双测量系统

仪器信息网双测量系统专题为您提供2024年最新双测量系统价格报价、厂家品牌的相关信息, 包括双测量系统参数、型号等,不管是国产,还是进口品牌的双测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双测量系统相关的耗材配件、试剂标物,还有双测量系统相关的最新资讯、资料,以及双测量系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

双测量系统相关的厂商

  • 精迪测量技术(上海)有限公司是一家集光学设备研发、生产、机器视觉项目开发、光学设备销售于一体的专业生产厂家。公司的研发团队由国内著名高校和数名留学博士组成,先后研发生产出了JDSCAN系列三维扫描仪,脚型激光扫描仪,工业近影摄影测量系统,人体三维扫描仪,手持式三维扫描仪,牙齿三维扫描仪,腿型三维扫描仪等一系列高精密光学测量设备。目前已达到国外最新产品的技术水平,拥有多项三维视觉技术的国家**,系有关政府部门认定的高新企业和双软认证企业。精迪系列产品在市场上受到了广大客户的认可和信赖,市场占有率持续上升,在精密加工解决主方案扮演着越来越重要的角色!
    留言咨询
  • 400-860-5168转3496
    江苏双利合谱科技有限公司是一家集光学、精密机械、电子、计算机技术于一体的高新技术企业, 聚焦机械推扫式高光谱测量技术,为广大客户提供门类齐全的高光谱系统解决方案。主要的产品包括:Gaiasky机载高光谱成像系统、Gaiafield地面野外高光谱成像系统、GaiaSorter室内暗箱系列高光谱以及GaiaMicro显微高光谱等4大系列产品。公司的相关产品,在国内高光谱应用市场,已经成功服务于农业遥感、工业分选、刑侦物证鉴定、环境保护、地质勘探、考古研究、食品检测等领域。公司始终坚持优质高效为客户开发产品及提供技术支持的营运宗旨,为用户提供及时周到的销售与技术服务。公司真诚地希望与国内外客户携手合作,为进一步拓展高光谱测量系统在科研及工业生产领域的迅猛发展继续做出贡献。
    留言咨询
  • DMS(国际)有限公司是一家专业从事动态信号分析系统的研发、生产、销售并提供测试解决方案和工程服务的高科技企业。公司总部在香港,在上海、北京、南京、武汉、西安、成都等设有办事处。 公司已和国内多所知名高校长期合作,组建了强大的技术研发团队和 强有力的销售团队,为国内企业和实验室提供优质可靠的动态信号分析系统以及相应的技术解决方案,并成功地引进了迄今国际先进水平的工程测试、检测设备及相关软件。公司产品广泛用于航空、航天、船舶、汽车、电子和通讯及国内各高等院校等众多行业,产品涉及系统集成、工程测试、适合多种应用的数据采集、动态信号分析仪、模态测试系统、振动台控制仪及机器人测试设备等多个方面,赢得了众多客户的赞誉。 “以服务求市场、质量求生存、科技求发展、创新求进步”,公司还是一个“年轻”的公司,其全体员工平均年龄在30岁左右;是一个高素质的公司,其员工大专学历以上者占95%%以上。就是这样一个年轻、高效、团结的集体,通过谦逊的工作作风,灵活的思维方式,不怕苦、不怕累、敢拚敢上的干劲,成为国内测试行业中一流的产品供应商。
    留言咨询

双测量系统相关的仪器

  • 光电化学电池测量系统功能 测试种类:光电化学类太阳能电池 光谱范围:300-1100nm 白光光源:模拟太阳光光源ABA级 光功率:400uW/cm2 可测量参数:电池的光谱响应度、量子效率、短路电流、I/V曲线、I/T曲线、V/T曲线测试、光功率测试、支持多种通用的电化学测量方法,如CV等 可测样品尺寸:50mmX50mm 可测样品模式:直流测试法、直流偏置光测试法 光电化学电池测量系统特点 使用模拟太阳光光源 光电化学太阳能电池专用配置方案 双光源任选,波长连续可调单色光源+全光谱太阳光模拟 三电极测试方法 一体式架构,操作更简单方便 一键式测量方法 U盘式电化学工作站: 电位范围:±5V 电位分辨率:10uV 电位零误差:100uV 全电位范围控制误差: 1mV 电流测量精度:0.1% 电流分辨率:100pA 电流范围:±50uA~±5mA 电化学工作站可扩展微电流功能,分辨率:1pA 大电流功能:1A/12V
    留言咨询
  • Alcotest 9510双测量系统红外酒精检测仪通过触摸显示屏进行直观操作 该设备拥有高分辨率的彩色 LCD 触屏。 大屏幕提供一个虚拟键盘并可发送清晰完整的文本信息,可在良好的指导下进行操作。用于通信的接口Alcotest 9510 集成有宽带通信接口。 因此它可以很方便的连接至远程主机或其他设备,比如打印机、外部调制解调器和网络。优秀的测量技术Alcotest 9510 通过两种不同的、独立的技术对呼吸酒精含量进行分析和量化: 红外光谱和电化学电池技术。真实环境空气检查对吸收室内的环境空气进行IR 独立分析,以确保 IR 系统在每次呼吸检测前归零。坚固外壳Drä ger Alcotest 9510 拥有坚固外壳,非常适于苛刻的、移动或固定条件下的应用。应用环境空间有限时,放置位置可调整Alcotest 9510 可水平或垂直进行安装和操作。打印能力内部打印机可一次性在记录纸上打印所有相关数据,包括日期、时间、测量结果、测量单位及设备编号。 该设备亦可通过内部或外部打印机打印所有测量值和获得的数据,包括图形。
    留言咨询
  • 概述两种测量系统合二为一!Swift PRO Duo 是将独家专利无目镜光学测量技术与视频测量相结合的一款真正独一无二的双测量系统! 此前难以观察的样品现在可以由同一操作员按照同一程序,在同一系统上进行测量和检测。 Swift PRO Duo 可以快速而精准地测量常规和复杂精密零件。凭借丰富多样的测量和报告功能,它成为了广泛适合各类应用的测量工具,应用领域涵盖电子、航空航天、汽车、塑料和医疗器械制造等。产品优势光学与视频测量系统二合一测量范围达 200mm x 100mm,测量台精度 5μm结构紧凑、结实耐用的先进测量系统尤其适用于模具和车间应用几秒内完成精准测量,无需预编程序Z轴可选,三坐标测量可测高度独家专利的人机工学无目镜光学显微镜,可进行高分辨率表面检测非常适用于车间和 QC 实验室 详细信息 为何采用视频与光学双测量? 光学与视频双测量系统兼具两种测量技术的最佳优势,所以无论要测量何种零部件,您都可以确信自己拥有圆满完成工作的最佳方案——无需其他系统,两种测量方式无缝切换,无任何延迟。视频测量视频测量十分适合特征边缘易于识别的常规零部件。借助智能视频测量工具,操作员能够以精准且高重复性地对特征进行快速检测与测量。视频边缘检测的优势在于实用性和总体测量速度。光学测量为了进行精准测量,您需要清晰地识别出待测量特征的边缘。 Swift PRO Duo 采用独家专利的 Dynascope® 无目镜光学技术,可提供高对比度、显微级分辨率的部件图像。。用户可以极其详细地观察复杂或者难以观察的特征,确保可以精确测量所有部件,而不只是简单部件。 绝佳的显微镜图像也能令用户实现高分辨率目视检测。 测量不具备清晰边缘的特征时,视频摄像头可能会由于对比度不足而无法检测出边缘,而光学测量此时更加有利。 用户通过无目镜光学观察头体获得高分辨率清晰图像,能够精确选择要测量的特征。典型示例包括透明或黑色塑料以及金属零件的表面特征(特征与背景之间缺少对比)。在同一程序中,从视频测量到光学测量可实现无缝切换,没有丝毫延迟,确保您随时拥有最好的测量工具。Dynascope® 无目镜光学技术Swift PRO Duo 是唯一包含独家专利人机工学无目镜光学测量技术的显微镜测量系统。借助 Dynascope® 人机工学无目镜光学技术,操作人员佩戴着框架眼镜、护目镜和隐形眼镜也可进行精准测量。 该系统的其他优势还包括具有较大的视场和周边视觉。NLEC 测量台校准 Swift PRO Duo 配备了Vision Engineering旗下久经证明的 200mm x 100mm 精密测量台。该测量平台出厂前完成了非线性误差修正(NLEC)校准,可确保最佳精度,可溯及国际标准以符合ISO9000质量认证。软件Swift PRO Duo 可选配业内领先的 M 系列测量软件,也可选配坚固耐用的 QC 3000 微处理器。M 系列测量软件享誉业界的 M 系列测量软件适用于基础到高级测量应用领域,操作简便并能最大限度地减少培训。 直观的用户界面可吸引广泛的用户群体,从车间的机器操作人员到 QC 实验室的计量专家都会对它青睐有加。 PC 版测量软件十分直观,可在大尺寸显示器上查看快速进行轮廓与表面测量,无需预编程序可编程灯光控制轻松报告类似CAD的零件视图标记,方便检测测得数据。DXF 导入/导出螺纹线缆测量选项配置十字光标和完整的视频边缘检测等多种视频工具QC 3000 微处理器QC 3000 采用美观而坚固的工业设计,非常适合在恶劣生产环境下轻松快捷地测量 2D 几何特征。 光滑的铝质外壳,集成电源和无风扇被动散热装置,极其坚固耐用并能承受多种不利影响。12.1 英寸触摸屏采用特殊钢化玻璃制成,支持多点触控手势控制,并可戴手套操作。 突出优势用于测量常见几何特征的快捷方式图标(例如点、线、圆形、凹槽和矩形)视频边缘检测 (VED) 提供多种用于边缘检测和测量点选取的工具。可手动或自动对选取的测量点进行测量。 轻松创建报告,测量之后立即生成结实耐用的 IP65 防泼溅触摸屏面板,十分适合车间环境技术 测量不确定度(X,Y)不确定度公式 U952D = 5+(6.5L/1000)μmL = 长度,以 mm(毫米)为单位,在标准测量平面上采用放大 100 倍的受控条件 通过缩短测量长度和原位系统校准可提高准确度。(Z) Z 轴精度 10μm,采用放大 100 倍的受控条件视频摄像头 200 万像素高清视频摄像头光学器件 专利双光瞳单目镜 Dynascope™ 无限远修正光学系统,十字光标网格已经预先居中与双眼对齐。可定制网格并使其预先居中与一只眼睛对齐。放大倍率选项(系统总放大倍率) 快速更换放大倍率选项:物镜 1 倍,总放大倍率 10 倍物镜 2 倍,总放大倍率 20 倍物镜 5 倍,总放大倍率 50 倍物镜 10 倍,总放大倍率 100 倍测量台
    留言咨询

双测量系统相关的资讯

  • 基于三坐标测量机测量双联行星轮对齿精度的方法探讨
    一、 前言根据自有设备情况选用公司齿轮测量机、三坐标测量机作为数字化设备,分别对双联行星轮对齿精度进行测量。通过分析测量过程及测量结果,对三坐标测量机间接测量法进行改进,即通过对大小齿轮轮廓进行扫描,构造虚拟量棒直径计算对齿角度偏差,并根据这种测量方法编制了三坐标自动测量程序,提高了检测效率及准确性,保证产品的合格率至98%以上。二、实施背景(一)背景近年来,为降低矿山运输行业成本,提高效率,大型工程运输车开始设计生产,其中轮式自卸车比较热门,一直占据市场主导地位。当前,全球每年轮式自卸车销售额高达100亿美元以上,并且连续6年保持30%的增长率,足以说明一个新兴品类正在崛起。(二)现状轮式自卸车电动轮组成的主要部件为双联行星轮。行星齿轮传动与普通齿轮传动相比,具有重量轻、体积小、传递功率大、结构紧凑、承载能力高等一系列优点,在工业领域应用广泛。在行星传动的各种型式中,NW、NN及WW三种型式的行星齿轮为双联齿轮,当前国内研制和承接的轮边减速器产品中,NW型双联行星轮组的制造工艺难度系数最大。目前,只有GE、西门子等极少数国际大公司具备制造高品质双联行星轮组的能力,形成市场垄断,利润高达500%。最近几年,国内研制了多种双联行星轮组对,但制造过程复杂,工艺和产线瓶颈较多。大多数公司只能选择自行配对组装,但却无法满足与客户整机零件的互换,与行业中成熟产品存在较大差距,产品的销价差别也很大。 (三)实施的紧迫性目前,中车戚墅堰所已涉及共计6款双联行星轮的研制,双联行星轮不仅可以作为零部件安装在总成上,还可以作为成品进行销售。通常双联行星轮需要经过热套、精磨轴承档、磨齿修正三个工序,每个工序都要检测对齿精度,只有保证每次检测的稳定和效率,才能使成品的对齿精度控制在顺逆30秒以内。为攻克目前产品中对齿精度检测的难点,本文对轮边减速器中的行星轮组对齿精度的相关工艺及检测要求进行了讨论分析,助力企业有效地提高生产效率,降低质量风险,固化生产周期并降低生产成本。三、测量方法及改进(一)间接测量方案及参数确定1.双联齿轮对齿技术简介行星齿轮机构传动是指二个或三个双联行星齿轮工作时与太阳轮、内齿轮同时啮合而形成的传动系统。双联行星齿轮对齿在技术条件上一般要求上下联的齿或槽中心对正,常用的对齿和测量方法是用插齿刀对齿,用圆柱棒进行偏差测量。2.测量设备配置检测设备配置如下表1所示,三坐标测量机是20世纪60年代发展起来的一种高效率的新型精密测量仪器。它的优点是:(1)通用性强,可实现空间坐标点的测量,方便地测量出各种零件的三维轮廓尺寸和位置精度;(2)测量精度可靠;(3)可方便地进行数据处理和过程控制。因此,它被纳入自动化生产线和柔性加工线中,并成为一个重要的组成部分。齿轮测量机主要用于测量齿轮的轮齿精度,包括齿形、齿向误差、周节累积误差、径向跳动误差等,测量精度高。表1 检测所用设备设备名称型号生产厂家三坐标测量机MMZ G 303020德国蔡司ZEISS齿轮测量机P65德国克林贝格3.测量参数的确定选用1Z057双联行星轮作为测量件,它是由小行星轮和大行星轮组合而成的。(如图1) 图1 1Z057双联行星轮选用三坐标测量机进行对齿精度测量时,首先要确定测量圆柱棒的直径。通过查阅1Z057 双联行星轮的设计蓝图,了解大小行星轮的参数,再根据参数信息计算最佳圆柱棒直径进行测量。为保证测量结果的准确性, 量棒直径不可太大, 也不可太小;若直径太大,与齿廓的接触点有可能超出大径,若直径太小, 则量棒外圆将与槽底接触。以上两种情况都无法得出正确的测量结果。为避免这些情况,选择量棒直径时,应使量棒外圆与齿廓的接触点落在分度圆及其附近的任意位置上,一般在距小径的(1/ 3~ 2/ 3 齿高之间为宜。当量棒外圆与齿廓的接触点落在分度圆上时,可通过公式1得出量棒直径。 公式(1)其中dp是量棒直径,db是分度圆直径,α是齿形角,Z为齿数,对于渐开线标准圆柱齿轮db=mz;小行星轮模数为8.367,齿数为17,齿形角为25度。经计算最佳量棒直径为φ16.771;大行星轮模数为8.175,齿数为72,齿形角为25度。经计算最佳量棒直径为φ15.797。4.间接测量方案根据公式(1)计算结果,我们选用φ16的量棒进行间接测量,测量方法如图2。 图2 测量小行星轮(左);测量大行星轮(右)先扫描上下两个轴承档连成公共轴线,确定轴线基准。将φ16的量棒卡入齿槽内,用探头确定量棒中心位置,建立坐标系,计算出上下中心的偏移量,得出对齿角度偏差。图3为测量数据报告,根据偏移量的正负值确定顺逆方向。 图3 测量数据5.数据验证选用齿轮测量机进行测量,首先找正双联齿轮的轴承档,输入大小行星轮参数,选择角度测量软件,自动扫描轴承档,确定基准中心线,然后扫描大小行星轮齿槽左右齿面的齿形轮廓和齿向轮廓,确定齿槽中心线,通过软件计算,得到偏转距离,从而得出对齿角度。测量过程如图4,数据报告如图5。 图4 测量小行星轮(左);测量大行星轮(右)图5 测量数据6.数据对比及测量存在的不足通过量棒间接测量的对齿角度为44秒,而齿轮测量机测量结果为1分05秒。以齿轮测量机测量结果为参考值,两次测量存在21秒偏差,偏差交大。对比两种测量方法,间接测量法以手动操作为主,人为不确定性较大;齿轮测量机通过扫描齿形轮廓和齿向轮廓确定齿槽中心线,得出对齿角度,数据精准性较高,但是起吊、找正及测量时间较长,效率低下,无法满足生产进度。(二)对齿精度检测工艺优化改善间接测量法测量结果偏差较大,特对其进行改进。首先选取小齿轮的上端面作为空转方向,小齿轮上端圆作为圆心,小齿轮两边对齿的中心点作为旋转方向建立初定位坐标系;通过初定位坐标系,三坐标测量机能够快速准确地扫描工件的上下两个轴承档并使其公共轴线成为基准;再通过三坐标测量机运用未知曲线扫描功能对上下齿轮中部(即齿向最高点)的齿槽两边进行扫描,得到2条V形曲线(如图6)。构造与V形曲线相切的两个虚拟圆形,小行星轮选择直径为φ16.771的圆,大行星轮选择直径为φ15.797的圆(如图7)。以轴线作为基准,小行星轮虚拟圆圆心到轴线的连线作为方向基准建立坐标轴。通过计算两个虚拟圆圆心到轴线连线的夹角得出对齿角度。 图6 扫描程序图7 小行星轮拟合圆(左);大行星轮拟合圆(右)表2 双联行星轮对齿角度数据序号改进前(三坐标)改进后(三坐标)(齿轮仪)方向10’40”0’22”0’20”顺时针20’38”0’18”0’20”顺时针30’42”0’23”0’20”逆时针40’20”0’13”0’10”逆时针50’15”0’36”0’35”逆时针60’40”0’51”0’50”逆时针70’28”0’9”0’12”顺时针80’30”0’13”0’13”顺时针90’5”0’21”0’20”顺时针100’13”0’35”0’35”顺时针110’30”0’15”0’12”顺时针120’28”0’10”0’12”逆时针130’5”0’24”0’20”顺时针140’45”0’24”0’25”顺时针150’5”0’25”0’23”顺时针160’10”0’30”0’29”顺时针170’5”0’20”0’20”顺时针180’30”0’10”0’5”逆时针190’24”0’23”0’25”逆时针200’19”0’40”0’38”顺时针210’28”0’14”0’10”顺时针220’13”0’32”0’30”顺时针230’10”0’30”0’32”顺时针240’40”0’25”0’25”顺时针250’15”0’33”0’30”顺时针260’29”0’22”0’20”逆时针270’42”0’22”0’25”顺时针280’8”0’29”0’28”逆时针290’28”0’16”0’12”逆时针300’40”0’20”0’21”顺时针平均偏差0’16”0’2”表2为30件工件的测量数据,以齿轮仪测量结果作为参考值。对比可见,改进前的数据平均偏差为16”,改进后的数据平均偏差为2”,表明改进后三坐标测量数据的稳定性及精确度都有了进一步提升,与齿轮仪的测量数据偏差较小,满足设计要求,提升测试效率,为双联行星轮的加工提供了强有力的数据支持,也为公司打破垄断走向市场提供了关键的检测技术支持。四、实施效果及意义通过对间接法进行改进优化,三坐标测量机适用于各类型双联行星轮组的对齿精度检测。对齿精度检测工艺的优化,也大大提升了产品合格率,取得了巨大成效,主要有以下4个方面。1.双联行星轮对齿精度合格率达98%;2.双联行星轮制造成本降低10%,产品质量和市场竞争力获得极大提高;3.双联行星轮的检测周期缩短20%,由以前的2天以上缩短至1天;4.双联行星轮可实现90%成品的对齿精度在正负30秒以内,媲美GE、西门子等公司同类产品要求。参考文献[1] 王兰群 张国建.渐开线花键M值得测量及量棒直径的选择 2005.9.1[2] 张志宏 张和平 双联行星齿轮模拟装配 2005.8.26[3] 郭海风 张丽 双联行星齿轮对齿技术 1994.1.1本文作者:中车戚墅堰机车车辆工艺研究所有限公司计量检测工程师 蒋瑞骐
  • 加快先进碳测量技术创新 有力支撑“双碳”战略
    2020年9月,自中国向世界正式提出“碳达峰、碳中和”(以下简称“双碳”)战略目标以来,党中央、国务院围绕“双碳”战略进行了一系列重大决策部署。《建立健全碳达峰碳中和标准计量体系实施方案》(以下简称《方案》)作为“1+N”政策体系的保障方案之一,核心是加快支撑“双碳”战略目标的计量与标准体系建设。《方案》提出了24项重点任务、5项重点工程和4项行动,对统筹推进“双碳”标准计量体系建设进行了全面部署。实现“双碳”战略目标是一场广泛而深刻的变革,核心是控制碳排放总量,摸清碳排放底数,是科学决策、成效评估和国际谈判的重要基础,对我国实现“双碳”战略目标至关重要。其中,计量技术是“双碳”战略的底层驱动。计量技术直接用于碳排放测量、能源测量、自然资源与环境监测等领域,通过国际互认、一致的测量标准和测量方法,保障数据的准确可靠。同时,计量技术为碳排放、碳减排、碳清除和市场化机制等标准制定提供量值依据,是实施检验检测的技术基础,在促进国家质量基础设施(NQI)协同运行中发挥核心功能。《方案》秉承“科技驱动,技术引领”的原则,全面布局计量技术体系建设,就是要通过先进碳测量技术支撑我国碳市场和国家碳排放清单数据质量,推动由宏观“碳核算”向精准“碳计量”的转变,达到“报告的1吨就是排放的1吨”的国际要求,实现国际互认。一、夯实基础研究,建立健全“碳计量”溯源体系完善的量值传递溯源体系是确保测量器具溯源性、测量过程有效性、测量数据准确一致性的基础。具体而言,要加强碳计量基准、计量标准和标准物质研制,开发高精度测量仪器和传感器。在这方面,美欧国家走在世界前列。2022年8月,美国总统拜登签署的《国家标准与技术研究院(NIST)未来法案》授权NIST开发准确测量温室气体排放的工具和标准。NIST在化石和替代燃料、初级气体混合物领域研制了原油、含水甲醇、氮气中的二氧化碳等标准物质。英国国家物理实验室(NPL)目前正研制低成本环境传感器,以构建大型传感器网络,实时获取密集监测数据。NPL与中国计量科学研究院(NIM)合作开展可移动差分吸收激光雷达(DIAL)技术研究,解决开阔空间温室气体和大气污染物时空分布的精准测量和计量溯源难题,实现对分散污染源排放量的高精准测量。因此,《方案》明确提出建立健全碳计量基准、计量标准和标准物质体系,开展碳计量核心器件和高精度仪器研制,为实现“双碳”战略目标提供硬件支撑。二、聚焦前沿创新,攻克“碳计量”关键技术难题绿色低碳关键共性计量技术涵盖从排放因子、测量方法到测量不确定度多个方面,在行业领域广泛应用,能够解决节能减排的关键共性问题,是实现“双碳”战略目标的“公约数”。近年来,美欧国家已经开始重视碳数据的准确性,逐步采用直接测量和间接核算相结合的方法。例如,欧盟为欧洲全部大型火电厂和部分小型机组装备CO2浓度测量装置和烟气流量计,对温室气体进行直接测定。美国《温室气体排放报告强制条例》规定,所有年排放超过2.5万吨二氧化碳当量的排放源必须全部安装连续排放监测系统(CEMs),并将数据在线上报美国环保署。英国商业能源与工业战略部(BEIS)定期通过大气测量和反演模型相结合对碳排放清单进行外部验证,及时查找和减少核算误差。NPL目前正针对全球性大气监测网络开发测量不确定度评定方法,以增强监测活动的可追溯性。因此,《方案》提出开展碳计量学、碳排放因子、碳排放量监测、碳排放测量不确定度等关键共性计量技术研究,攻克关键共性测量难题。三、把握数字化机遇,推动“碳计量”数字化转型数字化是发展大趋势,碳计量数字化转型事关数字经济发展大局随着各行业领域数字化转型的不断深入,在线、动态、远程、虚拟作业场景越来越成为行业常态,新型测量情景和参数不断涌现,伴随而来的是对新型测量器具的需求。同时,数据成为数字化转型中的核心要素,在碳排放智能监测、反演、预警、决策中发挥关键作用,碳计量标准参考数据更可以作为“数字测量标准”直接服务行业,避免重复性测量并减少由于测量结果不准确而造成的损失。美国占据全球标准参考数据垄断地位,在服务低碳方面,NIST已建立碳氢化合物光谱数据库、碳氢化合物热物理性能数据库、二氧化碳光化电离参数数据库、燃烧量热法工具库等标准参考数据库,为全球低碳行动提供权威数据参考。《方案》对碳计量数字化转型做出部署,强调推动相关计量器具的智能化、数字化、网络化改造升级,建立碳计量标准参考数据库,全面助力实现数字化时代的“双碳”战略目标。四、加强领域应用,实现重点行业精准“碳计量”计量是实现“双碳”战略目标的根基,将计量技术创新融入产业低碳转型进程中,将为我国实现“双碳”战略目标注入长久的动力。《方案》秉承“夯实基础,完善体系”的原则,聚焦重点行业和领域,建立健全“双碳”计量技术体系,实现各行业低碳标准重点突破和整体提升。通过开展重点行业和领域碳计量技术研究与应用,提升碳排放和监测数据准确性与一致性,维护碳排放交易市场的公平性和稳定性,为产业低碳转型注入有效新动能,是新形势下计量助力产业转型升级发展的使命和机遇。国际上,温室气体议定书(GHG Protocol)下的《企业碳核算与报告标准》主要对于不同行业内的企业计算温室气体的方式、汇报责任、碳排放核查、减排核算、目标设定、库存设计等方面都提出了统一要求。美国电力行业碳交易市场采用的是以烟道流量数据和烟道温室气体的浓度数据排放端直接测量为主。欧盟碳排放交易体系为企业碳排放监测工作做了很多努力,经过多年发展与完善,已经成为全球最完善的碳交易市场,都在碳核查中明确了数据准确度的要求。欧盟碳交易市场是燃料端核算与排放端直接测量并行的方式,并且通过建立统一的“可测量、可报告和可核查”(MRV)制度,促进核查、认证服务形成内部市场。因此,《方案》提出开展重点行业和领域用能设施及系统碳排放计量测试方法和监测计量技术研究,提升碳排放和监测数据准确性一致性,探索推动具备条件的行业领域实现精准“碳计量”。五、下一步工作建议第一,尽快建立直接测量和间接核算相结合的碳排放统计监测核算报告体系。在重点行业推广直接测量和间接核算相结合的方法,选择典型区域和代表企业试点。制定核算报告国家标准,推行采用直接测量对间接核算数据进行验证,对重点高耗能高排放企业提出明确要求,保障碳排放数据的完整准确和一致可比,有力支撑科学决策和国际谈判。同时,加大先进碳计量技术研发应用力度,对先进碳计量技术和高端碳测量仪器研发应用实施专项经费投入,努力实现核心技术与高端仪器的自主可控,提升统计监测能力。第二,发挥国家战略科技力量作用,为“双碳”战略提供先进测量技术支撑。加快构建支撑“双碳”战略的标准计量体系,需要充分发挥我国新型举国体制优势和国家战略科技力量主力军的核心引领作用。中国计量科学研究院(NIM)作为中国的国家计量技术机构,担负着先进碳测量技术研发与应用的时代使命。国家碳标尺建立、碳交易市场建设、国家碳排放清单编制及未来应对碳关税等具体工作要积极吸纳碳计量技术力量更多参与其中,充分发挥计量“度量衡”的保障作用,提升我国碳数据的可信度,为实现“双碳”战略提供强有力的计量科技支撑。第三,健全完善“碳计量”国家标准,增强国际标准话语权。制定基于直接测量为基础的核算报告国家标准,要在国家标准层面实现测量和核算方法学的统一,完成碳数据准确性的国际互认和接轨。通过主导或积极参与国家间碳数据测量国际比对,以国际互认的碳排放数据测量体系为支撑,推进与国际碳市场接轨,积极维护我国企业的合法权益。参与相关领域国际标准制修订,承担国际标准化组织的技术工作,牵头制定国际标准。加强区域标准化合作,融入国际能效、碳排放标准和规则体系,加强国际标准协调。加快转化碳足迹、碳核算等先进适用国际标准,推进与国际碳市场接轨,增强谈判能力。第四,统筹NQI协同发展,释放全链条应用最大效能。在顶层设计层面,系统研究NQI支撑“双碳”目标的实施路径,同步推进、协同建设和融合发展。在体制机制层面,研究建立支撑“双碳”目标的“计量科技创新—技术标准制定—认证认可实施—示范推广应用—事后监管评估”的联动机制,充分释放最大效能。在建设实施层面,依托重点工程和行动,探索NQI要素融合发展及效能评价的基础理论,创新以单要素为支撑、多要素协同建设的工作机理。研究推进重点领域、重点产业的质量基础能力再造路径,全面夯实支撑“双碳”战略目标的质量基础能力。(方向 中国计量科学研究院院长、党委副书记)
  • 加快先进碳测量技术创新 有力支撑“双碳”战略
    2020年9月,自中国向世界正式提出“碳达峰、碳中和”(以下简称“双碳”)战略目标以来,党中央、国务院围绕“双碳”战略进行了一系列重大决策部署。《建立健全碳达峰碳中和标准计量体系实施方案》(以下简称《方案》)作为“1+N”政策体系的保障方案之一,核心是加快支撑“双碳”战略目标的计量与标准体系建设。《方案》提出了24项重点任务、5项重点工程和4项行动,对统筹推进“双碳”标准计量体系建设进行了全面部署。   实现“双碳”战略目标是一场广泛而深刻的变革,核心是控制碳排放总量,摸清碳排放底数,是科学决策、成效评估和国际谈判的重要基础,对我国实现“双碳”战略目标至关重要。其中,计量技术是“双碳”战略的底层驱动。计量技术直接用于碳排放测量、能源测量、自然资源与环境监测等领域,通过国际互认、一致的测量标准和测量方法,保障数据的准确可靠。同时,计量技术为碳排放、碳减排、碳清除和市场化机制等标准制定提供量值依据,是实施检验检测的技术基础,在促进国家质量基础设施(NQI)协同运行中发挥核心功能。《方案》秉承“科技驱动,技术引领”的原则,全面布局计量技术体系建设,就是要通过先进碳测量技术支撑我国碳市场和国家碳排放清单数据质量,推动由宏观“碳核算”向精准“碳计量”的转变,达到“报告的1吨就是排放的1吨”的国际要求,实现国际互认。   一、夯实基础研究,建立健全“碳计量”溯源体系   完善的量值传递溯源体系是确保测量器具溯源性、测量过程有效性、测量数据准确一致性的基础。具体而言,要加强碳计量基准、计量标准和标准物质研制,开发高精度测量仪器和传感器。在这方面,美欧国家走在世界前列。2022年8月,美国总统拜登签署的《国家标准与技术研究院(NIST)未来法案》授权NIST开发准确测量温室气体排放的工具和标准。NIST在化石和替代燃料、初级气体混合物领域研制了原油、含水甲醇、氮气中的二氧化碳等标准物质。英国国家物理实验室(NPL)目前正研制低成本环境传感器,以构建大型传感器网络,实时获取密集监测数据。NPL与中国计量科学研究院(NIM)合作开展可移动差分吸收激光雷达(DIAL)技术研究,解决开阔空间温室气体和大气污染物时空分布的精准测量和计量溯源难题,实现对分散污染源排放量的高精准测量。因此,《方案》明确提出建立健全碳计量基准、计量标准和标准物质体系,开展碳计量核心器件和高精度仪器研制,为实现“双碳”战略目标提供硬件支撑。   二、聚焦前沿创新,攻克“碳计量”关键技术难题   绿色低碳关键共性计量技术涵盖从排放因子、测量方法到测量不确定度多个方面,在行业领域广泛应用,能够解决节能减排的关键共性问题,是实现“双碳”战略目标的“公约数”。近年来,美欧国家已经开始重视碳数据的准确性,逐步采用直接测量和间接核算相结合的方法。例如,欧盟为欧洲全部大型火电厂和部分小型机组装备CO2浓度测量装置和烟气流量计,对温室气体进行直接测定。美国《温室气体排放报告强制条例》规定,所有年排放超过2.5万吨二氧化碳当量的排放源必须全部安装连续排放监测系统(CEMs),并将数据在线上报美国环保署。英国商业能源与工业战略部(BEIS)定期通过大气测量和反演模型相结合对碳排放清单进行外部验证,及时查找和减少核算误差。NPL目前正针对全球性大气监测网络开发测量不确定度评定方法,以增强监测活动的可追溯性。因此,《方案》提出开展碳计量学、碳排放因子、碳排放量监测、碳排放测量不确定度等关键共性计量技术研究,攻克关键共性测量难题。   三、把握数字化机遇,推动“碳计量”数字化转型   数字化是发展大趋势,碳计量数字化转型事关数字经济发展大局随着各行业领域数字化转型的不断深入,在线、动态、远程、虚拟作业场景越来越成为行业常态,新型测量情景和参数不断涌现,伴随而来的是对新型测量器具的需求。同时,数据成为数字化转型中的核心要素,在碳排放智能监测、反演、预警、决策中发挥关键作用,碳计量标准参考数据更可以作为“数字测量标准”直接服务行业,避免重复性测量并减少由于测量结果不准确而造成的损失。美国占据全球标准参考数据垄断地位,在服务低碳方面,NIST已建立碳氢化合物光谱数据库、碳氢化合物热物理性能数据库、二氧化碳光化电离参数数据库、燃烧量热法工具库等标准参考数据库,为全球低碳行动提供权威数据参考。《方案》对碳计量数字化转型做出部署,强调推动相关计量器具的智能化、数字化、网络化改造升级,建立碳计量标准参考数据库,全面助力实现数字化时代的“双碳”战略目标。   四、加强领域应用,实现重点行业精准“碳计量”   计量是实现“双碳”战略目标的根基,将计量技术创新融入产业低碳转型进程中,将为我国实现“双碳”战略目标注入长久的动力。《方案》秉承“夯实基础,完善体系”的原则,聚焦重点行业和领域,建立健全“双碳”计量技术体系,实现各行业低碳标准重点突破和整体提升。   通过开展重点行业和领域碳计量技术研究与应用,提升碳排放和监测数据准确性与一致性,维护碳排放交易市场的公平性和稳定性,为产业低碳转型注入有效新动能,是新形势下计量助力产业转型升级发展的使命和机遇。国际上,温室气体议定书(GHG Protocol)下的《企业碳核算与报告标准》主要对于不同行业内的企业计算温室气体的方式、汇报责任、碳排放核查、减排核算、目标设定、库存设计等方面都提出了统一要求。美国电力行业碳交易市场采用的是以烟道流量数据和烟道温室气体的浓度数据排放端直接测量为主。欧盟碳排放交易体系为企业碳排放监测工作做了很多努力,经过多年发展与完善,已经成为全球最完善的碳交易市场,都在碳核查中明确了数据准确度的要求。欧盟碳交易市场是燃料端核算与排放端直接测量并行的方式,并且通过建立统一的“可测量、可报告和可核查”(MRV)制度,促进核查、认证服务形成内部市场。因此,《方案》提出开展重点行业和领域用能设施及系统碳排放计量测试方法和监测计量技术研究,提升碳排放和监测数据准确性一致性,探索推动具备条件的行业领域实现精准“碳计量”。   五、下一步工作建议   第一,尽快建立直接测量和间接核算相结合的碳排放统计监测核算报告体系。在重点行业推广直接测量和间接核算相结合的方法,选择典型区域和代表企业试点。制定核算报告国家标准,推行采用直接测量对间接核算数据进行验证,对重点高耗能高排放企业提出明确要求,保障碳排放数据的完整准确和一致可比,有力支撑科学决策和国际谈判。同时,加大先进碳计量技术研发应用力度,对先进碳计量技术和高端碳测量仪器研发应用实施专项经费投入,努力实现核心技术与高端仪器的自主可控,提升统计监测能力。   第二,发挥国家战略科技力量作用,为“双碳”战略提供先进测量技术支撑。加快构建支撑“双碳”战略的标准计量体系,需要充分发挥我国新型举国体制优势和国家战略科技力量主力军的核心引领作用。中国计量科学研究院(NIM)作为中国的国家计量技术机构,担负着先进碳测量技术研发与应用的时代使命。国家碳标尺建立、碳交易市场建设、国家碳排放清单编制及未来应对碳关税等具体工作要积极吸纳碳计量技术力量更多参与其中,充分发挥计量“度量衡”的保障作用,提升我国碳数据的可信度,为实现“双碳”战略提供强有力的计量科技支撑。   第三,健全完善“碳计量”国家标准,增强国际标准话语权。制定基于直接测量为基础的核算报告国家标准,要在国家标准层面实现测量和核算方法学的统一,完成碳数据准确性的国际互认和接轨。通过主导或积极参与国家间碳数据测量国际比对,以国际互认的碳排放数据测量体系为支撑,推进与国际碳市场接轨,积极维护我国企业的合法权益。参与相关领域国际标准制修订,承担国际标准化组织的技术工作,牵头制定国际标准。加强区域标准化合作,融入国际能效、碳排放标准和规则体系,加强国际标准协调。加快转化碳足迹、碳核算等先进适用国际标准,推进与国际碳市场接轨,增强谈判能力。   第四,统筹NQI协同发展,释放全链条应用最大效能。在顶层设计层面,系统研究NQI支撑“双碳”目标的实施路径,同步推进、协同建设和融合发展。在体制机制层面,研究建立支撑“双碳”目标的“计量科技创新—技术标准制定—认证认可实施—示范推广应用—事后监管评估”的联动机制,充分释放最大效能。在建设实施层面,依托重点工程和行动,探索NQI要素融合发展及效能评价的基础理论,创新以单要素为支撑、多要素协同建设的工作机理。研究推进重点领域、重点产业的质量基础能力再造路径,全面夯实支撑“双碳”战略目标的质量基础能力。

双测量系统相关的方案

双测量系统相关的资料

双测量系统相关的论坛

  • 什么是双柱双气路系统?

    什么是双柱双气路系统,其原理有是什么?为什么有的采用双柱双气路系统,有的又采用单柱单气路系统呢?

  • 【分享】双侧电子引伸计的测量原理

    双侧电子引伸计的测量原理 下图是双侧电子引伸计结构简图。从图中可看出,双侧电子引伸计感受试样变形的刀刃是与试样对称两侧的a点及d点接触,即是在测量试样标距L内部的ad两点联线的伸长,当试样标距L发生纯粹拉伸伸长ΔL 时(假设无偏心拉伸影响),ad的伸长与ΔL有恒定的函数关系(这个关系可在引伸计与材料试验机作联机“校准”时自动建立)。在实际的拉伸试验中,通常与纯粹拉伸变形同时发生的偏心拉伸产生的纯弯曲变形在ad线段中的ao部分产生伸长(或缩短)变形,而od部分产生缩短(或伸长)变形,由于对称性,这两部分变形的数值相等和符号相反,它们的代数和为零,即是纯弯曲变形不会使ad线段的长度发生变化,这就是双侧电子引伸计能避免偏心拉伸中的弯曲影响而测到纯粹拉伸变形的原理。

双测量系统相关的耗材

  • 安东帕旋转粘度计ViscoQC测量系统超低黏度适配器转子
    超低黏度适配器,测量范围从 1 mPas 开始使用 ViscoQC可用的多种转子和测量系统,在测定样品黏度时,每次测试最多可节省 15 秒。每个转子都包含磁力耦合器,并且所有转子和测量系统都可以自动识别—简化操作并避免人工错误。由于所有的转子和定子都由优质不锈钢(AISI 316L)制成,因此可以保证更佳的耐化学性。可选的转子护腿可在测量过程中保护 L/RH 转子,并由 ViscoQC 通过TruGuard&trade 进行溯源。灵活的杯架均可提供可重现的结果,不受操作影响。关键功能L/RH 转子符合 ISO 2555/ISO 1652 标准作为所谓的无限间隙系统,L/RH 转子是 VisoQC100/300 标准交付中的标配L型主机包含4个L型转子(L1-L4),而R型和H型则附带6个RH转子(RH2-RH7)。它们在开放的600 mL烧杯中使用,因此,如果要测量符合标准的样品,则至少需要500 mL的样品量。可选的 Pt100 传感器可用于对样品进行温度感应,可通过夹具轻松将它安装在烧杯上。使用灵活杯架可以确保更优的重现性,它保证不同的操作员在测量时始终让烧杯具有相同的测量位置。 固定间隙测量系统当需要绝对黏度值和样品体积(2 mL 至 18.5 mL)有限时,应选择同心圆筒(CC),双间隙系统(DG),超低黏度适配器(UL)和小量样品适配器(SSA)作为固定间隙的测量系统。要测量从1 mPas开始的低黏度样品,必须使用DG或UL。提供高精度的风冷帕尔贴温控设备。为了提高生产量并尽量减少清洗次数,建议在某些系统中使用一次性杯子。 低温黏度测定系统需要使用绝缘的 4B2 测量系统来根据 ASTM D2983/D8210 测定润滑油和机油的低温黏度。如果需要满足 ASTM D5133/D7110 的要求,使用L1D22 系统。两种系统均附带 100 个一次性铝杯,以减少清洁时间并提高通量。ViscoQC 300 上预先安装了具有 V-Curve 软件包的即用型方法,可立即启动,操作简单。 测量非流动样品的系统非流动性,高黏度样品(例如软膏、蛋黄酱和膨润土)需要特殊的测量技术。标准测量系统或转子会在测量时将空气通道引入样品中,导致黏度读数无意义,因为转子不被样品完全覆盖。如果不流动的样品不包含任何颗粒,则可以使用通过Heli-Plus控制T型转子或桨式转子进行测量。如果样品中的颗粒介于 0.1 mm 和 2 mm之间,则可以选择桨式转子:它们是高黏度的,因此可以直接在样品容器中进行测量。 技术规格典型样品量 [mL]样品中的粒径 [mm]L/RH 转子5000.1 至 2同心圆筒系统2 至 18.50.1*双间隙系统(DG)7.50.01超低黏度适配器系统(UL)160.01小量样适配器系统 (SSA)6.7 至 16.10.01**绝缘 4B2 系统200.1L1D22 系统16.10.1T-型转子5000.1 至 2桨式转子5000.1 至 2必须考虑样品的黏度以选择合适的转子/测量系统。有关更多详细信息,请参阅 ViscoQC 网站上的“常见问题解答”部分。* 如果在较大的杯子中使用较小的转子,则允许样品具有较大的粒径 ( 0.5 mm)** SC4-25、SC4-27、SC4-28、SC4-29、SC4-31、SC4-34 具有较大的测量间隙。
  • 孔径测量系统
    飞纳孔径统计测量分析系统将飞纳电镜和孔径测量统计分析系统结合在一起,孔径的可视化分析变得非常容易。快速、操作简单并能得到高分辨率图像的飞纳电镜集成孔径分析系统,创造出统计分析孔洞数据的强大工具。孔径测量系统应用领域- 电池薄膜行业- 制药行业- 过滤行业- 筛网行业- 生物行业- 化工行业- 造纸行业- 烟草行业- 纺织行业- 陶瓷行业- 食品行业- 有孔材料行业孔径测量系统功能孔径统计分析测量系统是基于飞纳电镜的孔径分析工具,用户直接从飞纳电镜获取拍摄的图片并对孔洞直径、面积等一系列参数进行统计测量,实现样品孔径可视化分析,并生成数据统计报告。应用该系统,可以在建模、研发和质量控制中有新的发现和创新孔径测量系统优势- 直接从飞纳电镜获取图片- 快速生成分析图像- 便捷的操作,提高工作效率- 无限制的图像采集,可轻松存储于网络或优盘,便于共享、交流- 附有高清图片的统计学数据- Phenom的易用性和对环境的良好适应力,用户可以将试样最大程度视觉化
  • 应变应力测量系统
    JHYC应变应力测量系统应用范围1.适用于测点相对集中,被测物理量缓慢变化的试验中。2.主要用于静态结构应力分析及静载荷强度研究中测量结构件及材料任意点的静态应力应变及残余应力。3.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、压力容器等结构静载荷测试、安全和健康状态测试。4.接入不同的传感器,可对力、荷重、压力、扭矩、位移、电压、电流等进行采集。5.可用于实验性测量,也可用于长期监控测量。JHYC应变应力测量系统功能特点1.全数字电路,精度高,稳定性好,具有极强抗干扰性能力仪器采用全数字电路,每通道独立AD、独立MCU,所有通道同步采样,仪器检定指标达到0.1级,显示精度0.1。采用独特的硬件隔离技术,系统具有极强的现场抗干扰性能力。2.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测测量,操作简单方便。3.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、公共,软件多种补偿方式,稳定性好。尤其是公共补偿方式,可方便快捷的对模块上10个通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。4.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,省掉一切不必要的端口,简化了测量接线难度。每个模块的状态和通道状态用高亮指示灯闪烁指示,一目了然。5.设置简单,操作方便快捷,海量存贮适合各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。应变片和仪器连接简单方便,主机与计算机usb接口连接,即插即用。可进行不间断或间断性长时间在线测量,数据存储量取决于计算机硬盘大小。 6.具有掉电自动保存测量数据功能在测量过程中,如出现意外断电,仪器可自动保存断电前的所有测量数据,并自动形成测量文件,防止意外丢失测量数据。JHYC应变应力测量系统软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,完成信号的实时采集、处理、分析等功能,具有多种显示方式。2.应变实时显示,被测物理量直接显示多通道应变值实时显示,实时绘制时域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。3.数据实时保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.每个通道都可根据测量需求选择测量类型,简单方便可根据每通道接入的传感器类型,各通道选择不同的输入类型、工程单位、标定值、调零、补偿方式等。实现对不同物理量的实时同步测量。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。南京聚航科技是应变仪生产商,种类多样,型号齐全,欢迎广大客户咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制