当前位置: 仪器信息网 > 行业主题 > >

显微大差射应力仪

仪器信息网显微大差射应力仪专题为您提供2024年最新显微大差射应力仪价格报价、厂家品牌的相关信息, 包括显微大差射应力仪参数、型号等,不管是国产,还是进口品牌的显微大差射应力仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微大差射应力仪相关的耗材配件、试剂标物,还有显微大差射应力仪相关的最新资讯、资料,以及显微大差射应力仪相关的解决方案。

显微大差射应力仪相关的论坛

  • [求助]玻璃表面应力仪及显微镜

    我现在寻找可以测量化学钢化玻璃表面应力测量设备,哪位可以帮忙?谢谢。另外,我想进一台显微镜,倍数高点,质量好点的,观察玻璃产品,请问大概需要多少预算?本人email:lug001@126.com

  • 【讨论】普通X衍射仪可测应力吗?

    我用的是岛津X衍射仪、没带应力附件,前天与工程师谈起单位计划购买X射线应力分析仪,工程师说这台衍射仪能测拉伸、压缩应力,衍射仪附带的软件也有应力分析这一功能。请教:没带应力附件的普通X衍射仪可测应力吗?与专门的应力仪测的有什么不同呢?精度如何?

  • 电解铅 X射线应力仪

    如何检测电解铅的应力?盲孔法破坏样品;铅无磁性,磁记忆法用不了;X射线法可以吗?铅是重金属,X射线难以穿透,是不是做不了?

  • 【分享】X射线衍射仪测量残余应力的原理与方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=20520]X射线衍射仪测量残余应力的原理与方法[/url]附件中包含两个文件:一是利用JADE5作数据拟合后,使用拟合数据计算残余应力的程序二是讲解X射线衍射仪测量材料宏观残余应力的原理与实验方法请勿转载!

  • 【资料】Proto X射线衍射残余应力分析系统依据的原理

    Proto X射线衍射残余应力分析系统依据的原理是晶体物质晶面间距与入射波长和波峰角衍射之间存在着以下定量关系,即布拉格定律: 2d sinθ = λ。 其中 d 为晶体的晶面间距,λ为入射X射线波长,θ为最大波峰衍射角。当晶体的晶面间距在受应力σ发生变化时,由测角仪测量θ的变化,就可以得到晶面间距变化或应变Δd,继而由物质模量得到物体所受应力。Proto iXRD——便携式残余应力分析系统是世界上最小、最轻和最快的x射线衍射应力分析系统。作为测试残余应力特性领域的先锋,Proto开发了作为该领域内经典的iXRD。 iXRD有着模块化的软件,界面友好、简单,容易操作。内置应用程序,能被连接和同步运行,允许连接四个iXRD同时运行。另外iXRD-COMBO 实验室/便携式综合应力分析系统。既可作为实验室用又可在野外用,使iXRD更具灵活性。iXRD-COMBO联合了实验室系统的便利、安全和iXRD的多种功能。世界上没有其他象iXRD-COMBO的系统。X射线衍射残余应力分析系统可用于测量残余应力、外加应力、静载应力、总应力、残余奥氏体。

  • X射线衍射物相分析与应力检测设备有和区别?

    用X射线做应力分析与物相分析的原理基本都是一样的,都是利用了X射线的衍射,看有资料介绍说是应力检测时会有一个特殊的附件。请问有没有了解这一块的大神能给详细的说一下。另外想采购X射线应力检测设备,有什么推荐的吗?国外有哪些品牌?国内有哪些品牌?综合权衡一下

  • 传统一维点,线探测器和全二维面探测器XRD残余应力仪比较

    [color=#333333]全二维面探测器残余应力仪与传统一维点,线探测器残余应力仪比较区别:[/color][color=#333333](1)传统一维点,线探测器残余应力仪——sin2Ψ 1)通过测量应力引起的衍射角偏移,从而算出应力大小。测量时需要多次(一般5-7次)变X射线的入射角,并且调整一维探测器的位置找到相应入射角的衍射角 2)施加应力后,通过测角仪得到衍射角发生变化的角度,从而计算得到应力数据(2)圆形全二维面探测器残余应力仪——基于cosα方法 1)单角度一次入射后,利用二维探测器获得完整德拜环。通过比较没有应力时的德拜环和有应力状态下的变形德拜环的差别来计算应力下晶面间距的变化以及对应的应力 2)施加应力后,分析单次入射前后德拜环的变化,即可获得全部残余应力信息 世界首款基于二维探测器和cosα分析方法的新一代X射线残余应力分析仪,将利用X射线研究残余应力的测量速度和精度推到了一个全新的高度,总体说来它比传统方法具有如下优点:1,圆形全二维面探测器残余应力仪优点: 更快: 二维探测器获取完整德拜环,单角度一次入射测量即可完成测量,全过程平均约90秒 更精确:一次测量最多可获得500个数据点,用于拟合计算应力。无应力铁粉残余应力测定的精度为±2MPa(欧美标准无应力铁粉残余应力测定的精度要求为正常±6.9MPa,最大±14MPa.) 更轻松:无需测角仪,单角度一次入射即可,复杂形状和狭窄空间的测量不再困难 更方便:测量精度高, 无需冷却水、野外工作无需外部供电 更强大:有区域应力分布测量成像(Mapping)功能,软件有晶粒大小、材料织构、残余奥氏体信息分析功能2,传统一维点,线探测器残余应力仪: 1,设备笨重,不适合检测比较大的工件或设备 2,需要测角仪,每次摄入,要多点d-sin2Ψ曝光模式,互相关法计算峰位移。增加仪器成本 3,需要水冷系统,冷却液温度过高或其它流动不畅通时机器不能工作,增加仪器使用成本。 4,操作复杂,必须专业长时间培训或有经验的人员才能操作。检测时间长,每次测量必须转角,人工误差大。 5,设备故障率高,不管是,测角仪,冷却系统或测角角度有一处故障,设备就不能正常工作。 6,价格昂贵,测角仪和冷却系统大大增加了设备成本,维修费用及高。[/color]

  • 【分享】X射线应力检测

    本单位拥有一流的X射线衍射仪和应力测定仪,可以完成多晶体试样的X射线检测工作,欢迎有需要的朋友和我联系。邮箱wyj8485@163.com.联系电话13311320037。

  • 什么是玻璃应力仪?玻璃应力仪原理与使用方法

    [b]一、玻璃表面应力仪原理简述[/b]玻璃表面应力仪是用于测量化学强化和物理强化以及微晶玻璃的表面应力。通过让光沿着玻璃表面传播,根据光弹性技术测出其玻璃表面的应力值CS以及应力层深度DOL。[b]二、玻璃应力仪设备特点:[/b]1.该仪器具有其他型号没有的仅有的测量方法(折射计光弹性分析原理)。2.自动测量,因测试者造成的个人差小。3.能够用电脑保存数据,便于品质管理。4.测试条件不佳的试料可以进行手动测量。5.使用LED光源,使用寿命长,达到10,000小时 (以前500小时)。6.使用了玻璃校准片因此可将机器误差控制到及较小。三、产品参数:测量范围:0-1000mpa测量精度:±5mpa测量范围(应力层深度):0-200μm度(应力层深度): ±1μm光源:LED波长592 ±2nm超窄带滤光片测量对象:化学强化玻璃 物理强化玻璃测量形状:平板玻璃 10×10mm 或以上棱镜:Nd=1.72pc:(os、测量软件 已安装os:windows 10操作系统电源:AC220v 3a尺寸:300×600×250 (测量头) 重量:14kg 200×400×400 (pc) 重量:5kg250×400×400(监测器) 重量:3kg[align=center][img]https://nimg.ws.126.net/?url=http%3A%2F%2Fdingyue.ws.126.net%2F2023%2F0407%2Fba9d7d42j00rsq74d004ud000b400b4p.jpg&thumbnail=660x2147483647&quality=80&type=jpg[/img]什么是玻璃应力仪?玻璃应力仪原理与使用方法[/align][b]玻璃表面应力仪的使用注意事项[/b]1.请使用此款机器时务必要杜绝连通互联网和局域网以及含有病毒的USB接口的软盘或硬盘。2.请操作机器时要轻拿轻放被测样品,以免对棱镜部分造成损伤;当检测图像显示不清晰时,请自行用棉签棒沾工业酒精轻轻擦拭棱镜表面和斜面。3.请使用与原厂配套耗材(即型号为GS-1/GS-4的1.64/1.72折射率的显影液),以免对棱镜部分造成损害。4.请在室内使用该机器,避免强光照射,室内空气不可太潮湿,且酸碱度要适中。5.请远离其他化学品。6.使用过程中发生异常情况请马上联系相关供应商进行解决。7.请保留好原厂出厂的手册以及相关出厂报告文件。8.本机器耗材“FSM-LED595光源/三棱镜/显影液”请在寿命结束后更换新配件再继续使用。9.请务必保存好本机器原厂配套的密码狗,如有丢失责任自负。10.请正确操作本机器配套的电脑配置,切勿随意强制关机,以免造成电脑毁坏。

  • 【分享】显微镜问题----总结帖子

    问题:我将做一些有关细胞骨架蛋白表达情况的实验,拟采用免疫荧光技术.但是我不知道荧光显微镜和激光共聚焦显微镜在显示蛋白表达上有什么差别呢?是不是后者的观察结果会更清晰一些呢?目前我们实验室还没有激光共聚焦显微镜,那么能否在荧光显微镜下观察拍照,对结果是否有很大的影响呢?回答:激光共聚焦显微镜原理:它是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具.精确地对光谱的本质进行分析,区分发射光谱高度重叠的不同标记的信号。最重要的是,对于多色的荧光染色,它能彻底消除了荧光串色的影响,同时最大限度的减少了样品荧光信号的损失。这些都是一般光镜所不能达到的。除此之外,你如果只是了解蛋白表达情况,如楼上二位所说,没有太大差别,当然其观察结果会更清楚 。

  • 【求购】透射电子显微镜及光学显微镜

    筹建实验室,位于上海高校咨询并预备购买一台透射电子显微镜(非高分辨),预算经费在250万左右另求购一台光学显微镜,透射,反射,偏光,1000倍放大,可通过适配器配消费级数码相机代理请回帖,再进一步联系

  • 【分享】三维显微激光拉曼光谱仪

    【分享】三维显微激光拉曼光谱仪

    三维显微激光拉曼光谱仪三维显微激光拉曼光谱仪装置Nanofinder30  Nanofinder30 三维显微激光拉曼光谱仪装置是日本首创,世界最初的分析装置。它能在亚微米到纳米范围内,测定物质化学状态的三维图像。它由共焦激光显微镜,压电陶瓷平台(或电动扫描器)和光谱仪组成。并能自选追加原子力显微镜和近场表面增强拉曼测定的功能。 最新测量数据[ 变形Si的应力测定]PDF刊登 用二维的平面分析来评价变形Si。空间分辨率130nm, 变形率0.01%(0.1cm偏移)。 半导体/电子材料(异状物,应力,化学组成,物理结构)薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造结晶体(单壁碳纳米管,纳米晶体)光波导回路,玻璃,光学结晶等的折射率变化生物学(DNA, 蛋白质, 细胞 组织等) 以亚微米级分辨率和三维图像,能分析物质的化学结合状态空间分辨率200nm(三维共焦点模式),50nm(二维TERS模式)能同时测定光谱图像(拉曼/萤光/光致荧光PL),共焦显微镜图像,扫描探针显微镜图像(AFM/STM)和近场表面增强拉曼图像(SERS)能高速度,高灵敏度地测定样品(灵敏度:与原来之比10倍以上)不需要测定前样品处理,在空气中能进行非破坏测定全自动马达传动系统的作用,测定简单 共焦显微镜模式不能识别结晶缺陷,然而光致荧光(PL)模式却能清楚地测到结晶缺陷 共焦激光显微镜模式的形状测定 光谱窗 560 nm 用光致荧光(PL)模式测到的结晶缺陷的光谱图像(560nm的三维映像) 用AFM和共焦显微拉曼法同时测定CNT,能判定它的特性 (金属,半导体)和纯度。 同时测定单壁碳纳米管(CNT)的原子力显微镜(AFM) 形貌图像和拉曼光谱图像的例子 :拉曼光谱: 激光488nm,功率1.5mW,曝光时间2 sec,物镜100×Oil, NA=1.35, 积分时间100 sec (AFM和拉曼图像测定时) AFM形貌图像(右上)表示了单壁碳纳米管混合物的各种形状结构。图像中用数字1到8来表示其不同形状。数字1-6测得了拉曼光谱(上图所示),判定为半导体CNT。但7-8测不到拉曼光谱,所以不是半导体CNT,而可能是金属CNT(可用He-Ne激光633nm验证)。最上面表示了RBM(173cm-1), G-band(1593cm-1)及D-band(1351cm-1)的拉曼光谱图像 综合激光器和光谱分析系统的长处,坚固耐用的复合设计,卓越的仪器安定性,是纳米技术测定装置中的杰出产品。 ※日本纳米技术2004大奖“评价和测量部门”得奖. ※日本第16届中小企业优秀技术和新产品奖 “优良奖”得奖. 光学器件配置图Nanofinder30 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122565_1634361_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122566_1634361_3.jpg[/img][~122567~][~122568~]

  • 金相显微镜在落射照明与透射照明之间选择

    在使用指定的灯箱 LV-LH50PC 时,通过操作位于显微镜左侧的落射/透射选择开关可在落射照明与透射照明之间选择照明光路。每次您推动该开关,照明即切换,同时所选照明的指示器开启。金相显微镜光控制 在将指定的灯箱 LV-LH50PC 用作光源时,用落射/透射选择开关选择的照明光可通过旋转亮度控制手轮进行控制。* 在使用外部光源时,亮度通过外部光源或显微镜上的 ND 滤光片进行控制。金相显微镜开启/关闭灯具 照明可通过亮度控制手轮来开启/关闭。在使用指定灯箱 LV-LH50PC 的情况下,将亮度控制手轮旋转到远侧(逆时针方向)并设置在 OFF 位置时,用落射/透射选择开关选择的卤素灯将关闭。金相显微镜电源指示器 电源指示器的颜色随卤素灯的状态而变化。当卤素灯亮起时,它为绿色。当亮度控制手轮设置在 OFF 位置时,它则为橙色。

  • 显微微量注射系统优势特点

    科研级[url=http://www.f-lab.cn/microinjectors/minj-1000.html][b]显微微量注射系统[/b][/url]是全球首款使用倒置显微镜的[b]显微注射器系统[/b]和整套[b]微量注射系统[/b],广泛用于生命科学,分子生物学等领域[b]显微微量注射实验[/b]。[b]显微微量注射系统[/b]包含我公司著名的[b]显微注射器[/b],脉冲宽度控制模块(PCM),显微注射针,品牌倒置显微镜和显微操作器等。作为Narishige公司和奥林巴斯公司产品集成商,我们采用Narishige公司显微注射器和奥林巴斯显微镜或其它生产商(OEM)解决方案,以超级优惠价格为客户提供集成显微微量注射系统。[img=显微微量注射系统]http://www.f-lab.cn/Upload/MINJ-1000-L.JPG[/img][img=显微微量注射系统]http://www.f-lab.cn/App/Tpl/Home/Default/Public/images/grey.gif[/img][b]显微微量注射系统特色和优势在于我们提供定制[/b]载玻片支架,提供更好手动显微控制功能和精度,为您配备电控显微操纵杆式显微操纵器,与其他系统相比可以节省数千美元。[b][url=http://www.f-lab.cn/microinjectors/minj-1000.html]显微微量注射系统[/url]特点:[/b][list][*]较小的尺寸节省安装空间。[*]卓越的光学品质。[*]为DIC类图像定制的霍夫曼调制对比度(HMC)光学系统[*]用于照片和视频文件提供三目头。[*]备有用于检测绿色荧光蛋白,DAPI,罗丹明等的荧光系统[/list][img=显微微量注射系统]http://www.f-lab.cn/App/Tpl/Home/Default/Public/images/grey.gif[/img]

  • 玻璃应力测量

    双折射玻璃是各向同性体,各方向的折射率相同。如玻璃中存在应力,各向同性的性质受到破坏,引起折射率变化,两主应力方向的折射率不再相同,即导致双折射。折射率与应力值的关糸由下式确定:nx - ny = CB (σx – σy)式中:nx 、ny 分别为x及y方向的折射率。σx 、σy 分别为x及y方向的应力。CB 为应力光学常数,它是物性常数,仅与玻璃品种有关。光程差当偏光透过厚度为t的有应力玻璃时,光矢会分裂为两个分别在x及y应力方向振动的分量。如vx、vy分别为两光矢分量的速度,则透过玻璃所需的时间分别为t/vx和t/vy,两分量之间不再同步,而是存在光程差δ:δ = C(t/vx - t/vy) = t (nx - ny)式中C为真空中光速。结合上述二式,即得如下公式: (σx – σy) = δ / (tCB)即应力与光程差存在一定关系,一般借助光干涉原理测出光程差,从而计算出应力值。需要强调的是,得出的不是应力的绝对值,而是二主应力之差,有时虽然测出的应力为零,但实际上二主应力均存在,只不过二者相等而已。典型例子是平板玻璃,从平面上看,存在各向相等的表面压应力及板芯张应力,表面压应力在数值上等于2倍板芯张应力,但采用平面透射光并不能测出应力,原因就是σx = σy 。必须取样,使光透过玻璃端面才能测定。因此,对不同制品,根据工艺情况,设计适当的应力测试方法是极为重要的。干涉色两光矢分量透过检偏器后,在同-平面内振动,且存在一定光程差,满足相干条件,会发生干涉。干涉作用产生的光强I 由下式决定:I = a2Sin22(β – α)Sin2 (pδ/λ)式中各符号的意义见图1。由此式可得出如下结论:a) 当β = α 时,即两主应力方向分别与起偏器及检偏器方向一致时,I = 0。此黑条纹即是“等倾线”,线上所有点的应力具有相同的方向。此原理常用来确定应力的方向。b) 当 β – α = 45o时,即主应力方向与偏振方向成450,在δ = 0、1λ、2λ、3λ……Nλ处,I = 0。也就是光程差为波长的整数倍时,出现黑色条纹。c) 当 β – α = 45o时,下列波长的光能较好地透过:Sin2 (pδ/λ) = 1, 即λ = 2δ、2δ/3、2δ/5、2δ/7、……。而以下波长的光被阻:Sin2 (pδ/λ) = 0, 即λ = δ、δ/2、δ/3、δ/4、……。白光是波长从400—700nm范围内多种颜色光波的混合物,有效波长-般按565 nm计。 所以用白光作光源时,玻璃就出现多彩的干涉色,可用来估计应力值。相同的干涉色连成的色带称“等色线”,线上的应力值相等。常用的应力测量方法 定性、半定量测量方法使用正交偏光观察玻璃中残余应力的方法为大家所熟知,此种方法广泛用于定性或半定量判定玻璃中的应力情况。 最简易的应力仪通常由一个白光光源及二片偏光片组成,偏光片的光轴互相垂直,玻璃样品置于两偏光片之间,主应力方向与偏振轴成450。如果玻璃中存在垂直于光线传播方向的非均匀应力,则可观察到黑、灰、白的干涉带,应力更高时,可见黄、红、蓝等彩色干涉条纹。无应力的玻璃只能观察到均匀的暗场。 对于退火玻璃制品,一般仅出现灰白干涉色,此时为提高分辨率,需增加一块灵敏色片。灵敏色片其实是一种光程差为565nm的人工双折射片,相当于人为将总光程差增加或减少565nm,使视域中出现彩色干涉色,提高肉眼对干涉色的分辩能力。 另一种较为精确的颜色对比法是采用一套至少包括6片的标准光程片组,将被测玻璃样品在偏光下与标准片对比干涉色,从而判断应力大小。 标准光程片是一种均匀的双折射片,每片的光程差人为控制在21.8 –23.8 nm之间,直径至少30mm,同-组内各片的光程差基本一致。 通过增减标准光程片数目,使玻璃样品的干涉色与标准片组的干涉色相同,根据标准片的片数及各片光程数据,就能计算出玻璃中的应力值。 2.2 Senarmont定量应力测定法 此种方法采用的光学元件及其方向匹配关系请参照图2。 起偏器及检偏器的偏振方向均须与水平线成45o,它们之间必须相互垂直。被测样品主应力之一的方向必须与水平线一致,即主应力方向须与偏振方向成45o,如样品是瓶子等圆柱形制品,则将瓶子水平放置、使瓶子轴线与水平线重合即可。检偏器是可以旋转的,转动角度由刻度指示。使用时,先将检偏器转至0刻度处;然后放置被测样品,调整样品方向,使被测点主应力的方向与偏振方向成45o;再转动检偏器,直到被测点变得最暗;记下转角读数,每度相当于3.14 nm 光程差。根据旋转方向可判断出是压应力还是张应力。如顺时针转动检偏器能使被测点变暗,则为张应力,反之为压应力。需要指出,如四分之一波片转动90o安装,则检偏器旋转方向所代表的应力性质正好相反,读数绝对值不变。如果对仪器有疑问,可取25 X 200mm的平板玻璃测其板芯应力,已知板芯应力是张应力,故能用来验证仪器的应力测试方向。四分之一波片的精度对此方法的测定精度有较大影响,-般要求该波片的光程误差在+/- 2 nm之内。Senarmont法适用于测定己知应力方向的玻璃制品,如平板玻璃、瓶子、玻璃管等。对于应力方向复杂的制品,采用Tardy方法比较方便。2.3 Tardy定量应力测试方法 与Senarmont法不同:Tardy法增加了-块四分之-波片,两块四分之一波片的光轴均与偏振方向成45o,两块波片均能从光路中移走;玻璃样品中的主应力方向与偏振方向重合。其余部分与Senarmont法类似。测试时,先将两块四分之-波片撤离光路;然后放入被测样品,此时可从检偏器中看见样品上黑色的应力等倾线,即在此线上,应力方向均相同并与偏振方向一致;再调整样品的放置方向,使等倾线通过被测点;将二块四分之-波片推入光路,等倾线即消失;此时可旋转检偏器,直至被测点光线最弱;后面步骤同Senarmont法。由于Tardy法要求应力方向与偏振方向一致,故可利用等倾线性质实现方向的相对调整,不必准确确定应力的实际方向。二块四分之一波片的光轴相互垂直,对光程的作用互为补偿,所以波片的精度要求可低-些,只需控制二块波片之间的相对误差。故此方法的测量精度要好于Senarmont法。2.4 Babinet补偿器法 Babinet补偿器是一种光程差可调的双折射元件,相当于在应力仪中加入一个应力值可调的人工应力片,其方向与被测玻璃样品中的应力方向相反,当两者数值相等时,应力相互抵消,在正交偏光下观察到消光黑条纹。Babinet补偿器-般由两块石英楔构成,二者尺寸相同,光轴互相垂直。一块楔是固定的,另-块可滑动,滑动的位置由测微螺杆转换成读数,光程差值与楔滑动的距离成线性关糸。此种方法操作较为简单,首先确定被测点的主应力方向,旋转补偿器测微螺杆,直至被测点为黑条纹所覆盖,记下测微螺杆读数并乘以补偿器常数即得到玻璃的应力值。应力的方向亦根据测微螺杆旋转方向加以确定。此法操作简单,精度高。不足之处是补偿器价格昂贵。 3. 几个需注意的问题 3.1 所有方法测出的均是相互垂直的两主应力的差值。如果两主应力相等,即使应力值很大,测出的应力也是零,这种现象经常会产生误导,使人容易忽略实际存在的应力。因此,-般选择主应力之-为零的部位作为测量点。 3.2 只有垂直于光路的应力才能被测出。如果一维主应力平行于光透射方向,则也会得出不存在应力的错误结论。另-方面,此特性也常被用来解决上述3.1条所讨论的问题,如玻璃中存在二维应力,应使主应力之-平行于光路,从而准确测出另-主应力值。 3.3 测出的应力是光经过的玻璃内不同位置应力的代数和。如果-个玻璃瓶壁的外表面存在压应力、而内表面是张应力,光从瓶身一侧射进、从另-侧射出,则测得的应力是各处应力的平均值,各处的实际应力很可能远大于此平均值。 3.4 光的入射方向须与玻璃表面垂直。异型制品须浸入与玻璃折射率相同的液体中,以杜绝反射、折射等现象产生的光学作用,这些作用会干扰应力干涉色,影响应力测量精度。4. 结束语 应力测定工作并不是一项高难度的工作,但它涉及的因素多,且容易混淆,稍不注意就会得出错误甚至相反的结果。在实际测定之前,一定要先分析造成玻璃制品失效的应力因素,理清思路,选择合理的测定方法与步骤。应力测定的目的是反馈给玻璃生产工段,为其采用更合适的热处理设备、制定更合理的热处理工艺提供依据。因此应力测定既是检验工序的工作,更重要的应该是工艺过程控制的-环,应力测定与生产工艺应紧密结合在-起。

  • 【求助】理学衍射仪做残余应力问题

    各位老师,请教个问题。我用的是理学2500VPC-18kW,jade7.0软件,但是没有应力附件,能做残余应力吗?我试了试,选低碳低合金钢的100度左右铁的峰做应力,ψ角分别取0,10,20,30,40度,0度是正常扫描,完事取消θ-2θ联动,将θ角顺时针转10度再联动,但是设定好参数做时,θ角又转到大约50度左右扫描,等于它是以2θ的100度角为标准的,做的和θ=0度时一样的结果。也不知道我说的明白没有。是不是没有那个应力附件就做不了应力试验?谢谢大家。

  • 【分享】关于显微镜问题讨论帖

    问题: 想请教大家一个弱弱的问题:我将做一些有关细胞骨架蛋白表达情况的实验,拟采用免疫荧光技术。但是我不知道荧光显微镜和激光共聚焦显微镜在显示蛋白表达上有什么差别呢?是不是后者的观察结果会更清晰一些呢?目前我们实验室还没有激光共聚焦显微镜,那么能否在荧光显微镜下观察拍照,对结果是否有很大的影响呢? 1. 其实激光共聚焦显微镜就像CT一样,如果只是了解蛋白表达情况没有太大差别,当然其观察结果会更清楚。 2. 激光共聚焦显微镜就像细胞CT,把细胞的一个个层面都扫了一下,结果非常清晰,比荧光显微镜要清楚。荧光显微镜拍下来,细胞层叠比较多,看得不是太清楚。但是如果只是看细胞骨架蛋白表达情况,对结果没有有很大的影响。  源一:激光共聚焦显微镜原理:它是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。  同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具.精确地对光谱的本质进行分析,区分发射光谱高度重叠的不同标记的信号。  最重要的是,对于多色的荧光染色,它能彻底消除了荧光串色的影响,同时最大限度的减少了样品荧光信号的损失。这些都是一般光镜所不能达到的。

  • 中华环保联合会关于《X射线应力测定仪辐射防护技术指南》团体标准征求意见的函

    [font=宋体, SimSun][size=18px]各有关单位、专家:[/size][/font][font=宋体, SimSun][size=18px]根据国家标准化管理委员会、民政部印发的《团体标准管理规定》和《中华环保联合会团体标准管理办法(试行)》相关要求,由中华环保联合会归口,中国医学科学院放射医学研究所提出的《X射线应力测定仪辐射防护技术指南》团体标准,经多次调研、内部讨论、召开专家技术审查会等工作,形成了征求意见稿。[/size][/font][font=宋体, SimSun][size=18px]为保证标准的科学性、严谨性和适用性,现公开征求意见。公示期间,可登录全国团体标准信息平台([/size][/font][url=http://www.ttbz.org.cn/]www.ttbz.org.cn[/url][font=宋体, SimSun][size=18px])或我会网站([/size][/font][url=http://www.acef.com.cn/]www.acef.com.cn[/url][font=宋体, SimSun][size=18px])下载审阅标准文本。[/size][/font][font=宋体, SimSun][size=18px]诚挚邀请各有关单位及专家提出宝贵建议和意见,并于2024年4月20日前将《团体标准意见反馈表》反馈至联系人邮箱,逾期未反馈按无意见处理。[/size][/font][font=宋体, SimSun][size=18px] [/size][/font][font=宋体, SimSun][size=18px]联系人:梁巧英 18330686008(同微)[/size][/font][font=宋体, SimSun][size=18px]邮 箱:acef_nec@163.com[/size][/font][font=宋体, SimSun][size=18px]地 址:北京市朝阳区和平里14区青年沟东路华表大厦6层[/size][/font][font=宋体, SimSun][size=18px] [/size][/font][font=宋体, SimSun][size=18px]附件:[/size][/font][font=宋体, SimSun][size=18px]1、《X射线应力测定仪辐射防护技术指南》(征求意见稿)[/size][/font][font=宋体, SimSun][size=18px]2、《X射线应力测定仪辐射防护技术指南》(征求意见稿)编制说明[/size][/font][font=宋体, SimSun][size=18px]3、中华环保联合会团体标准意见反馈表[/size][/font][font=宋体, SimSun][size=18px] [/size][/font][font=宋体, SimSun][size=18px] [/size][/font][align=right][font=宋体, SimSun][size=18px]中华环保联合会[/size][/font][/align][align=right][font=宋体, SimSun][size=18px]2024年3月18日[/size][/font][/align][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=https://www.ttbz.org.cn/upload/file/20240318/6384637493287523186998867.pdf]附件1.《X射线应力测定仪辐射防护技术指南》(征求意见稿).pdf[/url][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=https://www.ttbz.org.cn/upload/file/20240318/6384637493291023385242204.pdf]附件2.《X射线应力测定仪辐射防护技术指南》(征求意见稿)编制说明.pdf[/url][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif[/img][url=https://www.ttbz.org.cn/upload/file/20240318/6384637493285623075526284.docx]附件3.中华环保联合会团体标准征求意见反馈表.docx[/url][img]https://www.ttbz.org.cn/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=https://www.ttbz.org.cn/upload/file/20240318/6384637493300023894270389.pdf]关于《X射线应力测定仪辐射防护技术指南》团体标准征求意见的函.pdf[/url]

  • [好书]X射线衍射与电子显微分析

    本书是介绍X射线衍射与电子显微分析这两种重要的材料物理测试方法的基础教材,全书依上述内容分为两篇。第一篇包括X射线衍射的基本理论、方法及应用;第二篇包括透射电子显微镜、扫描电镜和电子探针的工作原理、构造和分析方法。全书共12章,附录中列出了常用的数据表,供计算分析时查阅。本书对基本原理的阐述力求深入浅出,方法介绍亦较为详尽,对从事该工作的科技人员很有参考价值!为此上传[color=blue]PDF格式的电子档供大家下载学习,也可丰富本版块的资源![/color]全书已经上传完毕,有需要的科技人员可到资料中心下载![url=http://www.instrument.com.cn/show/search.asp?sel=admin_name&keywords=lfsming]进入资料下载页面[/url]你的支持就是我的动力!

  • 【资料】X射线衍射与电子显微分析

    X射线衍射与电子显微分析[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=48585]X射线衍射与电子显微分析[/url]

  • 传统点/线探测技术和全二维面探测器技术的残余应力分析仪比较

    X射线是表面残余应力测定技术中为数不多的无损检测法之一,是根据材料或制品晶面间距的变化测定应力的,至今仍然是研究得最为广泛、深入、成熟的内应力测量方法,被广泛的应用于科学研究和工业生产的各领域。然而长期以来,大家使用的都是基于一维探测器的测量方法。Pulstec公司开发出世界首款基于全二维探测器技术的新一代X射线残余应力分析仪——μ-X360n,将利用X射线研究残余应力的测量速度和精度推到了一个全新的高度,设备推出不久便得到业界的广泛好评。 相较于传统的X射线残余应力测定仪,新一代μ-X360n具有以下优点: 更快:二维探测器一次性采集获取完整德拜环,单角度一次入射即可完成测量,全过程平均约90秒。 更精确:一次测量可获得500个数据点进行残余应力数据拟合,结果更精确。 更轻松:无需测角仪,单角度一次入射即可,复杂形状和狭窄空间的测量不再困难。 更方便:测量精度高,无需冷却水,野外工作无需外部供电。 更强大:具备区域应力分布测量成像(Mapping)功能,晶粒大小、材料织构、残余奥氏体分析等功能。应用领域: 1. 机械加工领域:测量机床、焊接、铸造、锻压、裂纹等构件的残余应力。 2. 冶金行业:测量热压、冷压、炼铁、炼钢、炼铸等工业生产构件的残余应力。 3. 各种零配件制造:测量电站汽轮机制造、发动机制造、油缸、压力容器、管道、陶瓷、装配、螺栓、弹簧、齿轮、轴承、轧辊、曲轴、活塞销、万向节、机轴、叶片、刀具等工业产品的残余应力。 4. 表面改性处理:测量渗氮、渗碳、碳氮共渗、淬火、硬化处理、喷丸、振动冲击、挤压、滚压、金刚石碾压、切削、磨削、车(铣)、机械抛光、电抛光等工艺处理后构件中的残余应力。 5. 民生基础建设领域: (1)海洋领域 :测量船舶、海洋、石油、化工、起重、运输、港口等领域设备和设施的残余应力 (2)能源领域:测量核工业、电力(水利水电、热电核电)、水利工程、天然气工程等领域的设备和设施的残余应力。 (3)基础建设工程领域:测量挖掘、桥梁、汽车、铁路、航空航天、交通、钢结构等工程领域所用材料、构件及其它相关设备设施的残余应力。 6. 国防军工领域:测量武器装备、重型装备等军工产品的残余应力。http://sciaps.gz01.bdysite.com/upload/201703/1490338019181409.jpg传统的点/线探测器技术 全二维面探测器技术——通过测量应力引起的衍射角偏移,从而算出应力大小。测量时需要多次(一般5-7次)改变X射线的入射角,并且调整一维探测器的位置找到相应入射角的衍射角——施加应力后,通过测角仪得到衍射角发生变化的角度,从而计算得到应力数据——单角度一次入射后,利用二维探测器获得完整德拜环。通过比较没有应力时的德拜环和有应力状态下的变形德拜环的差别来计算应力下晶面间距的变化以及对应的应力——施加应力后,分析单次入射前后德拜环的变化,即可获得全部残余应力信息http://sciaps.gz01.bdysite.com/upload/201703/1490338058206908.gif应用软件:http://sciaps.gz01.bdysite.com/upload/201703/1490338117148580.gif二维探测器获取完整德拜环,单角度入射,一次测量 全自动软件测量残余应力,半峰宽,残余奥氏体等数据内在定位标记和CCD相机方便样品定位,操作极其简单快捷快捷进入预设各种材料测量条件,一键执行测量

  • 关于透射电子显微镜的工作原理

    透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。顾名思义,所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜(Scanning Electron Microscope,SEM)。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。事实上,现代电子显微镜的分辨本领已经可达0.1nm。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制