当前位置: 仪器信息网 > 行业主题 > >

水泥浆膨胀泌定仪

仪器信息网水泥浆膨胀泌定仪专题为您提供2024年最新水泥浆膨胀泌定仪价格报价、厂家品牌的相关信息, 包括水泥浆膨胀泌定仪参数、型号等,不管是国产,还是进口品牌的水泥浆膨胀泌定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水泥浆膨胀泌定仪相关的耗材配件、试剂标物,还有水泥浆膨胀泌定仪相关的最新资讯、资料,以及水泥浆膨胀泌定仪相关的解决方案。

水泥浆膨胀泌定仪相关的论坛

  • 核磁共振_应用研究水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变

    应用背景水泥基材料作为一种多相复合材料,其水化硬 化过程中的相组成和转变一直是人们关注的热点。水作为水泥基材料的重要组分,与水泥粉体混合后初始以液相状态填充在水泥颗粒的间隙,在随后的水化硬化过程中,一部分参与水化反应变成化学结合水,成为凝胶产物微晶的一部分,这部分水通过干燥蒸发的方法也不能去除,因而也被称为不可蒸发水;现代水泥基材料科学的研究表明,不可蒸发水的含量与材料水化反应的程度和产物的晶体结构相关,而可蒸发水的含量及其状态与材料的抗冻性、抗腐蚀性、徐变、干燥收缩等性能关系密切.由于水泥水化反应随时间变化的连续性,不可蒸发水和可蒸发水的含量及状态也在不断变化.研究水泥基材料中水的相转变,探索不同状态的水的演变规律,对于充分认识水泥基材料的组成和结构,揭示材料的劣化机理具有重要意义.低场核磁共振技术对多孔介质中水的研究应用已逐步从生命科学、地球物理等领域扩展到建筑材料领域,该方法可在不破坏样品的前提下,利用水分子中质子的弛豫特性研究水含量及其分布的变化,具有快速、连续、无损的优势。下面简单介绍采用核磁共振测试系统水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变。核磁共振分析各试样弛豫信号经反演后的分布如图 1 所示http://pic.yupoo.com/niumagqw2/FzHASNRH/ZttTn.png,所有样品的 弛豫时间分布均呈1 个或2 个主峰,并伴有少量微弱的次峰。主峰分布在0.1~10.0 ms 的范围内,随着养护时间的延长,弛豫峰逐步向左移动,即分布趋向于短弛豫时间。试样弛豫时间分布趋短是由于随着龄期的增长水化产物不断增多,逐步将原先较大的孔隙填充细化,未反应的可蒸发水逐渐分布在较小的孔隙中.如图2 所示,各试样平均弛豫时间随龄期增长而下降,早期1~7 d 内下降快,之后变化平缓。http://pic.yupoo.com/niumagqw2/FzHASxqc/fV08h.png从上图中可以看出中的3 条曲线变化趋势一致,其斜率均由 水灰比大的试样其平均弛豫时间大于水灰比小的,饱水养护的大于密闭养护的。(参考文献:水泥浆体中可蒸发水的1H 核磁共振弛豫特征及状态演变》 硅 酸 盐 学 报 2009, Vol.37, NO.10

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 控制污泥膨胀的调节运行工艺措施有哪些?

    调节运行工艺控制措施对工艺条件控制不当产生的污泥膨胀非常有效。具体方法有:1、在曝气池的进口加粘土、消石灰、生污泥或消化污泥等,以提高活性污泥的沉降性能和密实性。2、使进入曝气池的污水处于新鲜状态,如采取预曝气措施,使污水尽早处于好氧状态,避免形成厌氧状态,同时吹脱硫化氢等有害气体。3、加强曝气强度,提高混合液溶解氧浓度,防止混合液局部缺氧或厌氧。4、补充氮、磷等营养盐,保持混合液中碳、氮、磷等营养物质的平衡。在不降低污水处理功能的前提下,适当提高F/M。5、提高污泥回流比,降低污泥在二沉池的停留时间,避免在二沉池出现厌氧状态。6、当PH值低时应加碱性物质调节,提高曝气池进水的PH值。7、利用在线仪表的手段加强和提高化验分析的时效性,充分发挥预处理系统的作用,保证曝气池的污泥负荷相对稳定。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 活性污泥中非丝状菌膨胀的条件和成因

    非丝状菌膨胀是由于菌胶团细菌本身生理活动异常,导致活性污泥沉降性能恶化。可分为两种。一种是由于进水中含有大量的溶解性有机物,使污泥负荷F/M太高,而进水中缺乏足够的氮、磷等营养物质,或者混合液内溶解氧不足。高F/M时,细菌会把大量的有机物质吸入体内,而由于缺乏氮、磷或溶解氧不足,又不能在体内进行正常的分解代谢。此时细菌会向体外分泌出过量的多聚糖类物质。这些物质由于分子式中含很多羟基而具有较强的亲水性。使活性污泥的结合水高达400%(正常污泥结合水为100%左右)以上。呈粘性的凝胶状,使活性污泥在二沉池内无法进行有效的泥水分离及浓缩。这种污泥膨胀称为粘性膨胀。另一种非丝状菌膨胀是由于进水中含有大量的有毒物质,导致污泥中毒。使细菌不能分泌出足够的粘性物质,形不成絮体,因此也无法在二沉池进行有效的泥水分离及浓缩。这种污泥膨胀有时又称为非粘性膨胀或离散性膨胀。

  • 【原创大赛】【开学季】不同缓凝剂和聚羧酸类缓凝剂复配对水泥浆液粘度影响

    【原创大赛】【开学季】不同缓凝剂和聚羧酸类缓凝剂复配对水泥浆液粘度影响

    聚羧酸减水剂不仅能大大提高高强混凝土的力学性能,而且能提供简便易行的施工工艺。聚羧酸类减水剂被称之为第三代新型聚合物减水剂,是目前应用前景最好、综合性能最优异的.其最主要的优点:①低掺量(0.2%~0.5%)而发挥高的分散性能,减水率高达30%以上;②保坍性好,90min坍落度基本无损失;③分子结构自由度大,外加剂制造技术上可控制的参数多,高性能化的潜力大;④由于在合成中不使用有毒物质甲醛,因而对环境不造成任何污染。聚羧酸具有缓凝特性,能够显著延缓水泥水化及硬化过程,使水泥石的后期水化更充分、水化产物结构更紧密更有力量,各龄期混凝土抗压强度都有较大提高.在水泥中添加0.3%聚羧酸减水剂(PE|G600:400),32.5#水泥3 d,7 d和28 d抗压强度分别提高了50.4%,40.8%,35.1%,42.5#水泥3 d,7 d,28 d的抗压强度分别提高了16.7%,31.0%和22.3%。聚羧酸减水剂加入水泥拌合物中后,在水泥水化初期,一方面减水剂具有吸附分散作用,但另一方面,在水泥水化的碱性介质中,减水剂分子链中的活性基团(如-COO-、-SO3-)会与水泥水化生成的离子(如钙离子)形成不稳定络合物,从而抑制CA、C3S、C2S水化,阻碍水化矿物最初相的析出、减少水化产物CH晶体的生成,表现为减缓浆体结构的发展、降低水化放热、减小化学收缩。聚羧酸系高效减水剂分子结构中含有羟基(-OH)、羧基(-COO-)、磺酸基[font=Times New Rom

  • 请教,有没有可以检定DMA和热膨胀议的地方?

    不知道有没有可以检定DMA和热膨胀仪的地方?我们单位是个检测中心,所有的仪器都要进行计量检定,找了中国计量院,可他们只能检TGA和DSC,DMA和热膨胀仪都检不了,请教大家,有没有可以检这两台仪器的地方?谢谢了!

  • 活性污泥中丝状菌膨胀的条件和成因

    正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。如果活性污泥中丝状菌数量太少,则形不成大的絮状体,沉降性能不好 如果丝状菌过度繁殖,则形成丝状菌污泥膨胀。在正常的环境中,菌胶团的生长率远大于丝状菌,不会出现丝状菌过度繁殖的现象。但如果活性污泥环境条件发生不利变化,丝状菌因其表面积较大,抵抗环境变化能力比菌胶团的细菌强,丝状菌的数量就有可能超过菌胶团细菌,从而导致丝状菌污泥膨胀。引起活性污泥中丝状菌膨胀的环境条件有:1、进水中有机物质太少,曝气池内F/M低,导致微生物食料不足。2、进水中氮、磷等营养物质不足。3、PH太低,不利于微生物生长。4、曝气池混合液内溶解氧太低,不能满足微生物需要。5、进水水质或水量波动太大,对微生物造成冲击。6、进入曝气池的污水因“腐化”产生出较多的H2S(超过1-2mg/l)时,还会导致丝状硫磺菌的过量繁殖,使丝硫磺菌污泥膨胀。7、丝状菌大量繁殖的适宜温度在25℃~30℃,因而夏季易发生丝状菌污泥膨胀。

  • 【分享】利用膨胀系数测定密度

    膨胀系数在密度仪测密度中的应用膨胀系数的应用在生产过程中,密度检测受温度影响较大,为得到固定温度下的密度,可采用膨胀系数法,较方便的测定密度,例如便携式密度仪在输入膨胀系数后,在生产过程温度为70至75摄氏度间,可测定出较准确的密度值,省去对物料恒温的过程,节约时间

  • 林赛斯热膨胀仪-激光-相变-----自荐

    热膨胀仪用于测量样品随温度变化而产生的膨胀;测量样品随温度或时间变化的函数关系,测得样品长度变化(Delta L)或CTE值(热膨胀系数)的膨胀信息。激光热膨胀--未来热膨胀测量技术的趋势—高精度和高分辨率。L75 激光热膨胀仪的优越性体现在精度是传统顶杆热膨胀仪的33倍。测量原理是麦克尔逊(Michelson)干涉计,因而消除了系统误差,专利保护的测量技术可以研究最新的高科技超低膨胀材料(ULE),Linseis成功地将最新的技术应用于此系列热膨胀仪和优化设计系统,使之易用性和传统的热膨胀仪一样。相变热膨胀仪--L78 RITA 是特别适合于研究和测量TTT,CHT和CCT图表。特殊的加热炉可以加热和制冷速度高于400°C/s。系统符合标准 ASTM A1033。所有的关键参数,如加热制冷速度,气体控制和安全保护都通过软件控制。专业的32-Bit 软件 Linseis TA- WIN 兼容Windows 系统,所有的常规(如TTT,CHT和CCT图表的建立)和应用要求可以通过仪器的软件包来实现。图解和ASCII格式可以输出,方便用户测量数据和图表导出。

  • 【第一届网络原创作品】激光粒度仪在水泥行业的作用

    水泥颗粒的粒度分布对水泥性能(例如强度、流动性等)有很大影响。目前为止,粒度测试技术在水泥行业的应用并不普及,针对目前大家对粒度仪以及粒度数据如何指导水泥生产问题还不十分了解,在此做些简单的讨论,以帮助大家初步了解这个相对较新的技术领域。 首先要介绍水泥粉体粒度分布对水泥性能有什么影响。 通过对水泥水化过程的研究发现: 1、 1微米以下细颗粒由于在加水搅拌的短暂过程中就完全水化,对强度没有贡献。其含量多,说明存在过度粉碎,浪费了磨机电能;同时还降低了水泥的流动性,不利于浇筑。因此,这部分颗粒是有害的,应尽可能减少。 2、 1—3微米颗粒水化速度较快,几个小时到两三天时间就基本水化完毕。这部分颗粒多,水泥的3天强度(水泥重要性能参数之一)就高,同时配制水泥浆需水量会相应增加,水泥浆流动性降低。因此,该范围颗粒在3天强度能满足要求的前提下,也应尽可能少。 3、 水泥浇筑28天后的水化深度约为5.46µ m。这就意味着大于两倍水化深度(约11µ m)的颗粒,总是有一部分内核未水化,未被水化的内核在混凝土中只起填充作用,对胶凝没有贡献。16、32和64µ m颗粒的水化率分别为97%、72%和43%,因此通常认为3~32µ m颗粒对28天强度(水泥重要性能参数之一)起主要作用。32µ m以上颗粒,尤其是65µ m以上颗粒水化率较低,是对熟料的浪费,应尽可能降低。 从以上几点研究可以看出,水泥颗粒粒度分布对水泥的性能和生产成本影响是很大的。 二、原有粒度分析方法和实验手段已经不能满足现有技术需求。 长期以来,水泥行业都用RRSB曲线描述水泥的粒度分布。它的优点是简便易于分析,只要做两种筛孔的筛余量(通常为80µ m筛余和45µ m筛余)就能求出分布。但是RRSB分布只是水泥实际粒度分布的一种近似表达,与水泥真实粒度分布有一定差距,对一般性的性能研究有帮助,但是如要深入的探讨粒度分布对水泥性能的影响,RRSB分布就无能为力了。因为它无法做到真实、精确的描述1微米以下颗粒含量、1~3微米颗粒含量、3~32µ m颗粒含量等对水泥性能有重要影响的数据。 三、现代流行的粒度仪中,激光粒度仪是最适合测试水泥粒度分布的。 现代比较流行的粒度测试仪器有:激光粒度仪、沉降粒度仪、电阻法颗粒计数器、颗粒图像仪等。沉降仪、电阻法计数器和图像仪的测量范围基本都在微米级,但它们的动态范围不够(通俗讲也就是不换档的情况下的最大量程不够)。它们的全量程一般需要某种形式的“换挡”后才能实现,无法满足粒度是宽分布的水泥颗粒测试。绝大多数的激光粒度仪都是无需换挡的全量程仪器,非常适合测量水泥的粒度分布,另外激光粒度仪可用空气作为介质(干法分散),非常有利于分散会有水化反应的水泥颗粒。 通过使用激光粒度分析仪获得了水泥颗粒的真实详细的粒度分布,我们就可以发现自身产品在颗粒级配上存在的问题,及时正确调整生产工艺(球磨时间、钢球配比等),从而获得较高的生产效益。综上所述,在水泥生产、研究领域引入激光粒度分析仪是非常有必要且能够产生巨大技术和经济效益的事情。笔者参考了部分相关方面的专著,并结合自身的粒度仪和水泥技术知识,对激光粒度仪在水泥行业的意义作用做了浅显说明,希望能给水泥行业工作人员一点启示和帮助。由于本人水平有限,文中有叙述不当和不足之处也请大家谅解并指正。(有需要的可下载附件里的PDF文档)[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=132907]原文PDF文档[/url]

  • 新能源汽车电机测试设备热力膨胀阀

    新能源汽车电机测试设备中每个配件的性能都是很重要的其中热力膨胀阀作为主要配件之一,其性能以及调整也是很关键的,那么新能源汽车电机测试设备热力膨胀阀怎么调整呢?  新能源汽车电机测试设备热力膨胀阀具体的调整步骤:将数字温度表的探头插入到蒸发器回气口处(对应感温包位置)的保温层内,将压力表与压缩机低压阀的三通相连。(测试蒸发压力与回气温度);让压缩机运行15分钟以上,进入稳定运行状态,使压力指示和温度显示达到稳定值。  读出新能源汽车电机测试设备数字温度表温度T1与压力表测得压力所对应的温度T2,过热度为两读数之差T1- T2,进行调节时先将热力膨胀阀下方的阀帽拧下;过热度偏小时顺时针旋转阀杆,使阀体的针孔开启度关小,即供液流量减少(简述为顺旋开小);过热度偏大时逆时针旋转阀杆,则针孔开大,即供液流量增大(简述为逆旋开大)。与调节水阀控制水流大小的方法一样。流量调节时需在新能源汽车电机测试设备制冷系统正常运行中进行,而且要缓慢操作,逐渐调节。  其次,新能源汽车电机测试设备的膨胀阀的品牌以及性能也需要我们注意,好品牌的新能源汽车电机测试设备的膨胀阀的质量更加靠谱,在运行的时候有一点的质量保障,不会轻易产生故障,更够高效的运行。  新能源汽车电机测试设备热力膨胀阀调整还是比较简单的,如果还是调整不了的话,可以联系新能源汽车电机测试设备厂家来解决。

  • NJ-160A水泥净浆搅拌机操作步骤与维修保养

    NJ-160A水泥净浆搅拌机操作步骤与维修保养操作步骤:1.先把三位开关(1K、2K)都置于停,再将时间程控器插头插入面板的“程控输入”插座,然后方可接通电源。2.搅拌前先检查时间控制器及搅拌机有无异常,若无异常即可进行试验。3.搅拌操作:1)自动搅拌把1K开关置于自动位置,即完成慢低速搅拌120s,停15s,后5s报警(此时将叶片和锅壁上的水泥浆刮入锅中间),再高速搅拌120s自动停止。每次自动程序结束后,必须将1K置于停,以防停电后程控器误动作。2)手动搅拌把1K开关置于手动位置,再将三位开关2K置于慢、停、快、停,则分别完成各个动作,人工计时。4.拌合前先把搅拌锅和搅拌叶片用温布擦拭,将拌合水倒入锅内,然后在5-10s内小心将称好的水泥加入搅拌锅内,防止水和水泥溅出,然后扳动手柄使滑板带动搅拌锅沿立柱的导轨上移到位后,旋紧定位螺钉,选择自动或手动,开动机器进行搅拌。5.搅拌好后,扳动手柄使滑板带动搅拌锅沿立柱下移到位后,取下搅拌锅,倒出水泥浆,进行测定。调整与保养1.调整搅拌叶片与搅拌锅之间的工作间隙使用间隙量针测量,若超过[font=宋体]2±1mm,可松开调节螺母,旋转叶片,合格后再拧紧调节螺母;或松开电机与立柱减速箱法兰与电动机连接的螺钉,合格后再拧紧螺钉。[/font]2.保养1)保持工作场地清洁,每次使用后应彻底清除搅拌叶片与搅拌锅内残余净浆,并清除散落和飞溅在机器上的灰浆及赃物。2)本机器无外部加油孔,减速箱内涡轮副、齿轮副及轴承等运动部件每季加二硫化钼润滑脂一次。加油时可打开轴承盖,滑板与立柱导轨及各相对运动零件的表面之间应经常滴入机油润滑。每年应将机器全部清洗一次,加润滑剂。3)机器运转时遇有金属撞击噪声,应先检查搅拌叶片与搅拌锅之间的间隙是否正确。4)当更换新的搅拌锅与叶片时,应按上述方法调整间隙。5)使用搅拌锅时轻拿轻放,不可随意磕碰,以防搅拌锅变形。6)应经常检查电气绝缘情况。

  • 控制污泥膨胀的永久性控制措施有哪些?

    1、好氧选择器的机理是提供一个溶解氧充足、食料充足的高负荷区,让菌胶团细菌率先抢占有机物,不给丝状菌过度增长的机会。例如在活性污泥法工艺的选择器就是在回流污泥进入曝气池前进行再生性曝气,减少回流污泥中高粘结性物质的含量,使其中微生物进入内源呼吸段,提高菌胶团细菌摄取有机物的能力和与丝状菌生物的竞争能力,从而使丝状菌膨胀和非丝状菌膨胀均能得到抑制。为加强微生物选择器的效果,可以在再曝气过程中投加足量的氮、磷等营养物质,提高污泥的活性。2、缺氧选择器控制污泥膨胀的原理是:大部分菌胶团细菌能利用选择器内硝酸盐中化合态氧做氧源,进行生物繁殖,而丝状菌(球衣菌)没有这种功能,因而在选择器内受到抑制,增殖落后于菌胶团菌种,大大降低了丝状菌膨胀发生的可能。3、厌氧选择器控制污泥膨胀的原理是:经大部分种类的丝状菌(球衣菌)都是好氧的,在厌氧条件下将受到抑制。而菌胶团细菌有一大部分为兼性菌,在厌氧状态下短时间内进行厌氧代谢,继续增殖。但是厌氧选择器的设置,会导致产生丝状菌中丝硫菌污泥膨胀的可能性,因为菌胶团的厌氧代谢会产生硫化氢,从而为丝状菌的繁殖提供条件。因此,厌氧选择器的水力停留时间不宜过长。

  • 膨胀罐有哪几种分类

    膨胀罐的主要分类有哪几种,对于这一个问题,南京捷登流体设备有限公司的小编通过文章介绍膨胀罐的类型,让客户更好的了解产品。结构膨胀罐有哪几种分类膨胀罐—由罐体、气囊、进/出水口及补气口四部份组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无需自己加气。原理膨胀罐的工作原理:当外界有压力的水进入膨胀罐气囊内时,密封在罐内的氮气被压缩,根据波义耳气体定律,气体受到压缩后体积变小压力升高,直到膨胀罐内气体压力与水的压力达到一致时停止进水。当水流失压力减低时膨胀罐内气体压力大于水的压力,此时气体膨胀将气囊内的水挤出补到系统。分类膨胀罐分为气囊式和隔膜式两种,前者在使用的过程中水与罐体内壁完全不接触,所以杜绝了生锈和水质的二次污染,是2010年至今市场上的主流产品,无论国内还是国外大部分都是采用气囊式;隔膜式膨胀罐是早期第一代的产品,工作时有一半的罐体内壁直接与水接触,容易锈蚀,严重影响其使用寿命,隔膜式膨胀罐已经淡出市场。

  • 同时可测8个试样的热膨胀仪是不是很带劲!

    同时可测8个试样的热膨胀仪是不是很带劲!

    对于目前市场上的各种热膨胀系数测定仪,无论采用的是顶杆式、光学式、激光干涉式等测试方法,基本都为单试样结构,一次只能测试一个试样。如果按照通常5℃/分钟升降温速度进行测试,在1000℃范围内,一个工作日一般只能完成一个试样的测试,而昼夜测试最多也只能测试两个试样,这样的测试效率普遍较低。 美国ANTER公司和德国林赛斯公司都在提高热膨胀测试效率方面做出过努力,如美国Anter公司UNITHERM™ 1000 系列热膨胀仪,采用了积木式结构,即将多个单试样热膨胀仪巧妙的组合在一起形成多试样热膨胀测试系统,做多可以集成4套装置对4个试样同时进行测量,测试温度范围-150℃~1600℃。由于此系列热膨胀仪在低膨胀测试中存在较大误差,此系列产品已经停产。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_01_3384_3.png 美国ANTER公司UNITHERM™ 1000 系列多试样热膨胀仪 德国林赛斯公司也出品了多试样热膨胀仪,最多一次可以进行8个试样测量,但测试温度较低,测试温度范围为-40℃~160℃。林赛斯这种一个加热腔体内放置8个试样的思路是可行的,这样可以避免每个加热炉只能加热一个试样的硬件重复性,但还是存在着每个试样测量必须采用对应的独立位移传感器的弊端。http://ng1.17img.cn/bbsfiles/images/2017/03/201703281652_02_3384_3.png。 德国林赛斯公司常温型多试样热膨胀仪 有次可见,目前市场上并没有测量1000℃以上的多试样热膨胀仪,即采用一个加热加热装置同时加热8个试样,并只用一个位移传感器进行所有试样的变形测量。如果有这种设备,是不是很带劲呢?抛砖引玉,供大家讨论!

  • 怎样选择压汞仪膨胀计?

    实验分析中膨胀计的选择需考虑三个标准:(1) 样品类型: 如果你的样品是粉末,颗粒状,或具有良好颗粒松散度的大块状,使用粉末膨胀计。如果你的样品是固体形态或大块,使用固体膨胀计。(2) 样品体积:使用能够接近填满膨胀计的样品量。膨胀计样品室有三种型号:3,5和15cm³。因此,如果你的样品体积是4cm³那么适合放入5 cm³的样品室,从而5cm³的膨胀计是最适合的。(3)样品浸入体积:填充满样品孔的理想汞体积应该介于膨胀计“最大浸入体积”的25%至90%。一个理想范围内的有效浸入体积将会提供好的清晰度。换句话说,确保膨胀计包含足够的汞以便填充满样品孔。同时考虑粉末样品粒内孔隙的额外浸入体积也作为浸入体积测量 。

  • 激光干涉法低热膨胀系数测试

    现有客户委托对一种材料进行热膨胀系数进行测量,说是微晶玻璃,据说热膨胀系数非常小,想用这种材料做长度计量中的量块材料。用顶杆法测量后,测试数据在零附近无规则波动,甚至出现负值,顶杆法测不出随温度变化的热膨胀系数 查过资料后,发现微晶玻璃是一种低膨胀系数材料,对这种低膨胀材料需要采用激光干涉法才能进行测量,国内哪家机构有这激光干涉法热膨胀仪呢?迫切需要进行测试,温度范围25~100℃。急需。。。谢谢!!!

  • 玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    尼龙是一种由DuPont最先研发的聚酰胺纤维(PA 6.6),最初是作为丝绸的替代品用在纺织品和绳索制造中。后来,在英语中尼龙作为一个术语表示所有线性脂肪族聚酰胺纤维,它的应用范围迅速扩大,现在被广泛应用在包装、管道和低负载机械部件等领域。玻璃纤维和碳纤维作为填料加入到尼龙中制成的复合材料具有很好的机械强度和耐热性,使其应用范围更加宽广。耐驰热机械分析仪可以作为尼龙和其他聚合物材料膨胀系数测试的有力工具。[b]测试仪器[/b]TMA 402 F1 Hyperion[b]测试条件[/b][table][tr][td=1,1,124]温度范围[/td][td=1,1,124]升降温速率[/td][td=1,1,124]气氛[/td][td=1,1,124]样品长度[/td][td=1,1,124]样品支架[/td][td=1,1,121]测量模式[/td][/tr][tr][td=1,1,124]-30℃-200℃[/td][td=1,1,124]5℃/min[/td][td=1,1,124]He,20ml/min [/td][td=1,1,124]25.02mm[/td][td=1,1,124]熔融石英[/td][td=1,1,121]拉伸模式[/td][/tr][/table][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131413202108_9987_163_3.jpg!w590x329.jpg[/img][b]结果讨论[/b]聚合物材料相对金属材料具有更高的膨胀系数,一般其膨胀系数(CTE,工程膨胀系数)在10-5 1/K-10-4 1/K范围内。示例中使用的聚酰胺样品在20℃-200℃的膨胀系数为13.5X10-5 1/K(即1.35X10-4K/min)。CTE值是指在所选温度区间内平均热膨胀系数,但因为尼龙样品在65℃(起始点)附近玻璃化转变的存在,导致热膨胀曲线呈现非线性形状,因此在温度20℃-100℃之间(玻璃化之前)的热膨胀系数值较小,约为9.9X10-5 1/K。

  • 低温环境混凝土热膨胀系数测试技术研究

    低温环境混凝土热膨胀系数测试技术研究

    [color=#cc0000]摘要:本文针对低温环境,介绍了目前国内外测量混凝土热膨胀系数的标准测试方法,着重介绍低温环境下混凝土热膨胀系数测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。  关键词:低温,混凝土,热膨胀系数,测试方法,膨胀仪[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  混凝土作为使用最广泛的建筑材料,它在室温和高温环境下的性能都得到了深入的研究。然而,在低温温度(即低于-165℃的温度)环境下混凝土的热物理性能尚未开展系统性研究。目前大多数液化天然气(LNG)储罐都采用了混凝土结构形式展,利用混凝土进行LNG主要密封的罐体设计将是未来发展的趋势,这将大大降低罐体的建造成本。因此,为了提高混凝土结构LNG储罐的安全性和长期耐久性,必须从根本上了解混凝土冷却到低温时的行为,而这些了解低温环境下混凝土的努力将集中于控制由于其部件的热膨胀系数引起的热变形和损伤增长的机制,因此准确测量低温环境下混凝土热膨胀系数是液化天然气储罐设计和建造的前提。  本文针对低温环境,将介绍目前国内外测量混凝土热膨胀系数(CTE)的标准测试方法,着重介绍低温环境下混凝土CTE测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。[color=#cc0000][b]2. 国内外测试方法介绍[/b]2.1. 国内标准测试方法[/color]  针对低温环境下的混凝土热膨胀系数测试,我国在2015年新制订了国家标准GB 51081-2015“低温环境混凝土应用技术规范”。  在GB 51081中对低温环境混凝土热膨胀系数的样品规定了应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081,试件应为边长100mm×100mm×300mm的棱柱体,每次检验应在相同条件下制作12个试件。  对低温环境下混凝土热膨胀系数测试设备GB 51081给出了下列规定:  (1)低温设备应有同时容纳不少于6个试件的有效空间,应满足常温至-197℃区间各种温度的施加,应具有自动控温和给出各种降温速率的功能,恒温器件的温度波动范围应在±0.5℃内。  (2)微变形测量装置应满足各职能过低温下的测量要求,且测量精度不得低于0.001mm。[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012229434228_5404_3384_3.png!w690x342.jpg[/img][align=center][color=#cc0000]图2-1 低温混凝土热膨胀系数测试棱柱体样品示意图[/color][/align]  在GB 51081中对低温环境混凝土热膨胀系数的具体测量方法给出了如下规定:  (1)试件标准养护应达到设计龄期时取出,并应用湿布擦去表面水分后静置于室内自然环境中。应静置14天后进行时间外观检查和尺寸测量,并应将试件分成2组,每组6个试件。  (2)应标识热膨胀系数检验棱柱体试件两端面的3个测量点位置(图2-1),并应在这3个测量位置测量棱柱体试件的长度。  (3)检验低温时的低温环境混凝土热膨胀系数,第1组试件作用的温度值应为,第2组试件作用的温度值应为。  (4)测量第1组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按不高于1℃/min速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  (5)测量第2组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按与第1组试件相同的降温速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  综上所述,针对低温环境下混凝土热膨胀系数测试设备,国标GB 51081只给出了测量温度范围、温度波动大小、样品尺寸、测量位置点和热膨胀变形测量精度的规定,并没有测试设备更详细的内容,这使得很难具体执行国标GB 51081并有效保证测量准确性。[color=#cc0000]2.2. 国外标准测试方法[/color]  目前国际上并没有针对混凝土及其结构在低温环境下的热膨胀系数标准测试方法,对于液化天然气(LNG)储罐采用的混凝土及其结构,美国混凝土协会(ACI,American Concrete Institute)制订过相应的标准ACI 376(混凝土结构冷冻液化气体容器的设计和构造规范及说明),其中关于热膨胀系数测试所推荐的标准测试方法是改进后的CRD-C 39测试方法。  国外在以往混凝土常温下的热膨胀系数测试中,大多采用的测试方法为ASTM C531、CRD-C 39、AASHTO T336和Protocol-P63,但这些方法在所测试的温度范围基本适用于常温条件下,并不能直接推广应用到低温环境。  在ASTM C531中规定了需要在烘干条件下测量CTE,其中样品长度测量的温度范围为22.8~93.9℃,通过样品长度变化量除以温度变化量来得到CTE。而CRD-C 39中规定了将样品浸入水中48小时来达到饱和条件,然后在4.4~60℃温度范围内测量样品长度。在ASTM C531和CRD-C 39中,样品长度测量都是离线式测量方式,即将达到一定恒温时间的样品从恒温器中取出,并放置在样品长度测量的比较器上。由此可见,ASTM C531和CRD-C 39并不是连续测量热应变来得到热膨胀变化行为。  AASHTO T336和Protocol-P63测试方法也规定了在饱和条件下测试CTE,测试温度范围为10~50℃。然而各种混凝土构件,特别是液化天然气(LNG)储罐采用的混凝土及其结构的实际应用温度会非常低,因此需要拓展测试温度范围以覆盖低温范围。  因此,对于液化天然气(LNG)储罐采用的混凝土及其结构,其热膨胀系数的测试需要重点考虑两方面的因素,一是温度范围的拓展以满足低温测试要求,二是样品要保持一定的湿度然后在低温下进行热膨胀系数的测量。[b][color=#cc0000]3. GB 51081标准方法的改进建议[/color][/b]  对于低温环境下的混凝土热膨胀系数测试,我国基本上基于AASHTO T336标准制订了GB 51081-2015“低温环境混凝土应用技术规范”。因此,AASHTO T336中存在的问题在低温环境下会被放大,从而严重影响测量的准确性。另外,要使得GB 51081标准方法真正能推广应用并保证CTE测试的准确性,GB 51081还需要进行重大改进,主要改进建议如下:  (1)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,混凝土CTE测量装置中的辅助装置(如承台、导杆、支架等)的影响并不严重,这些辅助装置一般采用CTE较小的殷钢等材料制成就能满足要求。而按照GB 51081规定,低温环境下的最低温度要达到液氮温度(-197℃),在测试温度接近200℃这样大的温度变化范围内,CTE为1×10-6/K量级的殷钢材料的热胀冷缩影响将非常凸出。这就需要采用CTE更小的超低膨胀系数材料制作热膨胀仪的相应辅助装置,同时还需要进行热膨胀仪的基线校准来进一步降低热膨胀仪的系统误差。  (2)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,样品温度变化并不会对LVDT探测器带来明显的影响。同样,低温环境下的CTE测试,低温环境就会对安装在室温环境下的LVDT探测器产生明显影响,特别是对探测器的支撑板和固定架的温度影响从而带来探测器自身位置的改变。因此,在测试方法中要规定出LVDT探测器及其相关装置的温度变化范围,这方面的影响往往是重要的测量误差源。  (3)在GB 51081标准中缺乏校准样品相关条款,建议在GB 51081标准中增加与AASHTO T336类似的校准样品相关条款,即校准样品的CTE测定必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与GB 51081相同的温度范围内进行,即低温要达到-197℃。[b][color=#cc0000]4. 低温环境混凝土热膨胀测定仪设计[/color][/b]  为了实现低温环境下混凝土热膨胀系数测试,上海依阳实业有限公司专门设计了一种大尺寸多样品的低温混凝土热膨胀测定仪。混凝土低温膨胀仪一种测试混凝土块体低温下线膨胀系数的测试设备,测量方式为接触方式,整体结构如图4-1所示。此低温热膨胀仪依据测试标准为国家标准GB 51081-2015“低温环境混凝土应用技术规范”,测试温度范围为室温~196℃。[align=center][img=,690,397]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012230310478_4454_3384_3.png!w690x397.jpg[/img][/align][color=#cc0000][/color][align=center]图4-1 低温混凝土热膨胀系数测定仪结构示意图[/align]  此混凝土低温膨胀仪具有测试试样体积大、可多样品同时测量的特点,适合大批量样品的连续测量。  混凝土低温膨胀仪由计算机进行自动控制和检测,自动进行样品温度的监控、自动进行样品变形量的监控以及自己进行测试结果计算。  按照标准方法规定每个样品需测试三个位置点处的热变形。“低温腔体”采用侧开门结构,开启侧门安装或取出样品,使得被测样品处于“低温腔体”内进行升降温。[color=#cc0000][b]5. 参考文献[/b][/color]  AASHTO TP60,Standard Test Coefficient of Thermal Expansion of Hydraulic Cement Concrete,In American Association of State Highway and Transportation Officials,Standard Specifications for Transportation Materials and Methods of Sampling and Testing,Washington, DC, 2000.  CRD-C 39-81,Standard Test Method for Coefficient of Linear Thermal Expansion of Concrete,US Corps OF ENGINEERS,1981.   ASTM C531-00,Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars,Grouts,Monolithic Surfacings,and Polymer Concretes,ASTM International, West Conshohocken, PA, 2012.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 深析膨胀罐的作用与优缺点

    膨胀罐目前已经被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,下面南京捷登流体设备以我司的Aquafill与wozi膨胀罐为例,为大家深析深析膨胀罐的作用与优缺点。一、膨胀罐的工作原理:  由膨胀罐的结构可知,当膨胀罐用于系统中时,由于系统压力比预充气体的压力高,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再往系统补给,维持动态的平衡。二、膨胀罐的作用:  膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。三|、隔膜式膨胀罐 隔膜式膨胀罐是早期第一代的产品,对隔膜式膨胀罐来讲,其罐体和隔膜之间预充有一定压力的氮气,气囊式膨胀罐是罐体可气囊之间预充有一定压力的氮气。  1.因为隔膜式膨胀罐壳体是直接与水接触的,所以壳内都喷涂防锈层。罐的接口与壳体之间是焊接而成。这样在焊接的过程中,高温就会将防锈涂层氧化。本来是银白色的涂层,在焊接后呈现黑色。用手触摸可感觉有黑色小颗粒。那么这些看似微不足道的氧化点工作时长期与水接触,慢慢就会生锈并逐渐扩大,直到整个罐体生锈,为什么这种膨胀罐用一段时间后,倒出来来的水呈黄水也就不足为奇了。 2.隔膜式膨胀罐的内膜是通过热轧的方式固定在膨胀罐的两个半壳的碳钢中间,这种工艺过程如果处理的不好,就会留下微小的气孔在内膜和碳钢之间,这些微小的气孔就会将预充的气体泄露出去,膨胀罐如果泄露气体,90%就是从这里泄露的。这种漏气的膨胀罐用一段时间如果不再补充气体就不能起到定压卸荷作用。而这本身是很难察觉。由于罐壁厚度一般在1mm左右,接口直接与罐焊接在一起,这种联接方式可承受的扭力相当小。而安装罐时只能抱着壳体旋转,这样如果用力太大或过猛,就会将接口旋断。这种情况在空调生产过程中最为常见。四、气囊式膨胀罐 气囊式膨胀罐就克服了隔膜式气压罐的缺点,气囊式膨胀罐内部有一个整体的气囊,在工作时水只进入气囊内,不与壳体接触。接口处用法兰盘连接。这种结构就避免了焊接过程引起的生锈问题。这种结构的膨胀罐的气囊可更换。同样,由于是法兰连接,故它的接口就可以承受很大的扭力,在安装过程中就不怕会扭断接口。

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用:壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理:当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。南京捷登专业销售壁挂炉膨胀罐,意大利原装进口Aquafill壁挂炉膨胀罐以及国内组装wozi壁挂炉膨胀罐。两大品牌,从质到价,给您超高性价比的性价比。

  • Aquafill膨胀罐使用时该注意哪些事项

    Aquafill膨胀罐是意大利原装进口膨胀罐,其在使用过程中应该注意哪些事项呢?捷登小编为您整理如下哦。1.Aquafill膨胀罐出厂是预充压力已设定,根据罐子的大小一般体积小于150L以下的膨胀罐预充压力为1.5bar,200L或以上的预充压力为2bar用户若认为此压力不合适,可在供应商的指导下进行充/放气;2.测试Aquafill膨胀罐气囊时建议直接用水压测试,严禁使用锐利的器件碰触气囊;3.若该Aquafill膨胀罐是放在特殊场合,应告知供应商,以便有相关的膜体对应使用;4.Aquafill膨胀罐的工作介质一般为水或者防冻液的混合物,其他介质需打电话咨询;5.Aquafill膨胀罐应定期检查其预充压力,如果发现压力下降应及时补气,以免影响其正常使用;6.Aquafill膨胀罐罐体标签上有注明工作温度和最大工作压力,严禁超出此范围使用。7.应严格按公式来计算所需膨胀罐的大小,膨胀罐过小会引起安全阀的频繁起跳和自动补水阀的频繁补水;8.Aquafill膨胀罐的最大工作压力跟其罐体上标注的预充压力一一对应,如果因使用需要改变了其预充压力,最大工作压力随之改变,基本遵循以下规律,预充压力减小,其最大工作压力随之减小,具体减小到多少要计算,预充压力增大其最大工作压力不变。9.应每6个月检查一次Aquafill膨胀罐预充压力大小,如果发现气压不足应及时补气。以上注意事项都学会了吗?实际使用时切记要遵守哦

  • 壁挂炉膨胀罐有什么作用

    壁挂炉膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。壁挂炉膨胀罐作用: 壁挂炉膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,壁挂炉膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。壁挂炉膨胀罐工作原理: 当壁挂炉膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。

  • 热膨胀系数单位

    国家标准里面注明热膨胀系数的单位是:/℃,而国际标准的是:/K。当然,对于工程α(平均热膨胀系数)来说,两个数值是可以直接相等的,那么对于物理α呢?可以直接相等吗?没有直接去计算,过来请教一下啦,呵呵

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制