当前位置: 仪器信息网 > 行业主题 > >

邦动诱导期测定仪

仪器信息网邦动诱导期测定仪专题为您提供2024年最新邦动诱导期测定仪价格报价、厂家品牌的相关信息, 包括邦动诱导期测定仪参数、型号等,不管是国产,还是进口品牌的邦动诱导期测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合邦动诱导期测定仪相关的耗材配件、试剂标物,还有邦动诱导期测定仪相关的最新资讯、资料,以及邦动诱导期测定仪相关的解决方案。

邦动诱导期测定仪相关的资讯

  • 激光诱导等离子体光谱重大仪器开发专项启动
    4月14日,光电院在北京新技术基地组织召开了国家重大科学仪器设备开发专项&ldquo 激光诱导等离子体光谱分析设备开发和应用&rdquo 项目启动会。中科院条财局科技条件处副处长姜言彬代表院机关出席会议,院内外专家、项目监理组和合作单位代表共50余人参加了会议。   副院长樊仲维参加了项目启动会和技术研讨会,表示将瞄准应用目标全力将项目做好。项目负责人孙辉研究员汇报了项目的背景、开发和工程化方案、进度安排、组织管理和进展情况等。与会专家重点就项目知识产权保护、管理措施、指标细化、接口关系以及技术难点等方面进行了深入研讨,提出了许多宝贵的意见和建议。   姜言彬最后讲话,主要提出了三点要求:一是充分发挥总体组、技术专家组和监理组的作用。二是强调任务书的重要性,其中经费、指标和周期的调整要严格遵守相关程序要求。三是要加强对项目质量、可靠性和相关软件的重视。通过项目总体统一协调,做好提前规划,为项目的顺利开展提供保障。   目前我国粗钢总产量接近世界一半,特殊钢产量不足5%,且品质亟待提高,主要是冶炼过程中钢水成分难以精确控制,成品率低造成的。现有成分检测技术耗时长,属事后检测方法,无法为改善品质提供实时参考。激光诱导等离子体光谱技术(LIPS 技术)是基于激光和材料相互作用产生发射光谱的一种定量分析技术,提供了一种实时在线监测的可能性,可为改善钢水品质提供实时的数量依据,不仅缩短检测时间,还可降低成本,节约能源。   发达国家由于拥有窄成分控制技术而保障了特殊钢占钢铁总产量的高比例,国内应用于冶金行业的LIPS 研究还处于起步阶段,相关设备的研发几近空白。本项目针对高温冶炼环境特征,研制基于激光诱导等离子体光谱的钢水成分实时在线检测设备,不仅有利于推动我国钢水成分检测技术研究与应用发展,而且有助于提高我国钢产品品质,对我国钢铁行业发展具有重要的战略意义。
  • 激光诱导击穿-拉曼光谱分析仪
    成果名称 激光诱导击穿-拉曼光谱分析仪(LIBRAS) 单位名称 四川大学生命学院分析仪器研究中心 联系人 林庆宇 联系邮箱 lqy_523@163.com 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介: 台式LIBS(左)、便携式LIBS(右) 手持式LIBS 技术背景 作为一种激光光谱分析技术,同其他光谱分析技术相比较而言,激光诱导击穿光谱(简称,LIBS)技术具有诸得天独厚的优势,特别是分析速度快,无需样品前处理,多元素同时分析以及所有元素都可测定等优势,这些优势都已经使LIBS技术逐渐成为一种非常流行的元素分析手段,在冶金地质、航空航天等众多应用领域也逐渐得到尝试性的使用。基于上述技术优点,本中心开发了激光诱导击穿光谱系列仪器,包括:台式LIBS系统,便携式LIBS仪器以及手持式LIBS分析仪,相关仪器的样机已展开多次的优化升级,实现了LIBS仪器的国产化突破。但是,虽然LIBS技术有上述众多优点,但是该技术本身却只是一种原子发射光谱技术,利用该技术也只能对被分析样品进行元素分析,获取被分析物质单一的元素构成信息,不能得到相关组成元素的结构信息,因此,利用单一的LIBS技术无法对样品进行全面系统的检测分析。而在地质勘探、石油录井等实际应用需求中,往往不仅仅要求对组成样品的元素进行分析,更重要的是要获取被分析物的结构信息,特别是关于地层岩石的岩性、结构以及矿物种类的综合信息,在这一点上,单纯靠LIBS技术肯定是无法实现的。因此,开发出一种即可实现元素分析,又同时可实现结构鉴定的快速原位光谱分析技术就显得十分重要。 Raman光谱作为一种非破坏性的光谱分析技术,是很具吸引力的。该技术利用低能量激光作用于样品表面,通过接收物质所产生的散射光谱,知道物质的振动转动能级情况,从而可以鉴别物质结构、分析物质的性质。Raman光谱技术可以提供快速、简单、可重复、且无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头测量,一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。因此,Raman光谱技术和LIBS技术从仪器构成、光路设计到结果分析等方面都有着诸多相同或相似之处,将这两种技术结合在一起,开发出可同时得到原子光谱、分子光谱的激光光谱分析系统将有非常广阔的应用潜力。 仪器先进性 LIBRAS仪器可用于分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。 LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。 仪器关键技术研发 1. 独特的光学设计。采用一套光学系统,实现两种不同波长激发的两种不同类型信号的获取,光学系统内无任何移动镜片组件,结构稳,性能强。 2. 创造性的高能风冷脉冲激光系统。采用自主研发风冷脉冲激光器作为LIBS光源,单脉冲能量100 mJ,整机无需水冷,体积紧凑。 3. 创造性的实现高能激光器的低压低功耗供电。激光器可采用锂电池供电,使仪器的便携化成为可能。 性能指标 光斑尺寸:LIBS光路100 µ m;Raman光斑20 µ m;分析距离:40 mm LIBS部分:激光波长1064 nm;脉冲激光能量100 mJ;激光频率1 Hz(可联系激发);脉冲宽度8-10 ns;光谱接收范围:可全谱接收(200-800选配); Raman部分:激光波长532nm;能量 20 mW;光谱接收范围:540-750 nm(选配) 应用前景: LIBRAS技术是LIBS技术的提升和扩展。由于Raman光谱可以用来研究分子的振动和转动情况,提供物质内部的结构信息,各种简正振动频率及有关振动能级的情况,但在物质所含元素,尤其是次要元素和痕量元素的检测方面,能力及其有限。而在油气开采、地质勘探、冶金、电力生产、环境卫生和深空探测等领域,如果既要检测物质中的主要、微量和痕量元素,也要知晓物质中分子组份和结构信息,单独的Raman技术,以及其他的现有光谱检测技术(比如,电感耦合等离子体发射光谱法、X射线荧光光谱法、气相色谱分析法等)都不能完成任务,只有把LIBS技术和Raman技术有机结合起来才能满足此要求。 以油气开采为例:在录井现场完成分析,可以快速的做出解释评价,及时为勘探开发的的决策提供依据,减少了钻井现场等措施的时间,避免决策的失误。通过应用该技术,提高录井解释符合率上升10%以上,每年减少10%试油工作量,仅西南油气田每年可以节约勘探成本5-6亿元人民币。在国内外油气田推广应用,每年可以节约勘探开发成本50-60亿元人民币。降低油气勘探开发成本,扩大油气开发规模,为国民经济的持续发展做贡献。除此以外,例如在冶金、地质等领域,亦可以带来相当巨大的经济效益。 知识产权及项目获奖情况: 专利1:单脉冲激光源的双波长同轴激光诱导击穿-脉冲拉曼光谱联用系统及方法(发明专利,已提交); 专利2:激光诱导击穿光谱与拉曼光谱联用仪自动化测控系统(发明专利,已提交); 专利3:激光诱导击穿/拉曼光谱联用分析仪(外观专利,已提交); 其他:LIBRAS仪器入选&ldquo 2014中国科学仪器与分析测试行业十大新闻&rdquo 。
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 记王振义院士:癌症诱导分化第一人
    王振义:   1924年11月生于上海,祖籍江苏兴化。1948年毕业于震旦大学获医学博士学位。1994年当选为中国工程院院士。曾任上海第二医科大学校长(现上海交通大学医学院),瑞金医院上海血液学研究所所长,现为上海交通大学医学院附属瑞金医院终身教授,上海血液学研究所名誉所长。   “您的工作不仅指出应用一种简单的方法可以治疗一种特异的疾病,而且更新了可以应用单一药物通过诱导分化治疗癌症的概念。”在美国哥伦比亚大学举行的2001届毕业典礼上,校长乔治鲁普这样评价王振义。在这次仪式上,王振义获得该校荣誉科学博士学位,成为我国第一位获此殊荣的科学家。   对于当时已77岁高龄的中国工程院院士、上海第二医科大学(现为上海交通大学医学院)附属瑞金医院上海血液学研究所名誉所长王振义来说,他为自己能代表祖国前去大洋彼岸领奖而自豪,但他更愿意看到台下一双双渴求知识的眼睛、一群群朝气蓬勃的毕业生,期待着他们能成长为更成功、更优秀的科学家。   在王老的客厅里挂着一幅《清贫的牡丹》。“我认为这幅画表达的是清静向上的意思,做人要有不断攀高的雄心,但又要有一种正确对待荣誉和自我约束的要求和力量,对名利看得很淡,对事业看得很重,这是出于对生命的珍惜。我相信做人最本质的东西:胸膺填壮志,荣华视流水。”这位被世界医学界誉为“癌症诱导分化第一人”、名噪全球血液学领域的学者对于所获得的荣誉,喜欢用一幅画来简单诠释。   这印证了王振义为学、为人、为医、为师的人生观和价值观,也揭示了这位德高望重的医学科学家的成功之道。   从医的理想起源于家庭教育和刨根问底的天性   王振义1924年11月30日出生在上海,祖籍江苏兴化。他自幼勤奋好学,刨根问底的天性在孩童时代显露无疑,凡事总有问不完的“为什么”。在8个孩子中,排行老三的他是个很好学也很会玩的孩子,因此严厉的父亲对他责备甚少,由于学习成绩优秀,父亲的“戒尺”从没落在他手心。溜冰、“造房子”、打“墙球”,这些孩提时代的游戏,他样样喜欢 毽子从来都是他亲手制作的,踢起来更是得心应手 打乒乓球是他最热衷的,工作后在当时的广慈医院还拿过乒乓球比赛第一名。   在王振义7岁那年,祖母不幸患了伤寒,病势凶险,虽然请到了一位沪上知名的医生前来诊治,但限于当时的医疗水平,祖母最终还是未能得到救治。父亲是由祖母一人抚养长大的,自然是悲痛欲绝,从此也寄希望于子女中有一人能够从医,对家人有所照顾。   祖母是王振义最爱的老人,当时只有7岁的王振义已经在思考:“为什么这个病不能治呢?怎么会得这个病呢?难道就真的没有办法了吗?”一个接一个的问号,在王振义心中链接成一种对医学知识探求的渴望和从医的萌动。   王振义的幼年及青少年时代也是祖国饱受外国列强欺凌的时代。在这一时期,“只有奋发读书,有了技术才能救国”的思想也在他脑海中形成。父母的家教很严,他们教育子女要做一个正直、有一技之长、对社会有用的人。   殷实的家境允许王振义从小学一直念完大学,1936年他毕业于上海法租界所办的萨坡赛小学(现卢湾区第一中心小学)。1937至1942年在震旦大学附属中学念完中学,1942年免试直升进入震旦大学,在“医生是一份崇高职业”的思想及家庭支持的情况下,王振义选择了攻读医科。   挑战疑难疾病屡获佳绩   1948年,王振义从震旦大学医学院毕业,获医学博士学位,因成绩优异,被留任广慈医院(瑞金医院的前身)住院医师。1952年,上海第二医学院成立,口腔系就设在广慈医院。1953年广慈医院的内科已分专业,他从事血液病的诊治工作。   王振义发现不少口腔病患者小手术后(如拔牙)出血不止,原因不明,一般止血疗法无效。为此,王振义搜阅大量文献,并了解到国外有同类病案的报道。这种被称为“轻型血友病A”的病人血浆中凝血因子Ⅷ的水平为正常的5%~25%,平时并不出血,小手术后出血不止,一般实验室检验无法发现,需要用凝血活酶生成试验。   此外,鉴别血友病类型(A或B)也只有依靠这种试验。但做该试验时,需要将硅胶涂在玻璃管壁上,当时国内无此材料。一向喜欢钻研的他用石蜡代替硅胶,成功地在国内首先确立了检测方法,并做出血友病A、B的分型及其轻型的诊断,解决了这种不明原因出血的诊断和治疗问题。这一论文先后在1956~1959年发表在《中华医学杂志》(中文、外文版)及《中华内科》等杂志上。1956年,鉴于国内缺少一本有关出血性疾病的参考书,他与夫人合译由Stefanini编写的《出血性疾病》一书,1958年由上海科技卫生出版社出版,这是当时国内在这方面唯一可供参阅的书籍。   将先进的医学理念和技术用于临床是王振义孜孜不倦的追求。1979年他与卫生部上海生物制品研究所教授张天仁合作,由邵慧珍等具体操作,在国内首先提纯因子Ⅷ相关抗原(即vW因子),并制成抗血清应用于临床,在国内推动了血管性血友病(vWD)和血友病携带者等的研究,有关论文发表在《中华血液学》杂志上,1982年,这项成果获卫生部科研成果乙等奖(第一完成人)。1986~1988年,他的第一位博士研究生赵基从中药蒲黄中提纯了4种有效成分,并从出凝血、纤溶、内皮细胞水平,阐明了生蒲黄防治家兔食饵性动脉粥样硬化的机制。基于此项贡献,他于1989年再获国家教委科技进步奖二等奖。   王振义的学术成就也得到了国际学术界的认可和尊重。1982年,他指导研究生开展免疫性血小板减少的研究,以后又开展肝素对血小板和巨核细胞刺激作用的研究。1997年,他应邀在Bailliere’s Clinical Hematology(International Practice and Research)与沈志祥合写了《巨核细胞与血小板在免疫性血小板减少性紫癜中的变化》一章,这是中国学者第一次受邀在这一国际刊物上撰写有关血液学的论文。他与李家增、阮长耿,以后又有王鸿利、韩忠朝、宋善俊参加主编的《血栓与止血》1988年第一版、1996年第二版及2004年第三版,已成为我国在该领域中的代表性专著。   攻克白血病的尝试   国际同行对王振义的研究有3个评价:一是在癌症研究史上第一次发现了如何使用自然物质,而不是有毒的化学物质,将癌细胞改造为正常细胞——这一研究不仅仅停止了在体外和动物身上进行实验,而且在治疗运用中取得了成功 其二,初步弄清了全反式维甲酸在白血病患者体内是如何起作用的 其三,他治白血病不是用传统的化学、放射疗法,不是用杀灭细胞的方法,而是把癌细胞改造成正常细胞,并且把传统的中国理论与现代医学实践相结合,为治疗癌症提供了全新的途径。   早在1959年,王振义就开始负责白血病的病房工作,希望在短期内攻克这种“可怕”的疾病。他以极大的热情投入了病房工作,可是在短短的半年时间内,数十例急性白血病病人仍然离开人间。这一活生生的事实,使他明白他单有热情而没有过硬的本领是挽救不了病人生命的,这也激发了他攻克白血病的雄心壮志。   王振义经常教育学生:“科学研究最忌讳的就是浮躁,清贫与寂寞常常是科学家最好的朋友。”这也是他自己坚守的信念。1978年,他与血液科孙关林、陈淑容、蔡敬仁等研究白血病的治疗,并进行临床研究。   当时,治疗白血病有两条研究途径可循,一是用化疗的方法杀死白血病细胞,二是诱导分化,将恶性的白血病细胞转变为良性细胞。当时国际科学界曾有过相关报道,但仅停留在研究阶段。1971年,英国的Friend等报道小鼠红白血病细胞能被二甲亚砜诱导分化。1980年及1983年,美国的Breitman等报道人类髓系白血病细胞株HL-60和U937及新鲜急性早幼粒细胞白血病(APL)细胞在13顺维A酸(13顺RA)及全反式维A酸(ATRA)作用下,可以向正常细胞逆转。   在儒家“改邪归正”思想的影响下,王振义率领的研究组选择了诱导分化治疗白血病的途径。他的研究组证明ATRA在体内可使新鲜APL细胞向成熟细胞分化。1980年,ATRA批准在临床上使用,用于治疗某些皮肤病。在没有13顺RA的情况下,取得病人和家属的同意,他试用ATRA治疗晚期或化疗无效的APL患者,取得惊人效果。   王振义回忆道:“我到现在还想着1986年一个才5岁的小女孩,是我用全反式维甲酸治疗的第一个病人,晚期急性早幼粒细胞白血病,当时她出血严重,家人已经绝望了。我用新疗法治了7天后,症状明显好转,一个月后达到完全缓解,20多年过去了,她还活着。在首批治疗的24例病人中,完全缓解率达到九成多。这是我最感欣慰的。”   1988年以他的学生黄萌珥为首总结了24例APL的治疗结果,23例完全缓解(CR)。他很快将该疗法向国内外推广,并提供ATRA(那时只有国内可提供)。1992年,我国544例APL用ATRA治疗的结果,84%获完全缓解。世界各国都先后证实了这种疗法的效果,如法国Fenanx(1993年54例,完全缓解率91%),美国Warrell(1995年79例,完全缓解率86%),日本Kanamaza(1995年109例,完全缓解率89%)。   1989年王振义的硕士研究生陈竺、陈赛娟从法国获博士学位回国工作,他们用先进的思路和分子生物学技术,开展ATRA治疗APL的作用机制研究,取得许多创新性进展。ATRA治疗APL的研究成果1993年获国家科技进步奖二等奖。   同行对这一治疗方法的评价是,急性早幼粒细胞白血病应用ATRA治疗的病例早期完全缓解率高达85%~90% ,这种方法副反应少、不抑制造血、不引起出血、使用方便(只要口服)、价格低廉。这不仅为过去被认为治疗困难、死亡率高的急性白血病找到了一种新的治疗方法,而且还为肿瘤可以通过诱导分化治疗的理论和治疗途径提供了一个成功的范例,引起国内外学者广泛重视。目前联合应用ATRA、砷剂及化疗,APL患者的5年存活率已高达95%,成为第一种可以治愈的急性白血病。   他培养了一批顶级血液学研究俊才   除了医学家和科学家,王振义还是一名成功的老师。学生们评价说,他的学识丰富渊博、逻辑思维缜密、治学态度严谨。无论是基础理论课,还是临床病例讨论分析,他的授课、他的精辟分析都给学生和同道留下深刻印象。更重要的是他的为人之道引领了一大批优秀的血液学专家。现在这些弟子均已成长,他们都以自己的老师为榜样,学习他的为人,对医学的理论和临床精益求精,在各自的医学领域中为人类健康奉献、奋斗。   传世育人,识才用才。卫生部部长、中科院院士陈竺,1978年时以专业考分第一名的佳绩成为王振义的硕士研究生,而王振义那年招收的另一名研究生就是后来成为陈竺妻子的陈赛娟。陈竺夫妇不会忘记,是王振义手把手地指导他们进行血液病理生理的实验,耐心为他俩补习专业外语,后来又一起撰写论文。令他们意想不到的是,王振义每一次都坚持把他们列为论文的第一、第二作者,而把自己排在了最后!这对当时论资排辈已经习以为常的中国学术界来说,是破天荒的惊人之举。   也正因为这样,使当时年仅31岁的陈竺脱颖而出,陈赛娟亦获得了迅速成长的助推力,对白血病发病的细胞遗传学和分子机制的研究作出了很大贡献,成为杰出的女科学家,现在她已经是中国工程院院士、上海血液研究所所长。1984年,王振义力荐陈竺夫妇赴法留学,1989年,夫妇俩学成回国,继续在导师指导下工作,并最终开辟出一块令人瞩目的基因研究新天地。“我一直以这两名学生为荣,看到学生超过自己,这是当老师最大的欣慰。”王振义感慨道。   陈竺的研究日臻成熟,王振义的高兴与自豪是难以言表的。此时的他,并没有考虑名利的得失和地位的动摇,1996年,王振义主动把代表中国血液学研究最高水平的上海血液学研究所所长的位置交给了陈竺,他看准了陈竺渊博的学识、大度的气量、出众的才能,一定能将血研所带向新的成功与辉煌。   那一年陈竺42岁。曾有人问王振义当时的想法,他说:“现代医学科技发展非常快,但我却越来越老了,如果我们不看到发展,还是用原来的方式管理这个研究所,用原来的学术水平领导这个研究所,这个所是会走下坡路的。早在1993年,我就有了退下来的想法。陈竺非常有进取心,是世界一流的人才,交班给这样的学生,我放心。我退下来了,可以做些咨询工作,虽然我不是非常高明的理论家,但至少在我一生中累积了很多经验和教训。事实证明我当初的选择是明智的。”   学生们眼中,王振义是一位谦逊、豁达的长者,是一位严谨求实的学者,是一位爱才惜才的老师。“973”计划项目最年轻的首席科学家、上海第九届十大杰出青年陈国强是王振义的另一位得意门生。   “博士研究生我还是要考王振义教授的!”回忆当年报考研究生的情形,陈国强说,“那瞬间的选择,源自于王教授修改我硕士研究生论文的整个过程。”在写论文还不用电脑的年代,导师一遍遍修改,学生就要根据修改的内容,重新整理、抄写,陈国强的硕士论文给王振义先后改了10遍,陈国强将近2万字的论文也抄了10遍。王振义时任二医大校长,白天工作繁忙,只有利用晚上的时间修改学生论文,他多次把陈国强叫到家里一起吃晚饭,一放下碗筷,师生两人就一头“扎进”了论文。多少个夜晚,多少次交流,长者的谆谆教诲深深地刻在了陈国强心中,这位长者甘为人梯的品格更时时激励着陈国强向更高、更险的医学高峰迈进。   陈国强现已成为上海交通大学医学院院长、博士生导师。“我深深懂得,这些成绩是站在我的导师王振义、陈竺两位院士的肩膀上,在同事们的支持帮助下取得的。今后,我一定继承传统,不断创新,为解除人们的病痛、促进人类健康作出更大努力!”   黄萌珥、董硕……年轻的学生们只要提到王振义,心中涌出的除了崇敬,更多的是对恩师的感谢。   他是学生心中的领航者   1950年,王振义的老师邝安堃教授在设备十分简陋的条件下,成功地研究了应激情况下肾上腺皮质的功能,论文发表在《中华医学》杂志英文版上。王振义体会到的是“热爱科学,不断探索和进取,不计较条件,刻苦钻研”,这也成为他的学生心中的座右铭。在60多年行医的生涯中,王振义将基础学科与临床实践密切结合,将祖国医学和现代西医理论合二为一,将中国古代哲理思想与当代科学思想融为一体,引领着我国血液学研究冲向一个个巅峰。   王振义能为许多重危病人带来生机和希望,这源于他善于思考,善于提出探索性、创新的治疗思路,这种秉性也体现在他培养学生的过程中。学生说:“他经常和学生探讨学术问题,对学生的教导从来不是居高临下、高高在上的,他关注细节,连多媒体制作中颜色是否协调、英文论文中哪个单词用得不确切、英语口语中的语音纠正都是他关心的内容。其他诸如分子生物学的结构、显微镜下观察细胞、X片显影结果,即便是再小的环节遇到难以解释的结果,老师都会要求学生再做一次。”   2002年,王振义指导的课题组在研究中发现有一个抗白血病药物的水溶性差,实验效果很不理想,课题组陷入了实验停滞期。听说郑州大学的教授在这方面有深入研究,于是课题组决定向他们求教。按照常理,可以用电邮或是电话联系,即便是要登门造访请实际操作的年轻人去也无妨。但当时78岁高龄的王振义却执意坚持亲自上门请教,因为他认为在科学研究中一个人不可能永远是第一,即便是院士,在自己不懂的问题上就是一个学生。郑州大学的接待同志听了随行人员介绍,怎么都不敢相信眼前这位朴素和蔼的老人就是大名鼎鼎的王振义。他们真的很难相信一位著名的医学家能这么虚心地上门求教。这是一次愉快的合作,王振义的诚意打动了对方所有的专家学者,当然也令学生们领略一位科学家虚怀若谷、诚实谦逊的大家风范和品格。   周光飚是王振义的“关门弟子”,跟随王振义的这几年让他时刻感受着这位长者虚怀若谷、实事求是的大医精神。周光飚至今还清晰地记得博士毕业时,他正在为留在科研单位还是到临床做医生、是留在国内还是到国外去的抉择徘徊,是导师的一番话为他指明了方向:“科学研究是很清贫的,也很枯燥,但是你正在从事的研究是很有前途的,只要你努力,我相信你一定能在这里作出很好的成绩。”周光飚留下后,王振义又主动关心他的生活条件,住处解决了吗?待遇怎样了?老师的关心让这位只身在上海拼搏的年轻人备感亲切。   毕业后的几个月中,动物实验结果毫无进展,周光飚和同事们陷入了困惑之中,王振义观察到这一情况,语重心长地对他们说:“科学研究必须尊重客观规律与结果,不要急躁也不要钻牛角尖,我们所做的一切对临床都是至关重要的,如果不能客观反映就会对临床造成误导,我们的病人就将吃足苦头啊!”导师的一席话就像一剂“清醒剂”,年轻人又开始重新整理研究思路。   穿上白大褂让他感觉一生幸福   “我觉得生活的乐趣就在穿上白大褂的那一刻,所以我还坚持每周查房。”现年86岁的王振义说得似乎很轻松,事实上,他把挽救病人的生命当成自己毕生的事业,他将查房视为自己不断更新知识、开拓创新和不断进行医学教育的机会和场所。   一年前,瑞金医院血液科收治了一位从哈尔滨来的淋巴细胞性白血病病人,经过几个疗程病情仍未得到控制。这位50多岁的男性患者沮丧万分,如果上海也治不好,生存的希望真的就很渺茫了,当病人得知王振义要来参加第二天的病例讨论会,兴奋得一整夜没有睡。“这是罕见的‘带有淋标记的单核细胞白血病’。”根据这样的诊断,医院调整了治疗方案,患者病情终于得以控制了。此刻,学生们在感叹,一个生命的脆弱与重生和科学的发展、知识的积累联系得如此紧密!   如果说诊断疑难病例凭的是多年经验,那么洞察新事物、掌握新知识,靠的是什么呢?王振义70多岁开始学习计算机、掌握网络技术。曾有一次疑难病例讨论时,王振义的诊断令与会的所有医师诧异,“分泌IgG淋巴浆细胞样白血病”——从没听说过的新名词,他直言是在网上查阅到的,此型白血病仅有英国发表过一篇论文,这个病例的临床表现和实验室检查结合起来分析,就是此型白血病。果然,他采用的治疗方法收到了很好的效果。如今,王振义又自创了“开卷有益”式的查房,每周四上午由学生对他进行提问,他对疑难病例进行分析和答疑,这种做法不仅培养了学生的诊断思路,更为病人带去了福音。   桃李不言,下自成蹊。如果说瑞金医院和上海血液研究所是一块沃土,他的学生陈竺、陈赛娟这一代年富力强的科学家就是四季苍翠的树枝,陈国强等一批科学新秀则无疑是郁郁葱葱的枝芽。王振义,这位在血液学研究领域不辍追求的老人就是这棵大树的坚强脊梁。
  • 首台智能化高性能激光诱导击穿光谱仪成功登录中国
    2008年10月21日,上海凯来实验设备有限公司成功地完成了清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)的安装调试工作。目前这套Spectrolaser 4000 Target LIBS系统标配有532nm激光源,*能量为1064nm,300mj,4通道光谱仪,CCD检测器,内置图像2维扫描系统,将协助该中心进行煤炭领域的研究工作,最终目标将在煤矿,发电厂等企业实现在线快速分析,这标志着中国在煤炭的元素分析领域将掌握一种崭新的分析手段。    清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)    LIBS应用专家讲解中    激光源导出系统实验    在大气环境中激发效果    外置激光源空气中测试名片中元素含量的实验    标煤(GBW111 O2i)    标煤(GBW111 O2i)LIBS 图谱1    标煤(GBW111 O2i)LIBS 图谱2   标煤(GBW111 O2i)结果显示,该样品煤中含有Si, Fe, N, Ti, C, Mg, Ba, Na, Sr, K, Ca, O、H、Al等多种元素,其中总S含量为33.51%(偏差为0.18%),挥发性硫含量为24.92%(偏差为0.29%),C含量为49.83%(偏差为0.35%),H含量为2.98%(偏差为0.14%),N含量为0.90%(偏差为0.03%),完全符合标准。   传统的煤分析方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。   煤炭分析背景资料   煤炭是我国国民经济发展的物质基础,煤炭企业生产的煤炭产品不仅要在数量上满足国民经济各物质生产部门的生产和人民群众的生活需要,而且也要在质量上满足不同用户的使用要求。   长期以来,我国煤炭供需关系总的来讲一直比较紧张,只要将煤炭从地下采出,销售就不成问题,这在一定程度上也淡化了人们的质量意识。但发展到今天,煤炭质量问题己引起越来越多用户的高度重视,对煤炭企业提出了严峻的挑战。从目前煤炭市场情况看,煤质不好,不仅价格较低,而且煤炭的利用率较低,浪费严重。据统计,我国煤炭平均利用率约在30%左右。一般来说煤炭燃烧时,煤质越差,热损失越多,热效率也就越低,耗煤数量也越多。如普通锅炉使用灰分为4O%的原料煤与使用灰分为90%的原料煤相比,热效率至少相差10%。可见,由于煤质不好或供煤品种的不对路,其浪费是惊人的。   同时,我国每年因燃煤而产生的硫的氧化物和氮的氧化物的总量在1000万t以上,这些有害的酸性气体排入大气后,在一定的条件下与雨水一起再降到地面。相当于从空中降下2000多万t强酸,对环境污染很大,特别是烟煤中所含苯并芘对人体危害*,其浓度每增加百万分之一,癌发率上升5%。由上可见,提高煤炭质量,不仅可以达到节约煤炭,降低用户生产成本的目的,而且有利于环境的保护,减轻煤炭利用对环境的污染。   为了严格控制煤炭的质量,1987年,国家标准局发布《煤质分析试验方法一般规定》(GB/T 483-1987)。其中包括:煤的元素分析方法 煤中碳和氢测定方法电量—重量法 煤中全硫的测定方法 煤中各种形态硫的测定方法 煤中磷的测定方法 煤中砷的测定方法 煤中氯的测定方法 煤中氟的测定方法 煤中锗的测定方法 煤中镓的测定方法 煤灰中钾、钠、铁、钙、镁、锰的测定方法(原子吸收分光光度法) 煤中铬、锡、铅的测定方法 煤中铀的测定方法 煤中钒的测定方法 煤中硒的测定方法 煤中汞的测定方法等等(详见GB/T 483-1987)。   传统的方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。    实验室留影1    技术交流会议合影留念   LIBS 技术背景介绍   激光诱导击穿光谱仪(LIBS),无论是在样品制备、检测元素及分析时间上都明显优异于传统分析技术。其基本原理是使用高能量激光光源在分析材料表面形成高强度激光光斑(等离子体),使样品激发而发光, 通过检测系统对激发光信号的分析从而对待测样品元素进行定性和定量分析。   早在1961年,相关技术的论文已发表在了Brech上,但由于当时的激光发射器造价较高,实际生产的应用并不多见。随着激光发射器的商业化,LIBS已经逐渐应用在各行各业:环境:土壤,微粒,沉积物 材料分析:金属,矿渣,塑料,玻璃、煤炭 法医和生物医学:牙齿,骨头 计量学:硅晶片,半导体材料 生物学研究:植物,谷物 国防和军事:爆破,生化武器 艺术品修复和保存:颜料 宝石学和冶金术:贵金属,宝石。   上海凯来拥有一支理论知识扎实和实践经验丰富的团队,秉承着为客户提供完善技术服务的理念,与清华大学BP清洁能源研发与教育中心合作开发LIBS在煤炭领域中的应用。此次合作也对LIBS技术的肯定,欢迎任何对此技术方法感兴趣的分析工作者一起探讨,同时我们可以提供测试服务。相信在不久的将来,LIBS将具有广阔的市场前景。
  • TSI推出手持式激光诱导击穿光谱仪(LIBS)
    近日,在Pittcon 2014举行期间,TSI推出了一款坚固耐用的ChemLogix&trade 手持式激光诱导击穿光谱元素分析仪(LIBS)用于现场研究,质量控制和移动实验室的市场。   该ChemLogix&trade 手持式激光诱导击穿光谱仪采用位于IR-B频段,Class 1级别的对人眼安全的激光源,可以除去样品表面的污染物。仪器使用不需要特殊的用户培训和个人防护装备。ChemLogix&trade 手持式激光诱导击穿光谱仪可以在几秒钟内完成分析,甚至是对轻元素的分析也可以在这么短的时间内完成。该仪器非常适合要求苛刻的领域,以及在线质量监测。   TSI LIBS全球产品经理Phillip Tan说:&ldquo LIBS技术是一种行之有效的固体样品元素快速分析手段。该技术几乎不需要样品制备,并且甚至可以在短短一秒钟获得结果。利用我们的ChemReveal&trade 台式激光诱导击穿光谱元素分析仪,实验室研究人员已经意识到LIBS在元素分析方面的能力与优势。通过采用便携LIBS,我们的用户现在可以在现场或生产车间快速得到分析结果。&rdquo
  • 辐射诱导衰减|扩大聚变和裂变应用中的光学仪器开发
    研究:暴露于中子和伽马辐射的熔融石英和蓝宝石的光学吸收以及同时热退火。图片来源:RHJPhtotos 通过同时和辐照后热退火研究了集成二氧化硅和蓝宝石的辐射诱导衰减 (RIA)。研究人员发现同时辐照热退火和辐照后热退火在二氧化硅和蓝宝石的光学行为方面存在重大差异。 该研究在选择和放置用于开发光学仪器应用(例如聚变或裂变反应堆)的光学材料方面具有广阔的潜力。它还帮助研究人员了解辐射对此类光学材料的影响。 熔融石英和蓝宝石等光学材料中的辐射引起的衰减通过减少核反应堆仪器检查停机的频率,可以显着提高核反应堆的辐射安全和经济性能,从而可以在线监测关键反应堆部件。 激光诱导击穿光谱 (LIBS) 可以通过在反应堆运行时对反应堆冷却剂的化学成分进行光谱研究来识别核反应堆部件的退化。 在适当的操作设置下了解光纤和透镜等光学材料的辐射效应至关重要,因为基于 LIBS 的仪器需要通过这些光学材料传输等离子体发射和高能激光脉冲。 二氧化硅和蓝宝石等普通光学材料具有光学特性,包括衰减和折射率,当暴露于核反应堆中的离子辐射效应时,这些特性会发生变化。 已经对集成二氧化硅和蓝宝石在受到中子和伽马射线照射然后进行热退火时的辐射诱导衰减 (RIA) 和辐射效应进行了多项研究。然而,由于辐照、检查和热退火之间的时间相当长,没有关于光学材料在同时高温和辐射效应下的原位行为的数据。 当前研究中的研究人员使用高羟基含量的 Heraeus Spectrosil 2000 集成二氧化硅 (S2000)、低羟基含量的 Heraeus Infrasil 302 集成二氧化硅 (I302) 和光学类蓝宝石进行了 220 nm 至 1100 nm 的 RIA 测量。这些光学材料在高达 800 C 的后辐照和同时辐照热退火下暴露于中子和伽马辐照下,以观察它们的辐射效应。 二氧化硅和蓝宝石光学吸收的实验装置第一个测量吸收的实验装置包括一个覆盖 220-1100 nm 光谱范围的 Ocean Insight HR4000 光谱仪和一个 Ocean Insight 卤素/氘光源。 第二个实验装置包括一个安装在60 Co 池干管上方的退火炉,用于光学材料的同步和后热退火。 目前的研究在俄亥俄州立大学核反应堆实验室的核反应堆和60 Co 辐照池中进行了辐照。在包含60 个Co 伽马源的圆柱形夹具的帮助下,一个 I302 样品在宾夕法尼亚州立大学辐射科学与工程中心暴露于 10Mrad 的辐照下。 使用具有二氧化硅-氧化铝绝缘的特制碳化硅线圈炉对样品进行干燥和空气中的退火。 这些熔炉被建造成适合60 Co 池和核反应堆干管内,以同时对样品进行热退火和辐照。 在辐照后退火实验中,在每次辐照剂量后将样品加热到指定的温度。 相反,在同时退火的情况下,样品在辐照过程中被连续加热到指定的温度,直到达到列出的剂量。 光学仪器在裂变和聚变应用中的发展潜力该研究展示了同时辐照和热退火的后果以及对光学渐变蓝宝石、I302 和 S2000 的辐射效应。 该团队观察到这些光学材料在同时和辐照后热退火条件下的行为的关键区别。 在 S2000 的情况下,对 n 剂量 1 和 2 进行辐照后 600 C 的热退火将材料恢复到未辐照的形式。在 800 C 时,具有相同剂量的同时辐照热退火样品保留了紫外线范围内的辐射诱导衰减。 在 n-Dose 1 和 n-Dose 2 的同时辐照热退火下,I302 还显示出 220 nm 至 900 nm 之间的平衡辐射诱导衰减光谱,这与 I302 主要恢复的辐照后热退火情况相反退火至 800 C 后变为未辐照状态。 与等效剂量辐照后热退火情况相比,在加热到 800 C 后样品几乎退火到其未辐照状态,蓝宝石在 n-Dose 1 和 2 的同时辐照热退火中显示出可能的平衡辐射诱导衰减范围退火条件。对于该光谱,在 260 nm 处获得了残余吸收峰,而在 300 nm 处获得了增加的吸收峰。 当前研究的最初目标是在高放射性和热环境中支持基于 LIBS 的仪器,以承受显着的辐射效应。 比较作为样品的光学材料的吸收光谱表明,S2000 是实现基于 LIBS 的仪器的最理想材料,最高退火温度为 800 C,中子注量为 1.7 x 10 17 n。厘米-2。 在 532 nm 和 1064 nm 的相关 LIBS 波长下,S2000 仅显示边缘辐射引起的衰减。在同时辐照热退火下,I3O2 产生了高达 900 nm 的相当大的辐射诱导衰减,这可能会限制 532 nm 的 LIBS 激光器。 与报道的 S2000 中没有明显的辐射诱导衰减相比,蓝宝石在 532 nm 或 1064 nm 处没有表现出同时辐照热退火的辐射诱导衰减。UV 范围内的残余辐射引起的衰减峰可能会干扰 LIBS 等离子体光谱。 参考BW Morgan、MP Van Zile、CM Petrie、P. Sabharwall、M. Burger、I. Jovanovic,暴露于中子和伽马辐射下的熔融石英和蓝宝石的光学吸收以及同时热退火。2022.核材料杂志。
  • 第一届光谱技术及应用大会 暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会2022 年 12 月 4-6 日 | 上海大华虹桥假日酒店https://b2b.csoe.org.cn/meeting/CSLIBS2022.html 光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2022 年 12 月 4-6 日在上海举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请 150 余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。总体日程日期时间活动地点12.4周日14:00-20:00签到一楼大堂12. 5周一08:30-12:00大会开幕式 & 大会报告一楼大华厅13:00-13:30海报交流与评选一楼海报区13:30-18:3008:30-18:30专题 1:激光诱导击穿光谱及相关技术一楼文华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用二楼馨华厅专题 4:光声光谱与TDLAS 技术及应用专题5:红外及太赫兹光谱一楼锦华厅专题 6:超快及瞬态光谱专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示一楼展区12. 6周二08:30-12:0513:30-18:00专题 1:激光诱导击穿光谱及相关技术二楼怡华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱二楼祥华厅专题 6:超快及瞬态光谱二楼馨华厅专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示二楼展区12.4-616:00-18:00现场核酸采样一楼核酸区12.4-617:30-19:00晚餐一楼餐厅12.5-612:00-13:00午餐一楼餐厅*日程可能会根据现场情况进行调整详细日程大会场12 月5 日上午08:30开幕式(1)介绍与会嘉宾 (2)主席致开幕辞大会报告08:50陈建民(复旦大学)——大气气溶胶光学特性研究09:20舒嵘(中国科学院上海技术物理研究所)09:50周怀春(中国矿业大学)——用于燃烧及高温光谱/成像诊断的高精度辐射模型10:20合影 & 茶歇10:40刘志(上海科技大学)11:10俞进(上海交通大学)——针对火星就位探测的激光诱导击穿光谱方法研究 会议日程专题 1:激光诱导击穿光谱及相关技术12 月 5 日下午第一场:基础研究+定量化方法主持人:俞进13:30王哲(清华大学)——激光诱导击穿光谱(LIBS)定量化理论方法及应用13:50苏茂根(西北师范大学)——激光等离子体辐射、诊断与应用14:10周卫东(浙江师范大学)——激光诱导空化气泡的演化及其对 LIBS 光谱的影响14:30张大成(西安电子科技大学)—— 激光诱导击穿光谱新技术与器件研究 (CSLIBS2022-01- 027)14:50陈钰琦(华南理工大学)——新型靶增强正交 DP-LIBS 与 OPC-LIBS 的元素分析研究(CSLIBS2022-05-003)15:00尼 洋(中国地质大学(武汉))——Elemental determination in stainless steel via laser- induced breakdown spectroscopy and back-propagation artificial intelligence network (CSLIBS2022-05-009)15:10李小龙(中国科学院近代物理研究所)——激光诱导击穿光谱表征软物质表面力学性能的实验研究 (CSLIBS2022-01-022)15:20茶歇第二场:基础研究+仪器设备+方法主持人:王哲15:50丁洪斌(大连理工大学)——LIBS 基本物理过程及聚变能应用进展16:10郭连波(华中科技大学)——激光诱导击穿光谱基础、仪器及应用研究16:30马欲飞(哈尔滨工业大学)——小型化固体激光器16:50曾和平(华东师范大学)——飞秒光丝非线性相互作用诱导击穿光谱17:10刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)17:20孙天洋(上海交通大学)——基于神经网络的火星模拟和大气压环境 LIBS 光谱的非线性校准迁 移 (CSLIBS2022-01-003)17:30卢渊(中国海洋大学)——基于显微 LIBS 成像技术的贝壳有机成分分析 (CSLIBS2022-01- 017)17:40饶云飞(上海交通大学)—— 光谱选择和随机森林结合的碎石微量元素的灵敏和精准测定(CSLIBS2022-05-030)12 月 6 日上午第三场:基础研究+仪器设备主持人:丁洪斌08:30段忆翔(四川大学)——LIBS 技术与仪器的发展历程—从实验室研发到现场应用08:50汪正(中国科学院上海硅酸盐研究所)——基于微等离子体增强 LIBS 信号研究09:10林庆宇(四川大学)——面向肺癌组织的 LIBS 元素成像技术、装置及方法(CSLIBS2022- 01-006)09:20刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)09:30张倍艺( 上海交通大学) —— 火星模拟气氛和模拟壤中氮元素的灵敏和精准测定(CSLIBS2022-05-031)09:40茶歇第四场:工业应用主持人:舒嵘10:00孙兰香(中国科学院沈阳自动化研究所)——矿浆成分 LIBS 定量分析方法与工业在线应用10:20王茜蒨(北京理工大学)——LIBS 技术在生物医药诊断监测中的应用研究10:40张雷(山西大学)——NIRS-XRF 联用煤质分析方法研究与应用11:00刘玉柱(南京信息工程大学)——Online in situ detection of elements and pollutions in the atmosphere (CSLIBS2022-05-029)11:20刘可( 华中科技大学) —— 基于 MLIBS 技术的挥发性卤代污染物检测方法研究(CSLIBS2022-01-005)11:30崔敏超(西北工业大学)——Rapid analysis of steel powder for 3D printing using laser- induced breakdown spectroscopy (CSLIBS2022-01-008)11:40刘曙(上海海关工业品与原材料检测技术中心)——激光诱导击穿光谱与铁矿石检测(CSLIBS2022-01-010)12 月 6 日下午第五场:其他应用主持人:汪正13:30郑荣儿(中国海洋大学)——深海 LIBS:何去何从13:50周小计(北京大学)——LIBS 在定量应用中的探索研究14:10刘木华(江西农业大学)——PRLIBS 对农产品品质信息分析能力提升方法研究14:30傅院霞(蚌埠学院)——An exploration of matrix effect on optimal acquisition delay for laser-induced breakdown spectroscopy of metal samples (CSLIBS2022-05-001)14:40田野(中国海洋大学)——水下固体靶的激光诱导等离子体诊断及光谱分析 (CSLIBS2022-01-014)14:50陈枫叶(上海交通大学)——LIBS 和机器学习实现火星气氛和模拟壤中碳元素的精确测定(CSLIBS2022-05-032)15:00何洪钰(中国原子能科学研究院)——激光诱导等离子体光谱直接探测气溶胶中的锶元素(CSLIBS2022-01-016)专题 2:原子光谱与质谱 & 专题 3:激光拉曼光谱与激光荧光光谱技术及应用12 月 5 日下午第一场:激光拉曼光谱与激光荧光光谱 I主持人:杨海峰、胡继明13:30胡继明(武汉大学)——拉曼光谱在细胞分析中的应用13:50杨海峰(上海师范大学)14:10朱井义(中科院大连化学物理研究所)14:30高亮(核工业西南物理研究院)——大气压等离子体活性物种激光诱导荧光定量诊断研究14:50于亚军( 中国科学技术大学) —— 基于线扫描和偶氮拉曼探针的快速活细胞成像(CSLIBS2022-03-004)15:10茶歇第二场:原子光谱与质谱 I主持人:侯贤灯、杭纬15:30侯贤灯(四川大学)——原子光谱分析研究15:50杭纬(厦门大学)——高电离电位元素的激光质谱分析技术16:10胡斌(武汉大学)——ICP-MS 单细胞分析16:30吕弋(四川大学)——基于金属稳定同位素标记的生物分析研究16:50郑成斌(四川大学)——碳原子发射光谱及其应用17:10邢志(清华大学)——高纯非导体材料纯度分析方法探索17:30杨杰(中国科学院近代物理研究所)——ⅥB 族原子一氧化物分子(CrO/MoO/WO)电子态结构研究 (CSLIBS2022-02-010)12 月 6 日上午第三场:原子光谱与质谱 II主持人:杭纬、于永亮08:30于永亮(东北大学)——适于微等离子体发射光谱分析的样品引入方式与接口08:50徐明(中国科学院生态环境研究中心)——利用 LA-ICP-MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律09:10陈明丽(东北大学)——LA-ICP-MS 对动植物组织中元素成像方法研究09:30郭伟(中国地质大学(武汉))——高精度 LA-ICPOES/ICPMS 原位分析技术及古气候中的应用 09:50茶歇第四场:激光拉曼光谱与激光荧光光谱 I主持人:任斌、陈建10:10谱与质谱 III主持人:侯贤灯、高英13:30高英(成都理工大学)——基于钒的
  • 登上Nature!清华大学丁胜团队首次化学定向诱导干细胞
    丁胜教授,担任清华大学首任药学院院长、拜耳特聘教授。于1999年在加州理工学院获得化学学士学位,并于2003年在斯克里普斯研究所获得化学博士学位。长期专注于干细胞领域,是开发和应用全新化学手段研究干细胞和再生医学的引领者,一直致力于发现和鉴定可以调控细胞命运和功能(例如,不同发育阶段及不同组织中干细胞的维持、激活、分化和重编程)的小分子化合物。他在数个角色之间切换:1. 参与筹建清华大学药学院并从2016年起担任创始院长之职;2. 同时任职美国加州大学旧金山分校药物化学系,格拉德斯通研究所冠名资深研究员及教授;3. 全球健康药物研发中心(Global Health Drug Discovery Institute)主任,该机构由清华大学校长邱勇与盖茨基金会联席主席比尔盖茨在瑞士达沃斯世界经济论坛期间正式签署共同建立,是国内首个由外资参与设立的民办非企业性质科研机构;4. 参与创立了Retro Biosciences、 Tenaya Therapeutics和Fate Therapeutics等 7家生物技术公司,其中Retro Biosciences于今年初获得了1.8亿美元的启动资金。最新成果登上Nature清华大学药学院丁胜教授及其团队首次以化学小分子组合体外定向诱导小鼠全能干细胞并稳定培养,相关成果以“Induction of mouse totipotent stem cells by a defined chemical cocktail”为题于北京时间2022年6月21日以加速预览(accelerated article preview)的形式在线发表于国际顶级学术期刊Nature。清华大学药学院丁胜教授、刘康助理研究员、马天骅副研究员为该论文共同通讯作者,清华大学胡妍妍、杨媛媛、谭彭丞为该论文的共同第一作者。化学定向诱导2012年,诺贝尔生理学或医学奖授予了日本科学家Shinya Yamanaka和英国发育生物学家John Gurdon,因其通过重编程将细胞恢复到胚胎期状态、重新拥有分化成各类成熟细胞潜能的研究的杰出贡献。恢复细胞多能性甚至全能性是很多科学家的追求,无需利用生殖细胞或人体胚胎细胞,而时通过其他途径诱导出全能干细胞,用于再生医学例如替换受损或病变组织,甚至是创造或者复原生命。该研究通过筛选了数千个化学小分子组合,发现并确定了其中一种组合TAW——三种小分子 TTNPB、1-Azakenpaullon 和 WS6。通过转录组相关和差异表达基因(DEGs)分析发现,这一组合可以将小鼠多能干细胞诱导成最接近小鼠2C胚胎期的细胞,即具有全能特性的干细胞,并稳定培养。图一、筛选能够诱导全能性标志物MERVL-tdTomato的小分子过程示意图。化学诱导干细胞全能性发育胚胎和胚胎外组织被认为是细胞全能性最严格的标准之一,为进一步证明化学诱导的干细胞ciTotiSCs具有真正的全能性,该研究将其注射到小鼠早期胚胎中以观察其体内的分化潜力,并分析了着床前和着床后胚胎发育不同时间点的谱系贡献。研究发现,该诱导细胞表现出双向发育潜力,在培养皿和体内都能产生胚胎和胚胎外细胞,具备普通全能干细胞的典型特征。 图二、ciTotiSCs(化学诱导的全能干细胞)对胚胎发育阶段支持小结:该研究以化学方法定向诱导并稳定培养全能干细胞,为从非生殖细胞中控制和理解全能性提供了一种新的体外定向诱导的方法,这将成为再生医学的极大助力,对于实现人体器官的体外再生以及创造或复原生命有着重大的意义。
  • 安捷伦参与研究分析诱导成体细胞为胚胎干细胞的机制
    免疫共沉淀芯片和基因表达谱芯片 用于研究Yamanaka因子如何启动细胞多能干性 2009年3月9日,中国上海&mdash 安捷伦科技有限公司(NYSE: A)近日宣布与中科院上海生命科学研究院和同济大学的研究团队合作发现诱导成熟细胞成为具备&ldquo 多能干性&rdquo 的胚胎干样细胞过程中的新机制。 作为文章的合著人之一,安捷伦公司的李坚表示:&ldquo 有关胚胎干细胞生物学特性的新发现无疑是非常有价值的。有关诱导成体细胞为胚胎干样细胞的研究是2006年重大科学发现。我们的研究对这个诱导过程有了一些新的理解。&rdquo 该项研究结果发表在《细胞研究》(Cell Research),标题为《小鼠胚胎干细胞发育信号通路网络中Yamanaka因子的重要调控作用》。 研究人员发现了发育调控网络中的16个信号传导通路,其中的9个通路以往从未被报道参与维持或诱导细胞的多能干性。 该项研究使用了安捷伦公司的免疫共沉淀芯片技术(ChIP-on-chip)结合基因表达芯片数据研究了已知的Yamanaka因子在诱导小鼠细胞多能干性中的作用。 安捷伦通过2008年科研基金项目资助了基因芯片用于该项研究。基因芯片是指在玻璃基片上布放大量DNA探针用于研究基因组的技术。免疫共沉淀芯片技术专门用于研究基因组中&ldquo 启动子区域&rdquo 的特性,该区域控制着各种基因的活性从而决定了细胞的功能。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问: http://agilent.instrument.com.cn/
  • 高分辨QTOF特色技术巡展:自由基诱导解离技术
    前言高分辨QTOF质谱是一种先进的质谱技术,它结合了四极杆和飞行时间质谱的优点,能够提供高分辨率、高质量精度和高灵敏度的质谱分析。高分辨QTOF作为分析领域的高端仪器,始终在技术层面不断推陈出新。LCMS-9050是岛津最新推出的高分辨四极杆-飞行时间质谱仪,运用了多项特色技术,是技术指标优异、仪器性能卓越的产品。本期将为您介绍自由基诱导解离技术,岛津OAD解离源组件新产品已于近期发布。技术介绍岛津的自由基诱导解离(OAD)技术由田中耕一质量分析研究所开发,代表了质谱分析技术在结构解析方面的一个重要进步。这项技术的开发是为了解决传统碰撞诱导解离(CID)技术难以分辨C=C位置的问题,从而提供更详细的分子结构信息。传统碰撞诱导解离(CID)新型自由基诱导解离(OAD)OAD技术通过在质谱分析过程中引入自由基,使得分析物能够在特定条件下发生解离,从而揭示分子内部的结构特征。这种方法特别适用于脂质和其他生物活性化合物的分析,OAD能够提供关于这些化合物中C=C位置的详细信息,这对于理解分子的结构和功能至关重要。主要特点小结岛津的自由基诱导解离(OAD)技术是一种先进的离子解离技术,能够提供分子内部结构的详细信息。该技术为科研人员提供了一个强大的工具,能够更精准地完成复杂分子的分析和鉴定,从而更好地理解其结构和功能。对于生物医学研究、药物开发和疾病研究等领域具有重要的应用价值。本文内容非商业广告,仅供专业人士参考。
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • 世界首款激光诱导击穿-拉曼一体化光谱分析仪面世
    日前,由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展&mdash &ldquo 激光诱导击穿-拉曼光谱分析仪(LIBRAS)&rdquo 首次亮相于2014年12月20日-21日的&ldquo 激光光谱分析前沿技术国际研讨会&rdquo 。   继2014年3月份在第九届中国西部国际科学仪器展览会成功展出作为国内自主研发的首例便携式激光诱导击穿光谱仪(LIBS)之后,该项目团队再接再厉,与各参研兄弟单位联合攻坚,将用于元素测量的LIBS技术与用于分子结构测量的拉曼(Raman)技术有机结合,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。该仪器可用于待分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。   LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。这一成果也标志着我国激光光谱仪器自主研制能力的快速提升。
  • 川大研制出便携式激光诱导击穿光谱仪(LIBS)
    日前,由四川大学生命学院分析仪器研究中心牵头承担的国家重大科学仪器设备开发专项成果&mdash &ldquo 便携式激光诱导击穿光谱仪(LIBS)&rdquo 亮相第九届中国西部国际科学仪器展览会。该产品是国内自主研发的首例便携式LIBS仪器。除了具有与实验室台式LIBS相似的优点之外,其方便,便携,可现场,在线分析等优势受到国内外用户和参展商的高度关注。这一成果也标志着我国激光诱导击穿光谱仪器自主研制能力的提升。   与传统的技术相比较,该便携式仪器用途更加广泛,能够更好地服务于冶金、地质、医学,生物,环境污染监测等多个领域,为相关产业提供有效的现场、原位、快速分析的技术装备,从而加快检测速度,缩短分析时间,降低分析成本,提高生产效率,有广阔的市场前景和空间。 四川大学自主研制的便携式激光诱导击穿光谱仪亮相第九届中国西部国际科学仪器展览会
  • 【云课堂】饮食诱导动物造模讲座开播,点亮您的实验技能!
    随着生命科学和医学研究迈入新领域,对动物模型的需求正在日益上升,尤其是动物实验的课题已占据60%。动物模型是疫苗、药物研发过程中不可逾越的环节,即便如此,实验动物与人类基因组、细胞类型、器官结构、疾病类型等方面还是有一定差别,如何提升动物模型与人类疾病的相似性是动物造模的根本追求之一,合理运用饮食诱导便是常见的疾病造模方法之一。模型饲料便是指在实验动物中用于建立营养学异常模型的饲料,主要用于模拟在人类膳食或动物饲料中营养素含量不足、过载、营养素之间比率失衡的动物饲料,多用于营养学观察其导致的生理或病理改变及其机制,强化补充治疗或预防方法及效果。1月28日,MP Biomedicals技术团队将带来饮食诱导动物疾病造模相关讲座,介绍临床前动物疾病模型,分享多款饮食诱导疾病造模案例,剖析各类型造模优缺点。特别提示:1.礼品兑换流程:请添加官方微信客服:mpbiohelper,兑换礼品。2.有奖竞答与调研问卷的礼品将在资格审核后30天内发放,用户需要在直播间登记个人信息及关注公众号,不符合以上条件的用户将取消兑换资格。3.有奖竞答两轮同时获奖,将只取首轮获奖资格。4.本活动最终解释权归MP Biomedicals所有。
  • 福建省日用化学品商会立项《化妆品抗皱紧致功效评价—体外I型胶原含量测定紫外线诱导人成纤维细胞测试方法》等2项团体标准
    各相关单位:根据《福建省日用化学品商会团体标准管理办法》的相关规定,福建日化商会于2023年3月组织专家对《化妆品抗皱紧致功效评价—体外I型胶原含量测定紫外线诱导人成纤维细胞测试方法》、《婴童化妆品用山茶籽油》团体标准进行评审。经表决通过了2项团标立项。现将通过评审的项目信息在全国团体标准信息平台网(http://wwwttbzorgcn)予以公示,公示期为5个工作日(4月19日-4月25日)。公示期间如有任何建议和要求,请与福建日化商会秘书处联系。联系人:钟惠娜联系电话:0596-2301381邮箱:fjrhjcksh@163.com地址:福建省漳州市芗城区厦门路15号楼江滨花园沿江二层步行街15-26.27室 福建省日用化学品商会二〇二三年四月十九日
  • 世界首台全自动化干细胞诱导培养设备通过验收
    p    strong 干细胞,养起来更简单(解码· 发现) /strong /p p   5月15日,中科院广州生物医药与健康研究院(简称广州生物院)全自动干细胞诱导培养设备研制项目团队研制的全自动干细胞诱导培养设备顺利通过验收,这是世界上首台全自动、大规模、规范化诱导及扩增的干细胞诱导生产系统。该设备将实现全自动化、规模化、智能化的诱导干细胞制备,对再生医学及其相关的细胞治疗领域产生重大影响。 /p p    strong 人工操作难以实现规范化与标准化,已成干细胞发展瓶颈 /strong /p p   干细胞是具有自我复制功能及多向分化潜能的细胞,在特定条件下能再生成人体的各种细胞、组织或器官,医学界称为“万能细胞”。干细胞在基础研究和转化医学应用中具有重要意义,在再生医学、疾病模型、药物筛选、精准医学等领域具有广阔的应用前景。但是,由于常规的干细胞存在量不足,干细胞研究兴起了诱导多能干细胞这一领域的发展,试图解决干细胞作为种子细胞的来源问题。 /p p   “科学家发现如果将人的体细胞进行处理,可以获得一种新的干细胞,这种干细胞被称为诱导多能干细胞。它在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等都与胚胎干细胞极为相似,是胚胎干细胞的完美替代细胞。”广州生物院研究员潘光锦说,“目前,诱导多能干细胞已成为相关医学研究的核心工具,用于新药研发、神经损伤修复、心肌细胞修复、组织器官再生或移植等领域。” /p p   为了获得实验所需的大量诱导多能干细胞,科研人员需要制备并让其大量增殖,也就是养细胞。然而,当前干细胞诱导、培养及筛选过程均只能依靠人工操作完成,存在很多的不足。潘光锦说:“一方面,由于缺乏对细胞命运变化及诱导多能干细胞克隆筛选和扩增的实时及定量监控,难以实现干细胞诱导流程的规范化与标准化 另一方面,人工操作也存在效率低、成本高、通量低、安全性差等问题。” /p p   因此,如何实现干细胞自动化规模化的均质培养与扩增,避免这些问题,是诱导多能干细胞技术走向实际应用亟须突破的瓶颈。 /p p   在此背景下,财政部支持的国家重大科研装备研制项目“全自动干细胞诱导培养设备研制”,于2013年立项,由广州生物院负责承担。项目团队以创新技术为核心,利用院内国际领先的诱导多能干细胞技术、干细胞诱导分化技术等研究成果,并结合自动化技术,历时4年,攻克8项关键技术,取得多项创新性成果,成功研制国际首台全自动干细胞诱导培养设备。 /p p   广州生物院研究员张骁说:“有了这台设备后,从事诱导多能干细胞的科研人员不再靠人工操作养细胞,甚至不具备养细胞技术的人只要靠这台仪器就能获得诱导多能干细胞。” /p p    strong 可实现全过程实时追踪监测,并提高干细胞的制备质量 /strong /p p   全自动干细胞诱导培养设备占地25平方米,由自动化培养箱系统、自动化液体处理系统、显微在线观测系统、高精度克隆挑取系统、培养皿传送系统、设备控制系统六大模块组成。 /p p   据科研人员介绍,干细胞的重编程是从一个个体化的矩阵培养箱开始,培养箱可并行培养24份个体化的诱导多能干细胞。然后,再由自动传送臂在b级环境下将 6孔细胞培养板从培养箱传送至操作舱中。随后,培养板就被置入成像区。接下来,拥有1.2微米分辨率的显微成像系统就会对其成像,整个过程不超过10分钟。 /p p   “独立矩阵式培养箱主要是为细胞培养提供适当的温度、湿度和气体环境,保证细胞的培养处于合适的环境,同时也保障个体细胞间不会交叉污染。” 张骁说,“人养细胞,不会全程监测细胞状态。而这台设备能全天候坚守,可以通过手机APP端监测,并及时完成移液、换液等操作。细胞的培养时间也缩短了。它还能自动获取细胞成长信息,预测细胞成长趋势,自动挑选出符合要求的成熟诱导多能干细胞。” /p p    strong 改善了我国高端生命科学仪器装备依靠进口的局面 /strong /p p   全自动干细胞诱导培养设备从诱导多能干细胞重编程全过程研究出发,建立全程自动化细胞培养诱导技术体系,利用人工智能机器学习辅助无损无标记分析手段,建立细胞极性变化为基础的命运调控的Hiden Markov Model数学模型,从而指导细胞重编程理论在干细胞获取领域从理论模型到制备整机技术的全线突破,实现重编程多能细胞暨干细胞的制备。 /p p   张骁说:“该自动化智能技术可实现每月24人次为周期的GMP级别的细胞制备通量,为我国的生物先进制造提供了上游细胞来源的智能保障。” /p p   全自动干细胞诱导培养设备第一次实现了以机器学习及人工智能算法为判定的细胞重编程命运的自动化诱导,整机技术及识别核心算法的应用已达国际领先水平。 /p p   广州生物院研究员裴端卿表示,设备的成功研制,标志着我国在干细胞装备领域的自主研发取得新的突破,改善了我国高端生命科学仪器装备依靠欧美进口的局面,其成果填补了国内在该领域的多项空白。 /p p   项目技术验收专家认为,该项目研究成果涵盖基础研究、应用研究和开发研究全过程的生物技术自主创新体系,这将为实现本领域整体“并跑”、部分“领跑”,初步建立系统的生物技术创新体系,突破一批核心关键技术难点作出贡献。 /p p   中国科学院微电子所研究员夏洋说:“该设备的成功研制将促进诱导多能干细胞在再生医学研究领域的实际应用,推进我国在干细胞装备领域的自主研发进程,推动我国干细胞基础研究和临床应用的快速发展,为干细胞再生医学及精准医疗的研究奠定基础。” /p p   据了解,目前各医院细胞治疗临床应用迫切需要干细胞制备装置,全自动干细胞诱导培养设备已逐步在各研究单位或一级医院研究中心推广。该设备降低了人为干预,实现多人份、低成本、高品质、一体化的干细胞生产,社会效益巨大。(记者 吴月辉) /p
  • 我国科学家发现可通过诱导细胞焦亡以增强肿瘤免疫治疗疗效
    近日,武汉大学研究团队在《Advanced Science》发表题为“Microenvironment-ResponsiveProdrug-InducedPyroptosis BoostsCancerImmunotherapy” 的论文。该团队开发了一种新型化疗—光动力联合治疗方案以增强肿瘤免疫治疗的疗效。  免疫检查点阻断方法已被广泛应用于肿瘤临床治疗,但肿瘤抗原的缺乏及未能有效地启动适应性免疫是导致免疫治疗效果欠佳的重要原因。焦亡是程序性细胞死亡的一种方式,其可产生大量炎性因子,并释放肿瘤抗原及启动适应性免疫反应。然而目前能有效诱发焦亡的方法较少,常规的化疗、光动力法诱导焦亡能力有限,并且具有较大的毒副作用。  该团队研发的新型的化疗—光动力联合治疗方案可通过形成一类新型工程化纳米胶束体系,可显著提高传统化疗药物与光敏剂的肿瘤靶向性,能够在肿瘤部位大量聚集,而在正常部位分布较少,从而避免了全身的毒副作用。此外,纳米胶束富集到肿瘤微环境后可诱导肿瘤细胞焦亡,释放炎性因子和肿瘤相关抗原,活化抗原提呈细胞,启动适应性免疫。联合免疫治疗后,其能显著增强PD-1阻断治疗疗效,抑制肿瘤生长及预防肿瘤复发。  该研究表明,通过诱导肿瘤细胞焦亡可增强肿瘤免疫治疗疗效,为后续改进免疫治疗方案提供新思路。   注:此研究成果摘自《Advanced Science》杂志,文章内容不代表本网站观点和立场。  论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202101840
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 直播预告|手持式激光诱导击穿光谱仪(LIBS)发展及应用
    【10月15日下午14:00直播】 “手持式激光诱导击穿光谱仪(LIBS)发展及应用”网络研讨会 莱雷科技举办 【会议分享内容】 导师:薄学庆—赛谱司中国技术中心华中区域经理 主要围绕“手持式激光诱导击穿光谱仪(LIBS)发展及应用” 一、LIBS技术发展历程二、手持激光光谱仪工作原理及优势三、手持激光光谱仪主要应用方向(一)合金领域 1.石油化工 2.电力电建 3.装备制造 (二)环境地质 1.土壤环境 2.录井钻探 3.地矿开采-锂矿 4:核科学应用 5.古气候研究 (三)科技考古 微信扫描下方二维码,9月10日下午14点线上与您不见不散!
  • 法国肖邦技术公司推出世界首台全自动溶剂保持力测定仪SRC-Chopin
    近日,法国肖邦技术公司宣布,推出全球首台全自动溶剂保持力测定仪SRC-Chopin,并将在10月5日- 8日美国罗德岛州召开的美国谷物化学师协会(AACC)2014年会上举办新品说明会。   溶剂保持力(Solvent Retention Capacity, SRC) 方法由Nabisco 饼干公司的小麦粉及烘焙专家Slade和Levine 于1994 年提出,手工检测,以含水量14%的面粉为基准,经离心后面粉所保持溶剂质量占面粉干重的百分比来衡量面粉品质。溶剂主要有蒸馏水、5%碳酸钠、5%乳酸和50%蔗糖。碳酸钠SRC与面粉中破损淀粉数量有关,乳酸SRC与麦谷蛋白特性有关,蔗糖SRC与戊聚糖特性有关,水SRC反映面粉的综合特性。麦谷蛋白、破损淀粉和戊聚糖是小麦面粉中的3种影响面筋网络形成的主要功能组分,影响面团在制备、烘焙和蒸煮过程中的品质特性,决定了最终产品的质量。所以SRC方法应用非常广泛,1999年就成为AACC标准方法,编号AACC 56-11。但由于手工SRC法过程复杂、人为影响因素多,时至今日,手工SRC依然受制于检测结果再现性差。 SRC-Chopin全自动溶剂保持力测定仪   SRC-Chopin全自动溶剂保持力测定仪,是法国肖邦技术公司与SRC检测方法的发明者,密切合作的成果。仪器实现了整个检测过程的自动化,操作简便,结果精确。肖邦SRC仪是一个完整的集成系统,包括试管振动装置、离心机和试管沥干装置。试管在天平中称量,天平内置扫描器自动识别试管编号。仪器显示屏会自动显示预设的检测流程,试管和溶剂注射器按检测流程放入仪器。 然后,操作人员要做的就是按检测开始键,接下来的步骤(溶剂注入、振荡、离心、沥干),全都自动进行。检测完成,自动称量。所有结果都将自动计算和显示。   与传统的手工SRC检测比较,肖邦公司发明的全自动溶剂保持力仪有3个突出优势:1、检测效率大大提高,实验耗时大大缩短(自动检测8个样品用时15分钟,手工检测大约45分钟) 2、检测精度提高1-3倍,不同实验室之间结果具有可比性,无人为操作误差 3、检测过程大大简化,手工SRC的不同阶段自动完成,计算和结果显示自动完成。   国际谷物协会ICC执委、法国肖邦技术公司应用和市场总监Arnaud Dubat先生评价说,&ldquo 我们与卡夫食品等众多客户合作,实现了手工SRC方法的完全自动化,这一创新性的成果,对面粉品质检测技术的进步影响深远&rdquo 。   公司介绍:   法国肖邦技术公司Chopin Technologies,是全球处于领先地位的专业研发与生产谷物、面粉及其加工产品的品质检测设备生产企业,隶属特里百特.雷诺集团Tripette & Renaud,始建于1836年,总部位于法国巴黎。   肖邦技术公司的所有仪器设备都是在法国研发制造,全球一级分销商60多家,覆盖所有谷物领域。肖邦技术公司注重技术创新,每年将超过10%的营业额投入到研发方面。自1920年肖邦先生发明世界上首台检测小麦品质的仪器-吹泡仪以来,肖邦技术公司的众多专有技术已获得的所有一流的国际机构的认可,比如 AACC, ICC, ISO, CEN, AFNOR&hellip &hellip 肖邦技术公司执行优秀的服务标准,让全世界的农业与粮食工业共同分享肖邦的技术创新成果。   为了更好的服务于中国客户,肖邦技术公司于2009年在中国正式成立独资子公司&mdash 特雷首邦(北京)贸易有限公司,全面负责整个中国市场的销售、售后服务及技术应用。我们不断地提供新颖独特的产品和服务,为您的各种需求制定最佳的技术方案。   更多详情欢迎访问法国肖邦技术公司网站:www.chopin.fr 或 www.chopinchina.com
  • 诱导多能干细胞克隆效率低?这台温和、自动化的单细胞分选系统帮您搞定,分离效率高达100%!
    人类诱导多能干细胞(hiPSCs)是一类可用于疾病建模、药物开发和组织工程领域的多能诱导干细胞。与CRISPR-Cas9等功能强大的基因编辑技术结合后,可根据不同患者的特性进行疾病相关遗传变异的研究和识别。 然而,培养hiPSCs的步骤较为繁琐,细胞对异常的处理和操作非常敏感,任何操作的问题都有可能导致细胞和遗传毒性应激的积累,进而导致不良分化和多能性丧失。基因编辑建立单细胞衍生的hiPSC克隆过程中常用的技术往往过于复杂或粗暴,导致单细胞克隆效率低下。此外,它们在确保衍生培养物单克隆性方面存在局限性。为此,英国iotaSciences公司推出了可实现100%单细胞分离的isoPick单细胞可视化分选系统,有效解决了培养hiPSCs单克隆过程中的困难。 如右上图所示,单细胞可视化分选系统isoPick采用纳升级的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选;确保分选所得的单细胞样品中只有一个单细胞,结果可验证、可追踪;分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。单细胞可视化分选系统isoPick可全自动进行单细胞的分选、拾取并转移1.5 µ l至200 µ l的液体至PCR管或96孔板中。 使用isoPick从GRIDs内分选hiPSC单细胞置于Laminin-521,Vitronectin-N, Synthemax和iMatrix (Laminin-511)4种不同基质且含有培养基的96孔板中。以第7-10天内的时间计算得出的单细胞克隆效率可以发现,无论使用的包被基质或hiPSC细胞系,平均克隆效率均70%(上图),明显高于其他通常使用的方法(包括FACS),表明isoPick对敏感单细胞的温和处理,能够确保细胞的高存活率和更好的克隆生长效果。 isoPick使用户能够以快速、高效、自动化的方式从多样、异质的细胞群体中分离单个细胞。GRID腔室非常适合用于观察和记录单个细胞的分离过程。 用户可将单个细胞分离并直接置入96孔板用于细胞克隆。相比传统方法,这种方法用简单的线性工作流程,显著提高了细胞分离与克隆效率,操作流程高度自动化,可以将样品无缝衔接单细胞组学的后续操作。单细胞可视化分选系统的优势:全自动化流程操作非常简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧文献举例: 单细胞可视化分选系统相关文献发表于Cell、Advanced Science、Small Methods、Nature Communications 等期刊,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师参观试用!
  • 激光诱导击穿光谱(LIBS)研究领域再次取得重要进展
    激光诱导击穿光谱技术(LIBS)又称激光诱导等离子体光谱,是一种基于原子发射光谱法的元素分析技术,在多元素分析、实时快速原位检测等方面具有突出优势,并且在痕量物质定性定量分析领域具有重要的应用前景。目前该技术已在深空深海探测、地质勘探、生物医药,以及环境监测等众多领域得到广泛应用。但在普遍应用中,LIBS技术面临信号波动大、光谱强度低、信噪比差、探测灵敏度低等不利因素。瞬态光学与光子技术国家重点实验室汤洁研究员课题组近年来开展了激光等离子体光谱研究领域的技术攻关。放电辅助增强策略可实现大幅度的激光等离子体光谱增强。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,这不可避免地导致能源浪费和环境污染相关问题。2023年2月份,瞬态光学与光子技术国家重点实验室汤洁研究员课题组与Vassilia Zorba教授团队合作共同提出一种离子动力学调制方法,对克服传统放电辅助LIBS技术(D-LIBS)放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该项工作借助于这种方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。然而,这一方法在液态样品的探测中受液相对放电过程的干扰导致LIBS信号波动大,影响探测光路甚至无法探测,极大阻碍了放电辅助LIBS(DA-LIBS)在液态样品中痕量物种定性或定量分析方面的应用。近日,针对放电辅助LIBS在液态样品探测中面临的关键技术性难题,该团队提出了DA-LIBS结合滤纸采样的方法,促进等离子体中更多的物质被持续加热、电离,致使其寿命从几微秒延长至近百微秒,等离子体光谱强度增加1–2个数量级,滤纸均匀采样巧妙克服了液相干扰放电过程及信号稳定性差等不利因素,显著增强激光烧蚀样品的稳定性,等离子体光谱信号稳定性得以提升33%。凭借显著的光谱增强效应,痕量Ca、Ba元素检出限降低至ppb量级( 1ppb=10-9=十亿分之一),相比于传统单脉冲LIBS,检出限降低近2个数量级。相比于其他LIBS增强技术(如双脉冲LIBS),该方法不仅享有同等高水平的探测灵敏度,还具备低成本、低能耗、装置简易等优势,将在环境与生态废油污染监测中,对污染物质的溯源,以及预防措施的制定,展现出巨大的应用潜力和价值。图片来源于中国科学院西安光学精密机械研究所该项研究成果发表于分析化学领域顶级期刊 Analytical Chemistry(Nature Index 收录,IF:8.0)。
  • 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2023 年5月7-9日在敦煌举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请150余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。主办单位:中国光学工程学会承办单位:中国光学工程学会西北师范大学协办单位:敦煌研究院中国科学院近代物理研究所上海理工大学中国科学院合肥物质科学研究院中国矿业大学支持单位:长春新产业光电技术有限公司长沙麓邦光电科技有限公司光谱时代(北京)科技有限公司北京镭宝光电技术有限公司国仪量子(合肥)技术有限公司埃德比光子科技(中国)有限公司成都诺为光科科技有限公司北京欧兰科技发展有限公司东方闪光(北京)光电科技有限公司奥谱天成(厦门)光电有限公司上海五铃光电科技有限公司上海尤谱光电科技有限公司深圳市唯锐科技有限公司大会名誉主席:庄松林 院士(上海理工大学)范滇元 院士(深圳大学)乐嘉陵 院士(中国工程院)陈良惠 院士(中国科学院半导体研究所)许祖彦 院士(中国科学院理化技术研究所)大会主席:田中群 院士(厦门大学)刘文清 院士(中国科学院合肥物质科学研究院)孙世刚 院士(厦门大学)王建宇 院士(中国科学院上海技术物理研究所)执行主席:董晨钟(西北师范大学王 哲(清华大学 )蔡小舒(上海理工大学)阚瑞峰(中国科学院合肥物质科学研究院 )周怀春(中国矿业大学 )程序委员会(音序):蔡伟伟、 蔡小舒、曹世权、陈军 、褚小立 、崔执凤、狄慧鸽 、丁洪斌、丁晓彬、董晨钟、董大明、董磊、 董美蓉、付洪波、郭金家 、郭连波、杭纬、 侯贤灯、侯宗宇、胡继明、 胡仁志 、贾云海、阚瑞峰 、 雷庆春 、李博 、李传亮 、李聪、李飞 、李华、李润华、李祥友、李晓晖 、林庆宇、刘诚 、刘冬 、刘飞、刘继桥 、刘木华、卢渊、陆继东、陆克定 、马维光 、马新文、马欲飞、 梅亮 、 敏琦、彭江波 、 钱东斌、任斌、 邵杰 、邵学广、 史久林 、舒嵘、苏伯民、苏茂根、孙对兄、孙兰香、田野、万福 、王茜蒨、王强、 王珊珊 、王圣凯 、王哲、王珍珍、吴涛 、 吴学成 、 吴迎春 、夏安东、 徐文江 、 许传龙 、 许振宇 、 闫伟杰 、 杨荟楠 、 杨磊、杨增玲 、 姚顺春、殷耀鹏、尹王保、于宗仁、俞进、袁洪福 、 张大成、张登红、张雷、赵南京、赵卫雄 、 郑培超、周怀春 、 周磊 、 周卫东、周骛 、 周小计、朱家健 、 朱香平专题分会1) 激光诱导击穿光谱及相关技术召集人:王哲 (清华大学 )、 董晨钟 (西北师范大学 )邀请报告:➢ 丁洪斌(大连理工大学) LIBS 基本物理过程及聚变能应用进展➢ 段忆翔(四川大学) LIBS 技术与仪器的发展历程 从实验室研发到现场应用➢ 郭连波(华中科技大学) 激光诱导击穿光谱基础、仪器及应用研究➢ 刘木华(江西农业大学) PRLIBS 对农产品品质信息分析能力提升方法研究➢ 马欲飞(哈尔滨工业大学) 小型化固体激光器➢ 舒嵘(中国科学院上海技术物理研究所) )————“祝融号”火星车物质成分探测仪中的 LIBS探测与分析➢ 苏茂根(西北师范大学) 激光等离子体辐射、诊断与应用➢ 孙兰香(中国科学院沈阳自动化研究所) 矿浆成分 LIBS 定量分析方法与工业在线应用➢ 王茜蒨(北京理工大学) LIBS 技术在生物医药诊断监测中的应用研究➢ 王哲(清华大学) 激光诱导击穿光谱( LIBS )定量化理论方法及应用➢ 汪正 中国科学院上海硅酸盐研究所 基于微等离子体增强 LIBS 信号研究➢ 俞进(上海交通大学) 针对火星就位探测的激光诱导击穿光谱方法研究➢ 曾和平 华东师范大学 飞秒光丝非线性相互作用诱导击穿光谱➢ 郑荣儿(中国海洋大学) 深海 LIBS :何去何从➢ 周卫东(浙江师范大学) 激光诱导空化气泡的演化及其对 LIBS 光谱的影响➢ 周小计(北京大学) LIB S 在定量应用中的探索研究2) 原子光谱与质谱召集人:侯贤灯 (四川大学 )、 杭纬 (厦门大学 )邀请报告:➢ 陈明丽(东北大学) LA ICP MS 对动植物组织中元素成像方法研究➢ 冯流星(中国计量科学研究院) 阿尔茨海默症计量溯源技术研究➢ 高英(成都理工大学) 基于钒的光化学蒸气发生及应用➢ 郭伟(中国地质大学(武汉)) 高精度 LA ICPOES/ICPMS 原位分析技术及古气候中的应用➢ 杭纬(厦门大学) 高电离电位元素的激光质谱分析技术➢ 侯贤灯(四川大学) 原子光谱分析研究➢ 胡斌(武汉大学) ICP MS 单细胞分析➢ 蒋小明(四川大学) 微型原子发射光谱仪的放电激发源研制➢ 刘睿(四川大学) 金属元素标记均相免疫分析➢ 吕弋(四川大学) 基于金属稳定同位素标记的生物分析研究➢ 邢志(清华大学) 高纯非导体材料纯度分析方法探索➢ 徐明(中国科学院生态环境研究中心) 利用 LA ICP MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律➢ 于永亮(东北大学) 适于微等离子体发射光谱分析的样品引入方式与接口➢ 郑成斌(四川大学) 碳原子发射光谱及其应用➢ 朱振利(中国地质大学(武汉)) 基于等离子体技术的锑元素与同位素分析方法开发3) 激光拉曼光谱与激光荧光光谱技术及应用召集人:任斌(厦门大学 )、 胡继明 (武汉大学 )邀请报告:陈建(中山大学)➢ 高亮(核工业西南物理研究院) 大气压等离子体活性物种激光诱导荧光定量诊断研究➢ 韩鹤友(华中农业大学)➢ 胡继明(武汉大学) 拉曼光谱在细胞分析中的应用➢ 谭平恒(中国科学院半导体研究所)➢ 杨海峰(上海师范大学)➢ 朱井义(中科院大连化学物理研究所)4) 光声光谱 与 TDLAS技术及应用召集人:马欲飞(哈尔滨工业大学 )、 董磊 (山西大学 )、 王强 (中科院长春光机所 )邀请报告:➢ 陈珂(大连理工大学) 光纤光声传感技术及应用研究进展➢ 姜寿林(香港理工大学深圳研究院) 基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术➢ 黎华(中国科学院上海微系统与信息技术研究所) 太赫兹光频梳与双光梳光源➢ 李磊(郑州大学)➢ 刘俊岐(中国科学院半导体研究所) 中红外可调谐半导体激光器➢ 刘锟(中国科学院合肥物质科学研究院) 光声光谱多组分检测技术研究➢ 鲁平(华中科技大学) 光声探测技术及应用➢ 王福鹏(中国海洋大学) 基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨➢ 王强(中国科学院长春光机所) 高灵敏、大动态范围的腔增强光声光谱气体传 感技术➢ 王如宝(北京杜克泰克科技有限公司) 基于光学麦克风光声光谱技术的环境空气 VOCs检测➢ 吴君军(重庆大学) 基于石英增强光声光谱的相变液滴局部蒸汽浓度表征➢ 许可(朗思科技有限公司) 基于石英增强光声光谱的超高灵敏度气体分析仪器➢ 姚晨雨(山东大学) 空芯光纤 Fabry-Perot干涉仪解调方法和光热光谱气体检测研究➢ 闫明(华东师范大学) 基于光梳的光谱测量技术及应用➢ 郑传涛(吉林大学)➢ 郑华丹(暨南大学) 新型石英增强光声光谱测声器5) 红外及太赫兹光谱召集人:邵学广(南开大学 )邀请报告:➢ 陈斌(江苏大学) 低场核磁与近红外光谱联用分析仪的开发与应用探索➢ 陈孝敬(温州大学) 结合 Libs和线性回归分类对泥蚶重金属污染检测➢ 姜秀娥(中国科学院长春应用化学研究所) 仿生膜水合及其效应的红外光谱电化学研究➢ 兰树明(无锡迅杰光远科技有限公司) IAS在线近红外光谱分析仪器开发➢ 李晨曦(天津大学) 光谱成像与太赫兹光谱技术在食品检测中应用➢ 邵学广(南开大学) 近红外光谱分析中的化学计量学方法与应用➢ 夏兴华(南京大学) 等离激元增强红外光谱生化分析➢ 谢樟华(天津市能谱科技有限公司) 国产红外光谱仪的新机遇和新挑战➢ 臧恒昌(山东大学) 药品连续制造过程中近红外实时评价与放行技术的研究➢ 张良晓(中国农业科学院油料作物研究所) 油料油脂质量安全近红外快速检测技术研究➢ 周新奇(杭州谱育科技发展有限公司) FTIR光谱技术产品开发及其应用6) 超快及瞬态光谱召集人:夏安东(北京邮电大学 )邀请报告:➢ 边红涛(陕西师范大学)——受限体系结构及超快动力学研究➢ 陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量➢ 陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究➢ 陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究➢ 丁蓓(上海交通大学)——蓝光受体BLUF域质子耦合电子转移机理➢ 勾茜(重庆大学)——微波光谱探测Diels–Alder环加成预反应中间体➢ 金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用➢ 兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量➢ 李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究➢ 蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用➢ 刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟➢ 马骁楠(天津大学)——新型有机发光材料中的激发态化学研究➢ 任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学➢ 夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?➢ 吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用➢ 吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控➢ 杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术➢ 叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究➢ 张春峰(南京大学)——分子光电材料的激发态动力学妍究➢ 张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理➢ 郑俊荣(北京大学)➢ 郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量➢ 周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究➢ 朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究➢ 朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探7) 燃烧诊断召集人:蔡伟伟 (上海交通大学 )、 彭江波 (哈尔滨工业大学 )邀请报告:➢ 蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究➢ 超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法➢ 陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展➢ 雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用➢ 梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究➢ 林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨➢ 彭江波(哈尔滨工业大学)——高频PLIF燃烧流场测量及数据分析方法研究进展➢ 彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究➢ 齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究➢ 伍岳(北京理工大学)——跨界面三维层析技术的开发与优化➢ 武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究➢ 熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用8) 环境监测召集人:陆克定 (北京大学 )、梅亮 (大连理工大学 )邀请报告:➢ 陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战➢ 梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术➢ 胡仁志(中国科学院合肥物质科学研究院)——大气HOx自由基探测技术研究及应用➢ 刘诚(中国科学技术大学)——卫星结合地面靶向遥感VOCs排放源➢ 楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气OH自由基总反应性测量与应用➢ 韦玮(重庆大学)——腔增强红外光谱技术➢ 赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量OH自由基➢ 郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究9) 工业检测召集人:姚顺春 (华南理工大学 )、袁洪福 (北京化工大学 )邀请报告:➢ 陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发➢ 褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用➢ 董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼➢ 李天骄(南京理工大学)——纳米材料光点火诊断与应用➢ 马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用➢ 杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究➢ 姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法➢ 张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用➢ 张彪(东南大学)——基于光场成像的燃烧诊断技术研究
  • 上海光机所在基于激光诱导击穿光谱的中药重金属检测方面取得进展
    近期,中国科学院上海光学精密机械研究所信息光学与光电技术实验室在基于激光诱导击穿光谱的中药重金属定量检测方面取得进展,研究团队利用纳米金增强和稀有气体吹扫相结合的方法提高了中药重金属汞元素定量检测灵敏度。相关研究成果以“High-sensitivity analysis of mercury in medicinal herbs using nanoparticle-enhanced laser-induced breakdown spectroscopy combined with argon purging”为题,发表于Journal of Analytical Atomic Spectrometry。激光诱导击穿光谱技术(Laser-induced breakdown spectroscopy, LIBS)是一种原子光谱分析技术,具有样品制备简单、可实时检测、检测速度快、多元素同时检测等优点,被称为元素分析领域的“未来巨星”。当采用LIBS检测中药残留重金属元素时,激光诱导等离子中汞原子的复合速率远高于其他原子,且空气中的氧气会引起汞特征谱线Hg Ⅰ 253.65nm上能级的猝灭,导致汞元素检测灵敏度远低于其他重金属元素。图1 纳米金增强LIBS结合稀有气体吹扫检测过程示意图图2 滴加在中药表面的纳米金液滴 (a)表面未处理,干燥前;(b)表面未处理,干燥后;(c)超疏水处理,干燥前;(d)超疏水处理,干燥后研究团队利用激光与纳米金颗粒作用过程中纳米金内部传导电子震荡和表面等离子激元共振特性,通过在中药样品表面沉积一层纳米金颗粒,提高了激光诱导等离子辐射光谱强度;通过对中药表面进行超疏水处理,优化了纳米金沉积过程,抑制了“咖啡环效应”,提高了光谱信号稳定性;在此基础上采用氩气吹扫样品表面,为等离子演化过程创造无氧环境,进一步提高了等离子辐射光谱强度。实验结果表明,采用纳米金增强结合氩气吹扫后,汞元素特征谱线强度提高6.19倍,检测灵敏度提高9.73倍。图3 纳米金增强结合稀有气体吹扫前后中药样品在253.0-254.0 nm范围内的激光诱导击穿光谱(扣除背景光谱)图4 中药汞元素定量分析校准曲线 (a)LIBS (b)纳米金增强LIBS结合氩气吹扫
  • 华东师大重庆研究院首次提出多维等离子体光栅诱导击穿光谱技术
    近日,华东师范大学重庆研究院的科研团队与精密光谱科学与技术国家重点实验室进行合作,在超快激光诱导击穿光谱的研究中取得重要进展,团队首次提出多维等离子体光栅诱导击穿光谱(Multidimensional-plasma-grating induced breakdown spectroscopy,MIBS)技术,并实验证实新技术比常规激光诱导击穿光谱具有更高的探测灵敏度和克服基体效应。相关成果以题为Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating发表在光谱类一区期刊Journal of Analytical Atomic Spectrometry杂志(胡梦云,施沈城,闫明,武愕,曾和平,JAAS,2022)。《Journal of Analytical Atomic Spectrometry》杂志刊登曾和平教授团队研究成果激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)是一种非常实用的分析测试工具,可以用于确定固体,液体和气体的元素成分。传统的纳秒激光诱导击穿光谱受基体效应与等离子体屏蔽等干扰,而飞秒光丝激发(Filament-induced breakdown spectroscopy,FIBS)受限于峰值功率钳制,灵敏度难以提高。团队前期发展飞秒等离子体光栅诱导光谱(Plasma-grating-induced breakdown spectroscopy, GIBS)技术,基于两束飞秒光丝非共线耦合形成等离子体光栅,突破峰值功率钳制效应,光功率及电子密度提高近2个量级,等离子光栅中多光子电离与电子碰撞激发协同,提高探测灵敏度(胡梦云,彭俊松,牛盛,曾和平,Advanced Photonics, 2020, 2(6), 065001);GIBS等离子体干涉激化可克服基体效应,首次实现成分探测自定标。为了进一步提高对样品的激发效果,延长激发产生的等离子体寿命,增强光谱信号,团队提出基于等离子体光栅的多脉冲耦合激发诱导击穿光谱MIBS新技术。团队利用三束非共线、非共面的飞秒脉冲进行相互作用对样品进行激发,成功观察到等离子体光栅的衍射效应,等离子体光栅实现从一维突破到二维。二维等离子体光栅对样品进行激发时,二维等离子体通道中具有更为精细的周期性结构和更高阶的非线性效应,提升了等离子体密度和光功率密度,多光子激发以及电子碰撞双重激发更为明显,从而进一步提高探测灵敏度,克服基体效应。MIBS实验装置,二维等离子体光栅的周期性结构使得三次谐波发生衍射值得一提的是,研究发现所获得的谱线信号会随着激光能量的提升而增强,当单脉冲能量超过2 mJ时,MIBS技术将取得更明显的优势。此外,MIBS技术仅在激发源上进行了改进,并未引入复杂的样品处理步骤以及额外的装置,与大多数改进技术相比保留了LIBS技术原有的快速、简单、便捷的优点,这使得其能够满足特定场景中的原位实时检测需求。随着GIBS/MIBS技术的研究发展与应用拓展,为了适应野外恶劣环境下移动作业,实现非接触式在线实时探测,对激发光源提出了更高要求,需要性能更加稳定的高能量飞秒光源进行激发。与此同时,华东师范大学重庆研究院发展高能量飞秒脉冲激光光源。基于掺Yb光纤种子脉冲产生与固体再生放大相结合的飞秒激光放大方案,通过搭建宽带可调谐的光纤脉冲种子源解决信号光和放大介质光谱窄化和增益失配的问题,实现激光高效率放大;结合啁啾脉冲放大和固体再生放大技术,抑制激光放大过程中的非线性累积,提升放大效率和功率,输出mJ级高能量飞秒脉冲激光。高集成化、高稳定性混合系统1030nm mJ级高能量飞秒激光光源满足实验室以外苛刻环境下应用,为GIBS/MIBS技术试验野外在线检测提供了技术和仪器的支撑。1030nm高能量飞秒激光器此外,华东师范大学重庆研究院开发多个系列超快飞秒激光光源,形成多款超快飞秒激光器产品,其中包括:FemtoCK,FemtoLine和FemtoStream等。针对GIBS/MIBS技术、强场激光物理、微纳加工等应用研究,开发的1030nm mJ级高能量飞秒激光器YbFemto HP采用光纤固体混合放大技术方案,种子源采用全保偏光纤结构的振荡器FemtoCK产生稳定脉冲序列;该光源通过啁啾脉冲放大技术,结合掺镱增益介质的固体再生放大技术,输出中心波长1030nm、能量达毫焦(mJ)量级,脉冲宽度小于300fs的高能量飞秒激光脉冲。该光源重复频率调谐范围覆盖单脉冲~ 250 kHz,增加定制模块可进行倍频操作,实现515nm、343nm等飞秒脉冲激光输出,满足科研、工业等多场景应用需求。华东师范大学重庆研究院将依托自研的毫焦级高能量飞秒激光器,输出高稳定的激化光源,与GIBS/MIBS技术相结合,集成实现轻量化高灵敏检测仪器,实现技术创新,仪器创新,装备创新,进而实现土壤、液体自标定痕量分析等应用创新,深入优化仪器系统的稳定性与可靠性,使更多野外极限环境下应用成为可能,进一步应用于环境监测、深海勘探、地质勘探、工业冶金、航天探测以及生物制药等领域。激光诱导击穿光谱技术应用毫焦级高能量飞秒激光器不仅仅在LIBS上产生重要应用,同时可用于设备集成,面向如半导体芯片制备、柔性OLED显示器件切割、玻璃切割、非金属/金属材料加工、打孔以及微纳加工等重要应用。另一方面,可用于光谱检测、非线性光学、高次谐波产生、医疗成像、双光子3D打印、相控阵等科研应用。
  • 第8届激光诱导击穿光谱(LIBS)国际会议在清华召开
    仪器信息网讯 2014年9月8-12日,由中国激光诱导击穿光谱组委会组织,清华大学热能工程系主办的&ldquo 第8届激光诱导击穿光谱(LIBS)国际会议&rdquo 在北京清华大学召开。该会议主题为&ldquo Share our LIBS Make a difference&rdquo ,来自中国、美国、法国、德国、俄罗斯、日本、韩国等国家的相关代表362人参加了此次会议。 会议现场 清华大学热能工程系主任李政和中国激光诱导击穿光谱组委会王哲博士共同作开幕报告,介绍LIBS技术在我国的发展情况。 中国激光诱导击穿光谱组委会王哲博士作大会报告,报告题目为&ldquo Overview of LIBS Development in China&rdquo 自2011年我国首次举办中国激光诱导击穿光谱学研讨会以来,LIBS技术在我国发展迅猛。此次LIBS国际会议在北京的召开,有助于我国LIBS学者与来自世界各地同行间的学术成果交流,促进彼此之间的共同合作。 此次会议共设基础理论、分子LIBS、计量与建模、低温低压LIBS、LIBS工业应用、LIBS技术等14个主题,安排了88个报告,收到会议论文摘要264篇。 J. Hermann, CNRS - Aix Marseille University, France Presentation title: Mechanisms and Features of Laser-Induced Breakdown A. Hassanein, Purdue University,USA Presentation title: Comprehensive Self-Consistent Simulation and Benchmarking of Laser Interaction with Materials for Various Applications Xueshi Bai, Institut Lumiè re Matiè re, France Presentation title: Morphology of Laser-Induced Plasma in Different Ambient Gases: the Microscopic Mechanisms Hassan Y.Oderji, Dalian University of Technology, China Presentation title: An Approach in Simulation of LIBS: Laser Ablation, Plume Dynamics and Emission I. B. Gornushkin, BAM Federal Institute for Materials Research and Testing, Germany Presentation title: Theoretical and Instrumental Tools for Study, Diagnostics and Applications of Laser Induced Plasma NasrullahIdris, Syiah Kuala University, Indonesia Presentation title: Excltation Mechanisms in Low Pressure Plasma Induced by 1 mJ Plcosecond Nd-YAG Laser in Amblent Hellum Gas RawadSaad, DPC, CEA, France Presentation title: Unexpected Spatio-temporal Evolutions of Al I Spectral Lines under Different Atmosphere Conditions During LIBS Experiment Alexey Ilyin, Institute of Automation and Control Processes, FEB RAS, Russia Presentation title: Emission and Absorption Characteristics of Femtosecond Laser-induced Plasma in Air R. Gaudiuso, Institute of Inorganic Methodologies and Plasmas (IMIP), NationalResearch Council (CNR), Italy Presentation title: Nanoparticle-Enhanced LIBS Staci BROWN, Florida A&M University, United State Presentation title: Analysis of Dicarboxylic Acids Using Nanosecond and Femtosecond Laser Induced Breakdown Spectroscopy 此外,会议还得到了TSI、海洋光学、APPLIED SPECTRA等仪器公司的大力支持,部分公司还在会上展示了相关产品。(撰稿:李学雷) 公司展台 合影
  • 中国科学院大连化学物理研究所开发新型多重碎片化碰撞诱导解离技术
    近日,中国科学院大连化学物理研究所所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队在现场检测微型质谱及应用方面取得新进展,基于自主研发的现场快速检测微型质谱(Anal. Chem.,2022),开发了简单易控、高碎片化效率的新型多重碎片化碰撞诱导解离技术,可实现单次进样条件下获得丰富碎片离子信息,对于化学战剂、D品的准确识别,以及新型合成D品的结构解析具有重要意义。  新型D品层出不穷、种类繁多,成为当前D品犯罪案件的突出特点。此外,D品的种类不断翻新,更具伪装性、隐蔽性和迷惑性,使得检测难度大。因此,开发便携式仪器用于新型D品的及早发现,以及传统D品的现场快速准确识别对禁D工作具有重要意义。李海洋团队前期基于微型质谱关键技术,实现了传统D品和新型芬太尼类D品的定性检测(Anal. Chem.,2021;Anal. Chem.,2021;Anal. Chem.,2019;Anal. Chem.,2019),并在云南边境多个检查站开展了推广应用。  传统共振碰撞解离技术需要多次进样才可以获得多重碎片离子信息。本工作中,基于此前构建的现场检测微型质谱,该团队开发了一种简单易控的新型碰撞诱导解离方式技术,可实现单次进样条件下获取多重离子碎片信息。基于对离子阱内微区电场分布的研究,团队还揭示了该技术的微观本质,即增大离子阱质量分析器的直流偏置电压有利于增强径向电场强度,从而驱动离子进入强射频场获得能量、发生碰撞诱导解离。通过调控电场、离子的初始动能和气压等,该碰撞诱导解离技术可实现100%的碎片化率。该技术还可同时获得多个碎片离子,有利于提升识别准确性,实现痕量D品同分异构体的区分、化学战剂的准确识别等。此外,该技术通过分析母离子以及不同碎片离子之间的质量数差异,可实现对D品的结构解析与分类,适用于新型合成D品早期发现预警,在D品稽查、公共安全等领域具有广阔应用前景。  相关研究以“Radial Electric Field Driven Collision-Induced Dissociation in a Miniature Continuous Atmospheric Pressure Interfaced Ion Trap Mass Spectrometer”为题,于近日发表在《美国质谱学会杂志》(Journal of the American Society for Mass Spectrometry)上,并被选为封面文章。该工作的第一作者是我所102组博士研究生阮慧文。上述工作得到国家自然科学基金、我所创新基金等项目的支持。(文/图 王卫国、阮慧文)  文章链接:https://pubs.acs.org/doi/full/10.1021/jasms.3c00324
  • 美国TSI公司圆满完成赞助第八届激光诱导击穿光谱国际会议
    美国TSI公司于2014年9月8日至12日赞助并参加了由清华大学热能系在清华主楼主办的第八届激光诱导击穿光谱国际会议。 TSI美国总公司副总裁Kevin Krause亲自带领TSI 美国及中国LIBS团队参加了此次会议,会晤了清华大学与美国TSI公司在煤质快速分析仪开发项目上的合作方,并于TSI展台上接受了仪器仪表信息网的有关LIBS技术及产品应用的独家专访。TSI的资深专家Amy Bauer 和 Steve Buckley 分别在大会上做了主题报告。 美国TSI公司于展台上展示了最新推出的新一代的ChemLogix系列元素分析解决方案产品线中的第一款产品:ChemReveal型台式激光诱导击穿光谱仪。其配备了先进的ChemLytics等离子体发射光谱分析和元素分析软件,大大简化了复杂的元素分析过程,对每一个固体样品矩阵里的广泛的元素进行直接鉴定和分析。事实上,这个强大的全新的解决方案提供了对包括粉末,非晶或非导电材料固体样品中的有机物,轻元素,重元素进行同时表征,而且不需要繁琐的有害的样品制备过程,对固体物质的元素进行快速分析,为材料鉴定以及固体元素成分分析提供了一种快速可靠的方式。无论是微量还是高浓度,实验室还是生产线,这款台式激光诱导击穿光谱仪的激光诱导击穿光谱元素分析技术,都是研究人员,科学家以及测试技术人员为多种应用进行快速可靠的材料鉴定以及固体元素成分分析的理想选择。作为全球精密仪器的供应商以及激光诱导击穿光谱(LIBS)技术的领导者,TSI公司还展示了新推出一款加固型手持LIBS元素分析仪,该设备主要被用于户外研究、质量控制和移动实验室等方面。ChemLogix手持LIBS设备的主要特点是采用了对视力无害的1级短波红外线激光作为光源,既可去除典型样品表面的污染,而且也无需对使用人员进行任何特殊培训,也无需配备个人保护装备。使用ChemLogix手持LIBS设备进行元素(包括轻元素)分析,操作简单,而且测试过程只需几秒钟,因此该设备是需求越来越高的现场及过程中质量监测的理想仪器。 LIBS是一种成熟完善的用于对固体进行快速元素分析的光谱分析方法。该技术几乎不需样品制备过程,而且在几秒钟之内就能获得结果。研究者在实验室中使用ChemReveal LIBS台式分析仪时便发现了这种分析方法的发展潜能。而使用目前最新推出的手持式LIBS分析仪,无论是在现场还是生产车间,用户均可通过该设备快速获得结果。关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • DISEASE In A DISH | 基于诱导多功能干细胞iPSC来源的药物研发
    山中伸弥(Shinya Yamanaka),京都大学iPS细胞研究所所长,因在“诱导多功能干细胞(induced Pluripotent Stem Cell, iPSC)”的卓越贡献,被授予2012年诺贝尔生理或医学奖[1]。“iPSC来源于病人体细胞,有望为重大疾病的新药开发提供强有力的治疗工具。” "IPS cells can become a powerful tool to develop new drugs to cure intractable diseases because they can be made from patients' somatic cells." by Shinya Yamanaka. [2]—山中伸弥对iPSC在临床应用方向寄予厚望iPSC是生物学里界内的一个重要里程碑。研究发现哺乳动物成熟体细胞能够重新编程为诱导多功能干细胞,且细胞能够进一步发育成各种其他器官类型的细胞。这一发现不仅彻底改变了人类对细胞和器官生长的理解;同时,通过对人体细胞的重新编程,为重大疾病治疗提供了崭新的应用前景。iPSC 的商业应用主要有以下四个领域:1)药物研发,2)细胞治疗,3)毒性筛选,4)干细胞生物银行。[3]iPSC商业化的四个关键领域(图片源自BioInformant)相对与其他治疗方法,iPSC用于细胞治疗的关键优势在于伦理法规和即用型(off-on-shelf)定制。与胚胎干细胞不同,iPSC来源成体而非人类胚胎,伦理风险小;另一方面,借助基因工程技术,iPSC允许创建针对不同疾病的基因定制细胞系,同时降低免疫排斥风险,以实现即用型可大规模生产的细胞治疗产品。[4]距iPSC研究获诺贝尔奖7年后,2019年 Fate Therapeutics公司宣布首个iPSC来源的CAR-NK细胞免疫产品FT596获批新药临床研究申请。FT596源自诱导多能干细胞,除靶向CD19专利CAR以外,还具有CD16(hnCD16)Fc受体和IL15受体片段,以增强其抗体依赖性细胞毒性(ADCC),并促进NK细胞和CD8 T细胞增殖及活化。Fate Therapeutics公司的iPSC产品平台已获得100多项专利批件和100多项待批专利申请组合,用于大规模生产通用NK细胞和T细胞产品。iPSC来源的细胞疗法已开启细胞治疗3.0时代,有望改善目前细胞疗法“批量到批量”工程化生产中成本高昂、工艺费时及产品显著异质性等现状。FT596设计图示(图片源自Fate)在实际研发操作过程中,iPSC 来源的细胞分化培养面临着独特挑战。iPSC来源的神经元细胞通常需要进行长期培养(在同一个384孔板上培养长达数周),以获得相对成熟的细胞。而且,我们会经常使用老年病人来源的细胞样本来模拟疾病,进一步增加培养的周期。然而,随着培养时间的增加,细胞污染和聚团的风险也会增加;长期培养还会使每孔的细胞数具有更大的可变性;以及复杂的细胞表型会极大增加药物评价的难度。基于诱导多功能干细胞iPSC来源的药物研发平台(图片源自Evotech)带着这个行业难题,让我们去国际顶尖的生物科技公司Evotech一探究竟。Evotec公司总部位于德国汉堡,在欧美市场共有15个分部,在药物研发领域有20多年的经验积累,与数十家国际生物制药巨头有长期合作。在整个药物研发管线布局中,最引人瞩目的是其业内一流的基于诱导多功能干细胞iPSC来源的药物研发平台。借助于该平台,Evotec从病人群里中获得细胞源,并以此建立涵盖20多种疾病的200多株iPSC生物银行,进一步培养、扩增及诱导分化后,通过自动化样品处理、多模式检测及高内涵表型筛选系统组成的一体化质控分析平台,完成多种疾病模型的药物筛选和针对个体病人的细胞治疗工作。[6][蓝色-细胞核;绿色-神经元标志物 TuJ1;蓝色-皮层神经元标志物-TBR1];高内涵表型筛选平台用于iPSC来源的X染色体脆折症研究 (图片源自Evotec)基于XLII cell::explore和Explorer G3工作站,Evotec和PerkinElmer共同开发了一个自动化平台,用于工业级别iPSC来源细胞的培养。该平台处于配备层流的无菌环境中,支持384孔iPSC来源细胞的全自动培养,包括细胞接种、培养基更换和化合物处理。由专门设计的专用数据库管理孔板的处理和跟踪,对iPSC来源的细胞进行常规监控,以检查污染物、细胞密度或聚团以及进行智能软件决策,为进行大规模HTS检测的iPSC来源细胞类型增加了必不可少的质量控制组成部分,任何不符合QC标准的培养皿都会被自动放入隔离培养箱中。扫描下方二维码,即可下载高通量人源iPSC分化细胞培养和自动化质控应用相关资料。参考文献1.https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/2.https://www.brainyquote.com/authors/shinya-yamanaka-quotes3.https://mp.weixin.qq.com/s/bPaO6xj956XmVEAJYTKLPA4.https://medicalxpress.com/news/2017-08-off-the-shelf-cell-therapies-multiple-myeloma.html5.https://fatetherapeutics.com/pipeline/immuno-oncology-candidates/ft596/6.https://www.evotec.com/en
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制