当前位置: 仪器信息网 > 行业主题 > >

半球发射率测试仪

仪器信息网半球发射率测试仪专题为您提供2024年最新半球发射率测试仪价格报价、厂家品牌的相关信息, 包括半球发射率测试仪参数、型号等,不管是国产,还是进口品牌的半球发射率测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半球发射率测试仪相关的耗材配件、试剂标物,还有半球发射率测试仪相关的最新资讯、资料,以及半球发射率测试仪相关的解决方案。

半球发射率测试仪相关的论坛

  • 热辐射性能:量热法半球向全发射率测试技术综述

    热辐射性能:量热法半球向全发射率测试技术综述

    [color=#990000]摘要:热量是一种过程量,是热能传递的度量,量热技术就是研究热测量方法的一门技术科学。由于量热技术可以对物质吸收和放出热量进行精确定量测量,这使得量热技术在材料热物理性能测试中应用十分广泛,也是材料热辐射性能测试中的一种常用方法。半球向全发射率作为一种热交换分析计算和材料热辐射性能评价中最常用的性能参数,是材料热辐射性能中的必测参数。在真空条件下采用量热法测试半球向全发射率,由于其测试直接和简单,因此量热法作为一种绝对测量方法而被认为具有最高的测量精度。本文详细介绍了量热法半球向全发射率测试技术的两类主流方法:稳态法和瞬态法,介绍了国内外在这两类方法中比较有代表性的研究工作,最后总结了这两类方法它们各自的特点及适用范围,为建立相应测试设备和研究测试方法提供参考。[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=量热法半球向全发射率测试技术,690,436]https://ng1.17img.cn/bbsfiles/images/2021/09/202109141051379730_9244_3384_3.png!w690x436.jpg[/img][/align][color=#ff0000]由于本文内容包含大量数学公式,不便在网页中进行编辑和显示,特在此近刊登文章目录,详细内容请阅读附件原文。[/color][color=#ff0000][/color][size=24px][color=#990000] 目录[/color][/size][size=24px][color=#990000][/color][/size][color=#990000][b]1. 热辐射性质的内容及其定义[/b][/color][color=#990000] 1.1. 发射率.[/color] 1.1.1. 光谱定向发射率 1.1.2. 光谱法向发射率 1.1.3. 全波长法向发射 1.1.4. 全波长半球向发射率 [color=#990000] 1.2. 吸收率 [/color] 1.2.1. 光谱定向吸收率 1.2.2. 全波长定向吸收率 1.2.3. 光谱半球向吸收率 1.2.4. 全波长半球向吸收率 [color=#990000] 1.3. 反射率 [/color] 1.3.1. 光谱定向—半球向反射率 1.3.2. 全波长定向—半球向反射率 1.3.3. 光谱半球向—定向反射率 1.3.4. 全波长半球向—定向反射率[color=#990000] 1.4. 透过率 [/color] 1.4.1. 光谱定向透过率 1.4.2. 全波长定向透过率[color=#990000][b]2. 发射率测量方法概述 3. 稳态量热法半球向全发射率的测量[/b][/color][color=#990000] 3.1. 保护电热法 3.2. 间接电热法 3.3. 直接通电加热法 3.4. 辐射加热法 3.5. 薄膜热流计法[/color][color=#990000][b]4. 瞬态量热法半球向发射率的测量[/b][/color][color=#990000] 4.1. 辐射加热法 4.2. 直接通电热脉冲法[/color][color=#990000][b]5. 总结 [/b][/color][color=#990000][b]6. 参考文献 .......................................................... 34[/b][/color][color=#990000][/color][color=#990000][/color][color=#990000][/color]

  • 总半球发射率测试方法ASTM C835在1000℃以上应用中的高温局限性分析

    总半球发射率测试方法ASTM C835在1000℃以上应用中的高温局限性分析

    [color=#990000]摘要:本文对目前国内外采用ASTM C835高温总半球发射率测试方法进行的研究报道进行了文献分析,分析目前造成在1000℃以上高温区间无法或很少进行总半球发射率测试的原因,并尝试找出解决方法或替代方案以实现高温范围内的准确测量,为今后高温总半球发射率测试方法的选择和测试设备设计提供参考。[/color][hr/][size=18px][color=#990000]1. 引言[/color][/size]  总半球发射率是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的重要基础物理性能数据。  总半球发射率的测试方法很多,但在高温条件下,经典的方式是直接通电量热法,相应的标准测试方法是ASTM C835“材料表面在1400℃高温范围内的总半球发射率标准测试方法”。  按照ASTM C835标准测试方法的设计,对于可直接通电加热的电导体材料,总半球发射率的最高测试温度可以达到1400℃。但从目前国内外研究报道来看,采用这种方法进行的测试极少能达到如此高的温度,绝大多数报道的总半球发射率测试温度范围都在1000℃以下,这说明这种方法在高温范围内的应用具有一定的局限性。  本文将对目前国内外采用ASTM C835测试方法进行的研究报道进行文献分析,分析造成无法或很少在1000℃以上高温范围进行总半球发射率测试的原因,并尝试找出解决方法或替代方案,以实现高温范围内的准确测量,为高温总半球发射率测试方法的选择和测试设备设计提供参考。[size=18px][color=#990000]2. 文献综述和分析[/color][/size]  对于总半球发射率的测量,做为经典的测试方法,ASTM C835的应用十分普遍,使用这种测试方法可以准确测量和评价服役中材料的高温热辐射性能。但我们在文献研究中发现,在ASTM C835的实际应用中很少有文献报道超过1000℃的测试数据。  首先我们分析了ASTM C835标准测试方法文本[1]的参考文献,其中引用了Richmond等人1960年对几种金属合金总半球发射率的测试研究报道[2]。在Richmond等人的报道中,总半球发射率的测试温度最高就达到1000℃,如图2-1所示。  从图2-1所示的NBS测试结果中可以隐约看出总半球发射率值在800~1000℃区间内有个峰值。这种在1000℃附近发射率发生突变的原因,一直没看到有相关文献进行过分析报道,直到2000年Greene等人[3]针对发现的这种现象进行了专门的研究。[align=center][color=#990000][img=发射率(Emissivity),623,756]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201551458107_282_3384_3.png!w623x756.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-1 在美国国家标准局(NBS)和通用电气公司(GE)接收管部门对通用电气公司提供的金属板样品测量的结果[2][/color][/align]  为了测试Inconel 718在不同表面状态下的高温总半球发射率,Greene等人[3]采用了S型热电偶,但当样品表面温度超过1000℃时测量发射率遇到了困难。在高于1000℃后,S型热电偶开始给出未知原因的异常读数,得到的发射率测量结果如图2-2所示。通过单独实验Greene等人研究了这种异常现象,在该实验中,将热电偶焊接到一小块Inconel 718上,然后缠绕在标准热电偶管上。将热电偶置于大气压下的熔炉中,并对两个测量温度进行比较,结果显示在图2-3中。第一次温度上升到1000℃时,温度异常首先出现在1000℃;当温度升高到1200℃时,与标准校准热电偶的偏差恢复。偏差趋势随着重复的热循环而重复,如图2-3所示,由此显示了作为测量标准温度的函数的两个测量温度之间的差异,可以清楚地看到点焊热电偶的塞贝克系数异常,它在大约1000℃时具有最大影响。[align=center][color=#990000][img=发射率(Emissivity),690,542]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201552577851_2873_3384_3.png!w690x542.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-2 Inconel 718的发射率测试结果[3][/color][/align][align=center][img=发射率(Emissivity),690,538]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553092817_3983_3384_3.png!w690x538.jpg[/img][/align][align=center][color=#990000]图2-3 样品热电偶和参考热电偶之间的温差[/color][/align]  由于真空条件下的这种异常总是出现在1000℃以上的温度,Greene等人因此决定只报告测量的发射率高达1000℃。另外Greene等人还认为对于其他热电偶类型、不同基材(如其他Inconel和不锈钢)、各种热电偶连接方法(即单独点焊线、相互点焊然后点焊到表面的导线),需要在氧化和惰性气氛中进行热循环,以帮助解释这种异常行为并提高对1000℃以上条件下热电偶行为的深入理解。  从Greene等人[3]的研究结果可以看出,在1000℃左右的温度测量中,通过点焊在被测样品上的热电偶获得的测温数据要比实际温度值高,如将此温度测量值代入测量公式,势必会得到比实际值偏小的总半球发射率,这就解释了在1000℃左右总半球发射率开始变小的现象。  尽管Greene等人[3]通过试验手段并解释了ASTM C835标准方法中采用样品上焊接热电偶进行测温过程中会在1000℃左右区间出现发射率测量结果异常现象,但并没有相应合理的解决办法,所以只能进行1000℃以下温度范围的发射率测量和报道。  近二十多年来,在采用ASTM C835标准方法进行的测试研究报道中,基本没有看到温度要超过1000℃以上进行测试的尝试。最典型的是加拿大核试验室的Fong等人[4]采用最新电子自动化技术在2015年完成搭建了直接通电法总半球发射率测试装置,如图2-4所示。从文献报道可以推测,这是目前国际上最新搭建的测量装置,此装置的测试过程完全自动化并控制测量准确,整个测试过程非常漂亮,如图2-5所示,但最高温度也只能达到1000℃的测试能力,如图2-6所示。[align=center][color=#990000][img=发射率(Emissivity),690,477]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553219609_7110_3384_3.jpg!w690x477.jpg[/img][/color][/align][align=center][color=#990000]图2-4 (a)压力管发射率测试样品的配置,(b)钟罩型发射率仪器底部照片[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,224]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553350253_8997_3384_3.jpg!w690x224.jpg[/img][/color][/align][align=center][color=#990000]图2-5 1000℃下的压力管发射率测试过程;(a)预氧化表面和(b)未氧化表面[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,495]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553456415_846_3384_3.jpg!w690x495.jpg[/img][/color][/align][align=center][color=#990000]图2-6 在600℃至1000℃范围内测量的预氧化和未氧化压力管样品的总半球发射率值[/color][/align]  通过报道文献分析,近十几年来,采用ASTM C835标准方法进行各种材料发射率测试和研究比较活跃的机构,主要是中国清华大学的符泰然团队和美国密苏里大学的汤普森团队。清华大学符泰然团队在2010年就开始对ASTM C835方法进行研究和研制了相应的测试设备,并发布了很多文献报道[5][6],但所报道的发射率测试温度最高也只能达到1000℃,对温度高于1000℃的测试只字未提。  密苏里大学汤普森团队2010年前就进行了ASTM C835方法研究,同样也研制了相应的测试设备,如图2-7和图2-8所示。[align=center][color=#990000][img=发射率(Emissivity),690,704]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554053335_146_3384_3.jpg!w690x704.jpg[/img][/color][/align][align=center][color=#990000]图2-7 密苏里大学量热法总半球发射率测试系统钟罩内部结构图[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,516]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554162712_5436_3384_3.jpg!w690x516.jpg[/img][/color][/align][align=center][color=#990000]图2-8 密苏里大学量热法总半球发射率测试系统[/color][/align]  从密苏里大学近十多年来发表的文献中,可以看到他们经常会发布一些超过1000℃的发射率测试结果或其他文献数据,而且在测试过程中全部都采用了K型热电偶进行样品表面温度测量,本身也没想采用S型热电偶进行更高温度的发射率测量。如在2010年的文献中[7],介绍了超高温反应堆系统潜在结构材料总半球形发射率的测试结果,如图2-9所示。从图中可以看出,密苏里大学的测试并未超过1000℃,但用来对比的文献数据则最高温度达到了近1200℃,并且温度在1000℃附近时发射率有明显的异常波动。[align=center][color=#990000][img=发射率(Emissivity),690,433]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554280088_6996_3384_3.jpg!w690x433.jpg[/img][/color][/align][align=center][color=#990000]图2-9 氧化镍发射率测试数据(三角形和空心圆)与其他文献数据的比较[/color][/align]  在密苏里大学2012年的文献中[8],介绍了Hastelloy总半球形发射率的测试结果,如图2-10所示。从图中可以看出,测试结果在1000℃附近波动明显。[align=center][color=#990000][img=发射率(Emissivity),690,431]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554387619_847_3384_3.jpg!w690x431.jpg[/img][/color][/align][align=center][color=#990000]图2-10 纯镍、Hastelloy N和Hastelloy X样品在1153K空气中氧化15分钟后的发射率测试结果比较[/color][/align]  在密苏里大学2012年的文献中[9],介绍了Haynes 230总半球形发射率的测试结果,如图2-11所示。从图中可以看出,测试结果同样在1000℃附近有明显的下降。[align=center][color=#990000][img=发射率(Emissivity),690,426]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554493500_2148_3384_3.jpg!w690x426.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-11 原始状态Haynes 230发射率测试结果和相似实验条件下两个不同测试数据[/color][/align]  同样,在2015年的文献中,介绍了lnconel 718在不同热处理后的发射率测试结果,如图2-12所示。从图中可以看出,测试结果同样在1000℃附近有明显波动,但这其中的波动部分原因也可能是氧化层在1000℃附近的变化所引起。[align=center][color=#990000][img=发射率(Emissivity),690,439]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554589029_7043_3384_3.jpg!w690x439.jpg[/img][/color][/align][align=center][color=#990000]图2-12 不同热处理状态的lnconel 718发射率测试结果[/color][/align]  有关1000℃后的高温区域测试过程中发射率的异常现象,密苏里大学在之前的文献报道中从未提起,发射率测试温度范围大多也没有超过1000℃。但在2016年发布的文献中[11],介绍了91级A387合金发射率测量结果在827℃左右达到峰值,并随着温度进一步升高而逐步减小,如图2-13所示,而且这种随温度逐步减小的现象,也发生在进行过喷砂和氧化处理后的91级A387合金测试过程中。这种在827℃左右就开始出现异常的现象确实少见,所以文章作者也声明造成这种下降的原因尚不清楚,需进一步调查。[align=center][color=#990000][img=发射率(Emissivity),690,439]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555075221_3087_3384_3.jpg!w690x439.jpg[/img][/color][/align][align=center][color=#990000]图2-13 轻度打磨的91级A387合金的总半球发射率[/color][/align]  在随后两年发表的文献[12]和博士论文[13]中,密苏里大学还是采用了K型热电偶对几种典型合金材料进行了全半球发射率测试,在文献综述中提到了1000K后发射率有明显的降低现象,测试结果也再现了这种现象,但都没再提及这种反常现象和原因。但在对高温反应堆系统结构材料发射率的长期预测中[14],首先报道了对合金718进行的额外测量和短期氧化研究结果,以确定氧化合金718中发射率下降的原因。图2-14显示了合金718在空气中氧化10分钟处理后的四种不同样品的发射率,每次测试都在1200K峰值发射率附近的不同温度下终止。使用SEM-EDS检查样品没有发现表面形态和成分的任何变化来解释氧化合金718的行为,由此在随后的长期氧化研究结果中就没再出现1200K以后的结果。[align=center][color=#990000][img=发射率(Emissivity),690,423]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555160390_4720_3384_3.png!w690x423.jpg[/img][/color][/align][align=center][color=#990000]图2-14 合金718在空气中氧化长达10分钟的总半球发射率[/color][/align]  在密苏里大学随后几年发表的新材料发射率测试研究报道中[15][16],再也没有出现超过1000℃的实验数据。  从上述文献分析可知,目前国内外绝大多数研究机构对1000℃以上高温发射率中存在的异常现象都没有很好的解决办法,测试结果自然也不能做为准确数据得到应用,但在实际工程应用中还是迫切需要这些高温数据。  美国桑迪亚国家实验室的辐射热测试组(RHTC)多年来一直从事对各种材料在高温热环境下的热辐射性能进行研究,主要测试和研究的材料包括Inconel600、SS304、17-4PH SS、碳化硅和铝合金。在总半球发射率的温度依赖性研究方面,他们外协了美国历史悠久的热物性研究实验室(TPRL),委托TPRL采用他们特有的高温多参数热物性测试设备对典型材料进行了高温总半球向发射率的测试[17][18]。  TPRL的高温多参数热物性测试设备可用于测量材料的多个热物理性能,包括热导率、热扩散率、比热、热膨胀、电阻率、发射率、焓、半球总发射率、Wieddemann-Franz-Lorenz比、汤姆逊系数、塞贝克系数、珀尔帖系数和理查森系数。设备中使用的样品要求是棒状电导体材料,金属、合金和石墨材料已使用该设备进行了广泛的测量。使用热电偶进行温度测量,可以在室温至约1000℃范围内测量大多数这些特性。然而,该装置主要是一种高温(1000℃)设备,使用光学高温计进行温度测定,该设备结构如图2-15所示。[align=center][color=#990000][img=发射率(Emissivity),690,359]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555258790_8446_3384_3.jpg!w690x359.jpg[/img][/color][/align][align=center][color=#990000]图2-15 TPRL高温多参数热物性测量设备结构示意图[/color][/align]  TPRL的高温多参数热物性测试设备对总半球发射率的测试,采用是ASTM C835方法,但高温温度测量采用的则是非接触式光学高温计。在对Inconel 600热电偶护套材料的发射率测试中,进行了各种预先热处理,样品A在稀薄火焰中在1400℃下加热4小时,样品B在1050℃的浓火焰中加热4小时。样品C和D在空气中分别在1100℃下电加热4小时和5分钟。样品E做为参考样品,由原始的Inconel 600热电偶护套材料组成,没有氧化,也就是说,由于测量是在高真空下进行的,所以参考样品在测量过程中表面没有氧化。整个测试过程的温度至少达到了1071℃,最高达到了1181℃,测试结果数据和图形描述如图2-16和图2-17所示。[align=center][color=#990000][img=发射率(Emissivity),690,429]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555364019_3535_3384_3.jpg!w690x429.jpg[/img][/color][/align][align=center][color=#990000]图2-16 作为不同温度和表面处理状态下的Inconel 600总半球发射率测试结果[17][18][/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,358]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555454741_5446_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2-17 不同表面状态和温度下的Inconel 600总半球发射率[/color][/align]  从上述TPRL公布的测试结果可以看出,无论在任何表面状态下,发射率随温度的变化基本都是一个接近线性的单调上升变化趋势,并未出现其他实验室采用热电偶测温所出现的1000℃附近的发射率异常波动现象。[size=18px][color=#990000]3. 总结[/color][/size]  通过上述ASTM C835标准测试方法应用的研究报道分析,可以得出以下结论:  (1)在测试过程中,如果在通电加热样品上直接焊接热电偶进行温度测量,由于在高温区间样品材料会出现塞贝克系数异常而导致发射率测量结果反而会随着温度上升而下降。如果采用非接触测温方式,则没有这种现象。这说明接触式热电偶测温会对高温发射率测量结果带来了很大影响,很多时候往往会得到相反的结果。  (2)热电偶测温方式往往适用低于1000℃温度区间的发射率,但在通电样品上焊接多只热电偶往往又会在温度测量准确性上带来较大误差,这是因为多只热电偶通过导电样品形成了短路。  (3)采用非接触式光学高温计进行温度测量,尽管测量温度区间可以实现很宽泛的范围,但光学高温计自身也涉及到一个发射率参数问题,样品发射率在不同温度下的改变也会影响测温精度,除非使用温度测量与发射率无关的多光谱红外测温仪器,而这种多光谱测温仪器的测量准确性还需要进一步考核和研究。  (4)由以上结论可以看出,无论采用热电偶还是采用光学高温计,都会带来不可知的测量误差,区别是热电偶带来的发射率误差是方向性的,而光学高温计的误差则是幅值大小方面的。目前最大的问题是还没有很好的技术手段来解决这些误差影响因素,而这些问题在很大程度上限制了ASTM C835标准测试方法在高温发射率测试方面的应用。  (5)鉴于ASTM C835标准测试方法在高温总半球发射率测试方面所面临的无解问题,但还要进行各种材料高温发射率的准确测量,因此我们建议采用另一种间接通电加热的量热法测量高温半球向发射率。这种测试方法与ASTM C835方法的主要却别是样品加热方式,在这种测试方法中,两片薄被测样品将薄发热体夹持在中间,发热体通电加热来间接加热被测样品,而温度测量则采用独立的铠装热电偶,由此避免样品高温段塞贝克系数异常和焊接质量对温度测量的影响,又可以规避样品上直接焊接热电偶经常带来高温易脱落造成试验失败的现象。[size=18px][color=#990000]4. 参考文献[/color][/size][1] ASTM C835-06(2020), Standard Test Method for Total Hemispherical Emittance of Surfaces up to 1400℃, ASTM International, West Conshohocken, PA, 2020, www.astm.org.[2] Richmond, J. C., and Harrison,W. N., “Equipment and Procedures for Evaluation of Total Hemispherical Emittance,” American Ceramic Society Bulletin, Vol 39, No. 11, Nov. 5, 1960.[3] Greene G A, Finfrock C C, Irvine Jr T F. Total hemispherical emissivity of oxidizedInconel 718in the temperature range 300~1000 C[J]. Experimental Thermal and Fluid Science, 2000, 22(3-4): 145-153.[4] Fong R W L, Paine M, Nitheanandan T. Total hemispherical emissivity of pre-oxidized and un-oxidized Zr-2.5 Nb pressure-tube materials at 600 C to 1000 C under vacuum[J]. CNL Nuclear Review, 2016, 5(1): 85-93.[5] T. R. Fu, P. Tan and C. H. Pang, "A steady-state measurement system for total hemispherical emissivity," Measurement Science and Technology, vol. 23, no. 2, p. 10, 2012.[6] T. R. Fu, et al., "Total hermispherical radiation properties of oxidized nickel at high temperatures," Corrosion Science, vol. 83, pp. 272-280, 2014.[7] Maynard R K, Ghosh T K, Tompson R V, et al. Total hemispherical emissivity of potential structural materials for very high temperature reactor systems: Hastelloy X[J]. Nuclear technology, 2010, 172(1): 88-100.[8] A. J. Gordon, et al., "Hermispherical total emissivity of Hastelloy N with different surface conditions,"Journal of Nuclear Materials, vol. 426, no. 1, pp. 85-95, 2012.[9] R. K. Maynard, et al., "Hemispherical Total Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Haynes 230," Nuclear Technology, vol. 179, no. 3, pp. 429-438, 2012.[10] B. P. Keller, et al., "Total hemispherical emissivity of lnconel 718," Nuclear Engineering and Design, vol. 287, pp. 11-18, 2015.[11] C. B. Azmeh, et al., "Total Hemispherical Emissivity of Grade 91 Ferritic Alloy with Various Surface Conditions," Nuclear Technology, vol. 195, no. 1, pp. 87-97, 2016.[12] T. S. Hunnewell, et al., "total Hemispherical Emissivity of SS 316L with Simulated Very High Temperature Reactor Surface Conditions," Nuclear Technology, vol. 198, no. 3, pp. 293-305, 2017.[13] Al Zubaidi F. Total Hemispherical Emissivity of Reactor Pressure Vessel Candidate Materials: SS 316 L, SA 508, and A 387 Grade 91[D]. University of Missouri-Columbia, 2018.[14] Tompson Jr R V, Ghosh T K, Loyalka S K, et al. Long-term Prediction of Emissivity of Structural materials for High Temperature Reactor Systems[R]. Univ. of Missouri, Columbia, MO (United States), 2018.[15] Walton K L, Maynard R K, Ghosh T K, et al. Total Hemispherical Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Alloy 617[J]. Nuclear Technology, 2019, 205(5): 684-693.[16] Al Zubaidi F N, Walton K L, Tompson R V, et al. Emissivity of Grade 91 ferritic steel: additional measurements on role of surface conditions and oxidation[J]. Nuclear Technology, 2021, 207(8): 1257-1269.[17] J. Gembarovic, "Total Hemispherical Emissivity of Thermocouple Sheaths, in A Report~Sandia National Laboratories," Thermophysical Properties Research Laboratory, Inc:, West Lafayette, IN, 2005.[18] A. L. Brundage, et al., "Thermocouple Response in Fires, Part 1: Considerations in Flame Temperature Measurements by a Thermocouple," Journal of Fire Sciences, vol. 29, no. 3, pp. 195-211, 2011.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=发射率(Emissivity),690,316]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201556153448_487_3384_3.jpg!w690x316.jpg[/img][/align][align=center][/align]

  • 【原创大赛】稳态量热法总半球发射率测试的SIMULATIONX热仿真研究

    【原创大赛】稳态量热法总半球发射率测试的SIMULATIONX热仿真研究

    [size=18px][color=#990000][/color][/size][size=18px][color=#990000]摘要:为了研究总半球发射率测试方法,特别是对间接通电加热式量热法总半球发射率测试进行更深入研究,本文采用SimulationX软件对所建立的测试模型进行了仿真计算,从而获得了样品温度与加热功率之间的量化关系,明确了测试过程中漏热对测量误差的影响程度,从而可有效指导总半球发射率测试装置的设计。[/color][/size][align=center][size=18px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px] [/size][size=24px][color=#990000]1. 热仿真目的[/color][/size][size=18px]  在总半球发射率测试设备的设计前期开展热仿真计算,拟达到以下几方面的目的:[/size][size=18px]  (1)对总半球发射率测试过程中的加热方式和整个测试过程有较直观的认识。[/size][size=18px]  (2)获得样品温度与加热功率的量化关系,由此确定真空水冷腔体冷却所需的最大冷却功率,以帮助水冷结构设计的制冷机选型。[/size][size=18px]  (3)确定护热温差所引起的漏热对发射率测量精度的影响程度。[/size][size=24px][color=#990000]2. 样品材料[/color][/size][size=18px]  样品材料选择镍基高温合金Inconel 600,这主要是因为Inconel 600是常用且研究比较深入的材料,有比较齐全的热物理性能参数(热导率、比热容、热扩散率和密度)随温度变化数据,这就非常便于热仿真计算中物性参数的准确设置。[/size][size=24px][color=#990000]3. 仿真模型[/color][/size][size=18px]  SimulationX是一款分析评价技术系统内各部件相互作用的权威软件,是多学科领域建模、仿真和分析的通用CAE工具,并具有强大标准元件库。对于间接通电加热式稳态量热法总半球发射率测量方法的建模,会涉及到热学、电学和自动化PID控制多个领域,因此采用SimulationX软件进行建模和计算分析。[/size][size=18px]  为了对测试方法进行深入研究,建立了两个仿真模型。一个是理想情况下的样品绝热时(样品热量无损失)的仿真模型,另一个是实际情况下样品有引线热损时的仿真模型,由此来研究两种状态下的加热过程和热损所带来的误差影响。[/size][size=18px]  [/size][size=18px][color=#990000][b]3.1. 绝热模型[/b][/color][/size][size=18px]  采用SimulationX软件建立的绝热仿真如图3-1所示。由PID控制的热量加热被测样品,并按照不同设定值使样品达到不同设定温度,被测样品同时与作为黑体的等温量热计进行辐射热交换。在测试过程中,假设被测样品只有热辐射一种传热形式,样品加热引线上无导热热损,样品处于绝热状态。[/size][align=center][color=#990000][img=半球发射率,625,275]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202201358306_9908_3384_3.jpg!w625x275.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-1 绝热条件下SimulationX仿真模型[/color][/size][/align][size=18px]  为了计算出样品达到最高温度1200℃时所需要的最大功率,设置样品表面的总半球发射率为1。对于100mm×100mm×6mm规格的样品尺寸进行计算,结果如图3-2所示。[/size][align=center][color=#990000][img=半球发射率,690,400]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202201524222_4058_3384_3.png!w690x400.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-2 规格100mm×100mm×6mm样品加热温度和功率计算结果[/color][/size][/align][size=18px]  按照图3-2所示的计算结果,可以采用发热率计算公式计算得到不同温度下的总半球发射率变化曲线,如图3-3所示。[/size][align=center][color=#990000][img=半球发射率,690,397]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202015455_5562_3384_3.png!w690x397.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-3 规格100mm×100mm×6mm样品不同加热温度下的发射率计算结果[/color][/size][/align][size=18px]  从上述计算结果可以看出,发射率仿真结果与理论值无偏差,证明了所建模型是准确的。另外还可以看出,在间隔200℃的不同设定温度点上,随着加热温度的增加,加热功率几乎成倍的增加。如在1000℃时,加热功率3.3kW,如果采用低压大电流电源,低压电压为30V时,直流电压则会至少100A,那么所对应的电极引线会较粗,这势必会带来较大的引线导热热损。为避免加热引线导热热损则需要增加护热加热,将靠近样品处的加热导线温度也要保持与样品温度一直,这势必会给高温样品热辐射带来严重影响,相当于大幅度增加了样品辐射面积,从而给测量带来严重误差。[/size][size=18px]  为避免大的加热功率,减小电极引线的粗细,将模型中样品缩小到50mm×50mm×3mm,测试结果如图3-4和图3-5所示。[/size][align=center][color=#990000][img=半球发射率,690,402]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202136564_9259_3384_3.png!w690x402.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-4 规格50mm×50mm×3mm样品加热温度和功率计算结果[/color][/size][/align][align=center][color=#990000][img=半球发射率,690,401]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202229346_3131_3384_3.png!w690x401.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-5 规格50mm×50mm×3mm样品不同加热温度下的发射率计算结果[/color][/size][/align][size=18px]  从图3-4和图3-5所示结果可以看出,样品尺寸缩小后,在最高温度1200℃时的最大加热功率降低到了四分之一,约1.5kW。[/size][size=18px][color=#990000][b]3.2. 护热模型[/b][/color][/size][size=18px]  采用SimulationX软件建立的护热仿真如图3-6所示。在护热模型中,在原有PID控制加热被测样品(规格50mm×50mm×3mm)的基础上,增加一路PID护热加热回路,控制护热回路温度始终跟踪样品温度变化。在理想情况下,护热温度要与样品温度完全相同,如此这两回路之间存在温差,则被测样品就会产生热损。[/size][align=center][color=#990000][img=半球发射率,625,290]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202206457581_2325_3384_3.jpg!w625x290.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-6 护热条件下SimulationX仿真模型[/color][/size][/align][size=18px]  在护热模型计算中,样品发射率设置为1,被测样品温度变化范围还是设置为200℃~1200℃,而护热温度总是比样品温度低1%,由此来计算热损对发射率测量的影响,计算结果如图3-7和图3-8所示。当设置样品发射率为0.5时,发射率测量结果如图3-9所示。[/size][align=center][color=#990000][img=半球发射率,690,403]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202345051_4964_3384_3.png!w690x403.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-7 发射率为1时护热模型的加热温度和功率计算结果[/color][/size][/align][align=center][color=#990000][img=半球发射率,690,401]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202441606_7412_3384_3.png!w690x401.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-8 发射率为1时护热模型不同加热温度下的发射率计算结果[/color][/size][/align][align=center][color=#990000][img=半球发射率,690,399]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202202520436_5036_3384_3.png!w690x399.jpg[/img][/color][/align][size=18px][color=#990000][/color][/size][align=center][size=18px][color=#990000]图3-9 发射率为0.5时护热模型不同加热温度下的发射率计算结果[/color][/size][/align][size=18px]  从上述测试结果可以看出,护热控制过程中1%温差所造成的漏热,对样品加热功率的大小影响不大,但对发射率测量有影响,这种影响在较低温度段非常明显,并且对较低发射率样品的测量影响也较严重。[/size][size=18px]  从图3-8可以看出,当样品发射率为1时,200℃时的发射率测量结果误差最大,相对误差接近4%,然后随着样品温度的升高,误差急剧减小。由此可见在较低温度范围内,漏热在样品热辐射能量中所占的比重较大,从而造成发射率测量误差较大。随着样品温度的升高,漏热所占比重快速减小,从而发射率测量误差也快速减小。[/size][size=18px]  从图3-9可以看出,当样品发射率为0.5时,同样是200℃时的发射率测量结果误差最大,相对误差放大到了8%左右,同样随着样品温度升高,误差急剧减小。由此可见,对于低发射率的测量,漏热会更严重的影响测量精度。[/size][size=24px][color=#990000]4. 总结[/color][/size][size=18px]  通过SimulationX软件建立了绝热和护热两种总半球发射率测量仿真模型,并在不同温度下来计算得到相应的加热功率和样品温度变化曲线,最终获得加热功率变化规律和发射率测量结果。通过仿真计算,得出以下结论:[/size][size=18px]  (1)间接式通电加热稳态量热法测量总半球发射率过程中,为达到1200℃的最高温度,如果采用低压大电流加热方式,则需要较大的加热功率,并需要较粗的加热电极,这势必会给测试模型的准确性带来严重影响,并需要添加额外的护热装置,由此带来整个测试装置的复杂性和制造难度。[/size][size=18px]  (2)护热装置要求具有一定的温度跟踪精度以确保测试模型尽量接近绝热状态,温度跟踪精度对较低温度区间的样品发射率测量有较大影响,而且样品发射率越小,这种影响会急剧放大。[/size][size=18px]  (3)在存在漏热情况下,测量值会比实际值偏大。在存在增热情况下,测量值会比实际值偏小。[/size][size=18px][/size][align=center]=======================================================================[/align][align=center] [img=半球发射率,690,300]https://ng1.17img.cn/bbsfiles/images/2021/10/202110202159531381_1955_3384_3.jpg!w690x300.jpg[/img][/align][size=18px][/size][size=18px][/size][size=18px][/size]

  • 镍基高温合金Inconel 600热导率、比热容、热扩散率、密度和总半球发射率随温度变化数据汇总

    镍基高温合金Inconel 600热导率、比热容、热扩散率、密度和总半球发射率随温度变化数据汇总

    [color=#990000]摘要:镍基高温合金Inconel 600作为一种常用的金属材料其应用领域十分广泛,准确了解其各种热物理性能参数十分必要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文汇总了目前国际上Inconel 600的高温热物理性能(热导率、比热容、热扩散率、密度和总半球发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,并提高高温设计和热仿真中参数输入的准确性。[/color][hr/][size=18px][color=#990000]1. 简介[/color][/size]  Inconel 600是一种非磁性镍基高温合金,具有高机械强度、冷热加工性和耐腐蚀性。这种合金在退火到强冷加工条件的整个范围内也没有老化或应力腐蚀,它可以使用到1000℃而不会发生不可逆的变化。典型Inconel 600的材料组分如表1-1所示,此组分的Inconel 600也是被英国国家物理实验室(NPL)用来作为热导率测量中的参考材料。其热处理过程为在干燥纯氢气和露点小于-50℃条件下进行2小时的1120℃热处理,然后在氢气环境下用水冷却。[align=center][color=#990000]表1-1 热导率测量参考材料Inconel 600组分[/color][/align][align=center][color=#990000][img=,690,93]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221615293709_4016_3384_3.png!w690x93.jpg[/img][/color][/align]  由于Inconel 600这类镍基高温合金的应用领域十分广泛,准确了解其各种热物理性能参数十分重要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文将汇总目前国际上Inconel 600的高温热物理性能(热导率、比热容、热扩散率、密度和总半球发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,有利于提高高温设计和热仿真中参数输入的准确性。[size=18px][color=#990000]2. 热导率、比热容、热扩散率和密度数据[/color][/size]  热导率、比热容、热扩散率和密度数据来自文献[1]颁布的对英国国家物理量实验室(NPL)热导率参考材料Inconel 600的测试结果,其中热导率是比热容、热扩散率和线膨胀率三个独立测试结果的乘积得到,而比热容采用差热扫描量热仪(DSC)进行测试,热扩散率采用激光闪光法测定仪进行测试,线膨胀率采用顶杆法热膨胀仪进行测试。对于镍基高温合金Inconel 600热导率的独立测试,NPL也采用了轴向恒定热流导热仪进行了专门测量[2]。由于仪器测试能力的限制,NPL的测试温度最高为500℃。另外由于所采用的Inconel 600样品成分和密度有轻微差别,所以[1]文献[2]和热导率结果会有最大5%的偏差,但这个偏差在实际工程使用中可以忽略不计,因此本文所列数据取自文献[1]。热导率、比热容、热扩散率和密度随温度的变化规律分别如图2-1~图2-4所示。[align=center][img=,690,467]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221615443328_3576_3384_3.png!w690x467.jpg[/img][/align][align=center][color=#990000]图2-1 Inconel 600热导率与温度的关系[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616011796_21_3384_3.png!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图2-2 Inconel 600热扩散与温度的关系[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616216745_4849_3384_3.png!w690x468.jpg[/img][/color][/align][align=center][color=#990000]图2-3 Inconel 600比热容与温度的关系[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=,690,469]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616316304_954_3384_3.png!w690x469.jpg[/img][/color][/align][align=center][color=#990000]图2-4 Inconel 600密度与温度的关系[/color][/align]  在这里需要说明的是密度随温度的变化结果,是由热膨胀系数测试获得,其中认为镍基高温合金Inconel 600是各项同性且温度变化过程中质量不发生变化。由此通过测试Inconel 600的线膨胀率来得到体膨张率和样品的体积变化,最终用恒定质量除以不同温度下的体积得到密度随温度的变化结果。  汇总热导率、比热容、热扩散率和密度数据,如表2-1所示。[align=center][color=#990000]表2-1 Inconel 600热导率、比热容、热扩散率和密度数据汇总表[/color][/align][align=center][color=#990000][img=,690,587]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616470760_7694_3384_3.png!w690x587.jpg[/img][/color][/align][size=18px][color=#990000]3. 总半球发射率数据[/color][/size]  总半球发射率也是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的最重要基础物理性能数据。  由于总半球发射率与材料的表面状态关系密切,针对镍基高温合金Inconel 600的总半球发射率,本文汇总了美国热物性研究实验室(TPRL)进行不同热处理和原始状态样品的总半球向高温测试结果[3][4],此测试结果被美国桑迪亚国家实验室用作Inconel 600高温总半球发射率的典型数据。  TPRL测试总半球向发射率采用了稳态量热法,样品直接通电加热至高温进行测量,其五种表面状态下总半球发射率随温度变化测试结果如图3-1所示,数据如表3-1所示。[align=center][color=#990000][img=,690,568]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221617128540_2384_3384_3.png!w690x568.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 不同热处理后Inconel 600不同温度下的总半球发射率[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000]表3-1 作为不同温度和表面处理状态下的Inconel 600总半球发射率测试数据[/color][/align][align=center][img=,690,429]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221617257857_4218_3384_3.jpg!w690x429.jpg[/img][/align][size=18px][color=#990000]4. 参考文献[/color][/size][1] Blumm J, Lindemann A, Niedrig B. Measurement of the thermophysical properties of an NPL thermal conductivity standard Inconel 600[C]//Proc. of 17th European Conference on Thermophysical Properties. 2003: 621-626.[2] Wu J, Morrell R, Clark J, et al. Characterisation of the NPL Thermal Conductivity Reference Material Inconel 600[J]. International Journal of Thermophysics, 2021, 42(2): 1-15.[3] [7] J. Gembarovic, "Total Hemispherical Emissivity of Thermocouple Sheaths, in A Report to Sandia National Laboratories," Thermophysical Properties Research Laboratory, Inc:, West Lafayette, IN, 2005.[4] A. L. Brundage, et al., "Thermocouple Response in Fires, Part 1: Considerations in Flame Temperature Measurements by a Thermocouple," Journal of Fire Sciences, vol. 29, no. 3, pp. 195-211, 2011.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=,690,424]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221617561944_3210_3384_3.png!w690x424.jpg[/img][/align]

  • 【原创大赛】高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析

    【原创大赛】高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析

    [align=center][size=18px][color=#000099]高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析[/color][/size][/align][align=center][size=18px][color=#999999]Finite Element Thermal Simulation Analysis of the Temperature Uniformity of the Vacuum Chamber of the High-Temperature Hemispheric Emissivity Measurement Device[/color][/size][/align]摘要:在高温半球发射率测量装置中,真空腔体温度均匀性是保证半球发射率测量精度和测试设备安全运行的重要技术参数。本文介绍了采用SolidWorks软件对水冷真空腔体上各处法兰温度分布的有限元计算过程和获得的结果,以指导确定真空腔体设计参数和制造工艺的确定。关键词:半球发射率,有限元,热仿真,温度均匀性,真空腔体,高温,测量装置,法兰, Hemispherical emissivity, finite element, thermal simulation, temperature uniformity, vacuum chamber, high temperature, measuring device, flange[align=center][img=高温发射率测量,690,338]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290630151571_4563_3384_3.png!w690x338.jpg[/img][/align]  [size=24px][color=#000099]1. 问题的提出[/color][/size]  在采用稳态量热法测量材料高温半球发射率过程中,要求被测样品处于高真空环境中,作为量热计的真空腔体始终恒定在较低温度(如水温或液氮温度),真空腔体内表面要保持较高的发射率数值,从而保证作为量热计的真空腔体是一个黑体能吸收样品辐射出的所有热量。  在高温半球发射率测量装置中,真空腔体的冷却和温度控制方式是在真空腔壁内部布置流道让冷却介质(水或液氮)按照一定方式进行流动,并由此带走腔壁吸收的热量并使得腔壁温度始终恒定。但由于真空腔体上还布置有各种法兰(如引线法兰、抽气法兰和炉门法兰等),这使得真空腔壁内部流道就要绕开这些法兰,造成冷却液并不能直接冷却到这些部件,这些法兰吸收和积累的热量就需要通过法兰材料自身的热传导方式将热量传递给冷却液,由此往往会在这些法兰部件上形成比真空腔体其他位置更高的温度。为了保证高温半球发射率测量装置的安全性和测量准确性,在设计过程中需要准确了解这些法兰处的温度分布并进行优化。  本文将介绍水冷真空腔体上各处法兰温度分布的计算过程和获得的结果,以指导确定真空腔体的具体参数和制造工艺设计。[color=#000099][size=24px]2. 热仿真模型[/size][size=18px]2.1. 常规模型[/size][/color]  高温半球发射率测量装置的主要结构是一个卧式水冷真空腔体,双测开门。真空腔体的外径为840mm,长度为800mm,两侧腔门直径为920mm。腔体和腔门都为双层不锈钢结构,中间布置冷却水流道,腔体和腔门的总壁厚都为20mm,腔体和腔门分别独立水冷。被测样品悬挂在真空腔体的中心位置,最大样品尺寸为直径100mm×12mm。  针对上述规格尺寸的高温半球发射率测量装置建立热仿真模型,建模和仿真计算采用SOLIDWORKS软件。为了简化计算工作量,针对此对称结构的真空腔体,在一半真空腔体的基础上建立热仿真模型,如图2-1所示。[align=center][color=#000099][img=高温发射率测量,690,344]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635288234_3762_3384_3.png!w690x344.jpg[/img][/color][/align][align=center][color=#000099]图2-1 仿真模型及其剖面图[/color][/align]  如图2-1所示,在热仿真建模中做了以下几方面的设计假设:  (1)对于外径840mm、长度400mm、壁厚20mm的一半真空腔体,假设水流道直接覆盖的区域长度为350mm,剩余50mm为“侧壁无水冷段”,此段上的热量完全靠不锈钢材质的导热传递给冷却液。  (2)同样,对于外径920mm、厚度20mm的腔门,假设水流道直接覆盖腔门的中心区域,此水冷区域直径为720mm,剩余宽度为100mm的实心圆环为“腔门的无水冷段”,此段上的热量完全靠不锈钢材质的导热传递给冷却液。  (3)真空腔体和腔门之间设计有一个腔门法兰,用于放置密封圈和安装腔门转动合页。此腔门法兰无任何水冷,热仿真模型设计为宽度为100mm、外径为920mm的圆环。  (4)模型中样品尺寸为直径100mm、厚度6mm的圆片,为实际最大样品尺寸的一半。为计算出样品最大辐射能力时对无水冷部件的影响程度,样品温度设置为最高温度1200℃,样品热辐射面(表面和侧面)的半球发射率设置为1,样品背面为绝热面。  (5)整个真空腔体和腔门的内壁,都涂有高发射率黑色涂料,在热模型中它们的表面发射率也都设置为1。水冷侧壁和水冷腔门温度设置为水冷温度20℃。模型中所有材质设计为304不锈钢,由于真空腔体自身温度不会处于高温状态,所以模型中不锈钢的热物理性能参数都采用常温数据。  (6)对于高温半球发射率测量装置而言,测试过程中真空腔体内部始终为0.001Pa量级的高真空,因此真空腔体内部的传热形式设定为只有辐射传热,样品上的热量只通过热辐射形式传递给侧壁、法兰和腔门。[size=18px][color=#000099]2.2. 简化模型[/color][/size]  为进一步减小网格尺寸和提高热仿真精度,将上述模型进行了简化,即去掉占用面积最大的水冷部件(水冷侧壁和水冷腔门),将于水冷侧壁和水冷腔门接触部件的接触面温度设定为20℃恒温。由此得到的简化后模型如图2-2所示,这种简化后的仿真模型只考虑高温样品对无水冷部件的辐射加热,最终得到无水冷部件在1200℃高温样品辐照下达到的最高温度。[align=center][img=高温发射率测量,690,574]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635418127_4767_3384_3.png!w690x574.jpg[/img][/align][color=#000099][/color][align=center]图2-2 简化后热仿真模型[/align][size=18px][color=#000099]2.3. 增加引线法兰后的模型[/color][/size]  在实际高温半球发射率测量装置中,在水冷腔门上安装有引线法兰和抽气法兰,而循环水冷直接触及这些法兰,在1200℃高温样品辐照时会使得这些法兰温度升高。为了解这些法兰在高温辐照时温度升高的最大温度,专门在上述第二种简化模型的基础上增加了两个引线法兰,如图2-3所示。同样,在此模型中,去掉了面积最大的水冷部件,但水冷接触面处同样需要设定20℃恒温。[align=center][img=高温发射率测量,690,505]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635531233_8765_3384_3.png!w690x505.jpg[/img][/align][color=#000099][/color][align=center]图2-3 增加引线法兰后的简化模型[/align][size=24px][color=#000099]3. 热仿真结果[/color][/size]  对于上述三种仿真模型分别进行了有限元计算。[size=18px][color=#000099]3.1. 常规模型仿真结果[/color][/size]  对于图2-1所示的第一种常规模型,采用稳态形式进行了有限元计算,有限元网格形成则采用标准网格和自动过渡形式,最终热仿真结果如图3-1所示。从图3-1所示仿真结果可以看出,水冷区域温度始终处于20℃,无水冷区域会有一定温升,温升最高处位于腔门和法兰的边缘位置,最高温度为29.5℃,即温度比水冷温度升高了近10℃。[align=center][color=#000099][img=高温发射率测量,690,533]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636108069_1760_3384_3.png!w690x533.jpg[/img][/color][/align][align=center][color=#000099]图3-1常规模型仿真结果[/color][/align][align=center][color=#000099][/color][/align][align=left][size=18px][color=#000099]3.2. 简化模型仿真结果[/color][/size][/align]  对于图2-2所示的第二种仿真模型,采用稳态形式进行了有限元计算,有限元网格形成则采用基于曲率的网格,最大单元大小和最小单元大小都设置为20mm,最终热仿真结果如图3-2所示。从图3-2所示仿真结果可以看出,水冷区域接触面温度始终处于20℃,无水冷区域会有一定温升,温升最高处同样位于腔门和法兰的边缘位置,最高温度为29.3℃,即温度比水冷温度升高不到10℃,与常规模型仿真结果相差0.2℃。[align=center][color=#000099][img=高温发射率测量,630,585]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636218021_996_3384_3.png!w630x585.jpg[/img][/color][/align][align=center][color=#000099]图3-2 简化模型仿真结果[/color][/align][size=18px][color=#000099]3.3. 增加引线法兰后的简化模型仿真结果[/color][/size]  对于图2-3所示的第三种仿真模型,采用稳态形式的有限元计算,有限元网格形成则采用基于曲率的网格,最大单元大小和最小单元大小都设置为20mm,最终热仿真结果如图3-3所示。  从图3-3所示仿真结果可以看出,水冷区域接触面温度始终处于20℃,无水冷区域会有温升。其中腔门法兰和腔门边缘处温升还是与简化模型结果一致,最高温度为29.2℃。增加引线法兰后,中心引线法兰圆心处温度最高,达到了55.5℃,温升达到了25.5℃;而底部引线法兰中心处温度最高为42.4℃,温升达到了22.4℃。由此可见,腔门上的引线法兰会给真空腔体的整体温度均匀性带来严重影响,这就要求在真空腔体法兰的设计中设法规避这种现象。[align=center][img=高温发射率测量,690,634]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636320070_2959_3384_3.png!w690x634.jpg[/img][/align][color=#000099][/color][align=center]图3-3 增加引线法兰后的模型仿真结果[/align][size=24px][color=#000099]4. 总结[/color][/size]  通过对高温半球发射率测量装置中真空腔体的建模,针对不同模型进行了有限元热仿真计算,得到以下结论:  (1)对于现有尺寸和结构形式的双侧开门卧式真空腔体,如果冷却循环水控制在20℃时,样品温度处于高温1200℃,腔门边缘处无水冷区域内的最高温度不会超过30℃,此10℃的温升可以忽略不计,对设备的测试和安全运行没有影响。  (2)为了保证测量装置的加工和运行的便利性,会在两个腔门上布置各种引线法兰和抽气法兰。如果这些法兰的无水冷区域为直径200mm尺寸,那么距离高温1200℃样品最近处的法兰中心温度会达到近56℃,其他位置处的法兰中心温度也会达到42℃左右,这将严重影响真空腔壁温度的整体均匀性,因此在设计和制造中必须设法解决此问题。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】透明样品发射率测量问题

    最近试验中遇到一个棘手问题,就是透明样品的法向发射率测量问题。样品其实就是硅片。目前的实现方案: 硅片压在加热器上加热(例如300度),测量其发射光谱,利用该光谱和标准黑体比较计算发射率。问题: 从理论上讲,硅片是透红外光的,因此加热器的背景辐射也透了过来,这就导致了测量得到的发射率偏高。虽然加热器的背景辐射很容易测量出来,但无法知道样品此时的反射率和透射率(似乎目前国内有测量高温反射率的地方,但还没有测量高温透射率的机构)因此,无法进行计算。不知道大家有没有什么高招啊?

  • 【求助】求助 红外测固体材料的发射率

    问高手一个问题:我想用红外仪测量固体材料的发射率,可不知如何操作,特到此向高手前辈请教!!我实验室已配备Bruker的傅里叶红外仪同时还配了一个黑体发射炉。十分感谢!

  • 求助傅里叶变化红外光谱仪+积分球测薄膜红外反射率(发射率)的问题

    大家好,我有个测量问题一直有疑问,想请教大家。我需要测量镀在玻璃上的红外高反膜层,波长从2000nm - 16000nm,使用的仪器是PE的spectrum 3 + pike 积分球,积分球使用MCT检测器,用液氮冷却。我测量之前,先使用附带的金反射镜,把积分球调到sample 或者 用样片,把积分球调到reference档 进行背景扫描。1. 测量的结果很奇怪,超过50%的点的反射率大于了100%,导致算出来的发射率接近0,这肯定是不正常的。 是不是需要把金反射镜送到计量科学院进行标定?2. 对同一样片,在不同的时间,测出的结果差异很大,这个正常吗? 比如今天测发射率7%,明天测9%,感觉稳定性一般。3. 光阑的大小对结果影响也很大,光阑一般选择多大合适呢?谢谢大家。我被这个问题整得焦头烂额,但又不知道问谁。今天终于找到组织了,希望各位老师给与指教。

  • 【线上讲座241期】材料红外光谱透射比、反射比、发射率的高精度测量方法~~~火热上线 至7月25日

    欢迎大家前来与ppddppdd老师一起就材料红外光谱技术知识的相关问题进行探讨!活动时间:2014年07月16日——2014年07月25日【线上讲座241期】材料红外光谱透射比、反射比、发射率的高精度测量方法 主讲人:ppddppdd--IR版面专家 活动时间:2014年07月16日——2014年07月25日 热烈欢迎ppddppdd老师光临红外光谱版面进行讲座!http://img3.17img.cn/bbs/upfile/2009226105115.gif提要一、透射比绝对测量二、反射比绝对测量三、吸收比绝对测量四、发射率绝对测量五、透射,反射,吸收,发射的相对测量方法http://img3.17img.cn/bbs/upfile/2009226105115.gif欢迎大家前来与ppddppdd老师一起就红外光谱技术相关的内容进行探讨交流!以上资料为ppddppdd老师所著,未经ppddppdd老师和仪器信息网同意任何个人和单位禁止转载!!!提问时间:2014年07月16日--07月25日答疑时间: 2014年07月16日--07月25日特邀佳宾:IR / NIR版面版主、专家以及从事红外光谱分析的同行们参与人员:仪器论坛全体注册用户活动细则:1、请大家就材料红外光谱技术知识的相关问题进行提问,直接回复本帖子即可,自即日起提问截至日期2014年07月25日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :ppddppdd老师您好!我有以下问题想请教,请问:……http://img3.17img.cn/bbs/upfile/2009226105115.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归ppddppdd老师和仪器信息网所有。本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。http://img3.17img.cn/bbs/upfile/2009226105115.gif

  • 纺织品远红外性能及其测试研究

    纺织品远红外性能及其测试研究Research on Textile Far-infrared Performance and the Testing Standards 文/倪冰选 张鹏 杨瑞斌 左芳芳摘要:本文概述了国内外远红外纺织品的发展状况,纺织品远红外性能作用机理、测试方法和评价标准等。远红外纺织品具有非常大的发展前景,需要进一步加强对远红外性能测试方法和评价标准等基础性研究。关键词:远红外线;发射率;温升;评价标准1 远红外纺织品发展概况在纺织服装领域,日本、美国、德国、俄罗斯等发达国家最早开展对远红外技术的应用研究,推动了远红外纺织品的发展。尤其在日本,20世纪80年代中期远红外纤维制品的相关专利在日本大量涌现,形成一股开发远红外功能纺织品的热潮。日本钟纺公司采用陶瓷粉末渗入尼龙或腈纶聚合物中,分别纺出“玛索尼克N” 和“玛索尼克A”远红外纤维;旭化成公司采用碳化锆陶瓷溶液涂层开发出新型尼龙保暖织物“SOLAR-V”,主要用于滑雪衫。我国从20世纪90年代开始开发远红外纺织品。江苏省纺织研究所开发了远红外涤纶短纤维;天津工业大学开发的远红外丙纶,导湿性好,价格低廉,轻便,抗菌防蛀性好。目前开发出的各种远红外纺织品主要采用将超细陶瓷粉末作为添加剂加入到纺丝液中制备远红外纤维,或者采用陶瓷粉末制成的整理液对纺织品进行整理。主要应用的陶瓷粉末:金属氧化物,如Al2O3,TiO2,BaO,ZrO,SiO2等;金属碳化物,如SiC,TiC,ZrC等;金属氮化物,如BN,AlN,ZrN等。2 远红外纺织品作用机理2.1 远红外线红外线位于可见光和微波之间,红外线的波长范围很宽,科学上将其划分为三个波段:近红外波段:0.77~3 μm;中红外波段:3~30 μm;远红外波段:30~1000 μm。由于中红外波段范围很窄,在医疗保健领域,将中红外波段纳入远红外波段 。2.2 作用机理热辐射是以电磁波形式传递能量为特征的传热方法。热辐射主要包括紫外线、可见光、红外线。根据基尔霍夫定律,一个良好的辐射体必然是一个良好的吸收体,即一个物体发射热辐射的能力强,则其吸收的能力也强,两者成正比。人体既能辐射远红外线,又能吸收远红外辐射。由于人体60%~70%为水,根据匹配吸收理论,当红外辐射的波长和被辐照的物体吸收波长相对应时,物体分子共振吸收。人体所发射的热辐射的主波长在10 μm左右,远红外纺织品在吸收外界能量后辐射出3~25 μm的远红外线,与人体能够吸收的红外线相符,能形成共振。远红外纺织品吸收来自人体的红外波能量,并反馈给人体,提高了皮肤温度,从而达到蓄热保暖的目的。被皮肤吸收的热量可以通过介质传递和血液循环,使热能到达肌体组织,达到保健和辅助医疗效果。远红外纺织品一般通过提高表面发射率来提高发射功率。2.3 功能远红外纺织品主要有保暖功能(即保温功能)、保健功能和抗菌功能等。远红外纺织品由于添加了发射率高的远红外线辐射材料,其保温性能表现为利用生物体的热辐射,吸收、存贮外界向生物体辐射的能量,使生物体产生“温室效应”,阻止热量流失,起到良好的保温效果。因此,远红外织物具有显著的保暖作用,适宜制作防寒织物、轻薄型的冬季服装。被皮肤吸收的热量可以通过介质和血液循环,使热能到达肌体组织,可促进人体血液循环和新陈代谢,具有消除疲劳、恢复体力及对疼痛症状缓解的功能,对身体炎症有一定的辅助医疗作用。因此,远红外产品对血液循环或微循环障碍等引起的疾病具有一定的症状改善和辅助治疗功效。适宜制作贴身内衣、袜子、床上用品,以及护膝、护肘、护腕等。纤维中微粒子的加入,使纤维表面出现多孔性,表面积增加,表面活性及表面状态的吸附、扩散等特性明显提高,使产品具有吸汗、除臭、杀菌等功能。抑菌试验表明:远红外纺织品对金黄色葡萄球菌、白色念珠菌、大肠杆菌等致病菌的抑菌率达95%,利用这些特性可制作卫生、医疗用品等产品。3 测试方法与相关标准3.1 标准目前关于远红外纺织品功能测试标准主要有国家标准GB/T 18319—2001《纺织品红外蓄热保暖性的试验方法》、纺织行业标准FZ/T 64010—2000《远红外纺织品》、中国标准化协会标准CAS 115—2005《保健功能纺织品》。GB/T 18319—2001标准规定了用红外辐射计测定纺织品红外反射率和透射率,计算吸收率,以及用点温度计测定辐照升温速率的方法。主要从红外吸收率和红外辐照升温速率两方面测试及评价FZ/T 64010—2000标准规定了远红外纺织品的技术要求、试验方法、检验规则、结果判定和使用说明等。该标准以法向发射率作为远红外纺织品远红外功能的评价指标,以试样法向发射率减去对比样(即相应非远红外产品)法向发射率的差值作为法向发射率提高值。试验仪器为红外光谱仪和黑体炉。最后计算的法向发射率是8~15μm波段的法向发射率。CAS 115—2005标准采用测定法向发射率的方法,制定了远红外功能评价指标,是我国目前适用于保健功能纺织品的唯一标准,其中关于具有发射远红外线功能纺织品的部分规范了其术语定义、试验方法、结果判定、标志等内容,适用于远红外法向发射率大于0.2的各种织物、粉末等材料及导热物体的远红外法向发射率的检测。样品法向发射率采用温度为100℃时样品法向全辐射亮度与相同温度下标准黑体法向全辐射亮度比较的方法测量。试验仪器包括红外光谱仪(或红外辐射计)和黑体炉。计算机通过程序将黑体炉的辐射亮度、试样的辐射亮度、对比样的辐射亮度进行数据处理,计算出4 ~16 μm波段的法向发射率。三个标准的内容比较如表1所示。表1 三个标准的比较标准领域性质波长范围技术要求洗涤性能FZ/T 64010-2000行业标准产品标准8~15μm远红外纺织品法向发射率提高值应≥8.0%印染后整理织物洗涤10次后,法向发射率提高值应≥7.0%GB/T 18319-2001国家标准方法标准0.8~10μm——CAS115-2005协会标准产品标准4~16μm法向发射率提高值应不小于0.08,其法向发射率应不小于0.80;洗涤30次后,法向发射率提高值应不小于0.063.2 测试指标与方法远红外纺织品主要功能是保暖功能,因此其保温性能为主要考查指标。针对远红外纺织品,评价其远红外性能的指标主要有发射率和温升。保健功能指标主要为血液的微循环等。卫生指标只是附加功能,只有当使用要求时才需要考查。3.2.1 发射率只要不是绝对零度,任何物体都能辐射红外电磁波。物质远红外线辐射能量强弱的指标有辐射功率和辐射度等,但在实际应用中,常采用发射率来表征。发射率指在一个波长间隔内,在某一温度下测试试样的辐射功率(或辐射度)与黑体的辐射功率(或辐射度)之比。发射率是介于0~1之间的正数。一般发射率依赖于物质特性、环境因素及观测条件等。发射率可分为半球发射率和法向发射率。半球发射率又分为半球全发射率、半球积分发射率、半球光谱发射率;法向发射率又分为法向

  • 不锈钢304高温热物理性能汇编

    不锈钢304高温热物理性能汇编

    [align=left][size=16px][color=#3366ff]摘要:304不锈钢应用领域十分广泛,准确了解其各种热物理性能参数十分重要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文汇总了目前国际上304不锈钢的高温热物理性能(热导率、比热容、热扩散率、密度、总半球发射率和总法向发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,有利于提高高温设计和热仿真中参数输入的准确性。[/color][/size][/align][align=left][size=16px][color=#3366ff][/color][/size][/align][hr/][align=left][size=16px][color=#3366ff][/color][/size][/align][align=left][size=24px][color=#3366ff]1. 简介[/color][/size][/align][size=16px][color=#000000] 不锈钢[/color][color=#000000]304[/color][color=#000000]是一种通用性的不锈钢,它广泛地用于制作要求综合性能良好[/color][color=#000000]([/color][color=#000000]耐腐蚀和成型性[/color][color=#000000])[/color][color=#000000]的设备和[/color][color=#000000]部件[/color][color=#000000]。[/color][color=#000000]典型[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]的材料组分如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]1-[/color][color=#000000]1[/color][color=#000000]所示[/color][color=#000000]。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]1-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]3[/color][color=#0033cc]04[/color][color=#0033cc]不锈钢[/color][color=#0033cc]组分[/color][/size][/align][size=16px][/size][align=center][size=16px][img=,690,92]https://ng1.17img.cn/bbsfiles/images/2021/09/202109251717569757_300_3384_3.png!w690x92.jpg[/img][/size][/align][size=16px][color=#000000] 由于[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]应用领域十分广泛,准确了解其各种热物理性能参数十分重要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文将汇总目前国际上[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]的高温热物理性能(热导率、比热容、热扩散率、密度[/color][color=#000000]总半球发射率[/color][color=#000000]和[/color][color=#000000]法向[/color][color=#000000]半球发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,[/color][color=#000000]有利于[/color][color=#000000]提高高温设计和热仿真中参数输入的准确性。[/color][color=#000000] 需要说明的是,这里所汇编的[/color][color=#000000]304[/color][color=#000000]不锈钢高温热物理性能数据都是小于熔点温度以下的数据,即[/color][color=#000000]304[/color][color=#000000]不锈钢在室温[/color][color=#000000]~[/color][color=#000000]1200[/color][color=#000000]℃范围内的热物理性能数据。[/color][/size][align=left][size=24px][color=#3366ff]2. 热导率、比热容、热扩散率和密度数据[/color][/size][/align][size=16px][color=#000000] 热导率、比热容、热扩散率和密度数据来自[/color][color=#000000]英国国家物理量实验室([/color][color=#000000]N[/color][color=#000000]PL[/color][color=#000000])[/color][color=#000000]出版的图书[/color][color=#000000][1][/color][color=#000000],[/color][color=#000000]其中热导率是比热容、热扩散率和[/color][color=#000000]密度[/color][color=#000000]三个独立测试结果的乘积得到[/color][color=#000000]。[/color][color=#000000]比热容采用[/color][color=#000000]差热扫描量热仪([/color][color=#000000]D[/color][color=#000000]SC[/color][color=#000000])进行测试,热扩散率采用激光闪光法测定仪进行测试,[/color][color=#000000]密度[/color][color=#000000]采用顶杆法热膨胀仪测试[/color][color=#000000]线膨胀率后换算为体膨胀率后得到[/color][color=#000000]。[/color][color=#000000]热导率、比热容、热扩散率和密度随温度的变化规律分别如[/color][color=#000000]图[/color][color=#000000]2-[/color][color=#000000]1[/color][color=#000000]~[/color][color=#000000]图[/color][color=#000000]2-[/color][color=#000000]4[/color][color=#000000]所示。[/color][/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824489537_964_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]热导率与温度的关系[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824493209_1890_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]2[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]热扩散[/color][color=#0033cc]率[/color][color=#0033cc]与温度的关系[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824494351_7987_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]3[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]比热容与温度的关系[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824495387_314_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]2-[/color][color=#0033cc]4[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]密度与温度的关系[/color][/size][/align][size=16px][color=#000000] 在这里需要说明的是密度随温度的变化结果,是由热膨胀系数测试获得,其中认为[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]是各项同性且温度变化过程中质量不发生变化。由此通过测试[/color][color=#000000]304[/color][color=#000000]不锈钢[/color][color=#000000]的线膨胀率来得到体膨张率和样品的体积变化,最终用恒定质量除以不同温度下的体积得到密度随温度的变化结果。[/color][color=#000000] 汇总热导率、比热容、热扩散率和密度数据,如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]2-[/color][color=#000000]1[/color][color=#000000]所示。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]2-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]热导率、比热容、热扩散率和密度数据汇总表[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824494583_14_3384_3.png[/img][/size][/align][align=left][size=24px][color=#3366ff]3. 总法向发射率和总半球发射率数据[/color][/size][/align][size=16px][color=#000000] 发射率也是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的最重要基础物理性能数据。[/color][color=#000000] 对于[/color][color=#000000]304[/color][color=#000000]不锈钢很少有文献报道总半球向发射率数据,大多为法向光谱发射率和某一波长范围内的法向发射率,这些数据在热仿真和传热计算中并不十分好用。本文[/color][color=#000000]首先[/color][color=#000000]选择了[/color][color=#000000]英国国家物理量实验室([/color][color=#000000]N[/color][color=#000000]PL[/color][color=#000000])[/color][color=#000000]出版的图书[/color][color=#000000][1][/color][color=#000000]中报道的总法向发射率[/color][color=#000000],其三种表面状态下总半球发射率随温度变化[/color][color=#000000]数据如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]3-[/color][color=#000000]1[/color][color=#000000]所示[/color][color=#000000],[/color][color=#000000]测试结果如[/color][color=#000000]图[/color][color=#000000]3-[/color][color=#000000]1[/color][color=#000000]所示。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]3-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]作为不同温度和表面处理状态下的[/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]总[/color][color=#0033cc]法向[/color][color=#0033cc]发射率测试数据[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824497476_3778_3384_3.png[/img][/size][/align][size=16px][/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824496712_2449_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]3-[/color][color=#0033cc]1[/color][color=#0033cc] [/color][color=#0033cc]不同热处理后[/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]不同温度下的总[/color][color=#0033cc]法向[/color][color=#0033cc]发射率[/color][/size][/align][size=16px][color=#000000] 由[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]3-[/color][color=#000000]1[/color][color=#000000]所示[/color][color=#000000]数据可以看出,[/color][color=#000000]304[/color][color=#000000]不锈钢的发射率整体偏小,即使在高温氧化热处理后其高温发射率也没有超过[/color][color=#000000]0[/color][color=#000000].8[/color][color=#000000]。[/color][color=#000000] 另外,本文还收录了采用瞬态量热法对抛光处理后的[/color][color=#000000]304[/color][color=#000000]不锈钢进行的总半球发射率的测试数据[/color][color=#000000][2][/color][color=#000000],并将此总半球向发射率与总法向发射率进行比较,比较数据如[/color][color=#000000]表[/color][color=#000000] [/color][color=#000000]3-[/color][color=#000000]2[/color][color=#000000]所示,比较曲线如[/color][color=#000000]图[/color][color=#000000]3-[/color][color=#000000]2[/color][color=#000000]所示。[/color][/size][align=center][size=16px][color=#0033cc]表[/color][color=#0033cc] [/color][color=#0033cc]3-[/color][color=#0033cc]2[/color][color=#0033cc] [/color][color=#0033cc]抛光处理后的[/color][color=#0033cc]304[/color][color=#0033cc]不锈钢[/color][color=#0033cc]总[/color][color=#0033cc]半球[/color][color=#0033cc]发射率[/color][color=#0033cc]与总法向发射率[/color][color=#0033cc]测试数据[/color][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824497659_9816_3384_3.png[/img][/size][/align][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250824500269_2586_3384_3.png[/img][/size][/align][align=center][size=16px][color=#0033cc]图[/color][color=#0033cc]3-[/color][color=#0033cc]2[/color][color=#0033cc] [/color][color=#0033cc]总半球发射率与[/color][color=#0033cc]总[/color][color=#0033cc]法向[/color][color=#0033cc]发射率[/color][color=#0033cc]比较[/color][/size][/align][size=16px][color=#000000] 从上述两种测试方法获得的结果可以看出,感应加热方式测试得到总半球发射率要总法向发射率高出[/color][color=#000000]1[/color][color=#000000]5[/color][color=#000000]%~[/color][color=#000000]20[/color][color=#000000]%[/color][color=#000000]左右,而电子枪单面加热方式得到的总半球发射率在[/color][color=#000000]5[/color][color=#000000]00[/color][color=#000000]℃后开始变大。总之,通过光谱测量方式得到的[/color][color=#000000]总法向发射率一般会比总半球发射率偏小,[/color][color=#000000]3[/color][color=#000000]04[/color][color=#000000]不锈钢在不同表面状态和更高温度下的总半球发射率还需采用专门的测试设备进行测试。[/color][/size][align=left][size=24px][color=#3366ff]4. 参考文献[/color][/size][/align][size=16px][color=#000000][1] [/color][color=#000000]Mills K C. Recommended values of thermophysical properties for selected commercial alloys[M]. Woodhead Publishing, 2002.[/color][color=#000000][2] [/color][color=#000000]Roger C R, Yen S H, Ramanathan K G. Temperature variation of total hemispherical emissivity of stainless steel AISI 304[J]. JOSA, 1979, 69(10): 1384-1390.[/color][color=#000000][/color][color=#000000][/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=16px] [/size][align=center][size=16px][img=304不锈钢热物理性能,690,371]https://ng1.17img.cn/bbsfiles/images/2021/09/202109250830562905_3717_3384_3.png!w690x371.jpg[/img][/size][/align]

  • 注射器拔出力测试仪

    注射器拔出力测试仪也叫注射器针头护帽拔出力测试仪,是专业检测预灌封注射器组合件的试验仪器,该仪器符合YBB00112004国标检测,注射器拔出力测试仪由济南三泉中石研发生产。  注射器拔出力测试仪的研发工程师告诉我们:市场上预灌封注射器质量问题十分严重,国家药品监督管理局不定期进行抽查,发现不合格产品居多,主要是易氧化物的最大残留量、容量允差和注射针的牢固度等问题,影响到产品的使用安全。另外注射器针头护帽的拔出力也是很多企业没有重视的检测项目。下面给大家介绍下注射器拔出力测试仪的性能参数:  测试原理  将试样装夹在医药包装撕拉力测试仪两个夹头之间,两夹头做相对运动,通过特殊夹头将进行穿刺或开启力试验,通过注射器拔出力测试仪测力系统精确测试此过程中的力值变化与位移变化,从而得出相应力值数据。  适用范围  注射器拔出力测试仪 YYB-01应用于安瓿瓶、丁基胶塞、铝塑组合盖、聚丙烯组合盖、薄膜、复合膜、药用铝箔、PVC硬片、预灌封注射器、注射针等药品包装材料,进行折断力、穿刺力、滑动性、开启力、拉伸强度、热合强度、剥离强度等拉压撕试验。  仪器特点  注射器拔出力测试仪支持多种试验模式,配合不同试验夹具可满足不同实验要求,夹具更换方便快捷。仪器采用进口品牌高精度传感器,测试结果精确稳定,无极调速可满足不同实验对试验速度的要求。医药包装撕拉力测试仪是一款多用途高性能医药包装综合性能测试仪器。注射器拔出力测试仪应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位。

  • 安捷伦710 如何测试仪器分辨率、波长示值误差和重复性、最小光谱带宽

    2014年了,祝仪器信息网的朋友们新年快乐,新的一年事业有成、阖家欢乐!1.最近看到一份公司icp的仪器验收报告,其中有一项仪器分辨率的测试,描述只是说采用仪器软件内建立的方法,请问大家是如何测试仪器分辨率的?(公司icp型号为安捷伦710,原瓦里安)2.JJB 768-2005国家计量检定规程-发射光谱仪 ,对icp检定项目共五项:波长示值误差和重复性、最小光谱带宽、检出限、重复性和稳定性。请问大家波长示值误差和重复性、最小光谱带宽是如何测试的? 标准中提到的“基线扫描”、“波长示值”是怎么回事?补充:JJG (教委) 015-1996 耦等离子体原子发射光谱仪检定规程 5.5.3中提到“获取B249.773nm、Na589.592nm的扫描光谱图,以图示谱线峰值对应的波长作为波长测量值“,请问如何获得扫描光谱图?

  • 注射器连接力测试仪

    注射器连接力测试仪是制药机械检测仪器中应用较为广泛的一种,全称为注射器针与针座连接力测试仪,这款仪器由济南三泉中石研发并生产,注射器连接力测试仪符合国标YBB00112004的检测。注射器是一种常见的医疗用具,用于医疗设备、容器、如有些色谱法中的科学仪器穿过橡胶隔膜注射。将气体注射到血管中将会导致空气栓塞,从注射器中去除空气以避免栓塞的办法是将注射器倒置、轻轻敲打、然后在注射到血流之前挤出液体。注射器针筒可以是塑料也可以是玻璃制成的,并且通常上面都有表示注射器中液体体积的刻度指示。注射器连接力测试仪的检测对于保证医疗器械的质量有着重要的意义。下面介绍下注射器连接力测试仪的基本信息:技术特征大液晶显示测试过程、PVC操作面板配备微型打印机,快速打印实验结果通过调换不同夹具,可扩展进行多种试验项目限位保护、自动回位等智能配置,保证用户的操作安全丝杠传动系统速度随意调节,注射器连接力测试仪保证试验速度及位移准确性一机具备拉压试验、剥离强度、开启力、穿刺力等四项单独实验项目,满足不同包材测试需要专业电脑软件操作系统,注射器连接力测试仪方便用户连接计算机进行数据保存、分析、打印采用进口传感器系统,注射器连接力测试仪的测试精度在行业内遥遥领先,有效的保证了试验结果的准确性仪器配置标准配置:注射器连接力测试仪主机、微型打印机、胶塞穿刺力夹具、拉环开启力夹具、测试软件、通信电缆选用配置:折断力夹具、组合盖开启力夹具、拉伸夹具等注射器连接力测试仪是一款多用途高性能医药包装综合性能测试仪器,广泛应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位,济南三泉中石研发生产的注射器连接力测试仪现已被多家知名药企采购使用,包括北京协和药厂、哈药集团、海正辉瑞制药、黑龙江哈尔滨医大药业、山东鲁抗医药集团、深圳华润九新药业、河北爱尔海泰制药等近千家企业。文章来自知名的检测仪器研发生产厂家--济南三泉中石实验仪器有限公司官方网站,欢迎转载,转载请标明出处。

  • 荧光光谱仪发射谱的测量原理?

    发射谱,通常称为荧光谱。在特定激发波长情况下,一段发射波长和该波长荧光强度对应曲线。如果是扫描光谱仪,激发波长选择后,发射侧光栅扫描,发射单色仪的波长对应检测器强度的曲线;如果是CCD检测器,就是对应像素的波长和强度的关系。光栅可能也需要扫描来侧高分辨率的宽范围的图谱。测量时为了提高信噪比,可以在激发侧加带通滤光片来最大限度抑制杂散光,在发射侧添加高通滤光片(低通,上转换时候)来消除二次散射光。通常设定激发波长后,发射范围设定不要包括激发波长,当然,PLQY特殊测试要求除外。要考虑检测器的响应线性区间。

  • 金属所材料热物理性能测试研究五十年

    金属所材料热物理性能测试研究五十年

    [color=#990000]本文转载自中科院沈阳金属研究所官网。[/color][color=#990000]编者按:中国的热物理性能测试技术的研究起步于1960年左右,基本与欧美处于同步发展水平,以中科院沈阳金属研究所何冠虎和周熙宁老师为代表的老一辈学者则是我国热物理性能测试领域的开拓者。这里转载两位前辈所撰写的文章,一方面是为了部分展示我国热物理性能测试技术的发展历史,另一方面是表达对前辈老师们的崇高敬意。[/color][hr/][b][size=18px]金属所材料热物理性能测试研究五十年[/size][/b]作者:何冠虎 周熙宁 准确的热物理性能数据是材料制备、热过程控制、热结构设计计算的基础。金属所建所之初,在开展金属物理基础研究的同时,十分重视物理性能测试方法和测试装备的研究工作。1958高温测试研究室正式成立,其任务是结合高温材料的发展与使用,在高温测试方面进行有关的系统研究,为金属所日后成为全国高温热物理性能测试基地的重要成员单位之一打下了坚实的基础。 1961年,国家科委决定成立包括一批研究所和高校在内的高温测试基地,承担科研,协作和仲裁任务,由李薰教授任领导小组组长,严东生教授和姚桐斌教授任副组长,周本濂和周熙宁等同志任组员。从此金属所在李薰所长的领导下,以该基地重要成员单位的面貌投入到热物性测试的研究工作中。 60年代,金属所在国外严密封锁和资料匮乏的情况下,依靠自己的力量,初步建成了一批测试装置,并有不少是创新性的研究工作。如1963年基本建成的纵向热流绝对法金属热导率测试装置,中心加热器上下试样组合方式有别于传统的热源与热汇两端设置,能充分利用中心热源功率,以工业纯铁为标准参考试样,所得结果表明在70℃~800℃范围内的热导率,接近文献结果;金属所于1963年基本建成比长仪直测法线膨胀仪。建成电热稳态法高温热导率测试装置。首先提出弹性模量测试的端点悬挂声频共振法。克服了高温下试样内耗大不易激发振动的困难。端点悬挂声频共振法高温弹性模量测试方法和装置与电热稳态法石墨高温热导率测试方法和装置于1965年通过委托单位专家的验收鉴定,全部合格。此外,1500℃电脉冲石墨高温比热,1000℃脉冲回波法钢材小试样弹性模量,1000℃声频共振弹性模量,1000℃示差线膨胀装置也都相继建立。 70年代在我国第一颗返地卫星研制任务的带动下,金属所的高温热物性测试研究进入全盛的发展时期。卫星裙部热控材料钼合金板材厚度仅几个毫米,热导、比热、模量、热膨胀、热辐射等性能均是必不可少的设计参数,1960年代建立的测试方法已不能满足板材热物性的需求。于是激光热导,铜卡计比热,板材示差法和直测法线膨胀,电热稳态法半球发射率,弯曲共振法弹性模量等一系列测试装置相继建成。1974年7月在北京召开的第一届空间热物理会议全面反映了卫星热控设计,热控材料制备,热模拟试验和热物理性能测试方法和装备的最新结果,金属所的热物性测试研究工作不仅满足了任务需求,而且测试研究水平上了一个新台阶。这一阶段的代表性成绩有: (1)金属所在国内首批合作研制激光脉冲热导仪,该项目在1978年获全国科学大会奖以后,金属所又在激光脉冲加热-降温测量比热容新方法和整机微机运控研究中取得成果。至今,金属所的激光脉冲法热导率装置已为所内和国内 70多个单位提供了400多种材料,包括金属,合金,陶瓷,石墨,橡胶,高聚物等的可靠数据。(图片1为仪器研制现场)。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010292119142790_2928_3384_3.jpg!w245x186.jpg[/img] [/align] (2)高温半球向全发射率测试装置的建立与发展,1971年至1974年热物性组在建成电热稳态法测试装置的同时,为一批批板材及时可靠地提供了大量数据,为金属所承担的卫星裙部蒙皮的研制和卫星的回收起到了重要作用。在此基础上设计制成的自动记录高温辐射仪是我国第一台三参数(温度,电流,电压)实现自动记录的半球向全发射率测试装置,该装置至今已为所内和国内高辐射率节能涂料,金属高辐射涂层材料,难熔合金管材和板材等提供了大量发射率测试数据。 (3)建成高精度真空自动绝热控制铜量热计比热测试装置,经对α-Al2O3标准参考试样热温测试表明与美国NBS、前苏联科学院数据相差3%,而且测量了它的熔化潜热。金属所的材料热物理性能测试研究始终以材料研制为背景,不断建立新方法和新装备,服务于材料研制的需求。目前金属所仍然保持着结构材料所必须的物理性能,如热扩散率和热导率、比热容、线膨胀系数、弹性模量、剪切模量、泊松比,低温DSC相变、熔点、密度等系列测试装备,并建立了碳-碳材料高温双向强度测试装置(图片2为双向试验装置)。测试服务范围已遍及所内和国内材料研制重点企业,研究院所和高等院校100多个单位600多种各类固体材料的高温(2600℃)和低温(-150℃)测试需求,金属所已经成为全国提供热物理性能测试数据最主要的单位之一。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010292120049613_8007_3384_3.jpg!w252x201.jpg[/img][/align] 90年代以来,周本濂同志在研究固体薄膜材料热膨胀动态过程中,发现了温度升高在先、热膨胀有滞后的现象,说明瞬态加热时薄膜材料内部存在巨大的热应力。与此同时,热物性研究组在中国科学院院长基金特别资助项目和多项国家自然科学基金项目资助下开展了二维材料热输运性的热膨胀的研究,取得了可喜的成果,并在863课题中得到应用。获得了不同工艺条件下金刚石膜的热扩散率,建立了由TEA CO2脉冲激光(0.1s脉宽),(HgCdTe)红外探测器(0.01s响应)和DAS 820M瞬态采集仪组成的测试系统,不仅测出了50um铝、铜薄膜的热扩散率,而且成功地探测了0.35mm金刚石膜的温升曲线和热扩散率。不同工艺制备的金刚石膜有不同的热扩散率。 采用CCD非接触法测量薄膜的热膨胀系数,创建了由准直卤素光源,光学放大系统、CCD采集处理系统组成的测试系统,试样因升温膨胀时,其像边缘移动,在CCD图像上出现两个边缘像,用滤波平滑处理和多点判据法可以确定移过的光敏元数,最终计算出试样伸长量。本方法的长度分辨率达到0.2um的高精度,已获得国家发明专利。 金属所的热物性测试研究之所以在国内有一定的地位,除了为材料研究提供测试数据外,是与周本濂教授力主创新,不断开拓新领域,促进国际学术交流,多次应邀在亚洲热物性会议上作大会邀请报告并获得热烈反响和好评分不开的。在一次于美国召开的国际热物性大会上,周本濂教授作了介绍我国热物性研究概况的报告及金属所多人作了热导率和比热容测试的报告后,美国信息及数据综合和分析中心(CINDAS)主任,著名科学家,美籍华人何焯彦(C.Y.Ho)教授十分感慨地说,想不到中国在热物性研究领域有如此高的水平。 在即将迎来金属所成立五十周年之时,回顾热物性测试研究的发展历程,抚今追昔,我们十分怀念已故著名科学家李薰院士和周本濂院士,是他们的高瞻远瞩和执着追求带来了金属所热物性测试研究的成就,是他们的拓展深化和求实创新精神为我们树立了榜样,激励着我们不断前进。我们相信,金属所热物性测试研究之舟,在改革开放的大潮中,一定能绕过礁石,冲破急流,在曲折中登上新的航程,驶向胜利的彼岸。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】结果异常:固相反射率超过100%

    最近在测试固相薄膜的反射率的过程中,发现反射率值竟然高于了100%。测试过程如下:1)在积分球附件的reference和sample两个开口处,按要求放入BaSO4板,然后进行基线扫描2)取下sample处的BaSO4板,放入待测的镀膜玻璃片,这里要说明的是玻璃片上膜面的尺寸是小于开口处的尺寸的,开口处的尺寸大概是直径为1.8cm的圆形开口。3)在测试软件中,选择“自动调零”,此时显示反射值在100附近波动,点击“开始测试”,软件界面中开始出现所扫描的反射图谱,发现在800-400nm这个较长的波段内发射率都大于100.关于以上的异样结果,我认为可能的原因是:(1)玻璃片上的膜面尺寸小于积分球开口,从而使得入射光斑照射在没有镀膜的玻璃表面上导致异常情况出现。(2)膜材料本身引起的。膜材料为二氧化钛,本身具有较高的反射系数,如果其反射系数大于BaSO4的话,可能造成结果异常。以上的两个原因可能引起异常结果产生,但是真正的原因为什么?我却无从判断,恳请各位前辈和高手帮忙!

  • 【求助】电导率测试仪相关知识

    [em09509]我是一个农民,现在在做无土种植实验,买了一电导率测试仪(上海宇策电子生产的115笔式电导度),发现它的测试范围为0.0-99.9us/cm.测出营养液的数据大多为70-80us/cm,无法按照所学那样测出ms/cm值来,另外买的话又要花不少钱,请问各位老师有什么办法可以转换或者其它什么办法。 谢谢各位 谢谢各位的回答,有些问题我表达的不是很清楚,现在补充一下:营养液的要求是1-4ms/cm,我严格按照营养液配方配制的营养液,现在的值是70-80us/cm,换算后相差的太远了,我想是不是电导率测试仪测试范围太小造成数据的不对,有没有什么办法让我这只测试范围为0.0-99.9us/cm的测试仪测出1-4ms/cm的数据。不然我得花钱重新购买了。 恳求各位老师回答 谢谢各位老师 我明白了 另外我是新手 积分不多 给大家的分不多 还请谅解

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制