已公布的质谱技术标准、相关指南、文献及实际操作经验,制定本共识,重点阐述质谱技术在临床微量元素检测应用中对人员、环境、仪器、试剂、耗材、检测规程、方法性能评估及质量控制的要求,为临床实验室采用质谱技术开展微量元素检测提供基本指导。

  • ELISA试剂的临床质量评价

    ELISA试剂的评价(evaluation)分两个方面:一是试剂本身的质量评价,符合一定要求后才能生产供应;一是在临床应用中效果的评价。以肝炎ELISA诊断试剂为例,首先必须通过中国药品生物制品检定,以得到生产的许可。检定内容除包装、标签、说明书等外,对试剂的性能,如特异性、灵敏度、精密度和线性等均需逐项检定,通过对一系列参比品的检测,结果符合要求者才为合格。ELISA试剂的临床质量评价是用该试剂对临床样本进行检测,以观察其实际应用价值。部临检中心对乙肝ELISA诊断试剂在这方面进行了工作,通过质量评价,促进了试剂质量的提高。一、诊断试剂临床质量评价要点 从临床应用角度考核检验试剂的可靠性,是以其能否区分健康与疾病的能力作为依据的。目前还很难找到100%可靠的试验,任何试验都会出现假阳性或假阴性。判断试验的可靠性常以其灵敏度及特异性作为考核标准。临床应用的灵敏度用疾病患者试验阳性的百分率表示,特异性以无病者试验阴性的百分率表示。进行这种评价,首先需要收集有关的病人血清,然后用公认的检测该项标志物最可靠的试剂进行测定,以确定其为阳性或阴性。这一组表明测定物为阳性或阴性的血清组成"血清盘"(panel)。被评价的试剂测定此血清所得结果与血清盘标明的结果的关系如下表:血清盘结果合计+-受检试剂结果+aba+b-cdc+d合计a+cb+dA+b+c+d表中a为真阳性,b为假阳性,c为假阴性,d为真阴性。被评价试剂的各项性能指标按以下分式计算:灵敏度(%)=a/(a+c)×100%特异性(%)=b/(b+d)×100%[/

  • 质谱技术在临床微生物样本直接检测中的应用-1

    基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization-time of flight mass spectrometry, MALDI-TOF MS)是20世纪80年代发展起来的一种新型软电离有机质谱, 作为一种新兴的蛋白质组学检测技术, 现已广泛应用于生命科学及相关领域。同时作为一项新兴的微生物鉴定技术, 受到了国内外的广泛关注。与传统的生化表型鉴定方法和分子生物学方法相比, MALDI-TOF MS具有操作简单、快速、准确和经济的特点。早在1975年, ANHALT等[1]利用质谱仪结合高温裂解技术第1次完成了细菌的鉴定, 从此拉开了质谱鉴定细菌的“ 序幕” 。随着质谱检测技术的不断完善和发展, 近年来, MALDI-TOF MS已经成功应用于微生物的鉴定, 显示了其在细菌、酵母菌等鉴定方面均具有良好的应用价值。众多的研究表明, MALDI-TOF MS技术对培养出的纯菌落进行菌种鉴定具有很高的稳定性及准确性, 对常见细菌和酵母菌的属的鉴定率能达到97%~99%, 种的鉴定率也能达到85%~97% 另外, MALDI-TOF MS大大缩短了细菌鉴定的时间, 而且其成本也较常规鉴定方法低[2, 3]。除此之外, MALDI-TOF MS已经能够成功地用于部分微生物亚种水平的鉴定和细菌耐药性的检测, 但这种方法在大多数情况下是应用于培养出的纯菌落的鉴定[3]。  如果能够从临床样本中直接检测细菌/真菌, 突破细菌/真菌培养阳性率低、培养时间长的瓶颈, 为细菌/真菌感染性疾病的诊疗提供更快、更准确的病原学依据, 将对临床及时控制细菌/真菌感染性疾病起到更大的作用。国内外学者已尝试将质谱技术应用于临床样本的直接检测, 并取得了显著的进展。本文就MALDI-TOF MS技术在临床样本的直接检测应用作一综述。一、MALDI-TOF MS检测原理  MALDI-TOF MS技术用于微生物鉴定的实质就是检测具有属、种或亚型特异性的生物标志的质量信号, 主要是微生物菌体内高丰度、表达稳定和进化保守的核糖体蛋白。MALDI-TOF MS 仪器主要由基质辅助激光解吸离子源(MALDI)和飞行时间质量检测器(TOF)两部分组成。MALDI的原理是用一定强度的激光照射样本与基质形成的共结晶薄膜, 基质从激光中吸收能量而汽化, 并迅速降解, 使样本分解吸附, 基质和样本之间发生电荷转移从而使样本分子发生电离 TOF的原理是带有电荷的样本分子在电场作用下加速飞过飞行管道, 因为离子的质荷比与离子的飞行时间呈正比, 所以不同质量的离子因达到检测器的飞行时间不同而被检测, 以离子峰为纵坐标、离子质荷比为横坐标形成特征性的质量图谱。将不同种属微生物经MALDI-TOF分析所形成的质量图谱与数据库中的参考图谱进行比较, 从而实现对目标微生物种或菌株的区分和鉴定[2]。二、MALDI-TOF MS直接检测临床样本的流程  临床样本直接检测的流程主要包括3个部分:临床样本的预处理、样本上机检测和对比蛋白质指纹图谱数据库得出鉴定结果。由于目前报道最多的临床样本是阳性血培养瓶和中段尿样本, 下面将以这二者为例介绍其直接检测的流程, 其它临床样本的检测流程与之类似。(一)临床样本预处理  MALDI-TOF MS直接用于临床样本的检测有2个基本的要求:(1)临床样本中细菌的量。为了得到准确的鉴定图谱, MALDI-TOF MS技术对置于靶板上的细菌的最低检测限约为(1× 104)~(1× 106)cfu/mL。若要直接检测拟似血流感染的血液样本以及拟似泌尿系统感染的中段尿等临床样本中的病原菌, 首先必须富集细菌 (2)临床样本的质。由于血液和血培养瓶中的大分子成分如血红蛋白和其它蛋白成分、尿液中的白细胞等有机成分会干扰细菌的谱峰, 所以直接检测前需要采取预处理措施去除这些干扰因素。1.阳性血培养瓶直接检测 直接检测阳性血培养瓶的细菌浓度常常需要1× 107 cfu/mL[2, 4]。由于在血流感染患者血液中的细菌量常常很低(最低可 1~10 cfu/mL), 因此对血样本的直接检测需要一个增菌的过程, 即采用血培养瓶增菌。目前已报道的阳性血培养病原菌预处理程序各不相同, 但预处理过程主要包含了以下2个步骤:(1)将细菌从血细胞中分离出来。先应用温和去污剂(如吐温-80、十二磺基硫酸钠、皂素等)将血液中的血细胞溶解, 然后通过不同的流程(离心、洗涤)去除其它的干扰因素, 纯化要鉴定的细菌样本 (2)将菌体中的蛋白质抽提出来。最常用的是混合溶剂处理法, 使用甲酸/乙腈溶液对样本进行处理来抽提蛋白, 利用2种溶剂的混合作用将菌体表面的蛋白和存在于细胞内的低相对分子质量的高丰度蛋白提取出来, 实现对菌株的鉴定。虽然至今尚没有规范化的处理程序, 不过目前市场上已有商品化的阳性血培养瓶预处理试剂盒Sepsityper kit(Bruker)可以提高鉴定分数和鉴定准确率, 但是花费比较高, 处理程序也费时较长[5]。另外, HAMMARSTR? M等[6]建立了一种基于声学捕捉和集成选择性富集目标(integrated selective enrichment target, ISET)的新方法用于富集样本中的细菌, 快速、准确并且简化了人工操作, 有望替代传统的以离心为基础的分离方法。2.中段尿样本 要取得一个较高的鉴定成功率, 直接检测中段尿样本中病原菌至少需要的细菌数量是1× 105 cfu/mL[7, 8]。对尿样本的预处理程序较为简单, 主要有下面几个步骤:低速离心去除白细胞, 高速离心收集细菌, 沉淀, 经过洗涤、离心之后进行蛋白质的提取(常用的是甲酸、乙腈), 经高速离心后取1 μ L上清涂布到MALDI的靶板上, 在室温下干燥后即可进行检测。

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。  质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小; 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。  一、质谱在临床生化检测中的应用  由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。  1. 新生儿遗传代谢病筛查 新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。  2. 维生素D检测 维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。  3. 激素检测 对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。  4. 血药浓度监测 在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。  5. 痕、微量元素检测 人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。  6. 其他项目 除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。  二、总结与展望  质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。  相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。

  • 质谱技术在临床生化检测中的应用

    早在1886年, Goldstein发明了早期质谱仪常用的离子源。1906年, 诺贝尔物理学奖得主、英国著名物理学家Thomson发明了世界上第1台质谱仪。1942年第1台单聚焦质谱仪的商业化推广代表着质谱技术终于突破了理论发展的瓶颈阶段。迄今为止, 质谱技术已经为化合物结构研究提供了大量有用的信息, 被广泛应用于地质、环境化学、有机化学、制药、生命科学等领域[1]。质谱技术是测量分子质荷比(m/z)的分析方法。它通过将分子电离后形成带电离子, 并按照离子m/z的大小顺序排列形成谱图数据。质谱仪是一类可以将样品分子转化成带电离子, 并利用适当的电场、磁场实现离子m/z分离, 进而检测每种离子的峰强度进行物质分析的仪器。质谱仪主要由进样系统、离子源、质量分析器、检测器和数据处理系统5个部分组成, 其中核心部件为离子源与质量分析器。离子源分为硬电离和软电离。硬电离如电子轰击电离可以给予样品分子较大的能量, 导致样品产生的离子碎片很小 软电离则较为温和, 可以产生较大的离子碎片, 如电喷雾电离、基质辅助激光解吸电离和大气压化学电离等。随着软电离技术的发展与不断成熟, 实现了高分辨率与高质量检测范围的结合, 使得生物大分子质谱分析成为可能, 从而开辟了一个新的领域— — 生物质谱, 并在生命科学领域得到了广泛应用和飞速发展。质量分析器的作用是根据m/z将电离产生的带电离子分离, 主要有时间飞行、四级杆、离子阱、傅立叶变换离子回旋共振质量分析器等多种类型。目前用于生命科学领域的质谱仪多由几种质量分析器串联而成, 在空间或时间上实现了母离子选择、母离子碎裂、子离子检测功能并提供了离子碎裂的特征峰。这些特征峰是分子定性的依据, 使得质谱检测结果具有极高的特异性[1, 2, 3]。一、质谱在临床生化检测中的应用由于生物质谱技术具有特异性好、灵敏度高、选择性广、检测速度快等特点, 所以近年来在临床生化检验中的应用越来越广泛。目前国际上已经被广泛应用的质谱临床生化检验项目包括新生儿遗传代谢病筛查、维生素D检测、激素检测、血药浓度监测、微量元素检测等。1. 新生儿遗传代谢病筛查新生儿遗传代谢病筛查是指在新生儿期对某些危害严重的先天性遗传代谢疾病进行群体筛查, 并进行早期治疗, 从而避免或减轻疾病的影响。新生儿遗传代谢病筛查起源于1961年对苯丙酮尿症的筛查。此后随着医疗技术的发展, 越来越多的遗传代谢病被引入其中。我国自上世纪80年代初期开展的新生儿遗传代谢病筛查主要包括先天性甲状腺功能减退症、苯丙酮尿症、先天性肾上腺皮质增生以及葡萄糖-6-磷酸脱氢酶缺乏症等, 每种筛查需要单独进行。目前国际上美、欧、日等国家都已经使用串联质谱技术对多个代谢产物进行联合检测, 同时筛查超过30种疾病, 除以上提到的几项外, 还包括囊胞性纤维症、半乳糖血症、氧化脂肪酸缺陷症、有机酸尿症和尿素循环缺陷症等[4, 5]。在我国, 顾学范教授等多个研究团队已经利用该技术进行了大量临床检测与研究, 取得了良好效果[6]。同时多家第三方医学实验室和妇幼保健机构也可以提供项目服务。因此, 对于新生儿遗传代谢病筛查的质量控制与室间质评是目前急需解决的关键问题之一。2. 维生素D检测维生素D是一种脂溶性维生素, 化学本质为固醇类衍生物, 目前也被认为是一种类固醇激素。维生素D存在于部分天然食物中, 人体皮下储存有由胆固醇衍生出的7-脱氢胆固醇, 受紫外线照射后即可转变为维生素D3。近年来发现维生素D缺乏不仅可以造成骨质疏松症, 还与糖尿病、癌症、心血管疾病等相关。体内保持足够的维生素D对糖尿病等都有一定的预防作用。目前维生素缺乏已经成为一个全球性问题, 对体内维生素D含量的检测受到了越来越多的关注。25-羟基维生素D是体内维生素D的主要代谢形式, 包括25-羟基维生素D2和25-羟基维生素D3两种形式, 其含量可以代表体内维生素D的水平。目前国内外对血清中25-羟基维生素D的检测方法主要有放射免疫、竞争蛋白结合法以及新兴的串联质谱法。与传统方法相比, 串联质谱法定量测定25-羟基维生素D具有更好的特异性和更强的抗干扰性, 并能实现25-羟基维生素D2和25-羟基维生素D3的同时测定[7]。郭守东等[8]利用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆中25-羟基维生素D3水平, 发现糖尿病患者25-羟基维生素D3水平明显低于健康人。周宁等[9]利用串联质谱法对过敏性鼻炎儿童血清中的维生素D进行了检测, 发现患儿维生素D水平低于正常儿童, 且维生素D3尤为显著。由此可见, 当需要区分维生素D的不同代谢产物种类时, 串联质谱法比传统免疫法具有明显的技术优势。3. 激素检测对类固醇激素及其代谢产物的检测是生物质谱技术在临床生化检验中一个非常重要的项目。通过质谱定量检测, 可以判断相应的类固醇激素与疾病的相关性[10, 11]。目前利用质谱技术可以对睾酮、脱氢睾酮、雄酮、雌酮、雌二醇和雌三醇等多种激素进行定量检测, 进而对相关疾病进行临床诊断和治疗, 如先天性肾上腺增生症、家族性高醛甾酮过多症、原发性醛固酮增多症等[1]。丁一峰等[12]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用法分析尿液中的类固醇, 实现多种激素同时检测, 且不同激素之间没有交叉反应, 准确性和灵敏度较好, 并证明类固醇激素水平与肾上腺和性腺等类固醇激素代谢异常疾病有关。黄河花等[13]建立了一种基于电喷雾电离质谱同时检测脱氢表雄酮、睾酮和雄酮的定量方法, 检测快速、灵敏度高、准确性好。4. 血药浓度监测在临床疾病治疗中, 很多药物的浓度需要严格限定在某一合适范围, 过少达不到治疗效果, 过多则可能引起毒性或成瘾反应, 造成不良后果, 给患者带来巨大痛苦。对这些药物浓度的检测目前我国主要应用免疫化学方法。这种方法虽简单易行, 但只能检测少数几种药物, 无法满足临床检测的要求。而且一般药物在体内的浓度都很低, 要求检测方法具有高灵敏度。近年来, 质谱技术逐渐成为药物浓度检测的重要手段。多种药物均可以利用质谱技术进行准确检测, 而且可以实现多药物同时检测, 提高了临床检测工作的效率。目前国际上已经在临床开展的药物浓度监测项目包括器官移植患者使用的免疫抑制剂、疼痛治疗药物、抗精神病药物、麻醉药、抗逆转录病毒药物等。同时随着质谱技术的不断发展和完善, 其有望成为药物及其代谢产物检测的“ 金标准” [14]。曲素欣等[15]建立了基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测卡马西平浓度的方法, 并研究了该药物与癫痫疗效的关系。该检测方法特异性强、操作方便, 具有很好的灵敏度和准确性, 且重现性良好。崔刚等[16]建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]-质谱联用技术检测肾移植患者体内霉酚酸浓度的方法。该方法快速、准确, 可广泛应用于器官移植患者血药浓度的临床监测中。5. 痕、微量元素检测人体元素含量可以作为很多疾病的标志物, 检测人体痕、微量元素可以辅助诊断某些临床疾病和职业病。元素检测中常用的方法为发射光谱法和质谱法。质谱法可以实现多元素同时检测, 且灵敏度高、检测限低、动态范围宽, 可以直接对血液样品进行检测。目前质谱技术已成为无机元素分析的主要方法之一, 已建立了几十种痕、微量元素的检测方法, 广泛应用于全血、血清、尿液和头发中砷、铅等有害重金属以及铁、锌、硒等人体微量元素的检测[17]。张文洁等[18]利用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法对慢性肾炎患者血清中的微量元素做了检测, 发现慢性肾炎患者血清中钠、钾等元素与正常人无明显差异, 而铝、铁、锌等明显低于正常人。该方法可以对患者血液中微量元素的变化做实时监测, 为慢性肾炎的临床治疗提供指导。欧阳珮珮等[19]建立了基于质谱法的分析方法并对全血中5种微量元素同时做了检测, 此方法检出限低、灵敏度高、准确性好, 元素之间干扰较小, 符合复杂生物样品多元素同时检测的要求。6. 其他项目除以上项目外, 质谱技术的临床研究也已全面开展。叶军等[20]利用质谱技术对临床诊断不明的神经系统、消化系统以及皮肤损害患儿做了检测, 诊断患儿为多种羧化酶缺乏症, 并对生物素治疗过程做了监测, 发现疗效显著。二、总结与展望质谱技术自诞生以来发展十分迅速, 在临床生化检验中的作用越来越明显, 成为临床检验中的重要新型工具。质谱技术较其他方法具有更高的特异性、灵敏度、准确度、精确度, 且检出限低, 不受抗体或特殊生化反应的限制, 在临床应用中具有很好的前景。新生儿遗传代谢病筛查等多个项目已经在临床检验中得到广泛应用。相比较而言, 我国临床生化检验中质谱技术的应用还非常有限, 与国外发展水平差异较大, 很多相关部分还需要进一步完善, 例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立、收费渠道与收费标准的确定等等。目前我国串联质谱技术进行临床生化检测的项目单一, 主要集中于少量第三方检测机构与妇幼保健单位, 独立于大型综合医疗机构之外, 不利于临床质谱技术的进一步深入发展。因此, 从临床需求出发, 结合医院实际情况, 完善技术与管理方案, 力求形成临床、科研、政府管理部门密切沟通合作的工作模式是发展质谱等新型检测技术的有效途径。参考文献[1] 韩丽乔, 庄俊华, 黄宪章. 质谱技术及其在临床检验中的应用[J]. 检验医学, 2013, 28(3): 252-256. [2] 武汉大学. 分析化学(下册)[M]. 5版. 北京: 高等教育出版社, 2007: 633-634. [3] YE H, GEMPERLINE E, LI L. A vision for better health: mass spectrometry imaging for clinical diagnostics[J]. Clin Chim Acta, 2013, 420: 11-22. [4] 王洪允, 江骥, 胡蓓. 串联质谱在新生儿遗传代谢性疾病筛查中的应用[J]. 质谱学报, 2011, 32(1): 24-30. [5] LA MARCA G. Mass spectrometry in clinical chemistry: the case of newborn screening[J]. J Pharm Biomed Anal, 2014, 101: 174-182.[6] 李峰, 顾学范. 串联质谱技术在临床检验中的应用进展[J]. 国外医学临床生物化学与检验学分册, 2004, 25(4): 319-321. [7] 程雅婷, 董衡, 梁晓翠, 等. 人血清中25羟基维生素D测定的两种质谱方法比较[J]. 中华临床医师杂志: 电子版, 2013, 7(14): 6535-6537. [8] 郭守东, 崔华东, 桑慧, 等. [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱法检测糖尿病患者血浆25-羟基维生素D3[J]. 泰山医学院学报, 2014, 35(3): 161-164. [9] 周宁, 曹梅馨, 黎冬梅, 等. 过敏性鼻炎儿童血清维生素 D 水平的临床研究[J]. 中国医药导报, 2012, 9(17): 180-181. [10] PEITZSCH M, DEKKERS T, HAASE M, et al. An [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism[J]. J Steroid Biochem Mol Biol, 2014, 145: 75-84.[11] ZHAO X, XU F, QI B, et al. Serum metabolomics study of polycystic ovary syndrome based on liquid chromatography-mass spectrometry[J]. J Proteome Res, 2014, 13(2): 1101-1111.[12] 丁一峰, 顾学范, 叶军, 等. [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱分析新生儿尿液中类固醇激素方法的建立[J]. 临床儿科杂志, 2010, 28(8): 748-751.[13] 黄河花, 刘东阳, 胡蓓, 等. 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法同时定量测定人血清中脱氢表雄酮、睾酮及雄酮[J]. 药物分析杂志, 2012, 32(2): 210-216.[14] 任秀华, 杜光, 刘东. [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定人血浆中甲氨蝶呤的血药浓度及其临床应用[J]. 中国医院药学杂志, 2014, 34(10): 801-804. [15] 曲素欣, 陈湛芳. [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]法监测癫痫患儿卡马西平血药浓度及结果分析[J]. 中国医学创新, 2014, 7(26): 101-103.[16] 崔刚, 陈文倩, 刘晓, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法测定肾移植患者体内霉酚酸的血药浓度[J]. 中国药房, 2013, 24(22): 2046-2048.[17] 张霖琳, 邢小茹, 吴国平, 等. 微波消解-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]测定人体血浆中30种痕量元素[J]. 光谱学与光谱分析, 2009, 29(4): 1115-1118.[18] 张文洁, 何学红, 赵友林, 等. [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法测定慢性肾炎患者血清中的微量元素[J]. 中华中医药学刊, 2009, 28(5): 1017-1019.[19] 欧阳珮珮, 吴惠刚, 黄诚, 等. 压力罐消解[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]法同时测定全血中5种微量元素[J]. 氨基酸和生物资源, 2014, 36(2): 70-72. [20] 叶军, 韩连书, 邱文娟, 等. 联合质谱技术在多种羧化酶缺乏症诊治中的应用研究[J]. 中国实用儿科杂志, 2008, 23(8): 582-585.

  • 重视新药非临床安全性评价供试品的检测

    全部标题重视新药非临床安全性评价供试品的检测作者胡晓敏、冯毅、王庆利部门药理毒理学部正文内容 非临床安全性评价是新药开发中的重要内容,其耗时长(从一周到几年)、花费大(几十万到几百万元RMB),但其结果对于发现新药的毒性,预测临床安全性具有重要的意义。非临床安全性研究与评价贯穿于整个新药的研发过程中。供试品是非临床安全性评价获得可靠结果的基础,其质量和配制的准确性,直接影响非临床安全性试验结果及新药的后期开发。为了使新药安评的结果可靠,并避免在新药研发过程中出现不必要的失误和损失,在非临床安全性评价试验中应加强供试品检测。1 供试品检测的必要性 2005年国家局发布了多个非临床安全性试验技术指导原则,这些指导原则对规范我国药物安评试验,推进GLP的实施起到了重要作用。近来,不断有相关研究机构和专家反映,由于未能在有关的技术指导原则中要求开展安评试验的供试品的相应检测,致使安评试验结果具有不确定性。 目前我国创新药的研究与申请逐渐增加,为了使安评结果准确可靠,弥补非临床安全性试验技术指导原则中的对供试品检测未设置相关要求的缺憾,建议在安评试验中应加强供试品检测,避免出现不必要的失误和损失。2 国内外对供试品检测的要求 FDA、EMA在GLP规范中,对供试品的检测提出了要求。各大制药公司内部的SOP也对供试品检测有要求。 我国的GLP对供试品检测也有原则性要求。但由于在新药申报和相关技术评价指导原则中未对此有明确要求,故当前不是每个GLP试验室、或每个安全性试验都进行供试品检测。3 供试品检测的适用范围 安全性试验中供试品检测的要求,应该适用于所有新药研究。中药成分复杂,结构不清楚的成分多,但如中药一类(单一成分)可参考化药执行。欧美对生物制品也要求进行供试品检测,内容在化药的稳定性、均一性等的基础上增加蛋白含量分析和生物活性分析。对于生物制品供试品检测的要求,建议参照化药的方法,遵从Case by case的原则。4 供试品检测的内容 ①供试品的基本理化性质检验报告(包含来源、批号、纯度、浓度、处方组成(包括辅料)、稳定性、溶解性、有效期、保存条件等信息)。②若供试品需经溶解后(混合、混悬、溶解)给药,则应提供供试品在溶剂中的稳定性、均一性(非溶液体系)等检测报告(浓度范围需能覆盖全部毒理试验的浓度范围),以及配制后的供试品浓度分析报告。③针对检测供试品浓度和含量分析的方法学验证报告。5 供试品检测报告的提供 供试品检测方法的建立和验证,可以由申请人(含生产者)、GLP试验机构或第三方完成,或由其中的一方完成后转移至另外一方进行检测;由验证方提供供试品检测方法学验证的资料。 配制后的供试品浓度分析方法的方法学验证资料,应由完成配制后的供试品浓度分析检测的GLP实验室提供。 必要时对对照品进行分析,对照品的分析要求与供试品相同。如果对照品为上市产品,其基本理化性质等资料可以参照对照品的说明书和/或标签。

  • 质谱分析法在微生物临床鉴定中的应用

    19世纪末“正电荷粒子束在磁场中发生偏转”被发现后,1912年世界上第一台质谱仪在英国面世,从此一种通过测量离子电荷质量比,而进行样品成分和结构分析的方法在生物学及医学上大放异彩。质谱以其灵敏度高、特异性强、分析速度快、多指标同时检测等特点跻身高端定量检测分析仪器行列。  分辨率、灵敏度、质量范围、质量测定准确性是衡量质谱的主要技术指标。分辨率R是指相邻两个峰被分离的程度,是质谱仪区别两个峰的能力指标。灵敏度的指标实际上是仪器综合性能的反映,因为它与样品、分辨率、扫描速度、进样方式以及电离方式密切相关。磁质谱仪器的质量范围与加速电压有关,在仪器最高加速电压下可测的最高值为范围指标,加速电压降低,范围加大,但灵敏度下降。  质谱工作原理,是将样品分子经过离子化后,利用其不同质荷比(m/z)的离子在静电场或磁场中受到的作用力不同而改变运动方向,使其在空间上分离,最后通过收集和检测这些离子得到质谱图谱,实现成分和结构分析。  [b]质谱仪虽种类繁多,  但每种仪器结构可概括为以下6部分:[/b]  1.进样口:直接进样或接其他仪器,用于样品的引入。  2.真空系统:用于维持质量分析器至检测器部分的高真空状态,使离子能够在电磁场作用下自由飞翔,避免离子在运动途中发生碰撞,导致信号丢失或产生虚假信号。  3.离子源:用于将样品离子化。  4.质量分析器:用于将不同质荷比的离子分离开,让他们逐个进入检测器,或只筛选特定质荷比的离子进入检测器。  5.检测器:通常是电子倍增管或其他,将离子的数量转化为电信号的大小。  6.数据处理系统:处理检测器捕获到的电信号,获得质谱图,并进一步处理得到所需信息。  质谱种类多,应用广。从用途(分析对象)可分为:无机质谱、有机质谱、同位素质谱及气体质谱等。从单机或组合可分为:单(一)质谱、串联质谱,单一质谱两个及以上的组合即为串联质谱。广泛应用于化合物结构的定性测定或混合物组成的定量测定。飞行时间质谱仪(MADLI-TOFMS)归类于有机质谱,可应用于临床微生物(包括细菌和真菌)的高通量快速鉴定、疾控中心的微生物传染病原的鉴定与监测、海关进出口商品的检验检疫、食品生产中的微生物检测和工业、农业和环境中的细菌监测等领域。  目前,服务于临床诊疗的质谱检测项目已达400余项,主要涉及临床化学、临床免疫学以及临床微生物鉴定等领域,也被用于建立临床化学检测项目的参考测量程序和研制参考物质。欧美发达国家从1961开始将质谱技术用于新生儿筛查,目前实现使用串联质谱技术对多个代谢产物进行联合检测,可筛查新生儿遗传代谢病等30种新生儿遗传代谢疾病。国内质谱的临床检测主要用于新生儿遗传筛查、维生素D检测、微生物诊断、药品检测等检测领域。  相比国外100多年的质谱发展历史,受限于国际离子源与质量分析器的核心专利知识产权保护,国产质谱设备发展备受制约,直到2000年后国内企业才逐步开始质谱技术的积累。从2006年第一台国产商业化质谱——四级杆[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]问世,到17年7月国家质量监督检验检疫总局和中国国家标准化管理委员会发布,18年2月份开始实施的推荐性国标——质谱仪通用规范。短短十年时间,以安图生物为代表的6家国产IVD生产企业陆续推出MALDI-TOF 质谱仪,逐步打破以进口品牌垄断为主的中国质谱格局,努力弥补当前国产质谱仪占有率相对较低,2016年抽样调查中[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]及[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]国产化率均不到2%的差距,全力推进MALDI-TOF MS质谱在临床微生物检测领域的发展。[align=center][img=1.jpg]https://i4.antpedia.com/attachments/att/image/20200602/1591081536537269.jpg[/img][/align]  众所周知,微生物诊断指的是通过病原学和药物敏感性分析为临床传染性疾病的预防、诊断、治疗与疗效观察提供依据。传统微生物快速诊断包括三种方法:  1.样品的直接检测,例如[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测;  2.菌体富集后检测;  3.分离培养后检测。  传统的生物化学、分子生物学和形态学等方法基于单菌落的生化特征需要菌种的筛选、培养、鉴定等过程,实验时间需要数天不等,耗时耗力,且实验操作较为繁琐,并不能满足临床对检测结果时效性的要求;分子生物学方法进行微生物鉴定大大地提高了灵敏度和时效性,但对工作人员技术要求高,检测成本高,仅针对某些特定细茵,难以满足临床常规要求。因而,样本流转(TAT)时间长仍然是当前制约临床微生物检验发展的主要因素之一。MALDI-TOF MS质谱仪可实现临床对部分微生物传统检测方法的技术替代,通过对未知化合物(菌)所得谱图的分析,进而解析出化合物结构。MALDI-TOF MS快速鉴定经固(液)体培养基短时培养的阳性血培养物中的病原菌,且一次实验可同时多个样本检测,准确率与检测通量均有大幅的提升,一定程度上节省了人力和财力,可适用于微生物室日常工作的血培养阳性标本快速鉴定的方法。从而助力临床微生物检验在感染性疾病诊断、临床用药指导、抗菌药物管理、院内感染控制等多方面均衡发展,将彻底改变微生物实验室的面貌。[align=center][img=1.jpg]https://i4.antpedia.com/attachments/att/image/20200602/1591081550562115.jpg[/img][/align][align=center][font=黑体, SimHei]图.全自动微生物质谱检测系统[/font][/align][align=center][font=黑体, SimHei](Automated Mass Spectrometry Microbial Identification System)[/font][/align]  飞行时间质谱仪的质量分析器是一个离子漂移管。由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。质谱图,横轴表示单位电荷质量(m/z);纵轴表示离子流强度,通常以相对强度(相对丰度)来表示。相对丰度以最强的离子流强度定义为100%,其他离子流以其百分比显示。  进样系统、基质辅助激光解吸电离离子源、飞行时间质量分析器、传感器和电脑是临床微生物鉴定的 MALDI—TOFMS主要组成部分。MALDI—TOFMS鉴定微生物的标志物主要是特异性保守核糖体蛋白。MALDI—TOFMS基于微生物蛋白指纹图谱的特异性峰谱进行鉴定,只需将细菌涂布于靶板,加入基质溶液裂解,室温干燥后即上机检测,获取的质量图谱与数据库中的标准图谱进行自动对比分析,即可获得鉴定结果。鉴定结果全程自动判读、自动分析、自动报告、标本自动卸载,20分钟内可完成96个菌株的鉴定,且检测成本低,仪器使用耗材只需样品板和质谱专用基质,无须其他任何附加试剂,对工作人员的技术要求不高。  有研究证实,在重症监护室(ICU)临床治疗中,抗生素如果晚一小时准确治疗,病人存活率下降8%。而运用质谱检测技术则可缩短至少1.5天的鉴定时间,为临床救治危急重症患者赢得更多时间。除单一质谱外,串联质谱在美国及欧盟国家商业化应用相对成熟的主要是药物浓度监测、小分子标志物检测、新生儿筛查和维生素检测等。国内除目前已实现商业化的微生物鉴定、新生儿筛查、维生素等临床检测领域外,应拓展质谱在血药浓度监测领域的绝对优势;紧抓质谱在小分子生物标志物在心脑血管和代谢病方面的发展趋势,质谱仪因能敏锐地分析其他设备仪器难以分析的肿瘤生长分泌的微量外泌体,在癌症的液体活检领域,质谱检测也有望跟基因检测分一杯羹。  质谱作为一个能同时检测大量的化合物的分析器,有望开启IVD检测发展的新篇章。从1953年飞行时间质谱仪原型被设计出,到1955年世界上第一台飞行时间质谱仪诞生,再到国产飞行时间质谱迅猛发展,随着临床对个体化和精准化医疗需求的增加,基于质谱技术的基因组学、蛋白组学、代谢组学等很多研究成果正不断转化至临床实践,值得我们翘首以盼。  中国质谱仪过去面临着4大挑战,技术发展水平的挑战、进口产品替代的挑战、知识产权保护的挑战以及做强、做大与做大、做强之间的挑战。未来希望国内的质谱仪企业抓住全球市场需求增长率超过10%,以及中国市场远超10%的需求增长,结合市场需求和实际情况,通过自身的努力,将更多精良的产品投入到市场中,从而推动中国质谱行业的快速发展。  参考文献:  [1]中国临床微生物质谱共识专家组.中国临床微生物质谱应用专家共识[J]. 中华医院感染学杂志,2016,26(10)  [2]李永军,Sihe Wang.[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用技术临床应用[M].上海科学技术出版社  [3]中国质量检测设备摸底调研.分析测试百科网.中金公司研究部

  • 中国市场有哪些临床质谱的试剂盒?

    随着精准医学和个体化诊疗的发展,临床诊断的重心正逐渐趋向于“精准”,先进的检测技术是实现精准诊断的前提。近年来,“大热”的质谱分析技术,在生命组学、精准医疗及临床医学中也发挥着越来越大的作用。随着质谱技术的发展及普及,其在临床诊断中的应用场景也越来越多。[color=#548dd4]截至撰稿当日2022年6月1日,仪器信息网统计到通过NMPA医疗器械注册且在有效期内的质谱试剂盒产品共73项,其中进口试剂产品2项,国产试剂产品71项。[/color]而仪器信息网在2017年统计的获批质谱试剂盒产品仅10项。从这一数据也可以看出,短短5年时间中国临床质谱市场高速发展,相关的仪器与试剂盒企业和产品数量激增,赛道处于快速上升期。为方便读者更全面地了解质谱仪器及试剂盒等相关产品的临床认证情况,仪器信息网对截止发稿前获国家食品药品监督管理总局(NMPA)批准且在有效期内的可应用于临床质谱试剂盒产品进行了汇总。阅读拓展:[url=https://www.instrument.com.cn/news/20210511/579872.shtml][color=#548dd4]获医疗器械注册且在有效期内的临床质谱产品(质谱仪器篇)[/color][/url][align=center]图1. 通过国家药品监督管理总局批准的临床质谱试剂盒产品——国产[/align][align=center][img=图片1.png,600,2538]https://img1.17img.cn/17img/images/202206/uepic/6cb2c809-e730-42e7-8330-b59e139d6863.jpg[/img][/align]注:因部分地方药监局的数据略有滞后,如本次统计有所遗漏,欢迎联系本网添加。[align=center]图2 申报企业的产品数量占比[/align][align=center][img=图片2.png,600,309]https://img1.17img.cn/17img/images/202206/uepic/440ea0ef-e5bd-4fce-9c9b-dbc3a87fae92.jpg[/img][/align]从上图可以看出,本次统计的71项质谱试剂盒产品中,共涉及26家企业,其中山东英盛、湖南豪思生物以及上海睿质科技三家公司的获批产品占比位列前三,分别占总获批产品数量的14%、11%和9%。[align=center][img=图片3.png,600,278]https://img1.17img.cn/17img/images/202206/uepic/479e4bf4-577c-4135-b0ae-39f37b0ea947.jpg[/img][/align]此外,我们还统计到2022年新增的质谱试剂盒产品共22项,共涉及8家企业,其中分别是山东英盛、湖南豪思生物、苏州药明泽康、广州丰华等。结合总占比图可以看出,山东英盛在2022年攻势猛烈,本年度刚过一半就斩获了8款获批的质谱试剂盒产品。[align=center]图3 通过国家药品监督管理总局批准的临床质谱试剂盒产品——进口[/align][align=center][img=图片4.png,600,157]https://img1.17img.cn/17img/images/202206/uepic/a770d8ab-0177-43ce-aa01-a9c217ffacc4.jpg[/img][/align]反观进口产品,自2017年以来获批的质谱试剂盒产品数量不增反降,原因主要有几点,一是其中几款产品于2018和2019年到期后,企业未继续申报。二是进口企业申报必须通过国家药品监督管理局,流程复杂时间更长,因此更多的进口企业开始与国产企业战略合作,贴牌销售,由国产企业进行申报医疗注册许可证。[align=center][img=图片5.png,600,352]https://img1.17img.cn/17img/images/202206/uepic/e1053fbe-5e4b-4087-ab1a-6214e10bd842.jpg[/img][/align][align=center][/align]目前质谱技术在我国临床诊断中应用最多的:一是基于MALDI-TOF MS(基质辅助激光解吸飞行时间质谱技术)的微生物鉴定和核酸分析;二是基于[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用技术)的维生素系列检测、类固醇激素检测(内分泌检测)、药物浓度监测和遗传代谢病筛查等。除此之外,还有用于检测尿液中代谢产物和毒物筛查的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]([url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用技术)、用于检测微量元素含量的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]技术)等。从质谱试剂盒产品申报的方法来看,目前主要集中在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]方法,占比为所有质谱试剂盒产品的94%,其余为[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]和飞行时间质谱方法的产品平分。

  • 质谱技术在临床微生物样本直接检测中的应用-3

    (二)泌尿系统感染病原菌的快速检测  因泌尿系统感染的中段尿样本中的细菌量相对很高, 中段尿样本也是MALDI-TOF MS直接检测的理想选择[30], 并且常常是单一菌种感染, 避免了MALDI-TOF MS在鉴定混合菌样本的不足[31]。泌尿系统感染是人类常见的感染性疾病, 临床泌尿系统感染最常见的病原菌为大肠埃希菌(70%~95%)、腐生葡萄球菌(5%~10%)以及其它肠杆菌科细菌, 如奇异变形杆菌和肺炎克雷伯菌。有研究表明MALDI-TOF MS对尿液样本中这些细菌的鉴定效率和准确率要优于传统鉴定方法和其他鉴定系统[7, 32, 33]。1.鉴定效能 FERREIRA等[7]选取尿液中细菌大于1× 105 cfu/mL的样本进行直接的MALDI-TOF MS鉴定, 结果显示尿液样本经过差速离心法处理后, 可将91.8%的菌株鉴定到种、92.7%的菌株鉴定到属的水平。  杨溪等[33]使用MALDI-TOF MS技术对临床收集到的1 040份尿液样本进行直接快速检测, 共鉴定出含细菌的样本526份, 其中尿细菌培养菌落数≥ 1× 105 cfu/mL, 培养出1种/2种菌的尿液样本MALDI-TOF MS的直接鉴定率分别为92.7%(430/464)和75%(96/128)。MALDI-TOF MS直接检测法的鉴定结果与尿细菌培养法鉴定出的细菌菌种一致, 符合率为100%。2.与流式细胞术联用 怀疑泌尿系统感染的尿液样本一般经离心后取沉淀直接进行检测, 但考虑到临床上有60%~80%的尿液样本是阴性的, 为了减少分析的时间和人工的工作量, 有学者将MALDI-TOF MS与流式细胞术联用检测, 用流式细胞术筛除细菌数量不足的尿液样本, 而MALDI-TOF MS用来检测筛选结果为阳性的尿液样本, 取得了良好的鉴定效果[34, 35]。MARCH ROSSELLó 等[34]建立了这样一种微生物鉴定程序:先用流式细胞仪进行菌落计数筛查出单一细菌阳性的尿液样本, 然后再进行MALDI-TOF MS检测, 发现细菌数在1× 107 cfu/mL时是足够的细菌浓度, 有87.5%的敏感性, 而细菌数在(1× 105)~(1× 107)cfu/mL之间的样本经过4 h的预增菌, 得到用于分析的足够的细菌数量后, 可以达到91.7%的敏感性。3.细菌含量对鉴定结果的影响 由于中段尿中病原菌数 2.0), 而随着样本中细菌数的降低, 鉴定成功的比例和鉴定分数也在下降, 当菌落数 1× 104 cfu/mL的中段尿样本, 应用MALDI-TOF MS直接检测即可取得满意的鉴定效果。4.中段尿样本直接检测的新方法 DEMARCO等[31]近期描述了一种透析过滤的方法, 通过脱盐、分馏、富集等步骤对100例阳性尿液样本在MALDI-TOF MS分析前进行了预处理, 实验结果表明这种预处理方法能够正确地鉴定阳性尿液样本, 并且正确分类了所有临床相关菌尿症的阴性尿液样本, 包括一组污染的尿液样本和一组临床上无关紧要的定植菌。敏感性和特异性分别是67%和100%。5.中段尿样本直接检测的不足之处 与直接检测培养阳性的血样本一样, 对于含有2种或2种以上细菌感染的中段尿样本, MALDI-TOF MS常常表现为鉴定能力不足[33, 35] 尿液蛋白质如α -防御素[8]会造成鉴定结果不能正确匹配数据库 对酵母菌的鉴定能力也有待于进一步提高 对于核糖体蛋白序列差异很小的菌种也常常不能区分。(三)其它无菌体液  MALDI-TOF MS直接检测和鉴定其它无菌体液样本如脑脊液、胸腹水和关节液等中细菌的报道尚不多。NYVANG HARTMEYER等[37]首次报道了通过直接将脑脊液样本离心取上清直接进行MALDI-TOF MS分析, 肺炎链球菌性脑膜炎可以在30 min内做出诊断, 为后续治疗方案的选择和结果的解释提供了重要的参考依据。SEGAWA等[38]也用同样的方法对一例肺炎克雷伯菌引起的脑膜炎做出了诊断, 但同时也指出在实际应用中能获得的样本量少, 细菌数少可能会限制它的应用。另外, 还可将无菌体液样本转移到血培养瓶中进行孵育, 待报阳后进行检测也是可行的。有研究应用MALDI-TOF MS检测了46份液体, 包括移植养护液、关节液、深部脓疱样本、骨小孔样本用血培养基孵育, 发现44/46(96%)能鉴定到种的水平, 余下的2份被鉴定到属的水平[18]。四、总结与展望  MALDI-TOF MS是一种简单、快速、高通量和高效的微生物鉴定手段, 在临床样本直接检测方面较传统的鉴定方法具有更大的优势, 能显著降低样本检测的周转时间和成本, 但尚存在着一些不足之处, 主要表现在:(1)MALDI-TOF MS在检测和鉴定细菌方面的敏感性还不高, 不能直接鉴定患者血样本中的病原菌(细菌数量太少) (2)对于一些核糖体蛋白差异较小的细菌用其辨别有较大的困难 (3)目前的研究都有各自不同的操作过程, 在样本处理、质谱图采集和分析等方面没有统一的标准, 可能会影响分析结果在实验室内和实验室间的可重复性 (4)标准的鉴定参考图谱数据库尚不够完善, 需要进一步拓展 (5)对一些细胞壁难以破坏的细菌(如革兰阳性菌、酵母菌)和混合菌等的鉴定能力还不够高。但是相信随着更加有效的样本预处理方法、更加严格的检测过程控制和更高分辨率的图像处理技术的实现, MALDI-TOF MS用于直接检测临床样本中的微生物会有更广阔的前景。

  • 2129万!首都儿科研究所临床检测用试剂采购项目

    [font=inherit]一、项目基本情况[/font]项目编号:11000023210200070751-XM001项目名称:临床检测用试剂采购项目预算金额:2129.3466 万元(人民币)采购需求:[table][tr][td]包号[/td][td]品目号[/td][td]标的名称[/td][td]采购包分品目预算金额(万元)[/td][td]数量[/td][td]单位[/td][/tr][tr][td]1[/td][td]1-1[/td][td]血小板聚集功能检测试剂盒(光学比浊法)[/td][td]755.9786[/td][td]15[/td][td]毫升[/td][/tr][tr][td]1-2[/td][td]血小板聚集功能检测试剂盒(光学比浊法)[/td][td]30[/td][td]毫升[/td][/tr][tr][td]1-3[/td][td]反应杯[/td][td]200[/td][td]个[/td][/tr][tr][td]1-4[/td][td]搅拌珠[/td][td]30[/td][td]个[/td][/tr][tr][td]1-5[/td][td]非衍生化多种氨基酸、肉碱和琥珀酰丙酮测定试剂盒(串联质谱法)[/td][td]5760[/td][td]人份[/td][/tr][tr][td]1-6[/td][td]样本萃取液及流动相溶剂包(串联质谱法)[/td][td]5760[/td][td]人份[/td][/tr][tr][td]1-7[/td][td]琥珀酰丙酮样本前处理液(串联质谱法)[/td][td]5760[/td][td]人份[/td][/tr][tr][td]1-8[/td][td]样本释放剂[/td][td]5600[/td][td]人份[/td][/tr][tr][td]1-9[/td][td]维生素检测仪用样本处理液VB6[/td][td]9000[/td][td]人份[/td][/tr][tr][td]1-10[/td][td]维生素检测仪用样本处理液VB1/C[/td][td]9000[/td][td]人份[/td][/tr][tr][td]1-11[/td][td]维生素检测仪用样本处理液VB2[/td][td]9000[/td][td]人份[/td][/tr][tr][td]1-12[/td][td]维生素检测仪用样本处理液VB9/B12[/td][td]9000[/td][td]人份[/td][/tr][tr][td]1-13[/td][td]维生素检测仪用样本处理液VA/D/E[/td][td]9000[/td][td]人份[/td][/tr][tr][td]1-14[/td][td]样本稀释液[/td][td]18000[/td][td]人份[/td][/tr][tr][td]4[/td][td]4-1[/td][td]巨细胞病毒IgM抗体检测试剂盒(化学发光法)[/td][td]253.5547[/td][td]1200[/td][td]人份[/td][/tr][tr][td]4-2[/td][td]单纯疱疹病毒1+2型IgM抗体检测试剂盒(化学发光法)[/td][td]1200[/td][td]人份[/td][/tr][tr][td]4-3[/td][td]弓形虫IgM抗体测定试剂盒(化学发光法)[/td][td]1200[/td][td]人份[/td][/tr][tr][td]4-4[/td][td]风疹病毒IgM抗体检测试剂盒(化学发光法)[/td][td]1200[/td][td]人份[/td][/tr][tr][td]4-5[/td][td]EB病毒早期抗原IgG抗体测定试剂盒(化学发光免疫分析法)[/td][td]4000[/td][td]人份[/td][/tr][tr][td]4-6[/td][td]EB病毒衣壳抗原IgG抗体测定试剂盒(化学发光法)[/td][td]4000[/td][td]人份[/td][/tr][tr][td]4-7[/td][td]EB病毒衣壳抗原IgM抗体检测试剂盒(化学发光法)[/td][td]4000[/td][td]人份[/td][/tr][tr][td]4-8[/td][td]EB病毒核抗原IgG抗体测定试剂盒(化学发光免疫分析法)[/td][td]4000[/td][td]人份[/td][/tr][tr][td]4-9[/td][td]增强液[/td][td]33.12[/td][td]升[/td][/tr][tr][td]4-10[/td][td]清洗液[/td][td]144[/td][td]升[/td][/tr][tr][td]4-11[/td][td]反应杯[/td][td]46080[/td][td]个[/td][/tr][tr][td]4-12[/td][td]光路检测试剂盒[/td][td]96[/td][td]毫升[/td][/tr][tr][td]4-13[/td][td]免疫球蛋白A测定试剂盒(散射比浊法)[/td][td]315[/td][td]毫升[/td][/tr][tr][td]4-14[/td][td]免疫球蛋白G测定试剂盒(散射比浊法)[/td][td]315[/td][td]毫升[/td][/tr][tr][td]4-15[/td][td]免疫球蛋白M测定试剂盒(散射比浊法)[/td][td]315[/td][td]毫升[/td][/tr][tr][td]4-16[/td][td]多项蛋白质控品(高值)[/td][td]30[/td][td]毫升[/td][/tr][tr][td]4-17[/td][td]多项蛋白质控品(中值)[/td][td]30[/td][td]毫升[/td][/tr][tr][td]4-18[/td][td]多项蛋白质控品(低值)[/td][td]30[/td][td]毫升[/td][/tr][tr][td]4-19[/td][td]多项蛋白定标品[/td][td]15[/td][td]毫升[/td][/tr][tr][td]4-20[/td][td]SCS清洁液[/td][td]150[/td][td]毫升[/td][/tr][tr][td]4-21[/td][td]稀释杯[/td][td]46200[/td][td]个[/td][/tr][tr][td]4-22[/td][td]样本密度分离液[/td][td]300[/td][td]毫升[/td][/tr][tr][td]4-23[/td][td]样本稀释液[/td][td]300[/td][td]升[/td][/tr][tr][td]4-24[/td][td]缓冲液[/td][td]300[/td][td]升[/td][/tr][tr][td]4-25[/td][td]反应杯[/td][td]1500[/td][td]个[/td][/tr][tr][td]4-26[/td][td]免疫球蛋白G1测定试剂盒(散射比浊法)[/td][td]72[/td][td]毫升[/td][/tr][tr][td]4-27[/td][td]免疫球蛋白G2测定试剂盒(散射比浊法)[/td][td]72[/td][td]毫升[/td][/tr][tr][td]4-28[/td][td]免疫球蛋白G3测定试剂盒(散射比浊法)[/td][td]96[/td][td]毫升[/td][/tr][tr][td]4-29[/td][td]免疫球蛋白G4测定试剂盒(散射比浊法)[/td][td]96[/td][td]毫升[/td][/tr][tr][td]4-30[/td][td]α肿瘤坏死因子测定试剂盒(化学发光法)[/td][td]9000[/td][td]人份[/td][/tr][tr][td]4-31[/td][td]全自动免疫检验系统用底物液[/td][td]15.75[/td][td]升[/td][/tr][tr][td]4-32[/td][td]探针清洗液[/td][td]10[/td][td]升[/td][/tr][tr][td]4-33[/td][td]探针清洁试剂盒[/td][td]500[/td][td]毫升[/td][/tr][tr][td]4-34[/td][td]一次性样本杯[/td][td]50000[/td][td]个[/td][/tr][tr][td]4-35[/td][td]白介素-1β测定试剂盒(化学发光法)[/td][td]9000[/td][td]人份[/td][/tr][tr][td]4-36[/td][td]白介素2受体测定试剂盒(化学发光法)[/td][td]9000[/td][td]人份[/td][/tr][tr][td]4-37[/td][td]白介素-6测定试剂盒(化学发光法)[/td][td]9000[/td][td]人份[/td][/tr][tr][td]4-38[/td][td]白介素-8测定试剂盒(化学发光法)[/td][td]9000[/td][td]人份[/td][/tr][tr][td]4-39[/td][td]白介素-10测定试剂盒(化学发光法)[/td][td]9000[/td][td]人份[/td][/tr][tr][td]5[/td][td]5-1[/td][td]绝对计数管[/td][td]269.9333[/td][td]9700[/td][td]人份[/td][/tr][tr][td]5-2[/td][td]淋巴细胞亚群检测试剂(流式细胞仪法-6色)[/td][td]9700[/td][td]人份[/td][/tr][tr][td]5-3[/td][td]CD45RA检测试剂[/td][td]2300[/td][td]人份[/td][/tr][tr][td]5-4[/td][td]CD4检测试剂[/td][td]2300[/td][td]人份[/td][/tr][tr][td]5-5[/td][td]白细胞分化抗原CD38检测试剂(流式细胞仪法-APC)[/td][td]2400[/td][td]人份[/td][/tr][tr][td]5-6[/td][td]白细胞分化抗原CD3检测试剂(流式细胞仪法-APC)[/td][td]3500[/td][td]人份[/td][/tr][tr][td]5-7[/td][td]CD25检测试剂[/td][td]2400[/td][td]人份[/td][/tr][tr][td]5-8[/td][td]流式细胞分析用溶血素[/td][td]3600[/td][td]毫升[/td][/tr][tr][td]5-9[/td][td]流式细胞分析用鞘液[/td][td]960[/td][td]升[/td][/tr][tr][td]6[/td][td]6-1[/td][td]七项呼吸道病原体核酸检测试剂盒 (双扩增法)[/td][td]731.48[/td][td]7680[/td][td]人份[/td][/tr][tr][td]6-2[/td][td]三项呼吸道病毒核酸检测试剂盒 (双扩增法)[/td][td]360[/td][td]人份[/td][/tr][tr][td]6-3[/td][td]肺炎支原体/肺炎衣原体核酸检测试剂盒(双扩增法)[/td][td]448[/td][td]人份[/td][/tr][tr][td]6-4[/td][td]甲/乙型流感病毒核酸检测试剂盒(RNA恒温扩增-金探针层析法)[/td][td]24000[/td][td]人份[/td][/tr][tr][td]6-5[/td][td]肺炎支原体核酸检测试剂盒(RNA恒温扩增-金探针层析法)[/td][td]18000[/td][td]人份[/td][/tr][tr][td]9[/td][td]9-1[/td][td]人巨细胞病毒核酸定量检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光法)[/td][td]83.23[/td][td]10000[/td][td]人份[/td][/tr][tr][td]9-2[/td][td]EB病毒核酸扩增([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])荧光定量检测试剂盒[/td][td]12000[/td][td]人份[/td][/tr][tr][td]9-3[/td][td]肠道病毒EV71/CA16/EV核酸检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光探针法)[/td][td]1680[/td][td]人份[/td][/tr][tr][td]9-4[/td][td]柯萨奇病毒A6型核酸检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光探针法)[/td][td]720[/td][td]人份[/td][/tr][tr][td]9-5[/td][td]柯萨奇病毒A10型核酸检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光探针法)[/td][td]720[/td][td]人份[/td][/tr][tr][td]9-6[/td][td]甲型流感病毒核酸检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光探针法)[/td][td]96[/td][td]人份[/td][/tr][tr][td]9-7[/td][td]乙型流感病毒核酸检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光探针法)[/td][td]96[/td][td]人份[/td][/tr][tr][td]9-8[/td][td]甲型H1N1流感病毒(2009)RNA检测试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-荧光探针法)[/td][td]48[/td][td]人份[/td][/tr][tr][td]9-9[/td][td]人感染H7N9禽流感病毒RNA检测试剂盒(荧光[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法)[/td][td]96[/td][td]人份[/td][/tr][tr][td]10[/td][td]10-1[/td][td]呼吸道病毒核酸六重联检试剂盒([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]荧光探针法)[/td][td]35.17[/td][td]960[/td][td]人份[/td][/tr][tr][td]10-2[/td][td]25-羟基维生素D检测试剂盒(酶联免疫法)[/td][td]3840[/td][td]人份[/td][/tr][tr][td]10-3[/td][td]骨碱性磷酸酶检测试剂盒(酶联免疫法)[/td][td]960[/td][td]人份[/td][/tr][tr][td]10-4[/td][td]神经元特异性烯醇化酶(NSE)检测试剂盒(酶联免疫法)[/td][td]1920[/td][td]人份[/td][/tr][tr][td]简要技术需求或服务要求:详见第五章《采购需求》中各包技术要求。[/td][/tr][/table]合同履行期限:详见第五章《采购需求》中各包技术要求本项目不接受联合体投标。

  • 【原创大赛】基于高分辨质谱技术的中毒毒物快速分析与临床实践

    [align=center]基于高分辨质谱技术的中毒毒物快速分析与临床实践[/align]毒物是一个比较宽泛的概念,任何以较低的剂量就可以致人畜死亡的物质均可以认为是毒物,而毒物的概念也具有相对性,对于一个物质是有毒还是无毒的判定有一系列的先决条件,不存在任何条件下都无毒或者绝对有毒的物质。其中农药占比9.46%,药物占比21.07%, 化学物如乙醇、CO占比62.85%。在今天,毒物致死是继恶性肿瘤、脑血管疾病、心脏病和呼吸系统疾病后的第五大死亡原因,其中毒机制主要有:干扰酶的活性、破坏细胞膜的功能、阻碍氧的吸收、输送和利用、损害免疫功能等。毒物致死问题亟待解决,毒物的快速分析检测和临床实践刻不容缓。在我国,中毒患者的诊断现状缺乏快速有效准确的检测手段。对急性中毒患者误诊、治疗耽搁的不合理选择和使用等会对患者造成不同程度的伤害,且检测无法覆盖多种目标化合物,同时难以定量检测。因此发生了诸多事件,如清华大学朱令事件、扬州大学秋水仙碱投毒事件等。因此,中毒物质检测技术亟待更新。准确及时的毒物检测与诊断直接影响临床治疗方案的选择,在临床抢救治疗过程中发挥着至关重要的作用。毒物检测方法的发展历程:自薄层层析法、化学法,发展至今现代仪器分析法,一道道技术难题被攻克,鉴定毒物越来越准确。毒物分析仍面临一系列挑战,毒物及其代谢产物在体内浓度极低,常规检测手段难以达到检测所需的灵敏度,存在检出假阳性的可能;代谢产物与原型毒物结构相似,造成对检测的干扰;生物基质复杂,可能会有干扰;毒物种类繁多,理化性质差别大,且中毒时限紧迫,检测需要快速高效。近年来,色谱质谱技术在毒物分析中逐渐应用起来,色谱法凭借其分离效率高、选择性好和灵敏度较高的优点,已广泛应用于中毒物质检测,但中毒患者毒物复杂,仅靠被测物质的保留时间和光谱吸收或电化学检测无法准确定性定量,且耗时长,鉴定效率低。质谱联用法弥补了色谱法的缺点,凭借其灵敏度超高(可达飞克)对极微量物质进行定量分析,质谱法特异性高,其SRM和MRM模式选择性高,且高通量,检测范围覆盖绝大多数化合物,但三重四级杆对未知毒物的定性能力相对较差。而高分辨质谱可以弥补上述的缺点,其优势体现在超高分辨率和准确度,可在复杂基质样本中保证目标质荷比的准确测定,进而排除假阳性结果;其优势还体现在强大的同时定性定量能力,快速实时正负切换,同时获得一级高分辨数据和完整的二级碎片离子信息。中毒毒物质谱分析和处理方案主要流程:样品收集;样品前处理;高分辨率和高灵敏度的高分辨质谱同时定性定量分析;针对未知的中毒毒物可进行毒物筛查与鉴定;针对已知的中毒药物,可进一步确定中毒药物体液浓度,并设定安全范围,在安全范围内的病人对症抢救。在超安全范围的病人对因抢救。有两个案例与大家分享,案例一:患者孙某,51岁男,诊断其为肝硬化失代偿期,肾病,银屑病,经过针对性治疗后,症状得到有效控制,但间断出现无法解释的血液(白细胞,血小板)指标异常、脱发、昏迷等。在组织多科室,多学科会诊后,仍不能解释上述病症,经询问,患者近期服用一种成分不明的药物,白色小瓶中黄色药片,考虑到患者银屑病的病史,遂即诊断为药物中毒。实验室采用高分辨质谱仪对样品进行分析,经碎片裂解规律推导和对照品比对,在两个小时内明确了患者是因为服用了甲氨蝶呤过量而导致的药物中毒。案例二:患者刘某,45岁男,误服用百草枯60 mL导致双肺纤维化,临床诊断为百草枯中毒、双肺纤维化和肾功能不全。临床治疗采用序贯式双肺移植术,先左后右的顺序,采用高分辨质谱对移植前患者体内百草枯体内快速定性定量,12小时内开发出百草枯的定性定量方法,并给出了分析报告,随后至今患者移植物功能稳定。高分辨质谱技术在中毒毒物快速分析与临床实践还会有更多实用案例。感谢郑州大学孙晓坚和孙志研究团队!

  • 化学发光分析及其临床应用

    化学发光分析及其临床应用居军 甘肃省人民医院(兰州730000) 内容提要:化学发光分析是根据化学反应产生的光辐射强度确定物质含量的一种痕量分析方法,可与电化学分析、免疫分析、固定化试剂技术、传感器技术等分析技术联用,具有灵敏度高、线性范围宽、不需要外来光源、分析速度快、仪器设备相对简单、便宜等优点。常用的化学发光技术有电化学发光、化学发光免疫分析、微粒子化学发光等。化学发光分析在临床实验室中主要应用于激素、肿瘤标志物、传染病监测、血药浓度检测等。关键词:化学发光 临床激素 肿瘤标志物 传染病 近年来,化学发光分析技术发展很快,特别是化学发光免疫分析技术,在临床医学应用中发挥着越来越重要的作用。1化学发光 化学发光分析是根据化学反应产生的光辐射的强度确定物质含量的一种痕量分析方法。一些物质在进行化学反应时,吸收化学反应过程中所产生的化学能,使分子处于激发态,当其回到基态时以光子的形式释放能量。反应必须提供足够的化学能,通常只有焓变在170—300KJ/mol之间的放能反应才能产生可见光范围内的化学发光现象。化学发光分析具有灵敏度高、线性范围宽、不需要外来光源、分析速度快、仪器设备相对简单、便宜等优点。化学发光分析灵敏度可达到10-18mol/L,而通常酶联免疫技术的分析灵敏度只能达到l0-13mol/L,新型的微珠包被酶放大免疫技术的分析灵敏度可达到10-14mol/L,荧光免疫及采用沉降法的普通放免技术分析灵敏度可达到10-ls mol/L,固相放免技术分析灵敏度可达到10-16 mol/L。化学发光反应体系有鲁米诺、光泽精、过氧草酸盐(或酯)一荧光物质-H202、Ru(bipy),2+/Ru(Phen),2+等电致发光、Ce(IV)、高锰酸钾一还原性有机物等。化学发光分析测定的物质可以分为3类:第1类物质是化学发光反应中的反应物;第2类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第3类物质是偶合反应中的反应物、催化剂、增敏剂等。化学发光分析测定物质的方式可分为直接法和间接法。化学发光分析反应类型可分为酶促反应和非酶促反应两类。此外化学发光分析法可以与其他分析技术联用,如流动注射分析、电化学分析、免疫分析、固定化试剂技术、传感器技术等分析技术相结合。2常用的化学发光技术 电化学发光是通过对电极施加一定的电压进行电化学反应而发光,通过测量化学发光光谱和强度来测定物质含量的一种痕量分析方法。它将电分析化学手段和化学发光方法相结合,具有独特的优点,如重现性和灵敏度进一步提高,在多种组份同时存在时,可施加不同波形、不同电压的信号进行选择性测量等,是潜在的分析手段之一。 化学发光免疫分析是以标记发光剂为示踪物信号建立起来的一种非放射标记免疫分析法,具有灵敏度高、线性范围宽、仪器设备简单、操作方便、分析速度快和容易实现自动化等优点。鲁米诺、异鲁米诺及其衍生物、吖啶酯衍生物、辣根过氧化物酶和碱性磷酸酶是目前化学发光免疫分析中使用最多的标记物。 微粒子化学发光是化学发光免疫分析的特殊形式,是以化学发光剂为底物的酶免疫技术,同时应用了磁性微珠做固相载体,增加了吸附面积,使抗原抗体最大限度的结合。以3-(2-螺旋金刚烷)-4-甲氧基-4- (3-磷氧酰).苯基.1,2一二氧环乙烷(AMPPD)为发光底物在碱性磷酸酶(Alkaline phosphatase,ALP)的作用下,迅速去磷酸酶,生成不稳定的中介体AMPPD-,进而产生激发态产物,当其跃迁回到基态时产生光子。微粒子化学发光技术所需标本量极少,孵育时间大大缩减,同时因其选择性吸附抗原,从而提高了特异性、灵敏性,使测定结果准确、可靠,并减少污染。 化学发光生物传感器是通过非创伤或非损伤性的办法,连续、实时、动态地检测生物体内的某一种或几种物质浓度的技术。该技术以化学发光作为换能器,不但继承了化学发光高灵敏度的优点,而且大大提高了化学发光的选择性。按照所固定化的生物组分的种类,可以将化学发光生物传感器分为酶传感器、免疫传感器、组织传感器、核酸传感器及微生物传感器等。特别是化学发光免疫传感器是将具有分子识别作用的抗原或抗体以适当的方式固定化而制成,它结合了化学发光高灵敏度和抗原抗体特异性结合的高度专一性以及无污染等特点,是替代放射免疫分析的重要分析工具,已日益受到重视。 化学发光核酸探针已用于检查病毒、细菌和原虫的DNA。以鲁米诺增强化学发光检测体系的核酸探针主要有两种形式,一种是用生物素标记探针,杂交后经过分离,再以过氧化物酶标记的亲和素与生物素结合,加入鲁米诺和增强剂后测发光。另一种是以过氧化物酶直接标记探针,用增强的鲁米诺检测发光。核酸探针亦可用吖啶酯或AP来标记,吖啶类发光体系发出的是瞬时光,而AP以AMPPD作为发光底物,其发光体系具有发光持续稳定的特点,发光时间可长达几天,既可用发光仪也能用简单的感光胶片检测。另外,AP-AMPPD发光体系具有非常高的灵敏度,无论是固相还是液相检测,对标记物碱性磷酸酶的检测限可达10-21(1000 AP分子),是目前最灵敏的核酸测定方法之一,已用于检测B19微小病毒DNA、人乳头瘤病毒DNA(HPV).巨细胞病毒DNA(CMV),并在DNA测序中有很好的应用。3化学发光分析在临床实验室中的应用 激素是由内分泌腺或内分泌细胞分泌的高效生物活性物质,在体内作为信使传递信息,对机体生理过程起调节作用,通过调节各种组织细胞的代谢活动来影响人体的生理活动。通过调节蛋白质、糖和脂肪等三大营养物质和水、盐等代谢,为生命活动供给能量,维持代谢的动态平衡,促进细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育以及细胞的更新与衰老。影响中枢神经系统和植物性神经系统的发育及其活动,是生命中的重要物质。激素在血液中的浓度很低,一般蛋白质激素的浓度为10-10~10-12mol/L,其他激素在l0-6~10-9mol/L。目前临床上用化学发光可测定大部分激素,如E2、E3、T3、T4、fl'4、TSH、HCG、p-HCG、甲状腺球蛋白(TG)、抗甲状腺球蛋白(ATG)、甲状腺结合球蛋白(TBG)、抗甲状腺过氧化物酶(ATPO)等。 肿瘤标志物是癌细胞生长过程中产生的一种或几种正常情况下没有的或含量很低的“特异性”物质,或是宿主细胞因癌细胞入侵而过量产生的正常细胞组分。肿瘤标志物存在于组织、细胞、血液或体液中,肿瘤标志物的检测对肿瘤高危人群的筛选、肿瘤的诊断和鉴别诊断、肿瘤分期、肿瘤定位、肿瘤治疗等都具有一定的意义。尤其在肿瘤治疗过程中,肿瘤标志物浓度的升高和降低与疾病的预后密切相关,肿瘤标志物测定对恶性肿瘤的预后具有监测价值。同时应当注意,现今所知的肿瘤标志物中,绝大多数不但存在于恶性肿瘤中,而且也存在于良性肿瘤、胚胎组织,甚至正常组织中。因此,这些肿瘤标志物并非恶性肿瘤的特异性产物,但在恶性肿瘤患者中明显增多。因此肿瘤标志物也称为肿瘤相关抗原。肿瘤标志物的检测仅仅是配合临床医生对肿瘤诊断、治疗、监测的辅助手段。检测出的结果要根据其它临床检测结果综合判断。肿瘤标志物的检测方法历经了血球凝集法,电泳法、放免法、荧光免疫法,酶联免疫吸附法,微粒子法等,特别是电化学发光法、化学发光法新技术逐渐地应用到全自动免疫分析系统中,使肿瘤标志物的检测更敏感、更准确。目前常用的肿瘤标志物有:甲胎蛋白(AFP)、癌胚抗原(CEA)、糖原125(CA-125)、糖原153(CA-153)、糖原199(CA-199)、糖原724(CA-724)、糖原211(CA-211)、糖原242(CA-242)、铁蛋白(Fer)、神经元特异性烯醇化酶(NSE)、前列腺特异性抗原(PSA)、组织多肽抗原(TPA)等。 传染病的疗效监测,特别是病毒性肝炎的防治,已列为我国重大传染病专项课题。用化学发光分析技术对病毒标志物进行定量检测,与ELISA方法相比,大大提高了检测灵敏度,是临床治疗的重要依据。已成为临床应用的常规手段。 血药浓度检测是合理、安全用药,评估药效的重要手段,而化学发光分析的优点恰好满足药物分析对分析方法提出的要求,使得它在药物分析领域也有较为广泛的应用。利用该技术可对抗菌素、中枢神经系统药物、循环系统药物、维生素、代谢产物及生命相关物质进行分析,对临床药理和药物治疗的研究都起到重要的推动作用。

  • 北京临床基因扩增检验实验室筹建策划方案

    北京临床基因扩增检验实验室筹建策划方案

    北京临床基因扩增检验实验室筹建策划方案项目名称:2012年临床基因扩增检验实验室1 概述 临床基因扩增实验是专门用来检验艾滋病、乙型肝炎、禽疫病等病毒感染性疾病的一种检测手段。它可以通过将病毒体内所含的基因进行扩增的方法,测出一些病毒含量不高的感染者体内是否含有特定的病毒。由于该检测方法可以测出普通检验难以检测出的病毒并具有灵敏度高、特异性高、快捷、对样品要求低等优点,因此被临床医生广为认可,已广泛应用于医院的临床诊断和各防疫检测部门的禽疫病诊断。但是,这种实验需要有能保证绝对安全、配置合理的实验室和非常规范的操作为前提。近年来对临床基因扩增检验实验室的建设越来越得到重视,因为它对检测结果的可靠性、准确性和安全性起到至关重要的作用。本文主要从临床基因扩增检验实验室的平面布局,空调通风系统设计、气流控制和污染的防制几个方面对实验室设计中的主要特点进行了阐述。 临床基因扩增检验实验室设计的核心问题是如何避免污染。因此,实验室的平面布局、空调通风系统设计、气流控制等都是围绕这个核心问题进行的。下面就对这几个方面分别进说明。2 临床基因扩增实验室平面布局 临床基因扩增检验实验室原则上分为四个单独的工作区域:试剂贮存和准备区、标本制备区、扩增反应混合物配制和扩增区、扩增产物分析区。为避免交叉污染,进入各个工作区域必须严格遵循单一方向进行,即只能从试剂贮存和准备区→标本制备区→扩增反应混合物配制和扩增区→扩增产物分析区。 各实验区之间的试剂及样品传递应通过传递窗进行。临床基因扩增实验室平面布置示意图如图1所示。 http://ng1.17img.cn/bbsfiles/images/2011/11/201111250944_332855_2394712_3.jpg图1临床基因扩增实验室平面布置示意图3 实验室空调通风系统设计及压力控制 临床基因扩增实验室并没有严格的净化要求,但是为避免各个实验区域间交叉污染的可能性,宜采用全送全排的气流组织形式。同时,要严格控制送、排风的比例以保证各实验区的压力要求。3.1 试剂贮存和准备区 该实验区主要进行的操作为贮存试剂的制备、试剂的分装和主反应混合液的制备。试剂和用于标本制作的材料应直接运送至该区,不得经过其他区域。试剂原材料必须贮存在本区内,并在本区内制备成所需的贮存试剂。 对与气流压力的控制,本区并没有严格的要求。3.2 标本制备区 该区域主要进行的操作为临床标本的保存、核酸(RNA、DNA)提取、贮存及其加入至扩增反应管和测定RNA时cDNA的合成。 本区的压力梯度要求为:相对于邻近区域为正压,以避免从邻近区进入本区的气溶胶污染。另外,由于在加样操作中可能会发生气溶胶所致的污染,所以应避免在本区内不必要的走动。3.3 扩增反应混合物配制和扩增区 该区域主要进行的操作为DNA或cDNA扩增。此外,已制备的DNA模板和合成的cDNA(来自样本制备区)的加入和主反应混合液(来自试剂贮存和制备区)制备成反应混合液等也可在本区内进行。在巢式PCR测定中,通常在第一轮扩增后必须打开反应管,因此巢式扩增有较高的污染危险性,第二次加样必须在本区内进行。 本区的压力梯度要求为:相对于邻近区域为负压,以避免气溶胶从本区漏出。为避免气溶胶所致的污染,应尽量减少在本区内的不必要的走动。个别操作如加样等应在超净台内进行。3.4 扩增产物分析区 该区域主要进行的操作为扩增片段的测定。如使用全自动封闭分析仪器检测,此区域可不设。 本区是最主要的扩增产物污染来源,因此对本区的压力梯度的要求为:相对于邻近区域为负压,以避免扩增产物从本区扩散至其它区域。4 污染的预防与控制 临床基因扩增实验室设计的核心问题是如何避免污染。在实际工作中,常见的有以下几种污染类型:扩增产物的污染;天然基因组DNA的污染;试剂的污染以及标本间的污染。由于一旦发生污染,实验就必须停止,直到找到污染源为止,而且实验结果必须作废,需重新进行实验。所以发生污染后再围绕实验室来寻找污染源不但耗时而且繁琐,浪费人力物力。因此要避免污染,首先应是预防,而不是排除。4.1 工作区域的严格划分(1)各个实验区域设置合理;(2)各个实验区域要有明显的标记(如醒目的门牌或不同的地面颜色等),以避免各个不同实验区域设备物品、试剂等发生混淆。4.2 合理的系统设置(1)合理的空调通风系统设置,尽量采用全送全排的空调系统;(2)严格的气流压力控制,保证不同的实验区内不同的压力要求。[/fon

  • 临床样品的药物浓度检测可以由申办者自己进行测定吗

    [color=#444444]因为临床试验样品分析这块经常出问题,所以年后领导决定本公司内部建立临床样品分析组,对本公司临床试验生物样品中的药物浓度进行检测,不再委托第三方。我想问下,这样可以吗,建立的实验室是否需要什么资质认证?法规有没有明确的规定?如果没有规定的话,是否存在潜规则啊?[/color]

  • 全自动化学发光免疫分析仪的原理以及临床应用

    全自动化学发光免疫分析仪的原理以及了临床应用。全自动化学发光免疫分析仪采用光电比色原理来测量体液中某种特定化学成分的仪器。是用于检测肿瘤标志物、贫血、甲状腺、孕筛查等项目,是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术,目前应用的自动化分析仪是分析中的取样、加试剂、去干扰物、混合、保温、比色、结果计算、书写报告和清理等步骤的部分或全部由模仿手工操作的仪器来完成,大大提高了工作效率及准确性。

  • 质谱技术在临床中的应用

    来自SDi的最新报告指出,未来五年临床质谱市场将以7.6%的速度增长。根据美国临床实验室协会的数据,美国临床实验室每年对血液、尿液和其他患者样品检测次数超过70亿次。免疫分析一直是临床诊断中应用最广泛的技术,但出于对检测结果精准性等需求,越来越多的实验室开始将质谱作为首选的检测工具。另外,相比于测序技术的预测性质,质谱技术的应用更是所见即所得的提示,其意义与价值不言而喻,如果测序是算法分析和公式推导,那么质谱技术就是实践是检验真理的唯一标准,如果说测序还有算命性质,那么质谱技术就是就事论事板上钉钉。事实上,在西方质谱应用于临床已有几十年的历史,发展相对成熟,如美国Quest和Labcorp等大型独立医学实验室,检测项目有4000余项,其中基于质谱的检测项目多达400余项,临床质谱检测设备上百台。再看中国,临床质谱处在早期增长阶段,正迎来高速发展,预计未来五年会迎来两位数的增长。最显著的增长来自独立医学实验室。随着国家精准医疗、分级诊疗等新医改政策的逐步落地,第三方医学检验机构如雨后春笋般遍布全国,有越来越多的独立医学实验室也开始加大投入来搭建更大规模的质谱检测平台,以金域、迪安这两个行业领先者为例,金域目前有数十台质谱检测设备,包括[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS等,质谱检测项目也有近40项 迪安诊断在今年早些时候设立了控股子公司凯莱谱,致力于建立国内顶尖的临床质谱检测平台。迪安诊断董事长陈海斌在凯莱谱开业庆典上表示,“迪安决心将质谱技术作为实验室发展的重点方向。”临床实验室中的质谱仪目前,临床诊断中最常用的质谱类型有三重四级杆LC MS/MS和MALDI-TOF。特别是前者,是当前在临床诊断中应用最广的质谱技术。具体应用如维生素检测、药物代谢物检测、毒理学和新生儿筛查等,均推动的了该技术在临床诊断领域的发展。MALDI-TOF系统最常用来做临床微生物鉴定,也用于基因检测。最近,用MALDI质谱成像技术做直接组织分析,分析时间缩短,具有很大的临床应用潜力。此外,还有LC/TOF、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]、手持式MS等。LC/TOF主要用于生物标志物的鉴定,从而有助于提早发现疾病或感染。[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]主要用来测人体内微量元素含量,从而做一些职业病的诊断。手持式MS是相对较新的技术,目前在临床上的应用有限,但是在偏远地区和即时诊断等应用场景有巨大的市场潜力。质谱仪制造商积极应对目前临床实验室用质谱做临床检测以实验室自建项目(LDT)为主,很少使用CFDA、FDA等监管部门批准的检测试剂盒。鉴于临床对于质谱的需求越来越大以及临床领域的特殊性,世界各地有关部门均开始采取措施以加强监管。据悉,FDA正在建立一个规范临床质谱检测的监管框架,要求每个检测项目都要走注册流程,这意味着一个公司今后可能要在注册方面投入数百万美元。CFDA对于注册医疗器械许可的质谱仪审查也极为严格。为迎接即将到来的市场变革,所有领先的质谱仪制造商都开始着手为他们的仪器产品寻求监管批准,并不断推出新产品,以消除临床实验室大规模采用临床质谱的障碍,包括:监管审批、质量(如实验室检结果差异)、资源(如操作人员技能)和工作流程(如周转时间)等。赛默飞世尔于2017年5月公布了一套标准的临床化学分析仪——Cascadion SM临床分析仪。该系统包括自动化的Thermo Scientific TurboFlow在线样品制备技术、基于Prelude MD HPLC s系统设计的新LC、基于TSQ Altis三重四极杆质谱设计的新质谱系统和专用软件 此外,还有专业耗材[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]、用于样品制备的自动化LC 模块和特殊的样品管。该系统将于2018年获得欧盟CE标志 一旦其获得美国FDA I类医疗器械许可后,也将在美国展开推广。赛默飞世尔还计划推出三个专为该系统设计的试剂盒,这些试剂盒均获得FDA 510(k)批准,分别针对25OH维生素D、总睾酮和免疫抑制药物的检测。后续还有药物滥用和内分泌物检测的试剂盒。SCIEX在2017年6月召开的美国质谱年会(ASMS)上展示了用于临床诊断的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]整体解决方案——Topaz系统。该系统包括clearcore MD软件和首个通过FDA批准的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]维生素D测定试剂盒——Vitamin D 200M Assay,用于测定成人血清中维生素D的含量。Topaz已获批FDA II类医疗器械,也可用于LDT。2017年,SCIEX的三重四级杆LC MS/MS系统4500MD通过了中国的CFDA二级医疗器械注册。沃特世旗下各类LC、MS在全球59个国家获得医疗器械注册证的批准,其中有三款三重四级杆[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]/MS产品面向临床市场。在中国,其三重四级杆[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS均通过CFDA二级医疗器械认证,解决方案有新生儿遗传代谢性疾病筛查、血浆中儿茶酚胺及其代谢物含量测定、血浆中醛固酮含量测定和全谱氨基酸分析等。在2007年推出的MassTrak免疫试剂盒获得510(k)批准,通过质谱方法来检测他克莫司血药浓度。对于欧洲市场,沃特世提供有CE标识的MassTrak维生素D的解决方案和用于定量检测他克莫司和依维莫司的MassTrak免疫抑制剂XE试剂盒。此外,沃特世还提供用于体外诊断和临床研究的色谱柱、样品前处理试剂和实验方案。珀金埃尔默也是临床质谱市场的活跃者之一,其新生儿筛查试剂盒获得了非常广泛的市场认可,每年要为3900万多名婴儿做遗传代谢性疾病筛查。在中国,珀金埃尔默的业务正不断扩大,有超过90%的新生儿做遗传代谢性疾病筛查(使用珀金埃尔默仪器和试剂盒),其在苏州的临床实验室对外提供新生儿筛查服务。2016年,珀金埃尔默还推出了专门用于临床诊断检测的LC/MS——QSight MD210,目前已经获得了欧洲CE认证,正在注册中国CFDA二级医疗器械许可。岛津推出了CLAM-2000/[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS系统,是由全自动[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]预处理仪器SCLAM-2000和岛津三重四级杆LC MS/MS 8040 组成的全自动前处理[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff] LC [/color][/url]MS/MS 系统,用以简化大批量临床样本前处理环节的工作流程。安捷伦通过FDA I 类医疗器械的色质产品有Agilent K1260 Infinity [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统和 K6460/K6420 三重四极杆质谱仪,并正在申请中国CFDA医疗器械注册许可证。布鲁克占据了超过一半的MALDI-TOF细分市场,是全球临床微生物鉴定市场的标杆企业,其 microflex LT/SH质谱仪通过CFDA二级医疗器械注册。中国的微生物鉴定市场正处在早期上升阶段,市场潜力巨大。今年中国质谱市场发生了新的情况,多家国产厂商和IVD企业瞄准临床微生物鉴定市场,纷纷推出MALDI-TOF,加上先一步推出产品的两家,目前有MALDI-TOF产品的国产厂商已达7家。其中,毅新博创和融智生物均拿到了CFDA医疗器械注册证。可以预见,未来这一市场的竞争将会异常激烈。

  • 【原创大赛】析因设计资料的方差分析在药物临床分析中的应用

    【原创大赛】析因设计资料的方差分析在药物临床分析中的应用

    析因设计资料的方差分析在药物临床分析中的应用上次写过一篇药物临床分析中可线性化的非线性模型回归应用,得到几位老师指点迷津了的。写这篇之前,先感谢几位老师给予站短的悉心指导,让俺受益不少。写这篇的目的还是请药物临床分析专家老师指点迷津,论坛藏龙卧虎,让俺学到了课本上学不到的知识。药物临床分析数据统计分析在实际过程中常常会遇到许多问题,第一篇中的可线性化的非线性模型回归很好的应用解决了不少难题,这次的析因设计资料的方差分析在药物临床分析中也能解决不少困难,现在做几个案例分析,期望老师们继续关注,继续指导,谢谢!(*^__^*) 嘻嘻……1.案例分析例1:药物临床分析基地分析甲乙两药治疗高胆固醇血症的疗效(胆固醇降低值mg%),问①甲乙两药是否有降低胆固醇的作用?②两种药间有无交互作用?http://ng1.17img.cn/bbsfiles/images/2012/09/201209261054_393080_2355529_3.jpg例2:药物临床分析基地分析白血病患儿的淋巴细胞转化率(%),问①不同缓解程度、不同化疗期淋转率是否相同?②两者间有无交互作用?http://ng1.17img.cn/bbsfiles/images/2012/09/201209261055_393082_2355529_3.jpg例3:某药物临床分析基地对小鼠给某药后做血清检验分析。小鼠种别(A)、体重(B)和性别(C)对皮内移植SRS瘤细胞生长特征影响的结果(肿瘤体积cm3)问①A、B、C各自的主效应如何?②三者间有无交互作用?http://ng1.17img.cn/bbsfiles/images/2012/09/201209261055_393083_2355529_3.jpg例4:药物临床分析基地分析研究小鼠在不同注射剂量(A)和不同注射频次(B)下药剂ACTH对尿总酸度的影响。问①A、B各自的主效应如何?②二者间有无交互作用?http://ng1.17img.cn/bbsfiles/images/2012/09/201209261056_393084_2355529_3.jpg2.析因设计的特点http://ng1.17img.cn/bbsfiles/images/2012/09/201209261056_393085_2355529_3.jpg可用来分析全部主效应,以及因素间各级的交互作用。 所需试验的次数很多,如2因素,各3水平,5次重复需要试验为45(3×3×5)次。3. 析因设计效应分析指标单独效应(simple effects):其它因素的水平固定,某一因素不同水平间的效应差异。主效应(main effects):某因素各单独效应的平均效应。交互作用(Interaction):某一因素效应随着另一因素变化而变化的情况。(如一级交互作用AB、二级交互作用ABC…)。例1: 某药物临床分析基地研究人员为了解纯苯(A)和升白细胞药物(B)对大鼠吞噬指数的影响,以及两者同时使用的作用。将20只条件相近的大鼠,随机分成四组。按A、B两因素有无进行处理。其中a1表示以0.3ml/kg纯苯给大鼠皮下注射染毒,每周3次,共一个半月;[font=Times New Roman

  • 中美临床质谱发展现状比较

    近年来,随着质谱技术的快速发展,离子源技术及质量分析器技术的变革,质谱仪器设计的快速改进,使得质谱仪成为化学分析领域尤其是 生命科学领域非常有效的一种分析工具。  得益于质谱技术的发展,过去几十年来,许多临床检测实验室已经陆续引进 质谱技术,因为与传统的检测方法相比,质谱技术具有高灵敏度、高特异性和高准确度的特点。质谱技术在临床检验中的应用,主要涉及临床生化检验、临床免疫学 检验、临床微生物检验以及临床分子生物诊断等方面。在临床生化检验领域,由于串联质谱技术的高特异性、高准确度、高灵敏度、高简便性、线性范围宽及高通量 的优点,逐渐取代了部分传统的检测方法,使得生化检验结果更加准确可靠,对临床诊断的参考意义进一步提升 检测方式不再是一次分析只针对一种代谢物、一种 疾病,而是一次分析可针对多种代谢物、多种疾病。正是由于质谱技术在生化检验中的优异表现,进一步促进了质谱技术在临床检验中的迅速发 展。  在美国,临床质谱技术已经发展得相对成熟,服务于临床检测的项目已达400余项 涉及产前检查、新生儿筛 查、滥用药物监测、代谢物检查(氨基酸、脂肪酸)、类固醇激素检测(内分泌)、维生素族检测以及微生物鉴定等领域。同时,在蛋白组学研究方面,也正在研究 如何从科研转化到临床应用。  临床质谱技术在美国的成熟发展,离不开上下游供应产业的成熟发展和行业协会的推 动。在美国,较大型的质谱公司如SCEIX、Thermo Fisher、Agilent等不仅能提供质量较高的检测仪器,而且都积极配合临床质谱的发展,不断更新升级自身的软硬件设备及应用支持服务,使得质谱技 术在临床的应用获得强大的后盾支撑。同时,为了汇聚检验领域专家,共同促进行业对临床质谱分析的关注和理解,促进质谱成为健康管理的便利工具,2008 年,由David Herold教授等人在美国圣地亚哥发起举办了第一届Mass Spectrometry: applications to the Clinical Lab(MSACL),即质谱在临床实验室的应用会议。会议以其高度的专业聚焦性受到了业界人士的广泛欢迎。会议宗旨是为质谱的临床应用发展研讨提供专业 的交流平台,专注专业的行业聚焦型会议,促进了行业人才的培养,加快了行业信息的流通,提高了新技术、新应用的普及率,很好地推动了质谱技术在临床检验实 验室的发展。  当然质谱技术的发展除了其本身发展和应用的良好推广与实践外,更离不开行业政策环境的支撑。在美 国对临床质谱技术采用了有效兼顾监管和鼓励创新的LDT (Laboratory Developed Test)模式。在此模式下,只要是有临床实验室改进修正案(CLIA)执照的实验室,其研发的产品和技术服务就可以合法进入临床,合理收费。实验室取得 CLIA标准相关认证后,检测结果即可用于指导临床诊疗。该管理方式自实施以来,得到了患者、医院、第三方临检中心、保险公司的广泛认可,目前美国有近 25万个CLIA实验室。美国临床病理学会(ASCP)对LDT定义为:实验室内部研发、验证和使用,以诊断为目的的体外诊断实验。LDT仅能在研发的实 验室内使用,可使用购买或自制的试剂,但这些试剂不能销售给其他实验室、医院或医生。LDT的开展不需要经过FDA的批准。正是这种有效兼顾监管和鼓励创 新的LDT模式,极大地促进了美国质谱技术在临床应用中的快速发展。  在中国,临床质谱技术属于较年轻的检测方 法,临床应用还处于起步阶段,少量第三方医学检验机构和大城市的三甲医院开展了利用质谱为手段的检测项目,数量十分有限,应用广度和深度远不如美国。在中 国临床质谱应用方面,以金域检验为代表的机构中,临床质谱的主要应用涉及新生儿筛查、药物浓度监测、代谢物检查(氨基酸、脂肪酸、胆汁酸)、类固醇激素检 测(内分泌检测)、微量元素检测、维生素族检测以及微生物鉴定等领域 检测项目数量有限,开展数量较多的金域检验公司也仅70余 项。  中国的质谱市场上,仪器设备几乎被国外公司垄断,市场上应用较多的为SCIEX、Agilent、 Waters、Thermo Fisher、Shidmazu、Bruker等公司的产品 国产质谱仪器主要在部分研究机构有应用,距离实际的生产应用普及还有很大的距离。这一现状, 导致了中国的临床质谱的投入成本较高、技术支持服务有限,一定程度上限制了技术的发展。  在行业政策环境方面,中国除香港外,没有开放的CLIA监管机制,也无明确的LDT政策。我国许多专家学者呼 吁,中国应该借鉴美国的管理模式,允许LDT项目,实现临床实验室检验结果的质量保证。这样既能控制风险,又能加速新技术的临床应用。在行业协会方面,非 常认可LDT项目,并在积极推动中国LDT项目的发展。2014年3月7日,上海医学会举行了“部分基因和质谱检测的实验室自建项目(LDT)的研讨 会”。在会上,上海市卫计委医政处、规财处和发改委领导均对LDT 开展表示支持,鼓励医院在保证质量的前提下,开展LDT项目试运行。上海医学会表示愿意作为学术平台,为政府机关和临床专家搭建沟通平台,希望在有关政府 机构的支持和监督下,规范而又稳步推进LDT项目,促进个体化诊疗的发展。  在中国香港,由于LDT项目的开 放,临床质谱技术得到了很好的发展。质谱技术的高准确度、高灵敏度、高特异性以及低成本等特点,促使了香港很多检验机构已经用质谱技术完全替代了放射免疫 技术,用于临床检测服务 越来越多的免疫学方法项目也在逐步被临床质谱检测项目所替代。CLIA监管模式下的LDT项目的开放,是质谱等年轻技术发展的推 动力,希望中国能尽快形成LDT的氛围,促进临床质谱等新技术的发展。  当然,中国临床质谱技术的发展,也受限于技术本身的局限性。这些局限性表现在几个方面,第一,临床质谱技术相较于传统免疫学技术:仪器自动化程度低,仪器 数据不能直接转化为可读数据,对技术人员的操作能力和专业数据处理能力要求高 第二,质谱仪器厂商的应用支持欠缺,也加大了对技术人员的要求,需要技术人 员具备较强的仪器使用与维护能力 第三,质谱技术本身属于高精尖技术,技术复杂程度较高,即使是化学领域的专业人才,也需要经过长期的培训和实践,才能掌 握。所以技术的复杂性对医学检验行业的技术人员是很大的挑战。正是基于技术局限性对人员的依赖和高要求,所以技术的发展渴求高水平、大批量的专业技术人才 的涌现。目前,在中国没有专门的临床质谱人才培养方案,也无专业的临床质谱行业协会或培训交流会议,临床质谱行业人才匮乏。这种人才匮乏的现状,也在一定 程度上限制了临床质谱技术的应用和普及。针对此种现状,一方面中华医学会检验分会,对临床质谱技术的聚焦呼之欲出,另一方面需要各界社会力量集聚、积极筹 备相应的培训交流会议。  综合以上的中 美临床质谱发展的现状,中国的临床质谱行业较美国还有很大的差距。行业的发展,离不开有关部门、行业组织的多方推动。我们希望,中华医学会检验分会、质谱 仪器厂商、医院检验科、第三方医学独立实验室以及有关监管部门,共同联动,一起推动中国临床质谱行业的发展。我们也期待,在不久的将来,临床质谱技术能更 好、更广泛的为医学检验服务,让检验结果更加准确、快速、有效,造福病患。

  • 质谱技术在临床微生物样本直接检测中的应用-2

    (二)MALDI-TOF MS分析  目前主要有4种MALDI-TOF MS系统[9]:MALDI Biotyper系统 (Bruker Daltonics, 德国), VITEK MS系统 (BioMé rieux, Marcy l’ Etoile, 法国), the AXIMA@SARAMIS 数据库 (AnagnosTec, 德国)和the Andromas (Andromas, 法国), 其中前2种质谱系统已获得中国食品和药品监督管理局许可证, 可以用于临床样本的检测。  在进行质谱分析前, 应根据不同的检测对象和使用的激光类型选择合适的基质。基质由基质复合物和基质溶剂组成。常用溶剂有:乙醇、乙腈和一种强酸如三氟乙酸、甲酸等。常用的基质是2, 5-二羟基苯甲酸(2, 5-dihydroxybenzoic acid, DHB)、ɑ -氰基-4-羟基肉桂酸(ɑ -cyano-4-hydroxycinnamic acid, ɑ -CHCA)、3, 5-二甲氧基-4-羟基肉桂酸(sinapinic acid, SA)等。将经过提取的微生物样本细胞内容物与等量的基质溶液(通常是1 μ L)混合或分别点加在样本靶板上, 待室温条件下干燥后(使得样本与基质共结晶)上机检测即可。(三)鉴定结果分析  将质谱检测得到的谱峰与数据库进行模式匹配, 得到一个鉴定分数。基于软件给出的在列表中第1种微生物的鉴定分数, 根据各自质谱分析系统的判断标准得出检测结果。目前文献报道有2种判断标准:第1种是由STEVENSON等[10]提出的, 鉴定结果按照匹配程度进行打分, 分值在0~3之间。当得到的鉴定分数≥ 2.0时, 表示待测菌株有较大的把握被鉴定到种的水平 鉴定分数在1.7和2.0之间时, 表示菌株被鉴定到属的水平, 分值 1.7表示产生的鉴定结果不可信。第2种标准是LA SCOLA等[11]提出的, 当一个样本经过4次点样鉴定, 当列表中第1种微生物的鉴定结果均一致, 并且至少2次的鉴定结果鉴定分数≥ 1.900, 或者4次的鉴定分数均≥ 1.200, 表明微生物能被正确鉴定。有学者发现通过改进上述的鉴定标准可以得到更好的鉴定效果, ROSSELLó 等[12]认为在临床样本直接鉴定时, 鉴定分数要比直接纯培养的低, 可能会对分析结果造成干扰, 而厂商推荐的鉴定标准有些严格, 只有得到很高的鉴定分数结果才是被接受的。因此提出新的标准增加可接受的准确鉴定数:当一个样本4次点样中至少有2次的鉴定结果一致, 并且对列表中的第1个微生物种的鉴定分数均≥ 1.4时, 即表示能够准确鉴定, 这种标准与纯培养的鉴定结果有100%的符合率。NONNEMANN等[5]、GORTON等[13]将种的鉴定分数降到1.5, 可以将种的鉴定率从56%提升到76%、54%提升到63%。以上均提示了厂商推荐的cut-off值比较保守, 使得鉴定的敏感性降低。此外, 由于目前的数据库尚不完善, 对于部分菌株可能会出现鉴定失误的情况, 实验室工作人员应在商品数据库的基础上建立和丰富自己的参考数据库, 以提升鉴定的准确率。三、MALDI-TOF MS在临床样本直接检测中的应用  从临床样本直接检测微生物可以节省转种培养的时间。目前已取得显著进展的是从血培养阳性样本中直接检测细菌和酵母样真菌, 而从中段尿和其他无菌体液样本中的直接检测也在快速发展。(一)血流感染病原菌的快速检测  血流感染的发病率和死亡率都相当高, 快速准确的血流感染病原菌鉴定对于临床抗菌药物的合理使用和病愈率的提高至关重要。直接检测能显著减少鉴定时间( 29 h), 使得在血培养阳性的第1个24 h内接受适当抗菌药物治疗的患者增加11%[14]。CLERC等[15]认为基于MALDI-TOF MS 对血培养阳性样本的检测可能会成为血培养阳性患者管理中除了革兰染色报告之外的第2个关键步骤。近年来, 有不少的研究应用MALDI-TOF MS直接鉴定临床微生物样本, 取得明显进展的是从血培养阳性样本中直接鉴定细菌和酵母样真菌[5, 10, 16], 而混合菌和厌氧菌等的鉴定还有待更多的研究。1.鉴定效能 (1)细菌:在引起血流感染常见菌的鉴定方面, MALDI-TOF MS技术已经在肠杆菌科细菌、葡萄球菌等病原菌的直接鉴定方面取得了很好的鉴定结果。大量的研究评估了MALDI-TOF MS用于直接鉴定阳性血培养瓶的表现, 不同文献报道的种水平的鉴定率在54%~99%不等[5, 10, 11, 17, 18, 19], 主要是由于所鉴定细菌种类/数量的不同, 或是运用了不同的预处理/提取方法, 或是定义了不同的cut-off值。SCHMIDT等[19]、SCHUBERT等[20]应用不同的操作程序直接鉴定阳性血培养瓶样本, 结果显示103株代表临床最常见的13个属24个种的样本中, MALDI-TOF MS准确鉴定其中的72%(86.6%革兰阴性菌, 60.0%革兰阳性菌) 500例样本中, 其中革兰阳性菌358例, 革兰阴性菌98例, 总体种的鉴定率达到了86.5%, 其中革兰阳性菌是89.8%, 革兰阴性菌是86.3%。国内最新的研究也显示, 陈峰等[21]运用分离胶促凝管联合MALDI-TOF MS直接检测, 革兰阴性菌和革兰阳性菌中有84.0%和75.0%能被准确鉴定到种的水平 对于血流感染中最常见的病原菌的菌种鉴定符合率达到83.3%~96.9%。以上研究均显示了MALDI-TOF MS在血流感染直接鉴定方面的良好表现, 并呈现出了如下特点:对革兰阴性菌的鉴定率比革兰阳性菌高 无荚膜的细菌较有荚膜的细菌(细胞壁难以破坏提取到足够的菌体蛋白)的鉴定率高 混合细菌感染时鉴定能力有限, 多数情况下只能鉴定出其中一种优势细菌 对草绿色链球菌的鉴定效果较差(鉴定不出, 或将缓症链球菌鉴定为肺炎链球菌)[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], 需要进行另外的确证试验 (2)真菌:MALDI-TOF MS在鉴定酵母菌方面有较高的鉴定率。FERRONI等[18]、YAN等[16]的研究表明酵母菌鉴定的正确率可达91%~100%。但是也有学者得到了相反的结果, GORTON等[13]和PAOLUCCI等[22]直接鉴定的正确率只有56%和41%, 可能是因为鉴定使用的血量过少(1.5 mL), 或是在处理样本的过程中样本的丢失导致了低鉴定率 (3)其它细菌:目前关于厌氧菌的直接鉴定的报道较少, 并且显示了鉴定成功率并不理想, 可能是因为厌氧菌对生长条件的要求较为苛刻, 导致增菌的数量达不到要求, 还需要更多的研究来优化其鉴定条件。2.不同的检测方法 上述结果均是MALDI-TOF MS直接检测报阳血培养瓶的样本所得到的。有研究表明报阳血培养瓶的样本也可以转种到固体培养基上进行短暂孵育(如2~4 h)后再进行鉴定, 则具有更大的优势。KROUMOVA等[23]在质谱法分析实施蛋白提取程序之前, 将样本富集到一个增菌培养基中孵育大约2 h后再进行质谱分析, 同时达到增菌和减少血液成分干扰的目的, 提升了鉴定分数, 使鉴定结果更可信 IDELEVICH等[24]将血培养阳性的样本转种到血平板孵育1.5、2、3、4、5、6、7、8、12和 24 h(对照), 分别直接进行MALDI-TOF MS检测, 直到有可靠的到种水平的鉴定结果出现(鉴定分数≥ 2.0), 结果发现革兰阳性球菌平均鉴定到种所需要的孵育时间是5.9 h, 革兰阴性杆菌平均鉴定到种所需要的孵育时间是2 h。如果增加了蛋白提取程序, 革兰阳性球菌的孵育时间将缩短至3.1 h, 但对革兰阴性杆菌的影响不明显。这种方法可以有效地减少额外的人工操作时间和费用。HONG等[25]的研究也表明, 这种方法能得到可靠的鉴定结果(与传统生化方法的属水平的一致率是98.9%), 并且这种方法不会受血培养系统的影响, 成本低, 易于操作。3.与药物敏感性联合检测 为了克服MALDI-TOF MS不能做体外药物敏感性试验的不足, MALDI-TOF MS已经开始与药物敏感性试验联合用来直接检测阳性血培养瓶的样本[26], 用不含活性炭的血培养基在过滤和洗涤之前用溶解细胞的缓冲液进行孵育, 然后将从过滤膜上收集的微生物直接进行MALDI-TOF MS分析, 剩下的样本用VITEK 2系统孵育并进行药物敏感性试验, 将94.0%的样本鉴定到了种的水平, 药物敏感性试验与传统方法相比有93.5%的一致率, 并且相较于传统的56.3 h, 新方法鉴定和药物敏感性试验所用的时间缩短到了11.4 h。证明了在一天内完成微生物鉴定和药物敏感性试验的可行性。为获得更好的治疗争取了时间并且减少了住院的费用[27]。4.检测结果的影响因素 有研究指出不同的血培养瓶和血培养系统可能会产生鉴定结果的差异[19, 28, 29]:使用含有活性炭的血培养瓶和BacT/ALERT血培养系统的鉴定率较低, 使用含有树脂的血培养瓶和BACTECTM血培养系统鉴定率较高。其中一项研究比较了含有活性炭的和不含活性炭的血培养瓶在BacT/ALERT血培养系统下的鉴定表现, 发现使用不含活性炭的血培养瓶的MALDI-TOF MS的鉴定率为30%, 而含有活性炭的血培养瓶的鉴定率只有8%[28]。而另一项研究比较了3种不同的血培养系统— — BACTECTM, VERSATREK和BacT/ALERT对鉴定率的影响, 经这些鉴定系统培养的阳性血培养瓶的鉴定成功率分别是76%、69%和62%[29]。此外, 使用不同的细菌蛋白提取程序也会影响鉴定成功率[11]。

  • 临床质谱技术在中国:巨大的潜在临床应用前景

    质谱是一种测量离子质荷比(质量-电荷比)的分析方法,最早由英国著名物理学家J. J. Thompson于1906年发明。可以把它想象成一杆特殊的天平,称量的是离子的质量。在这100多年的发展历史中,质谱技术不断进步发展,具有快速、高分辨率、高灵敏度、高特异性等优点。从80 年代开始,质谱发展成工业产品,最早应用于化学分析,生命科学科研和制药业。image.png2目前国内质谱技术的发展现况如何?目前主要在哪些医学领域得到了很好的运用?◤国内的质谱应用也和北美经过了同样的历程,最早应用于科研机构,随着制药的发展,质谱技术被广泛应用于新药研发,接着是食品,环境及临床应用领域。精确诊断是精准医疗的重要前提,作为生物样本内小分子分析的金标准方法,质谱技术是精准诊断实现过程中不可或缺的工具,也是临床检验技术重要的发展方向。近年来,精准医疗在逐步获得国际医疗机构认可和重视的同时,质谱技术在临床检测中的需求也越来越大,目前国内越来越多的第三方及医院相继建立了质谱分析平台,质谱技术也因其自身高灵敏度、高特异性、高技术型等特点一度成为了临床检验能力的一种标志。相比美国QUEST、Labcorp, MAYO Clinic等大型独立医学实验室而言,目前国内临床质谱发展还处于起步阶段,和北美2009-2010年前后的情况非常相近,临床质谱主要集中在个别大型独立实验室和少数三甲医院,开展项目主要包括遗传代谢病筛查、维生素系列检测、药物浓度监测、类固醇激素检测等,涉及项目非常有限,其中以微生物检测、新生儿筛查和维生素检测等领域的应用较为广泛。目前,中国临床应用正处于高速发展的前期。image.png3质谱技术的灵敏度和特异度这么高,是不是所有能运用的项目都要运用质谱技术?还是质谱技术会优先运用于某些项目?相对于传统的检测方法,质谱技术分别在检验医学各个领域明显优势在哪?◤每种方法都有各自的优缺点,需要根据综合需求选择检测方法学。比如一些项目免疫生化方法成熟准确,没有必要应用质谱方法,但对于小分子化合物生化指标,质谱对精准检测有绝对的优势。因为医疗体系收费的限制,现在很多检测项目在选择方法学时无奈以价格为第一考量,但是,检测结果的准确性是精准治疗的前提,如果检测结果不准确即使再便宜的方法也是更大的浪费且耽误病人的治疗甚至生命安全。从检测原理上来看,质谱技术与传统免疫法比较,检测结果具有更可靠性,因为质谱技术对样本中生物标志物的分析基于化合物本身的分子量、结构等化学性质,是一种直接分析方法,而不像免疫学方法是抗体和目标化合物反应,再去进行检测。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]串联质谱联用技术可以在复杂基质如人血清和血浆中获得更高的灵敏度和特异性及同时检测多组分,日渐成为生物样品中内源性痕、微量物质检测的“金标准”。对于那些在体内含量水平低,内源干扰多的物质定量分析就需要质谱技术来实现,比如说激素。激素的前体物质和代谢物大多时候结构相似或为同分异构体,放射免疫法的灵敏度可以达到检测需求,但所用抗体特异性不足,会和其他结构类似的物质发生反应,往往使结果偏高造成假阳性。而质谱法特异性强,是在分子水平检测,即使像睾酮和DHEA这样的同分异构分子也可以准确区分和定量,从而真正反映人体中激素水平状态。同时,质谱还可以通过微量样品一次进样检测代谢通路的多个相关的生化指标,可以精准诊断疾病。比如,诊断先天性肾上腺增生通常采用免疫学方法测定17-羟孕酮、氢化可的松、雄烯二酮,假阳性率非常高,用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱, 一次检测相关代谢通路可将假阳性率降低85.15%。特别是对于特殊人群,比如性腺功能减退的男性、更年期女性或者儿童来说,激素浓度更低,采用质谱法可以做到精准定量,指导医生给出更有效的治疗方案。在微生物检验方面,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)能大大缩短鉴定时间,临床往往因为细菌培养的耗时较长,医生在获得实验室报告前已经采取抗菌药物治疗,一定程度上造成了抗菌药物的滥用;另外质谱检测范围也从原本数百种细菌扩大到2000+种细菌。image.png4开展质谱技术需要哪些条件?从您回国这一年的经验来看,目前国内的情况下质谱在基层医院能否得到进一步的推广?还是仅限在“高大上”的医疗机构?如果在基层得到应用,是否对基层的常规检测项目和方法带来一定的冲击?◤质谱技术作为一种多功能的新型的检测技术,硬件已是完全工业产品化,虽然其功能非常强大,但方法学和质量管理体系是检测结果及应用的关键。同一台仪器, 如果样品处理方法不同,达到的检测的准确性和灵敏度会有很大的差异。这对传统的医院或检验实验室或检验人员来说都是一种新的挑战,但同时也是一种新的发展机遇。在中国临床质谱应用发展过程中,主要存在几个难点:仪器属于大型仪器,投资高,医院没有经费购买仪器;对人员技术要求高, 业界缺乏相关的专业应用技术人才; 没有相关质谱检测的收费标准;没有标准化的IVD方法学;没有成熟的质量管理体系。在方法学开发优化的过程中,还需要在质谱检测数据的判断标准、临床范围的建立、技术方法的掌握与人员培训、质量控制体系的建立等方面严格把控,要求具备完善的实验室管理体系和质量保证体系,对每一种方法均进行严格的性能验证,包括检测结果的准确性和重现性。

  • 【原创大赛】临床质谱应用主要挑战及发展探索

    [align=center][font=宋体][size=14.0pt]临床质谱应用主要挑战及发展探索[/size][/font][/align][font=宋体][size=12.0pt]近年来,各种检验新理论和新技术不断涌现,极大地推动了临床检验学科的发展。液相色谱串联质谱(liquid chromatography-tandem mass spectrometry, [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)技术集液相色谱对复杂样本的高分离性能和质谱的高敏感性、高特异性于一体。临床质谱应用愈来愈广,但发展过程面临诸多挑战:初始投资高、仪器操作复杂、缺乏自动化和法规不确定等。而在临床质谱应用发展探索中,需要使方法验证规范化、质量管理系统化、样品处理自动化和行业发展专业化等。现在临床质谱的应用已涉及维生素D、药物中毒检测、内分泌(激素)检测、新生儿筛查遗传病、小分子标志物、蛋白与多肽、微生物及体内微量元素等。[/size][/font][font=宋体][size=12.0pt]我国质谱临床检测可望达百亿规模。2017年全球临床质谱市场份额为49.8亿美元,未来(2017-2025年)CAGR预计以7.3%增长。中国未来五年临床质谱将以7.6%的速度增长,形成一个超百亿规模的临床质谱检测市场。[/size][/font][font=宋体][size=12.0pt]质谱技术具有诸多优点:特异性好,克服免疫分析对小分子化合物的检测缺陷,检测结果更可靠;操作简便,比HPLC和GC-MS的容易使用,通量更大,是免疫分析法的主要互补方法;成本效益高,与其他技术相比,单个样本的测试成本更低;灵活性高,建立和验证新方法比较容易;高灵敏度;多通道检测能力;更接近参考方法。[/size][/font][font=宋体][size=12.0pt]质谱技术使用通用试剂,批量检测时成本较低,受第三方检测公司青睐;质谱的直接检测原理,特异性高,抗干扰(可见即可信);质谱具有即刻、多通道检测能力,通量主要限于样品前处理;检测底限可达ng甚至pg水平,适合微量甚至痕量物质分析,避免使用放射性检测技术。[/size][/font][font=宋体][size=12.0pt]但质谱同样也有缺点,如缺少配套试剂,操作复杂,检测人员需要专门培训,对环境有特殊要求,方法需要开发和验证等。在发展探索过程中,方法验证规范化,质量管理系统化,样品处理自动化,行业发展专业化尤为重要,分析工作者及实验室管理人员应密切关注政策变化和行业动向,紧随行业发展方向。[/size][/font][font=宋体][size=12.0pt]今天的分享到此结束,感谢仪器信息网提供原创大赛平台让大家互相学习![/size][/font]

  • 多组学背景下临床质谱发展三大趋势

    随着精准医学的发展、多组学研究上的突破,临床质谱迎来了发展机会。仪器信息网特别策划[color=#0070c0][url=https://www.instrument.com.cn/zt/CMS2022]“临床质谱技术及应用进展”专题[/url][/color],聚焦临床质谱新产品新技术及相关临床领域的最新应用,以增强业界相关人员之间的信息交流,展示更丰富的临床诊断质谱产品、技术解决方案。与生化、免疫等传统检测技术相比,临床质谱技术在灵敏度、特异性、多指标联检等方面具备独特优势。它既是生化、免疫等检测技术的补充,又是传统检测技术的延伸,可以提高现有检验项目的精准度,也可以检测其他技术不能检测的指标,能够更好地指导临床诊断,为患者提供更准确的检测结果。临床质谱技术正在新生儿遗传代谢病筛查、维生素检测、药物浓度监测、激素检测、微生物鉴定、微量元素检测等多个临床应用场景发挥着越来越重要的作用。[color=#ff0000]解决仪器和试剂适配问题是临床质谱落地路径 [/color]从商业模式角度来说,由于医疗服务体系和保险制度的不同,美国大部分质谱服务都是LDT模式(Laboratory Developed Test, 独立医学实验室),形成了像Quest和Labcorp这样的第三方服务龙头。美国60%以上的医学检验都是外包,医院只采样。而国内临床检验的市场主要还是以公立医院检验科为主,以第三方医学检验为辅的市场结构。大医院的检验科能力强,有能力在院内开展检测。同时,报告时间、政策监管及医院管理的需求,也更倾向样本在院内检测。因此,IVD模式(In Vitro Diagnosis,体外诊断)更适合中国。临近两年中国整个临床质谱行业发展非常迅猛,临床质谱这个赛道上涌入的企业也越来越多,资本的投资热度逐渐升高。由于临床看重的是检验性能和临床价值,需要仪器、试剂、服务一站式解决方案,而非单一的仪器。随着国内临床质谱企业增多,首先解决仪器和试剂的适配问题,成为打通质谱分析临床落地路径。[color=#ff0000]多组学背景下,临床质谱行业发展三大趋势[/color]在临床质谱几大技术平台中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱是临床最为成熟的技术平台之一,布局企业多、仪器多、试剂多,是临床质谱市场的核心板块。在精准医疗技术迭代、临床需求持续扩大、多组学趋势背景下,临床质谱政策环境、资本环境等持续向好,临床质谱行业未来技术及应用整体呈现几大趋势:[b]1、以[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱为核心的多组学研究已成为各类疾病筛查、早期诊断、治疗监测和预后评估的生物标志物创新发现的关键应用平台。[/b]生命组学时代来临,临床质谱技术有望成为常规底层技术。疾病发生发展复杂,单一组学无法解决所有问题,已有大量研究表明依靠单一组学存在较大局限性,多组学在致病机理研究、疾病标志物与致病靶点筛选,以及早期诊断和治疗上都有着巨大的潜力,临床医学正在快速过渡至多组学整合分析。而组学研究样本复杂,通常样本中含有数十万个化合物,分子丰度低,对检测灵敏度要求极高,数据分析庞大,质谱技术多指标检测、高灵敏度、高特异性、高通量的特点非常契合多组学发展趋势,有望在多组学时代中大放异彩。相比基因组学和转录组学,蛋白质组学和代谢组学在精准诊断的普检和特检、精准治疗的创新药研发和伴随诊断中具有更加深远和广泛的意义。其中,蛋白质组学研究难度更高、与临床结合更为紧密、药物医学转化程度更高,是推动临床应用与医学转化的重中之重。[b]2、在应用场景上,常规检测应用成红海,针对大病种的精准诊疗将成为未来临床质谱主力市场。[/b][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱临床应用分为两类,一类是常规检测应用,对现有方法学进行升级,如新生儿遗传代谢病筛查、药物浓度监测、维生素检测等,另一类是基于组学研究,开辟空白、创新应用场景,如慢病诊疗跟踪、肿瘤标志物发现等。随着我国临床质谱常规应用渗透率提高,新生儿遗传代谢病筛查、维生素检测等已成为红海市场,传统检验替代、大病种尤其是阿尔茨海默症、心血管病和肿瘤等疾病的精准诊疗将成为未来重要的临床质谱增量市场。[b]3、未来,各类质谱仪器会持续向国产替代方向发展。[/b]从近年来提出的精准医疗等热点可以得知,人们越发重视生活质量提升,实现精准医疗的目标就离不开[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析技术。由于现有的质谱属于高精尖仪器,需要专业人员操作和维护,且几乎依赖进口,无法满足我国对该技术日益增长的需求,质谱技术向国产化、POCT化、自动化方向发展是未来趋势,推动临床质谱市场成熟。我们相信,2020-2030年是生命组学时代,质谱技术将助推代谢组学、蛋白质组学等组学技术在精准医疗领域发挥重大作用。基于组学技术的疾病特检、伴随诊断未来将有大的发展。一个行业的持续发展需要构建良好的生态,虽然目前我国质谱行业还处于行业发展的早期阶段,但行业生态已经逐步形成。临床质谱产业链的全面发展,硬件厂家、试剂厂家、服务提供商的水平都在快速提升,医院、终端用户的需求日益增长,科研院校、医药企业的参与增多,生态中各种参与者之间的联系越来越紧密。

  • 质谱技术在临床感染诊断中的应用

    1. 临床常见细菌的鉴定:2009年Seng等用1660株细菌对MALDI-TOF MS常规鉴定细菌进行前瞻性研究,结果显示MALDI-TOF MS是一种经济、快速、准确的常规细菌鉴定方法,未来有可能取代传统的革兰染色和生化方法。此后,MALDI-TOF MS在临床应用迅速增加。在Medline数据库用“MALDI tof bacteria identification”作为MeSH检索词,从2009至2013年1月发表相关文章467篇,其中2011至2013年发表323篇。由此可见MALDI-TOF MS近几年在临床微生物检验中备受关注。  另外,MALDI-TOF MS对弯曲菌、螺杆菌、军团菌等苛氧菌、少见菌等的鉴定,解决了微生物实验室对这类病原菌的鉴定、临床对其感染的诊断和治疗、流行病学资料缺失等的瓶颈问题。  2. 样本直接检测:应用MALDI-TOF MS直接鉴定阳性血培养标本中的细菌和真菌可以极大地提高检测速度。大量的研究尝试用不同的方法来处理血标本,由于血培养基各异、数据库和分析软件等差异都对样本前处理的方法标准化造成了一定的困难。布鲁克公司研发了血培养标本的前处理试剂盒,用于阳性血培养标本直接质谱鉴定的前处理。研究显示革兰阴性菌的准确率优于革兰阳性菌,而对厌氧菌、α-溶血性链球菌和多个细菌混合样本的鉴定存在困难。新的富集技术的应用(比如附加特异性抗体亲和特定蛋白)以及相应分析软件的改进,将使MALDI-TOF MS直接用于血液病原菌的检验成为可能,即MALDI-TOF MS作为一种快速、使用简便,低成本消耗的检测技术,有望取代传统血培养检测技术,为血培养中病原菌的快速诊断提供有力支持。此外,临床的尿液和脑脊液标本也可以经一定处理后,用质谱技术进行蛋白谱的分析用于疾病的辅助诊断。  3. 真菌鉴定:有学者应用MALDI-TOF MS对327株菌(其中19株为酵母菌)在种的水平上鉴定正确率为61株为酵母菌)的鉴定正确率为92%。  4. 非结核分枝杆菌鉴定:国外学者对107株分枝杆菌临床分离株(包括结核分枝杆菌复合体),利用声波降解的热失活方法和利用玻璃珠进行细胞裂解的方法进行失活和提取,再利用MALDI-TOF MS方法进行鉴定,发现两种方法在种/属水平上成功鉴定率分别为82.2%和88.8%。周昭彦等采用MALDI-TOF MS对83株非结核分枝杆菌(临床分离非结核分枝杆菌15株和医院供水系统环境分离非结核分枝杆菌68株)进行快速鉴定方法及其可行性、准确性和重复性进行研究,并得出结论认为MALDI-TOF MS可快速准确地鉴定临床和环境分离的非结核分枝杆菌,在临床实验室常规鉴定方面有着较好的应用前景。  5. 质谱技术检测病原菌耐药性:除快速鉴定外,质谱技术也被尝试用于检测一些临床常见的耐药基因,例如耐甲氧西林的金黄色葡萄球菌、万古霉素耐药的肠球菌等的识别,鲍曼不动杆菌相关的耐药机制与产生条件等,为控制耐药菌株播散流行及治疗提供新的策略。  质谱技术为临床微生物实验室提供了快速而准确鉴定细菌、分枝杆菌、真菌等的方法,其中临床标本的直接鉴定成为未来研究的方向。将MALDI-TOF MS与全自动药敏检测仪相连,整合到实验室自动化流水线后,可以提高检测速度,缩短患者住院时间,提高疗效,降低医院和患者的经济负担。另外MALDI-TOF MS与其他分子生物学检测技术联合,可以对临床产酶菌株的检测方法、基因分型及测序、蛋白质组学方面开展更加深入的研究。MALDI-TOF MS有望成为临床实验室微生物鉴定分型等领域发展的重要方向。

  • 【分享】药物临床试验生物样本分析实验室管理规定(征求意见稿)

    药物临床试验生物样本分析实验室管理规定(征求意见稿)第一章 总 则第一条 为提高临床试验生物样本分析实验室的分析质量,确保所产生的数据和结果的可靠性、完整性和科学性,根据《药品注册管理办法》、《药物临床试验质量管理规范》、《药物非临床研究质量管理规范》,参照国际通则,制定本规定。第二条 临床试验生物样本是指按照临床试验方案的要求、从临床试验受试者采集的需要加以分析的材料(如血浆、血清、尿液、粪便、组织和细胞等)。临床试验生物样本分析实验室(以下简称“实验室”)是指对临床试验生物样本中药物及其代谢物分析,以及对临床试验生物样本进行血液学、生物化学、生物物理学等学科的检测或评估,为药品注册申请提供数据支持的机构。第三条 所有经过国家食品药品监督管理局批准进行临床试验生物样本分析的实验室,均须遵循本规定。第二章 组织机构和人员第四条 实验室应建立完善的组织管理体系,任命负责人、质量保证部门负责人、分析负责人,并配备相应的实验人员。第五条 所有人员应符合以下要求:(一)具备严谨的科学作风和良好的职业道德以及相应的学历,经过专业培训,具备所承担的工作需要的理论知识、工作经验和业务能力;(二)严格履行职责,熟练掌握并严格执行与所承担工作有关的标准操作规程;(三)及时、完整、准确和清晰地进行实验记录,对实验中发生的可能影响实验结果的任何情况应及时报告;(四)对涉及保密的技术资料、受试者信息等履行其保密责任;(五)根据工作岗位的需要着装,遵守健康检查制度。第六条 实验室负责人应具备相应专业的理论知识,具备有效组织、指导和开展实验室业务工作的能力。实验室负责人的职责为:(一)负责或协调所在机构法人与申办者签订书面合同;(二)建立有效的联系机制,以保证与申办者、药物临床试验机构之间可以及时、有效地沟通;(三)建立完善的教育培训和考核制度,确保实验人员具有相应专业的理论知识、技能和经验,保存实验人员的学历资质、工作经历、专业培训以及工作性质描述等材料; (四)全面负责实验室的建设,确保实验室具有满足工作要求的各项条件;(五)组织制定和修改管理制度、技术规范和标准操作规程;(六)制定主计划表,掌握各项分析工作的进展;(七)聘任质量保证部门负责人;(八)在每项实验开始前,指定分析负责人,试验过程中确需更换时,应记录更换的原因和时间,并保留相关记录;(九)审查、批准实施方案、分析结果或分析报告;(十)指定专人负责档案资料的管理。第七条 实验室应设立独立的质量保证部门,其人员的数量应与其开展的分析工作相适应。质量保证负责人的职责为:(一)负责质量保证部门的工作安排和运行;(二)审核实施方案、实验记录、分析结果或分析报告;(三)根据每项分析工作的内容和持续时间制定稽查计划并实施稽查,详细记录稽查的内容、发现的问题、采取的措施等,并向实验室负责人和/或分析负责人报告;(四)定期或不定期检查实验室环境、设施、仪器设备和档案管理等;(五)参与标准操作规程的制定、审核标准操作规程,并保存标准操作规程的副本;第八条 每项分析工作必须指定分析负责人。分析负责人的职责包括:(一)制定该项目的实施方案;(二)全面负责该项目的运行管理、组织实施;(三)建立并验证分析方法;(四)确保所有参与该项目的实验人员明确各自所承担的工作,并掌握和执行相关的标准操作规程;(五)掌握工作进展,确保实验记录及时、完整、准确和清晰; (六)确保实验中偏离试验方案的情况及采取的措施均有详细记录;(七)整理、分析实验数据和结果,撰写分析报告;(八)及时处理质量保证部门的报告。

  • 【原创大赛】临床质谱为精准医学保驾护航

    【原创大赛】临床质谱为精准医学保驾护航

    [align=center][b]临床质谱为精准医学保驾护航[/b][/align]精准医学,Precision Medicine 是一种将个人基因、环境与生活习惯差异考虑在内的疾病预防与处置的新兴方法。国外精准医学的历史:2011年,美国医学界首次提出“精准医学”的概念;2015年1月20日,奥巴马在美国国情咨文中提出“精准医学计划”,希望精准医学可以引领一个医学新时代。国内精准医学的历史:2006年中国首次提出“精准外科”的概念;2015年首届精准医疗战略专家委员会在上海成立;2016年精准医疗首次进入政协提案。短短的15年间,检验技术由生化发光检测生化项目、发光产品,革新至五年前的分子诊断检测基因测序、基因诊断,自2018年元年,2019年起始年,质谱技术发展得到井喷式爆发。现代精准医学的研究模式:测序基因组的同时,搜集所有表型信息,将基因与表型大数据结合起来。诊断模式主要有个人基因组信息、蛋白质组学和代谢组学,其中蛋白质组学和代谢组学需要临床质谱“大显神威”。治疗方式有针对基因组进行个人用药与药物设计、药物代谢和毒理评估。治疗效果:医疗资源耗费降低,针对性用药提升疗效,药物副作用降低。质谱技术在医学检测应用中的发展:1981年美国Nimitz航母事件促使医学对质谱仪器的需求,1988年美国联邦药品检验局发布强制性指南,要求治疗药物必须使用质谱法进行确认。1990年,MS开始用于新生儿筛查,1996年,GC-MS用于解决睾酮免疫分析问题,同年MS用于完整细菌的快速鉴定。1998年,GC-MS和[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]开始用于临床检验中。2004年,MS用于鉴别血源性感染中的化合物,2010年,国内首家质谱临床检验试验室成立,2010年质谱用于代谢组学、蛋白质组学和其它组学。2013年,MS用于类固醇化合物鉴定的研究论文被大量发表,同年FDA首次批准MALDI-TOF用于微生物的鉴定。2016年实时MS技术引导下的肿瘤手术刀出现。而临床质谱在国际影响力也越来越大,1906年,J.L.Thomson 获得诺贝尔物理学奖,他发现由电子组成“阴极射线”,并测量了电子的荷-质比。1989年,W.Paul 获得诺贝尔物理学奖,他的贡献是发明了离子肼技术。2002年,J.B.Fenn和田中耕一获得诺贝尔化学奖,他们分别发现了电喷雾ESI电离方法生物大分子分析、基质辅助激光解吸电离质谱MALDI电离方法生物大分析分析。质谱仪发展至今已出现多个分支,下图是质谱分类。[img=,690,157]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132201538393_4418_3255306_3.jpg!w690x157.jpg[/img]在我国临床质谱的发展态势明显,相关的政策法规如下:2016年3月国家卫计委为临床实验室自建项目(LDT)开启绿色通道,临床检验进入新发展时期。2018年2月1日,我国质谱行业首个通用规范《质谱仪通用规范》实施,该国标将引领质谱行业规范健康发展。今年健康强国战略深入推进,第三方检测机构快速发展,越来越多医学实验室加大投入更大规模的质谱平台建设。但质谱仪在大规模使用方面还有很多局限。我想主要是以下几个方面制约了质谱仪进一步大规模发展使用:1、缺乏罗西贝雅这样整合仪器试剂产品的整体解决方案提供者。质谱仪均由国外仪器厂家提供,而试剂由试剂厂商提供,仪器试剂分属不同的而厂家。推广力度也存在问题,售后问题难以解决。2、样品前处理步骤繁琐:以维生素项目为例,前处理一共涉及到13步操作(萃取、孵育、振荡、离心、氮吹等等),且数据波动大,可靠性低。3、仪器操作复杂,按照现有生化、化学发光技术几天的培训力度,医院技术人员无法熟练操作质谱仪。4、使用项目少,只有新生儿遗传代谢病的检测,综合三甲医院买了仪器无法高效的使用。但综合我国临床质谱的应用现例,我们可以发现还是有很多可圈可点的。例如,新生儿筛查,克服了传统新生儿筛查传统分析方法的缺点,一种实验检测一种疾病,工作量随着样本数大大增加等。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS凭借其高通量、高灵敏度,可以一次分析检验多种疾病,且假阳性率低,筛查效率高,结果可靠,综合费用相对低廉,检测速度很快,一般一个样品在2-3分钟。在甲氨蝶呤的检测中,质谱仪发挥其巨大潜能。传统的FPIA法Abbott TDx-FLx药物浓度分析仪和EMIT法西门子Viva-E全自动药物浓度检测系统均具有缺点,如设备不再更新、测定MTX时存在正偏差等。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS可将药物与代谢产物以及内源性物质分离,具有专一性强的特点,是检测MTX血浆浓度的金标准,但改法仍需要复杂的前处理过程现如今,质谱技术应用仍存在难点:质谱人才匮乏、基于质谱方法开发和优化的复杂程度较难、质谱方法性能的验证复杂、成本较高等。如何利用好这一未来前景巨大的技术是每个医院、药企需要考虑的问题,相信在未来的研究中,质谱仪将继续表现巨大的应用前景!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制