当前位置: 仪器信息网 > 行业主题 > >

气体同位素激光仪

仪器信息网气体同位素激光仪专题为您提供2024年最新气体同位素激光仪价格报价、厂家品牌的相关信息, 包括气体同位素激光仪参数、型号等,不管是国产,还是进口品牌的气体同位素激光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体同位素激光仪相关的耗材配件、试剂标物,还有气体同位素激光仪相关的最新资讯、资料,以及气体同位素激光仪相关的解决方案。

气体同位素激光仪相关的论坛

  • 【分享】同位素13C02气体在医学中的应用

    同位素13C02气体在医学中的应用应用举例 CO2是不燃,不爆炸,无辐射的气体在世界上广泛用于物理、化学、生物和医疗领域。通过化学合成,以13CO2作为原材料,可以生产大量的复杂化合物。这些化合物在环境标准,法医研究和诊断有广泛地应用。众所周知,13C尿素可以作为尿素呼吸测试(受检查者口服13C标记的尿素后,如果胃中存在幽门螺杆菌感染,就可以将13C标记的尿素分解为13C标记的CO2因此,通过用高精度的气体同位素比值质谱仪来探测呼气中的13C—CO2即可诊断幽门螺杆菌的感染,由于口服的13C-尿素到达胃后呈均匀分布,只要在13C-尿素接触的部位存在着幽门螺杆菌感染,就可灵敏地检测到。)近年来,更多的由此延伸的多种化合物在非入侵呼吸试验也进入医学实践。 在激光器中13CO2也用作激光气体。不仅在基础研究中使用,在临床中也用于激光腹腔镜。 生物学家用同位素标记13C气体喂馈海藻,细菌和其他微生物,用核磁共振研究其新陈代谢过程。可以从13C标记有机物萃取各种氨基酸,蛋白,脂肪,醣和DNA。喂养标记的藻类或细菌生成的高级微生物,萃取的成分数量会急剧增加。科学家利用标记成分决定大分子的结构和蛋白间配合基体的相互作用。让藻类在一个纯13CO2的气氛中生长,使藻能够均匀地进行13C标记,有人用这种13C标记的螺旋藻喂养母鸡,可以对活泼的氨基酸进行研究 13C葡萄糖和13C谷胺酸一个重要的应用是用于在脑内补偿代谢MRI(磁共振成像)。细胞增生可以用13C标记DNA来测量。使用13C标记成分和现代13C-MRS(磁共振谱仪)可以探索基因结构和基因定量,全面地了解人类基因和生命细胞分子成分变化。 13CO2直接应用到生物系统(例如将富集的13CO2空气覆盖田地土壤)可以监测生物中碳的动态以进行生命试验。13C标记的物质可以用于跟踪土壤中有机碳成分以及输送的渠道。 由于植物从空气中吸收二氧化碳,CO2也能用13C加以标记。这可以用于基础科学和应用科学的研究。例如,营养生物利用度以及用标记植物喂养的有机物的新陈代谢。(动物和人类从不同食物摄取营养的生物利用度)。 13C标记化合物和分析仪器设备的发展,使扩展了稳定同位素应用,对人类和环境的认知上开拓了新的领域。

  • 气体同位素测试人的抱怨

    我是学分析化学的,去年来到地质行业做同位素分析工作,而且做的是稳定同位素中硅酸盐氧和包体水中氢氧的分析。且不说两中方法分析流程长,步骤烦琐,就是这两种方法的成功率也是底得不行,能达到30%我感觉就不错了。具体一点的讲:(1)做硅酸氧的实验台如果放置一个星期以上就需要重新做条件实验,麻烦!做包体水中氢实验台架在连续做样中断再起用时也需要做许多标准,以确定台架实验条件是否良好,累!其原因,个人以为国内目前气体同位素分析的前处理装置都是各单位自己搞出来的东西,温控、真空计、玻璃管线、加热炉都是自己临时配置上去的 ,而且都已经到了早该退休的年龄,实验条件不容易维持,这段时间做得可以却不能保证隔一段时间再做还行(2)计量认证要求过高,现在硅酸盐氧同位素需要保证的测量精度在千分之0.3、水中氢同位素测量精度要求在千分之1,这样的精度要求在实验台架最好的状态时可以达到,但是在大数情况下都是不可能达到的。(3)待续

  • 【讨论】同位素气体质谱仪

    现在国内有多少台气体同位素质谱仪啊?不知道用在哪些方面?具体怎么用?我只知道广东海洋大学新进一台气体同位素质谱仪。

  • 【原创】第三届亚太激光剥蚀元素与同位素分析会议纪要

    2010年12月2-3日,第三届亚太地区激光剥蚀与等离子体质谱联用技术【LA-(MC)-ICP-MS】元素与同位素分析会议在中国地质大学(武汉)召开。百余名国内外代表参加了这次会议。在两天时间里,20多名代表讲述了他们最近的研究进展,几个仪器公司的代表也借机展示了他们最近的分析技术。 五年前我曾参加过第一届会议,但两年前错过了第二届;这次参加第三届,感觉这些年微区分析技术有了非常大的发展。 首先,在这次会议上飞秒(femtosecond=fs 10的-15次方秒)激光器得到了非常广泛的关注。大会的第一个报告就是讲述飞秒激光器。虽然飞秒激光器的价格实在高的吓人,并且具有昂贵的维护成本和苛刻的使用条件,但是其良好的剥蚀效率、极低的分馏效应,还是吸引着越来越多的关注。但是,真的是那么好吗?从这次大会的报告来看,对飞秒激光优点的认识应该是被夸大了。但是认识的提高,往往都是建立在无数次的失败的基础上的。 其次,激光剥蚀分析的极限。从传统意义上来说,SIMS(二次离子质谱)具有比LA-ICP-MS更好的空间分辨率,其剥蚀束斑可以低达10um。但是,SIMS的这一优势又一次受到挑战,西北大学地质系袁洪林教授这次报道了他们使用高灵敏度的Varian 820进行10um束斑的分析技术,其结果可以和SIMS结果相媲美。另外,Thermo刚刚推出的Element 2 Plus具有更高的灵敏度,在这个方面的应用前景很值得期待。不过,目前还没有看到这个方面的应用报告,只能观望。 第三,就是标样问题了。尤其是同位素的分析,在存在质量分馏和干扰的条件下,标样成为制约微区分析的重要因素。目前各个单位都在尝试寻找或者自己制造标样,目前来看,德国马普化学所MPI-DING系列玻璃标样和美国地质调查局USGS 玄武质玻璃标样还是不错的。但是,对于越来越高的分析要求和越来越复杂的分析对象,这些还是不够的。中国地质科学院国家地质实验中心这次也发布了他们的玻璃标样,但是还不知道均一性如何。另外,硫化物,氧化物等标样还不完备,同位素的标样更是稀缺。 第四,就是基体效应了。激光剥蚀过程中存在的基体效应和溶液进样是不一样的。但由于玻璃标样本身往往就是多元素的,不像溶液那样用“单元素标准”或者“简单多元素标准”来检查基体效应那么方便。所以激光进样过程中的基体效应还在摸索中。可喜的是,193nm ArF激光剥蚀产生的基体效应比想象的要低,以至于在很多样品的研究中可以忽视。 第五,LA-ICP-MS的应用范围越来越广泛,原来主要是地质方面,现在扩展到材料、生物甚至法理鉴定:上海司法鉴定所的代表做了玻璃物证的报告,通过 嫌疑人身上携带的玻璃微粒 与 案发现场的玻璃碎片 的微量元素对比,来判断嫌疑人是否涉案有关。可以预见,LA-ICP-MS的应用范围将越来越广。 最后,就是ICP-MS分析过程中普遍存在的一些问题:检测器脉冲-模拟量程 Cross Calibration 的可靠性——所有的四级杆ICP-MS基本上都同一家公司生产的检测器,但是为什么PA校正方式相差那么大?如何有效的提高灵敏度——相同的检测器,为什么灵敏度差那么多?如何提高同位素分析的精度?如何提高plasma的离子化率?如何有效抑制二次电离?等等。 希望有更多的人关注这些基础问题,这有助于大家更好的应用ICP-MS。大家商议明年四月初在广州的地球化学年会 设有一个专场讨论,国内几个比较有名的用户及其仪器公司的工程师都会列席参加讨论,欢迎大家参加。http://csmpg.gyig.cas.cn/zhxw/201010/t20101019_2989127.html

  • 中国科学院同位素年代学和地球化学重点实验室

    1) Multi-collector inductively coupled plasma mass spectrometer (LAM-MC-ICPMS) 组建于2001年,核心仪器Micromass Isoprobe型多接收器等离子体质谱仪,结合了等离子体高效激发和多接收器质谱高精度测定同位素组成的优点,可以高效率测定几乎所有的固体同位素体系的同位素组成。配备NewWave 213nm激光熔蚀系统,可以原位分析微区的同位素组成。 http://office.gig.ac.cn/isotope/lab/MC-ICPMS.jpg(激光探针-多接收器等离子体质谱LAM-MC-ICPMS)2) Laser ablation microprobe inductively coupled plasma mass spectrometer (LAM-ICPMS) 组建于1996年,核心仪器PE Elan 6000型等离子体质谱仪,适用于不同介质特别是矿物岩石样品的微量元素分析,配备CETEC 266nm激光熔蚀系统,可进行原位微区物质的微量元素分析。 http://office.gig.ac.cn/isotope/lab/LAM-ICP-MS.jpg(PE Elan 6000型等离子体质谱仪)3) Ar–Ar Laboratory MM-1200稀有气体同位素质谱实验室组建于1986年,2004年新引进GV5400稀有气体同位素质谱,并配备NewWave 213nm脉冲激光熔蚀系统和CO2连续激光熔蚀系统,可进行常规的K-Ar、40Ar-39Ar定年和单矿物微区激光探针40Ar-39Ar年龄测定。 http://office.gig.ac.cn/isotope/lab/GV5400.jpg(GV5400稀有气体同位素质谱)4) Isotope ratio mass spectrometer for stable gas isotope analysis (IRMS) 2003年组建,核心仪器GV Isoprime II型气体稳定同位素质谱仪已于2004年初调试使用,适用于C、H、O、N、S的同位素组成分析,配备微量碳酸盐和水的在线制样系统。http://office.gig.ac.cn/isotope/lab/IRMS.jpg(气体稳定同位素质谱 IRMS) 5) TIMS 组建于1986年,核心仪器VG 354型热电离质谱

  • 原油中稀有气体同位素分析方法

    [font=Encryption][color=#898989]摘要: [/color][/font][font=Encryption][color=#666666]稀有气体同位素被广泛应用于油气成因、气源追索、壳幔物质相互作用、大地构造和大地热流等研究中.原油和天然气在形成、运移和成藏等方面联系紧密,因此推测原油稀有气体中也应蕴含着丰富的油气地质信息.稀有气体在原油中的溶解度要大于水(KharakaandSpecht,1988),因此油-水的相互作用包含稀有气体向原油中的优先溶解作用.原油相对于油田水中稀有气体浓度可以反应油水反应的程度,更重要的是它是示踪油气二次运移和成藏的重要约束条件(Dahlberg,1995).本项研究旨在寻找一种既可以免除空气污染又能减少对仪器伤害的分析方法。从而可以打开原油稀有气体同位素研究的窗户,为油气运移、油源对比、气-源对比提供更加详实可靠地数据支持。为了达到提高数据精度,纯化样品,保护仪器目的,研究设计了原油样品采集器及原油预纯化系统。原油采集器通过泄压原理有效防止空气气泡残留,从而排除了空气对样品的污染。纯化系统分为两部分:原油脱气部分由易拆卸的高真空玻璃部件组成。这部分可拆卸、易清洗,可有效防止样品残留对下一个样品的污染 高真空纯化部分由可烘烤的超高真空不锈钢管线组成。能够将脱出气体中的活性组分去除。采样装置及纯化系统保证了样品的纯净。高精度、高稳定性的静态真空稀有气体同位素质谱仪Noblesse进行同位素分析。因此,本研究建立了从样品采集、样品前处理到最终的分析测试的整套原油稀有气体同位素分析测试方法。系统调试正常。可以有效避免静态质谱仪的污染问题,数据更加稳定可靠。[/color][/font]

  • 【资料】同位素质谱分析测试技术进展

    同位素质谱分析测试技术进展====================================================同位素地球化学经历了近一个世纪的发展,已经成为一门成熟的学科。它不但成为研究各种基础地球科学问题的重要手段,而且在解决人类社会面临的重大资源、环境、生态问题方面开始发挥关键作用。同位素质谱分析测试技术是同位素研究的基础。新的测试技术的创立,新的测试仪器的研制,原有仪器设备和测试方法的改进是稳定同位素地球化学研究发展的依托。因此发展同位素质谱测试技术始终是同位素地球化学研究的一个主要方面,技术上的每一项突破往往会为同位素地球化学研究开辟新的领域。在过去的十几年里同位素质谱分析测试技术得到了迅速的发展,具体表现为测试对象的微区化,仪器设备的自动化,测试工作的标准化。目前常用的新技术包括:多接收器等离子体质谱法、激光探针质谱、离子探针、热电离质谱法和高精度质谱计。--------------------------------------同位素质谱分析测试技术是同位素研究的基础。本文评述了同位素质谱分析测试技术中常用的多接收器等离子体质谱法、激光探针质谱、离子探针、热电离质谱法和高精度质谱计分析同位素的原理、应用范围、存在问题和研究进展,建议选择分析同住素方法时,需考虑每种方法各自的特点和优势、仪器的性能等。================================================== [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=155681]同位素质谱分析测试技术进展【PDF】[/url]

  • 【讨论】诚征关于同位素质谱与无机质谱技术及应用的讨论

    各位版友及使用质谱类仪器的朋友们:您现在使用的是什么类型的无机质谱仪?是同位素质谱还是同位素稀释质谱?二次离子质谱?离子探针?电感耦台等离子体质谱?激光电离质谱?加速器质谱?火花源质谱?您利用它们都主要应用在什么领域?是同位素地质年代学、同位素地球化学方面还是核科学、农业、医学、环境学、计量学或其他学科的应用?您在使用质谱分析样品过程中有什么问题吗?您一定有好的实用技术经验!真诚请您和大家交流分享您的经验、体会!我们将非常感谢您的积极参与!

  • 281型气体同位素质谱计国产化

    国内同位素质谱90%市场已被MAT公司占有,281型质谱计虽是上世纪80年代的产品,但是至今国内还未有产品能超越它,且其技术成熟,到现在,除了计算机控制系统随着计算机技术的发展有升级外,其他部件也未见有何改动.国内已经有类似产品出现,但是还是没有实现281的全部功能,大家知道,国产货做得比较粗糙,能用就行,也许过不了多久,国内更好的仪器就会造出来的

  • 【资料】气相色谱-燃烧接口-同位素比值质谱(GC-Combustion III-IRMS)用于液体和气体样品中单个化合物的C同位素

    气相色谱-燃烧接口-同位素比值质谱(GC-Combustion III-IRMS)用于液体和气体样品中单个化合物的C同位素组成的测定。这一功能已成功解决了特殊化合物(如甲烷、PCB等)燃烧不完全和燃烧反应器的有效维护等实际问题,实现了高效稳定的运行。实验对单个化合物单次进样的绝对量的大致要求为大于2ng(与具体化合物含C量有关),实验结果的精确度为0.5‰(与实际样品状况有关)。数据的准确度由CO2标准参考气系统(见下文)和两个下线燃烧法标定的日常工作标准物质来控制。这一功能已广泛用于石油天然气、各种有机天然提取物以及顶空和固相微萃取(SPME)等样品的测定。国家海洋局第三海洋研究所电话:0592-2195878

  • 【分享】DELTA plus 同位素比值质谱仪的功能应用

    [size=4][color=#DC143C][font=黑体]DELTA plus 同位素比值质谱仪的功能应用[/font][/color][/size]===================================================DELTA plus 同位素比值质谱配备有经典的双路进样系统(Dual Inlet)和元素分析仪(EA)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)等多种样品前处理设备。 (1) 双路进样系统-同位素比值质谱(DI-IRMS)用于多种气体的C、H、O、N同位素组成的测定。这些气体包括CO2、H2、CO、N2等。使用双路进样系统进行CO2中C、O同位素组成的测定,其精度可分别达到0.006‰和0.012‰;H2则可以达到0.25‰。此功能可以用于标准气体的标定、各类样品下线处理富集所获得如上气体的相关同位素组成的测定等。(2) 元素分析仪-持续流接口-同位素比值质谱(EA-ConF-IRMS)用于固体、液体和气体有机样品的平均C、N同位素组成的测定。固体和粘稠液体(如稠油)可以选择常规的自动进样器的进样方式;对于一般液体和气体则需对进样口进行改造,以使其适合液体与气体进样器的进样。对于在高C低N样品N同位素组成测定中出现的样品燃烧不完全和高C燃烧所产生的大量CO2严重干扰m/z 28(CO造成)等实际问题已得到解决。目前,对于单次测量样品中C、N绝对量的要求是大于10μg,其测量精度均为0.2‰。实验结果的准确度由标准参考气系统(见下文)和日常工作标准物质(C使用国家一级标准物质碳黑;N使用自制的由国际标准物质IAEA-N-1和IAEA-N-2间接标定N同位素组成的元素分析标准物质)控制。这一功能已广泛用于各种有机物质的平均C、N同位素的测量,如干酪根、腐殖质、动植物组织等;此外,这一功能还可用于标准气体的标定、对某单一纯化合物在GC-C-IRMS(见下文)测定结果验证手段等。(3) [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-燃烧接口-同位素比值质谱(GC-Combustion III-IRMS)用于液体和气体样品中单个化合物的C同位素组成的测定。这一功能已成功解决了特殊化合物(如甲烷、PCB等)燃烧不完全和燃烧反应器的有效维护等实际问题,实现了高效稳定的运行。实验对单个化合物单次进样的绝对量的大致要求为大于2ng(与具体化合物含C量有关),实验结果的精确度为0.5‰(与实际样品状况有关)。数据的准确度由CO2标准参考气系统(见下文)和两个下线燃烧法标定的日常工作标准物质NORWAYSTD和INDIANASTD来控制。这一功能已广泛用于石油天然气、各种有机天然提取物以及顶空和固相微萃取(SPME)等样品的测定。(4) [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-高温热转变-同位素比值质谱(GC-TC-IRMS)用于液体和气体样品中单个化合物的H同位素组成的测定。这一功能已成功解决了质谱H3-因子的调协、灵敏度与线性范围调协、TC反应器预条件化等众多实际问题,也已实现了高效稳定的运行。实验对单个化合物单次进样的绝对量的大致要求为大于150ng(与具体化合物含H量有关),实验结果的精确度可达到3‰(与实际样品状况有关)。数据的准确度由H2标准参考气系统(见下文)和购自美国Indiana大学的由下线燃烧法标定的日常工作标准物质INDIANASTD来控制。该功能与测定单体C同位素功能具有相同的样品适应范围和进样方式。图1是该功能应用的一个例子。 以上所有的功能所使用的标准参考气真实值的标定均使用了国际公认的标准物质:CO2为NBS-22,N2为IAEA-N-1 和IAEA-N-2,H2的标定则使用了VSMOW、SLAP和GISP标准水。

  • 近红外直接吸收光谱测量甲烷碳同位素

    近红外直接吸收光谱测量甲烷碳同位素

    请问,甲烷碳同位素丰度,在没有标准样品气体情况下怎么求解?使用了各种文献中的不同方法,求得丰度值总是在1000‰左右。其中一种方法是使用所测光谱的积分面积、数据中的线强和丰度作比值,然后比PDB,减1,这样求出来在1000‰左右,肯定是不对的。想问一下有没有做过同位素分析的大佬,给个机会请教一下。谢谢![img=,650,293]https://ng1.17img.cn/bbsfiles/images/2023/11/202311151013228556_5971_6244739_3.png!w650x293.jpg[/img]还有一种是利用吸光度作比,这种情况下PDB值怎么转换为吸光度值,请教一下各位!感谢。

  • 同位素肽_同位素标记_同位素技术

    同位素肽_同位素标记_同位素技术

    目前我们国肽生物合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[img=,422,228]https://ng1.17img.cn/bbsfiles/images/2019/05/201905091355121241_560_3531468_3.jpg!w422x228.jpg[/img]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:17718122172;17718122684;17730030476;17718122397

  • 关于激光烧蚀

    激光烧蚀会使元素的同位素产生分馏作用。主要用于固体样品的直接进样和某些比较珍贵样品的微量分析。主要以烧蚀波长分为266nm 213nm 193nm等几个系列。国内的激光还是很少的。主要有NEWWAVE,CETEC,还有一家德国公司等几个品牌。

  • 同位素标记物、同位素技术_生物素标记肽

    同位素标记物、同位素技术_生物素标记肽

    随着多肽在生物医药领域越来越广泛和深入的应用,标记和修饰性的多肽种类的需求越来越多,质量需求也越来越高。稳定同位素标记就是其中典型的一种。稳定同位素标记示踪,可以实现肽类代谢途径研究,能够随时追踪含有同位素标记的多肽在体内或体外位置及数量的变化情况。同位素标记具有高灵敏度、定位简单、定量准确等优点,使得同位素修饰在医学及生物化学领域得到越来越广泛的关注。目前我们公司合成的同位素标记多肽主要为C13,N15两种同位素标记的多肽,通过直接在肽链中引入同位素标记的氨基酸达到有效标记整条肽链的目的,常用的同位素标记的氨基酸有Tyr,Thr,Lys,Arg,Glu等。同位素标记的多肽与普通肽的区别在于其结构中某一个或几个氨基酸中的C被C13取代或者N被N15取代。[align=center][img=,422,228]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151433525331_7755_3531468_3.jpg!w422x228.jpg[/img][/align]专业的团队,一流的合成纯化技术,严谨的工作态度,严格的质量要求,是我们能够满足客户对同位素标记多肽的不同纯度要求的重要保障。与此同时,同位素标记多肽的原料(同位素标记的氨基酸)价格昂贵,使得我们合成成本高,这就直接导致了这种多肽价格的高昂,秉着客户至上,竭力满足客户需求的经营理念,我们国肽生物提供微克,毫克到千克级别的质量服务。成功案例:序列WVQTLSEQVQEELLSSQVTQELHPLC分析:[align=center][img=,562,236]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151434210520_3873_3531468_3.jpg!w562x236.jpg[/img][/align]MS分析:[align=center][img=,562,256]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151434419961_6047_3531468_3.jpg!w562x256.jpg[/img][/align]合肥国肽生物官网:http://www.bankpeptide.com[img=,690,163]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151435146731_1710_3531468_3.jpg!w690x163.jpg[/img]

  • 【求助】稳定同位素质谱仪技术参数如何解读?

    稳定同位素质谱仪技术参数如何解读?技术参数CO2 (13C) ≤ 0.1 ‰ CO2 (18O) ≤ 0.1 ‰ N2 ≤ 0.1 ‰ SO2 (34S)≤ 0.1 ‰ H2 ≤ 1.5 ‰ 这些代表什么意思?[em09511]字面含义直接解读,仪器 对这样的同位素的气体检测精度

  • 如何做同位素质谱仪的招标文件?

    各位前辈: 请问:如何做一份同位素质谱仪的招标文件?应该提哪些主要的仪器技术参数指标? 可否提供一份关于做原油(全油C同位素、原油单体烃C同位素)、天然气组分、族组分(饱、芳、非、沥、A)的C同位素含量的同位素质谱仪的招标文件参考一下?晚辈不甚感激!!!

  • 同位素技术在环境和生态上的应用(译)

    第二版由robert Michener 和 Kate Lajtha编辑自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样,理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制