当前位置: 仪器信息网 > 行业主题 > >

锂电池电流检测仪

仪器信息网锂电池电流检测仪专题为您提供2024年最新锂电池电流检测仪价格报价、厂家品牌的相关信息, 包括锂电池电流检测仪参数、型号等,不管是国产,还是进口品牌的锂电池电流检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锂电池电流检测仪相关的耗材配件、试剂标物,还有锂电池电流检测仪相关的最新资讯、资料,以及锂电池电流检测仪相关的解决方案。

锂电池电流检测仪相关的资讯

  • 如何进行锂电池性能的高低温检测
    如何进行锂电池性能的高低温检测?锂电池是一种新型的、性能优良的电池,目前已被广泛使用。但是,由于环境因素的影响,锂离子电池的性能存在较大的差异。因此,有必要开展锂离子电池在高、低温环境中的适应性研究。高低温适应性试验是测试锂电池在高低温环境下的适应能力的一种标准化实验方法。试验项目包括高温(55℃)、低温(-20℃)和温度循环三个部分。该实验涉及到的参数包括静置时间、充放电时间、充放电电流和电压等。1.在高温试验中,锂电池需要在55℃的环境下连续静置24小时,以测试其在高温环境下的耐热性能。在完成静置后,需要对锂电池进行一定的充电时间和放电时间,以测试锂电池在高温环境下的充放电性能。在充放电时需要注意电流和电压的控制,以免过度放电导致电池性能下降。2.在低温测试中,需要将锂电池放置于-20摄氏度以下24小时。如此一来,就可以对锂电池的耐寒性进行测试了。与此类似,在完全静止之后,还需对锂电池进行充放电,以检测其在低温环境中的充放电特性。在这一过程中,为了防止对锂离子电池的性能造成负面的影响,还必须对放电电流、电压进行严格的控制。3.以高、低温度实验为基础,进行了温度循环实验。为了检测锂离子电池在不同温度下的耐受能力,对其进行了高、低温热循环试验。在对电池进行试验时,为了确保试验结果的准确,必须对试验环境温度进行严格的控制。因此,对锂离子电池进行高、低温适应实验是对其进行综合评价的一种手段。通过本项目的研究,可以有效地评价锂离子电池在特殊环境中的适应性,为其开发与应用提供理论依据。随着科学技术的发展和产业化进程的加快,高、低温环境下锂离子电池的性能测试将会得到越来越多的应用。
  • 赛恩思碳硫仪助力宁夏宝丰能源锂电池负极材料检测
    赛恩思仪器,深耕分析仪器行业,始终秉持提供创新、精准、可靠的仪器设备,以满足不同行业、不同领域的高标准测试需求。近日,赛恩思仪器为宁夏宝丰能源集团提供的一套双炉红外及一台高频红外碳硫仪已经顺利安装并调试完成,将为该集团的锂电池负极材料的检测工作提供有力的技术支持。赛恩思的碳硫仪能够精准地分析和测量样品中的碳和硫含量。这对于锂电池负极材料的质量控制极为关键,因为碳和硫的含量直接影响到电池的性能和寿命。与此同时,赛恩思的管式炉以其高的温度控制精度和均匀的加热特性,使得锂电池负极材料的热处理过程更加精准、有效。赛恩思仪器始终坚守“精益求精、追求卓越”的经营理念,以满足用户需求为己任。我们自豪地看到,我们的设备正在帮助宁夏宝丰能源集团实现其锂电池负极材料的优质生产,同时也在推动整个锂电池行业的技术进步。赛恩思仪器期待与更多的企事业单位合作,提供精准、可靠的分析检测仪器,为其研发和生产助力!
  • 锂电池检测专题网络研讨会
    锂离子电池由于具备较高的性价比,自诞生之日起便以极快的速度抢占其他二次电池的市场份额,但是随着其应用范围的逐渐扩大以及单个电池的体积能量密度越来越高,容量越来越大,锂电池的安全性也越来越被人们所关注。为保障最终产品的质量,必须从锂电池的每个生产环节进行把控。珀金埃尔默特邀请广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,并联合TESCAN公司,举办“锂电池检测专题网络研讨会”日程安排:日期:2019年6月28日时间题目主讲人14:00-14:40动力电池关键材料检测现状 邵丹博士广州能源检测研究院主任工程师14:40-15:30珀金埃尔默锂电行业解决方案陈观宇珀金埃尔默资深应用工程师15:30-16:00TESCAN产品在电池领域表征中的应用张芳TESCAN资深应用工程师详情介绍:讲座题目一:动力电池关键材料检测现状内容简介:围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术等进行报告主讲人简介:邵丹,博士,广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员,主要从事化学储能材料及产品的相关技术研发、以及先进检测技术引进。讲座题目二:珀金埃尔默锂电行业解决方案内容简介:1.锂电池正极材料主量元素分析方法介绍2.锂电池负极材料掺杂元素分析方法介绍3.锂电池电解液分析方法介绍4.ICP-MS在锂电行业的应用优势主讲人简介:陈观宇,珀金埃尔默原子光谱资深应用工程师,从事原子光谱技术多年,是ICP及ICPMS的资深应用专家,在锂电关键材料的成分分析应用领域有着丰富的实践经验。讲座题目三:TESCAN产品在电池领域表征中的应用内容简介:1. 扫描电镜微分析平台在电池正极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 2. 扫描电镜微分析平台在电池负极材料微观表征中的应用 -- 形貌(SEM),微量元素分布(EDS、TOF-SIMS)、晶体结构(EBSD、Raman); 3. 扫描电镜微分析平台在电池隔膜表面结构表征的应用; 4. X射线显微镜在电池三维无损分析中的应用。 主讲人简介:张芳,TESCAN(中国)资深应用工程师,专注于电镜及电镜联用分析技术解决方案。即刻扫码占座吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • “锂电池检测专题”网络研讨会成功举办
    2019年6月28日,TESCAN联合珀金埃尔默公司,首度举办了“锂电池检测专题”网络研讨会,来自全国各地的155位专家和技术人员参加了本次网络研讨会,对锂电池的检测标准、分析手段、综合评估等做了深入的剖析和交流,大家在会上展开了热烈的讨论。珀金埃尔默的原子光谱资深应用工程师陈观宇老师介绍了锂电池正极材料主量元素、负极材料掺杂元素以及电解液的分析方法,例举多个实际案例对分析方案进行了详细说明、介绍了实践中要注意的操作要点,并通过实际的结果比对来进一步阐述Avio系列ICP产品主量元素0.1%超凡稳定性的独特优势,以及ICP-MS在杂质元素分析上的特点和方案。除此之外,陈观宇老师还形象地讲解了GC-MS、红外光谱、热重分析等多种类型检测方法在锂电行业的综合应用。图1 珀金埃尔默Avio系列等离子体光谱仪图2 珀金埃尔默Nexion系列等离子体光谱仪图3 珀金埃尔默气质联用仪检测浓度为100 μg/mL的11种碳酸酯色谱图图4 用于原材料检验的珀金埃尔默便携式高性能红外光谱仪及红外显微镜系统图5 珀金埃尔默热分析仪检测电池原材料的热稳定性评价曲线本次会议还特邀广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,来会上对动力电池关键材料检测现状做了详细的分析和报告,报告密切围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术,内容详实、引人入胜。TESCAN公司的资深应用工程师张芳女士介绍了新颖的以扫描电镜为平台组建的综合微分析系统在锂电池正负极材料以及隔膜材料微观表征中的应用,以及使用X射线显微镜完成电池的三维无损分析,实现从宏观到微观的整体观测。图6 正极材料的表面形貌图7 正极材料的截面图8 锂元素的检测图9 负极材料石墨化/非晶化分析图10 负极材料析锂分析图11 电池的内部结构的三维成像 本次网络专题讨论会是TESCAN公司和珀金埃尔默公司首度联手,从不同角度和使用不同的分析手段对锂电池检测进行系统、完整的分析和介绍,进而为广大的用户群提供综合有效的结果方案。珀金埃尔默公司和TESCAN公司都有各自擅长且独特的解决方案,此次携手合作,势必为多个领域的用户群体提供更多的前沿分析技术和专业的行业解决方案。
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 飞纳电镜点亮亚太电池展,带来锂电池材料高效检测方案
    8 月 16 日 - 18 日,2017 第二届亚太电池技术展览会在广州琶洲国际会展中心举行。飞纳电镜作为锂电材料形貌成份高效检测工具,盛装出席此次会议,现场展示了飞纳电镜高分辨率专业版 Phenom Pro 和飞纳电镜大样品室卓越版 Phenom XL,其中 Phenom XL 集成了背散射电子成像,二次电子成像与能谱分析等功能,两台台式扫描电镜吸引了众多参观者的目光。由于新能源汽车的高速增长,各锂电池企业纷纷扩产。相对以往单纯追求产能的突破外,行业内先行企业把目光投射到材料研发带来的电池产品性能提升上。锂电池主要由五部分构成,即正极材料、负极材料、电解液、隔膜和包装材料。其中,包装材料和石墨负极技术相对成熟,成本占比不高。锂离子电池的核心材料主要是正极材料、电解液和隔膜。其中,正极材料是锂电池最为关键的原材料,占锂电池成本的 30% 以上。材料的研发少不了一双“眼睛”,这双眼睛就是扫描电镜。扫描电镜可以对锂电池材料的正极材料,负极材料,隔膜,极片等进行微观的形貌检测及元素成份分析。飞纳台式扫描电镜使用独特的 CeB6 灯丝,提高了扫描电镜的分辨率,保证了图像质量。由于操作简单,维护方便,抽真空时间短,大大地提高检测效率,受到锂电池企业客户的青睐。设计精巧,完全防震,省去了客户为精密仪器安装环境要求高的担忧。即时在展会现场喧闹的环境中,飞纳电镜仍然能高效运行,30 秒成像,持续稳定地工作。锂电池正极材料由于中国大型锂电正极材料近十年迅速发展,产品质量大幅度提高,并具备较强的成本优势,近年来日韩锂电企业开始逐步从中国进口锂电正极材料,据悉目前中国锂电正极材料市场份额已占据全球一半左右,未来发展空间仍广阔。飞纳电镜拍摄的锂电池正极材料锂电池负极材料负极材料作为锂电池的四大关键材料之一,决定了锂电池充放电效率、循环寿命等性能。锂电池负极材料国内技术成熟,碳材料种类繁多,成本比重最低,在 5-10% 左右。现阶段负极材料研究的主要方向如下:石墨化碳材料、无定型碳材料、氮化物、硅基材料、锡基材料、新型合金和其他材料。飞纳电镜拍摄的锂电池负极材料隔膜隔膜在成本构成上仅次于正极材料,占 20-30%,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能。飞纳电镜拍摄的锂电池隔膜更多体验,尽在飞纳电镜飞纳台式扫描电镜 VR 之旅手套箱版台式电镜有些锂电池材料很容易与空气发生反应,影响形貌成份分析,飞纳电镜发布全球首款手套箱版台式电镜,实现扫描电镜放置在手套箱内,制样-观察全程惰性气体保护。原位通电样品杯允许用户将电探针连接到样品进行原位测量
  • 锂电池材料粒度要求高 激光检测担主角
    p style=" text-indent: 2em " span style=" font-family:宋体" 锂电行业近年来正在快速增长,并对多类光学、物性检测领域的仪器设备有着强烈需求。对于锂电池的电池材料来说,粒度、细度的检测是重要的相关参数,因而对激光粒度仪仪器厂商,锂电行业就此成为了他们书写市场红利新篇章的重要笔墨。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/a0946e4d-f5d6-4005-b98d-768e0013fd6b.jpg" title=" 1.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 粒度和粒径分布影响着锂电池材料性能的方方面面,特别是在生产流程,粒度粒径的检测有助于试验阶段的通过 /span / span style=" font-family:宋体" 失败检测、过程控制、以及每个工厂的出货控制。对锂电池,特别是聚焦舆论大量视线的锂离子电池,在原材料管控阶段,主要有三类电池材料需要进行粒度检测——正极材料、负极材料和隔膜材料,所需的粒径检测范围在 /span 10nm span style=" font-family:宋体" 到 /span 5mm span style=" font-family:宋体" 之间。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 以锂离子电池的正极材料为例,粒径 /span D50 span style=" font-family:宋体" 是关键性的质量控制指标之一,无论是磷酸铁锂电极还是其他主流锂合金氧化物电极都不例外。 /span D50 span style=" font-family:宋体" 是表示粒径大小的典型值,其标准定义是累计分布百分数达到 /span 50% span style=" font-family:宋体" 时对应的粒径值,又名中值粒径、中位径。电池正极对原材料的粒径要求波动范围较大,一般在 /span 1-20 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间。具体指标主要受到材料种类和工艺要求的双重限制。负极材料的粒径对电池的初始放电容量和首次效率等参数有重要影响,还是以锂离子电池为例,其负极石墨材料的平均粒径较为集中地分布在 /span 16-18 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间时,最为合适。电池隔膜,介于正负极材料之间,也是电池结构重要的组成部分,其中需要添加氧化铝等阻燃材料,这些阻燃材料的粒径需求则呈现随着隔膜层厚度不断提升,粒径不断减小的趋势,目前甚至需要达到亚微米甚至纳米级的要求。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/9c1cbb85-5a43-475e-978d-bc165aef7207.jpg" title=" 2.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池结构示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 电池的工艺特性、充放电容量、体积能量密度等重要参数都会受到电池材料粒度的影响, /span span style=" font-family:宋体" 而在各种粒度检测方法中,激光粒度仪因具有操作简便、可测颗粒数、等效概念明确、速度快、准确性好等优点,受到锂电市场的青睐。在激光粒度仪的各类技术指标中,“分辨能力”对于电池材料的检测有着极为重要的意义。分辨能力是指激光粒度仪对样品中不同粒径之间的区分能力。这种能力对电池材料的检测非常重要,例如,过小颗粒的石墨粉中往往具有较多的菱方结构,用参有这种石墨材料的锂电池,储锂容量就会比较小,而分辨能力高的激光粒度仪,就能较容易地检测出石墨原材料中的菱方结构。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/f3d5ee0f-102d-47ac-9a4e-773ee5e791bc.jpg" title=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 激光粒度仪原理示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-size:14px font-family:宋体" 评估激光粒度仪分辨能力的方法有很多,最常见的就是测量在已知粒径的标准样品中加入少量比例已知的大 /span span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " / /span span style=" font-size:14px font-family:宋体" 小颗粒样品,看测试结果是否能满足真实的差异。目前在市场上,激光粒度仪的分辨能力往往从散射光能分布角度、信噪比光学电子设计、高精度的模数转换及反演计算水平等角度改进。而具有高品质高分辨率元器件、装配工艺及算法数控优化水平高的激光粒度仪,也越来越为锂电行业所重视。 /span /p
  • 锂电池材料水分检测解决方案
    导语 锂电池是一种高新技术产品,同时也是一种新型高容量长寿命环保电池,主要用于电动车,数码产品,UPS电源等。随着新能源汽车和手机等3C数码产品产业的爆发式增长,锂电池作为其关键组成部分也发展迅速。锂电池由四大材料组成,分别为正极材料(核心),负极材料,电解液,隔膜。这些材料都有相应的水分控制要求,一般在数百ppm范围以内,不同厂家不同规格产品要求略有不同,如果超出过多,可能会导致电极涂覆不均或者引发电解液分解,导致HF生成继而引发电极鼓包等不良反应。 因为电极材料非常容易吸水,不能长时间暴露于空气中,所以不宜采用常规的加热失重法测试,通过卡式加热进样的方式再结合卡尔费休库仑法水分测试是目前较好的解决办法。 解决方案卡尔费休库仑法测试石墨粉中的水分卡尔费休库仑法测试磷酸铁锂中的水分卡尔费休库仑法测试正极极片中的水分卡尔费休库仑法测试隔膜中的水分卡尔费休库仑法测试负极极片中的水分卡尔费休库仑法测试电解液中的水分卡尔费休库仑法测试锰粉中的水分卡尔费休库仑法测试钴酸锂中的水分相关仪器推荐 AKF-CH6锂电池卡尔费休水分测定仪是集水分测量模块和加热进样模块于一体的卡尔费休水分测定设备,仪器完全按照锂电行业用户的需求打造,外观设计新颖,使用维护方便,能够涵盖锂电行业从正负极材料、极片、隔膜到电解液;水分范围从1ppm到100%的使用需求。
  • 岛津原子力显微镜在锂电池行业应用集英
    锂离子电池广泛用于手机、相机、玩具等小型电子设备以及混合动力汽车和电动汽车中。锂离子电池由阴极、阳极、隔膜和电解质组成,其中构成阴极和阳极的粉末状材料往往通过粘合剂保持聚集状态。无论是现有锂电池的各部分材料、工作性能,还是新型锂电池的开发,原子力显微镜均深入应用其中。01隔膜材料的工作状态下的孔隙变化目前最常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜是非常合适的观察工具。对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,隔膜需要实现在快速产热(温度120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状。范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。02锂电池正极材料工作状态观察为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。另一方面,正极中的三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图1至图3示出了EPMA数据,图4至图6示出了SPM数据。在EPMA结果中,图1是成分图像(COMPO),图2是C和F分析的叠加图像,图3是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图2中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图3中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图4是SPM获得的表面形貌图像,图5是低偏压激励下小电流分布图像,图6是高偏压激励下大电流分布图像。结合图4和图2,对比可知道活性材料的分布与形貌;结合图2,可认为图5中电流区域为导电剂;同时对比图5和图6,从图5中扣除图6的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图5和图3,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解各个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。03新型负极材料的开发最常用的负极材料是石墨,但近年来硅(Si) 因其理论容量高于石墨而被视为下一代负极材料。但是由于Si负极材料在充放电过程中随着Li离子的进出而显着膨胀和收缩,因此Si材料的短板是容易破裂且寿命短。为了弥补这个问题,需要选择合适的硬粘合剂以牢固地粘合Si材料。我们设置了两种环境观察Si负极材料的不同,一种是现实中锂电池使用的电解液,另一种是N2气体环境。样品由附着在玻璃基板上的三种聚丙烯酸粘合剂(1)、(2)和(3)组成。在电解液环境为(A),N2气环境为(B)中进行观察。(A)将样品在含有1mol/LLiPF6的碳酸二甲酯(DMC)和碳酸亚乙酯(EC)的混合溶液中浸泡24小时。24小时后进行观察,同时样品仍浸入电解液中。(B)将上述样品置于密闭环境控制室中,用N2置换室内气氛后,在N2气体中进行观察。实验结果如上图所示。(A)在电解液中的样品(1)上观察到约10nm的突起,而样品(2)和(3)都是平坦的。该结果表明样品(粘合剂)(2)和(3)均匀分布在电解液中。(B)在N2气体中观察时,样品(1)和(2)是平坦的,但在样品(3)上观察到20nm的突起。该结果不同于在电解质中观察到的结果,并证明了在实际用例环境中进行测量的重要性。04固态锂电池开发研究目前的锂离子电池内部使用有机溶剂电解液,在制作、运输、使用过程中电解液可能泄漏,从而造成燃爆事故。而固态电池是采用固态电解质的锂离子电池,不含有任何液体。相比传统的液态锂离子电池,固态电池首先安全性能高,固体电解质取代可燃的液体电解质,有望克服锂枝晶的产生;其次能量密度高,负极可采用锂金属负极,极大提高能量密度;再次循环寿命长,可避免液体电解质再充放电过程中持续形成和生长固体电解质界面膜,理论上循环寿命可提高10倍以上;此外,固态电池电化学窗口宽达5V,高于液态锂离子电池的4.25V,适用于高电压正极材料;最后,固态电池无废液,处理相对简单,回收更加方便。当然,固态电池技术也存在一些很棘手的问题。粉体颗粒在电池充放电循环中会发生体积膨胀与收缩,由于不含有液体,因此颗粒与颗粒之间、层与层之间容易产生缝隙,带来接触不良,影响离子和电子的传输,电池内阻就会增加,在充放电过程中就会发生极化问题,导致倍率性能下降。因此,对固态电池的测试,除了要观察其形貌外,更重要的是获得表面形貌与其导电性之间的联系,分析不同形态与聚集状态对其工作状态的影响。为此,设定实验对两种固态电池材料进行分析,分别是钴酸锂(LiCoO2:以下称为LCO)和钛酸(Li4Ti5O12:以下称为LTO)。为了模拟固态电池内部工作环境,使用环境控制舱调节气氛,氧气0.7ppm或更少,水蒸气0.75ppm或更少。30微米范围内LCO形貌图像与电流分布图像30微米范围内LTO形貌图像与电流分布图像30微米LCO形貌图像和30微米LTO形貌图像均显示出2μm左右的高度差,并且表面粗糙度(Sa)分析显示,二者分别为341.5nm和333.6nm,非常相近。在LCO中还发现了几个缺口。相比之下,在LTO中没有发现间隙,表面较为完整。在30微米LCO电流分布图像中,表面电流分布不均匀,在41.7%的面积上检测到电流(使用颗粒分析软件分析)。在30微米LTO电流分布图像中,没有检测到电流,可能的原因是在未充电状态下LTO具备高电阻特性。5微米范围内LCO形貌图像、电流分布图像、粘性力分布图像5微米范围内LTO形貌图像、电流分布图像、粘性力分布图像5微米LCO形貌图像显示该电极材料中的晶粒尺寸约为2-5微米左右,并且它们之间存在间隙。同时也存在几百纳米大小的颗粒,如箭头所示。LTO形貌图像显示电极材料为板状晶体结构,箭头所示。在5微米LCO电流分布图像中,可发现电流在黄色虚线的左右两侧明显不同。对比5微米LCO形貌图像,可推测黄色虚线是裂缝的边界。此外,很明显箭头所指的几个几百纳米大小的晶粒处没有电流。推测其原因是这些颗粒因破碎脱落隔离于其他材料,未能形成电流通路。在5微米LTO电流分布图像中依然没有检测到电流。对比以上图像发现,5微米LCO粘性力图像与5微米LCO高度图像(e)和5微米LCO电流图像中的分布相关。同时5微米LTO粘性力图像与5微米LTO高度图像中的板状晶体(箭头所示)分布相关。通常,粘性力被认为是由毛细力、范德华力或样品表面水膜导致的电荷聚集引起的。然而,在本次测量中,水蒸气浓度为75ppm或更低,因此毛细力的影响很小。所以,粘性力图像可能代表范德华力或电荷力,这两种力可被用于展示电极材料的组成分布。根据上述信息,很可能LCO电流分布反映了材料的成分分布,并且电流的路径受晶粒之间的裂纹或间隙影响。LTO在这种情况下无法获得电流图像,可尝试充电以降低其内阻,然后进行测量。由以上案例可知,原子力显微镜可以广泛适用于现行的锂电池材料测试,同时在各类新型电池的研发中,也具备非常重要的作用。本文内容非商业广告,仅供专业人士参考。
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 电动车进电梯发生爆炸!国仪量子扫描电镜可对爆炸源锂电池进行检测,或可避免意外发生
    近日发生了一件与锂电池有关的惨烈事故:在成都一小区的电梯里,一辆电动车的锂电池起火爆炸!由于电梯空间狭小,温度瞬间飙升,这如同人间炼狱一般的场面,造成包括一名婴儿在内的多人受伤,让人心有余悸。近年来,锂电池以其高比能量、较高的工作电压、体积小、重量轻等优点已成为移动通讯、笔记本电脑等便携式电子产品的主要电源之一。但很多人不知道的是,锂电池这样一个稀松平常、在生活中常见的物品,爆后炸会产生很大的威力,并且,随着电芯所储存的能量越高,其爆炸威力也越大。央视曾经报道过,用电动车做短路起火测试,结果惊人:小小的电动车仅需3分钟可以烧到上千度,一旦爆炸将会严重影响人身安全!因此,研究锂离子电池的爆炸机理对提高锂离子电池的安全性有重要的意义。电动车锂电池为什么会爆炸?让我们先来了解下锂电池的工作原理。锂离子电池以碳素材料为负极,以含锂的化合物为正极(根据正极化合物不同,常见的锂离子电池有钴酸锂、锰酸锂、磷酸铁锂、三元锂等)。中间有一层隔膜,避免正负极短路。在充放电过程中,Li+在正负极间往返:充电时,锂离子从正极脱嵌,经过电解质嵌入负极;放电时则相反。在锂离子的嵌入与脱嵌过程中,同时伴随着等当量的电子的嵌入和脱嵌,也就产生了电流。了解了锂电池的工作原理,也就能知道锂离子电池会爆炸的原因了,主要分为以下两点:1、过充导致放出的锂过多,负极部位容量不足,充电时产生的锂就无法插入负极石墨的间层结构中,会在负极表面形成金属锂。时间一久,这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓胀破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。2、充放电时,电流的限制也很有必要。电流过大时,锂离子来不及进入间层结构中,也会汇集在负极材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。从上面可以看出锂电池燃烧爆炸的根本原因还是由于材料导致的。想要减少锂电池的燃烧或爆炸,普通用户除了在日常使用中注意减少撞击、高温接触等保护措施以外,电池厂家也应该注重电池的生产质量管理,提高锂电池的品质也可以减少事故的发生。利用扫描电镜可对锂电池的原材料及制作工艺进行检测扫描电镜可以用于观测锂电池的原材料表面形貌及微观结构,包括正极、负极、隔膜等材料,也可用于观测浆料活性物质、导电剂、粘接剂分散情况,以及极片辊压后极片材料表面状态、极片分切后极片边缘金属毛刺大小。 扫描电镜还可用于检测正负极耳焊接情况。这些检测对于锂电池的质量保证具有重要意义。电镜下的负极材料电镜下的隔膜极片涂层辊压过程微观结构演变示意图极片边缘金属毛刺国仪量子扫描电镜了解一下国仪量子扫描电子显微镜SEM3100SEM3100是一款性能优良的钨灯丝扫描电子显微镜。本型号电镜可快速更换灯丝,使用维护更便捷。标配超大尺寸样品仓,最大可支持样品直径370 mm,高68 mm,可在20至300,000倍下观察样品,最高分辨率可达3 nm,使用场景更为广泛。产品特点1.大腔体设计, 三轴电动样品台或五轴电动样品台 (选配),可放置最大样品直径370mm,高68mm2.纯中文界面操作简洁高效3.稳定的成像效果,超高的分辨率4.多种探测器可供选配,满足不同的应用需求5.模块化的结构设计,易于维护及保养6.符合人体工程学设计的旋钮控制板 (选配)
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 锂电池组装必须带电防爆炸?FLIR A系列热像仪从源头解决危险
    随着电动汽车行业越来越普遍,带动着锂电池行业的蓬勃发展,但随之而来的电动汽车自燃的事故也频频发生,主要原因是锂电池的。那么,在给电动汽车组装电池的过程中,要注意什么以防安全事故的发生呢?01锂电池热失控的危险大多数电动汽车的电池模块和电池组的制造商在组装时会使用具有一定电量的电池,因为人们普遍认为完全放电的锂离子电池比完全充电的锂离子电池更危险。当各个电池模块连接时,电流将开始在组件之间流动。通常,这种电流会导致电池或模块的温度升高。随着温度的升高,系统内的电压会降低随即导致电流增加,从而进一步升高温度。这种温度升高的循环被称为“热失控”,如果不被发现,可能会导致电池损坏,进而导致设施内起火甚至爆炸。电池管理系统(BMS)可用于监测温度,并通过检查连接是否松动和内部短路来确保电池的健康。然而,BMS通常直到组装过程的后期才安装到系统中。因此,在初始组装期间,使用手持式红外测温枪来监测电池和模块的温度,其仅能在小区域内提供温度信息或根本提供不了有效温度信息。那么,该如何从源头避免温度上升而导致的火灾事故呢?02A系列热像仪:源头监控电池组装全程使用可见光相机监控检查电池的组装过程,是无法及时验证电池的健康状况。幸好红外热像仪能为电池系统制造商提供监控整个电池组件的能力,避免出现温度升高和热失控造成的潜在危险情况。由于电池配置在不同的装配线之间会有很大的差异,因此选择一款能够测量数千个不同点温度的热像仪,有助于确保不会错过任何关键热点。FLIR A系列高级智能传感器热像仪易于通过在线界面进行安装和控制比如FLIR A系列高级智能传感器热像仪就非常适合用于监测电池组件的每个排气口。用户可以在线使用热像仪控制界面创建多个目标区域,并为每个ROI设置最大温度报警阈值。使用EtherNet/ IP,当超过临界温度阈值时,立即将报警信号发送到工业PLC,以进行数据记录和控制报警指示灯。这种配置还提供历史温度数据记录,如果出现危险情况,为工人提供了一个可视指示器,并消除了使用手持式温度测量设备时人为错误的可能性。在电池组上进行FLIR A70红外热像仪监控测试FLIR A70等A系列智能传感器固定安装式热像仪的使用,提高了用于检测热失控条件的温度测量的重复性和可靠性,显著改进了使用手持式测温枪的单个操作员。自动化和改进的热监控提供了一定程度的保证,可以快速检测到任何潜在危险,这有助于降低工厂人员和设施的风险。FLIR A系列热像仪非常适合需要机载分析和警报功能用于状态监测和早期火灾探测应用的用户它们机身小巧方便集成是一款灵活可配置的解决方案可以满足众多行业客户的独特自动化需求。
  • 成就卓越品质,保障使用安全 —— 珀金埃尔默锂电池检测解决方案
    随着手机、数码产品、电动汽车的普及,锂电池在人们生活中扮演着越来越重要的角色。随之而来,锂电池的性能和安全问题成为人们关注的焦点。除了某些外部因素如过充、火源、挤压、穿刺、短路等,以及在锂电池电极制造、装配等过程中的质量控制起到很大影响之外,主要影响因素来源于以下几个方面:(1)正极材料:当锂离子电池使用不当时,导致电池内部温度过快升高,造成正极材料中的活性物质分解和电解液的氧化,从而产生大量热量,使得电池过热,引起燃烧甚至爆炸。(2)负极材料:如果以金属锂做负极材料,电池经过多次充放电后容易产生锂枝晶,进而刺破隔膜,导致电池短路、漏液。目前常用嵌锂化合物作为负极材料,有效避免锂枝晶的产生,提高安全性。(3)隔膜与电解液:锂电池的电解液通常为锂盐(如六氟磷酸铝)与有机溶剂(如碳酸酯)的混合溶液,电池温度较高时下易发生热分解。锂电池的生产环节上游为原材料的开采、加工和冶炼环节;中游涵盖了正极材料、负极材料、电解液以及隔膜的生产;下游主要涉及电芯制造和Pack封装。各个环节都需要用到仪器分析以确保品质符合要求。 珀金埃尔默致力于提供专业、可靠的锂电池检测解决方案,助力锂电安全发展。元素分析方案正极、负极、电解液等锂电池关键材料中的元素含量对成品质量有重大影响,是锂电原材料质控的关键项目。Ni、Co、Mn、Li等常量元素的含量决定了正极材料的性能表现;杂质元素含量决定了锂电池安全等性能。1. ICP-MS应用锂电池的关键材料中的杂质元素的浓度,对电池的充放电性能起到至关重要的作用。通常情况下,金属元素杂质的分析可以采用ICP-OES方法,但由于其仪器原理的局限,无法满足部分浓度较低杂质元素的检测。ICP-MS检出限相比ICP-OES更低,能很好地解决这一问题。针对锂电池元素杂质分析,珀金埃尔默NexION系列ICP-MS具备如下优势:(1)采用AMS全基体进样系统,在线通入稀释气,配合大锥孔设计,有效解决高酸及高颗粒样品中易堵塞锥口的问题;(2)采用四极杆离子偏转器(QID)偏转四级杆,离子90度偏转,可以获得优异的基体耐受性、仪器稳定性以及更低的记忆效应;(3)单颗粒(SP)-ICP-MS技术有效检测铜颗粒、含铜颗粒的数量及粒径分布。2. ICP-OES应用除了锂电池关键材料中的杂质元素外,正极材料,尤其是三元材料中主量元素的比例直接决定了锂电池的性能表现。珀金埃尔默Avio系列ICP-OES除了可以检测杂质元素,还能针对主量元素进行准确测定,助力电池质量精准控制。Avio系列ICP-OES检测锂电池样品具有以下优势:(1)实时内标法带来0.1%的测试稳定性,非常适合主量元素测定;(2)专利的双向观测能同时满足测定高浓度与低浓度的需求;(3)电解液类含有机溶剂样品可稀释后直接进样;(4)独有的扣除光谱干扰功能,解决了ICP-OES分析复杂基体样品中的谱线干扰问题;(5)氩气消耗量低,节省成本。材料表征方案在锂离子电池发展的过程当中,需要大量信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。1. 红外光谱应用傅里叶红外光谱技术(FT-IR)是锂电池研发过程中的一种重要的材料表征手段。它能提供化学键和官能团的具体信息,以确定氧化降解过程中影响锂电池性能的瞬时锂态和杂质情况。采用红外光谱和红外成像技术,可以表征粘结剂和隔膜材料在充放电过程中的化学键变化及劣化情况。珀金埃尔默红外光谱仪配备了一系列先进的创新设计,旨在为锂电池产品研发提供卓越的光谱分析能力。其中Spectrum 3系列还可以升级为具有衰减全反射(ATR)图像功能的 Spotlight™ 400红外成像系统,极小样本也能实现高分辨检测,并通过红外光谱数据可视化地展示材质成分。2. 热分析应用锂离子充电电池所使用的材料的耐热稳定性(热分解、产生气体等)测试非常重要。例如隔离材料,其结晶结构可左右电池性能。另外,如果在封装过程中使用了环氧类固化材料,则需要对其固化度进行检测。使用由热分析仪器与光谱及质谱等仪器联用组合而成的逸出气体分析系统,为您提供可获取材料正确信息的有效快速的分析方法。珀金埃尔默联用系统的应用优势:(1)DSC 8500采用功率补偿型设计原理,能真实直接测量能量和温度而非温度差;(2)DMA 8000自由旋转的测试头,可旋转180度,从而在任何合适的方位进行装样测试;(3)珀金埃尔默提供从色谱、质谱、光谱和热分析等全面产品支持,可将不同产品联合使用,充分利用各个仪器的优势,产生协同效技,达到单次试验,获得多个结果的目的。失效分析方案气相色谱及气相质谱可进行电解液(包括添加剂)成分分析、溶剂组分含量测定,以及石墨类负极材料有机物含量测试。可通过分析充放电后的电解液确认组成比例的变化及分解成分等,进而有助于判断电池失效的原因。珀金埃尔默Arnel® Model 4017可用于分析电池内部产生的气体,常见产气成分有H2、CO、CO2 等永久性气体以及CH4、C2H4、 C2H6 等烷烃类气体,从而推测电池的内部状态。珀金埃尔默产品在锂电材料检测中的应用概览扫描以下二维码,获取珀金埃尔默锂电池检测解决方案
  • 八年探索,锂电池浆料评价方法终获突破
    近日,中文国家核心期刊《电源技术》2024年第1期和第2期连续发表仪思奇(北京)科技发展有限公司杨正红等两篇论文:《超声/电声谱法测定锂电池浆料的粒度、流变和微观电学参数》(见2024,48(1):95-100)及《用超声/电声谱监测锂电池正极浆料的合浆及包覆质量》(见2024,48(2):284-288)。这预示着在锂电池浆料稳定性和微观电学性质评价方面取得决定性突破。众所周知,在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接影响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料混合分散至关重要。浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。目前对电池浆料的质量监测依据的是剪切流变性能的监测,然而,对相同工艺产生不同流变性质的原因始终是困扰电池浆料质量控制的痛点。据报道,影响锂离子电池浆料流变性的一些主要参数包括:1. 分散相的类型及表面电荷的大小:对于不同种类的正负极活性物质,由于其种类不同,具有不同的水化膨胀特性以及不同的表面电荷,因而不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。2. 固相的浓度:分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般情况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。3. 固相颗位的大小、形状以及粒径的分布:在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。 4. 分散介质本身的粘度:不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。5. 温度和压力:在不同的温度和压力下浆料具有不同的流变特性。6. 浆料的pH值。对于锂电池合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。通过高粘度搅拌工艺,浆料中导电剂是否能较好地分散在主料的表面,均匀地包覆住主料,这将影响极片的导电性,直接影响电池的倍率性能。因此,我国锂电池行业只能通过测粘度对浆料稳定性进行粗放的宏观管理,而缺乏对浆料本身电学性质的研究和监测,极大地影响了锂电池的成品率,导致成本无法下降,品质无法提高。美国和日本锂电企业都是通过超声衰减/电声学技术(ISO 20998/ISO13099)表征浆料中颗粒的电化学性能,进行锂电池浆料及其稳定性精准质控的。为了打破封锁,提高我国锂电池生产品质,根据所掌握的信息,仪思奇对电池浆料品质控制的超声/电声学参数进行了初步探索。美国分散技术公司的DT-1202或DT-1210超声/电声谱分析仪具有在常压条件下测量和计算上述包括粒度及zeta电位等几乎全部涉及的宏观和微观参数的能力(颗粒形状除外),国家标准GB/T 41316-2022《分散体系稳定性表征指导原则》中也推荐了超声/电声学方法。在日本,DT-1202以每年20台的销量早已广泛应用于电池浆料的质量控制中。然而,日本公司在向我国销售电池设备的同时,却对质控仪器及其相关参数对我国严格保密。为打破垄断,提高我国锂电池生产质量,降低消耗,仪思奇科技从成立之初,即与锂电材料企业广泛合作,对电池浆料可能的质控参数进行了一系列探索实验。经过八年的艰苦探索和努力,他们发现锂电池正负极浆料的稳定性化存在着不同的机制,它们的作用可以通过不同的参数表征出来,即宏观电动学参数——Zeta电位和微观电学参数——表面电荷密度。在锂电池浆料的稳定效应中,后者起到更重要的作用。因此,在锂电池浆料的研究或质量监控中,不仅需要关注zeta电位值,更需要关注表面电荷密度值的变化,二者不可偏废。这些微观电学参数也影响着浆料的宏观流变性能。超声衰减谱还可同时测量浆料体系的高频剪切黏度(动力黏度)和体积黏度(纵向黏度),反映了浆料在微观尺度上流变学性质,并且是一种非侵入式和非破环性的方法,为物质的微观结构提供了更深入的信息,有助于判断锂电池浆料工艺不稳定性的原因。研究表明,超声法直接测定锂电池合浆过程中的原浓浆料粒度直观有效,对于工艺质控非常重要。zeta电位作为疏水胶体体系静电排斥效应的表征参数,却很难直接作为电池浆料NMP有机体系的稳定化表征参数。但是在合浆过程中,因导电添加剂团聚的存在,很难均匀包覆在LFP颗粒上,而通过胶体电流(CVI)测定的电声法直接测量锂电池浆料的Zeta电位和双电层厚度可以成为导电剂是否分散和包覆均匀的关键质量控制参数。上述对电池浆料评价方法的突破,对锂电池浆料稳定性和工艺控制的解决方案探索具有重要意义
  • 活动回顾 | 锂电池检测专题网络研讨会(内附回放视频地址)
    2019年6月28日,珀金埃尔默联合TESCAN公司,举办了锂电池检测专题网络研讨会。来自全国各地的155位专家和技术人员参加了本次网络研讨会,对锂电池的检测标准、分析方法、综合评估等做了深入的剖析和交流,大家在会上展开了热烈的讨论。首先,珀金埃尔默的原子光谱资深应用工程师陈观宇老师介绍了锂电池正极材料主量元素、负极材料掺杂元素以及电解液的分析方法,例举多个实际案例对分析方案进行了详细说明、介绍了实际工作中要注意的操作要点,并通过实际的结果比对来进一步阐述Avio系列ICP产品主量元素0.1%超凡稳定性的独特优势,以及ICP-MS在杂质元素分析上的特点和方案。除此之外,陈观宇老师还形象地讲解了GC-MS、红外光谱、热重分析等多种类型检测方法在锂电行业的综合应用。珀金埃尔默Avio系列等离子体光谱仪珀金埃尔默Nexion系列等离子体光谱仪珀金埃尔默气质联用仪检测浓度为100 μg/mL的11种碳酸酯色谱图用于原材料检验的珀金埃尔默便携式高性能红外光谱仪及红外显微镜系统珀金埃尔默热分析仪检测电池原材料的热稳定性评价曲线本次会议还特邀广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,对动力电池关键材料检测现状做了详细的分析和报告,报告密切围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术,内容详实、引人入胜。最后,TESCAN公司的资深应用工程师张芳女士介绍了扫描电镜微分析平台在锂电池正负极材料以及隔膜材料微观表征中的应用,以及使用X射线显微镜可以完成电池的三维无损分析,实现从宏观到微观的整体观测。TESCAN 电镜-拉曼一体化系统RISETESCAN 3D 及4D 动态的大面积无损X 射线成像分析系统本次网络专题讨论会是珀金埃尔默与TESCAN公司首度联手,从不同角度和分析手段对锂电池检测进行系统、完整的分析和介绍,进而为广大的用户群提供从含量分析到微观表征的全面方案。回放视频如果您没有及时参与本次讲座,没关系,我们录制了老师报告的视频。进入公众号首页“珀金埃尔默网络讲堂”页面查看:关注“珀金埃尔默”微信公众号点击自定义菜单"网络讲堂"进入网络课堂页面,观看视频关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 17亿损失!返航代价!锂电池乘机隐患大,安全性检测不能少
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯 /strong 9月4日,由南京至厦门的MU2809航班起飞后客舱出现明火,由巡航期间客舱内旅客充电宝自燃所致,该航班随后安全返回南京机场。据了解,当时旅客并未使用充电宝。 /p p style=" text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201909/uepic/d3dbc510-f7cd-490b-a88d-9ad1fa8f7873.jpg" title=" 东方航空.png" alt=" 东方航空.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 8月27日,北京飞往东京的CA183航班在旅客登机过程中,飞机前货舱冒烟。民航相关人士表示飞机大概率无法修复,只能报废。据悉,一架A330飞机的价格大约17亿人民币。据了解,多数情况下的货舱起火冒烟,是由于锂电池受挤压发生反应,并在密闭的货舱中与其他物品继续发生连锁反应造成的。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/201909/uepic/cb66cb2f-38da-4e1a-8b53-e4c571991e5b.jpg" title=" 中国国际航空.png" alt=" 中国国际航空.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 近日,据媒体报道,多家航空公司将禁止随身携带或托运MacBookPro型号的苹果电脑上飞机,原因是其电池可能会过热并存在消防安全隐患。苹果公司在今年6月发起了自愿召回,并警告称,在2015年9月至2017年2月期间销售的15英寸Pro“含有可能过热并构成安全风险的电池”(苹果召回电池 span style=" color: rgb(0, 0, 0) " 请 /span a href=" https://www.instrument.com.cn/news/20190716/489111.shtml" target=" _self" style=" color: rgb(112, 48, 160) text-decoration: underline " span style=" color: rgb(112, 48, 160) " 点击查看 /span /a )。 /p p style=" text-indent: 2em text-align: justify " 以上事件的发生,使得公众不得不提高对锂电池航空运输基础知识的重视,相关企业也要对锂电池安全性测试提出更多、更高的要求,这不仅是对锂电池质量的把关,更是对公众人身安全及财产的保障。仪器信息网特整理了锂电池航空运输基础知识及锂电池安全性相关测试标准,以飨读者。 /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(255, 255, 255) background-color: rgb(0, 112, 192) " strong 锂电池航空运输基础知识 /strong /span /p p style=" text-indent: 2em text-align: justify " 根据中国民用航空局发布的《关于加强通用航空短途运输旅客携带锂电池乘机安全管理工作的通知》,锂电池属第9类杂项危险品,短途运输旅客乘机携带的手机、充电宝、电脑、相机、平板电脑等电子设备中均含有锂电池,在飞行过程遇到碰撞、挤压、高温等情况时极易发生因锂电池内部短路导致的冒烟、起火,如处置不当,可导致通用航空器失去配载平衡等重大安全风险,对通用航空短途运输安全运营带来严重威胁。 /p p style=" text-indent: 2em text-align: justify " 可随身或作为手提行李携带的锂电池包括:仅限旅客个人自用目的携带的;由锂电池驱动的小型含锂电池设备(手表、计算器、照相机、手机、手提电脑、便携式摄像机、电子烟等);设备所需的备用锂电池(含充电宝);其作为随身或手提行李携带时,锂电池额定能量应不超过100Wh,如果大于100Wh但不超过160Wh的需经通用航空企业运营人批准方可携带,大于160Wh的禁止携带。 /p p style=" text-indent: 2em text-align: justify " 禁止短途运输旅客携带的锂电池有:因为安全原因被制造商确认为有缺陷或已被损坏的锂电池;废弃电池,回收和处置电池;无法确定额定能量的锂电池;超过锂电池额定能量限制的含锂电池电子设备、充电宝及备用锂电池。 /p p style=" text-indent: 2em text-align: justify " span style=" background-color: rgb(0, 112, 192) color: rgb(255, 255, 255) " strong 锂电池安全性及其相关测试标准 /strong /span /p p style=" text-indent: 2em text-align: justify " 目前锂电池的各种标准主要从三个角度进行考察,即应用安全性能、环境适应性和电性能。不同标准对电池的检测各有侧重,下表是锂电池相关测试标准的整理归纳: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" tbody tr class=" firstRow" td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 对应标准 /span /strong /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 应用安全性能 /span /strong /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 环境适应性 /span /strong /p /td td width=" 117" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" strong span style=" font-size:14px" 电性能 /span /strong /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" GB/T 18287 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 热冲击; /span span style=" font-size: 14px " 过充电; /span span style=" font-size: 14px " 短路; /span span style=" font-size: 14px " 重物冲击; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 过充电保护; /span span style=" font-size: 14px " 过放电保护; /span span style=" font-size: 14px " 短路保护 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 恒定湿热性能; /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 碰撞; /span span style=" font-size: 14px " 自由跌落 /span /p /td td width=" 117" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 0.2C5A /span span style=" font-size:14px" 放电性能; /span span style=" font-size: 14px " 1C5A /span span style=" font-size: 14px " 放电性能; /span span style=" font-size: 14px " 高温性能; /span span style=" font-size: 14px " 低温性能; /span span style=" font-size: 14px " 荷电保持能力; /span span style=" font-size: 14px " 循环寿命; /span span style=" font-size: 14px " 贮存 /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" IEC 60086-4 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 强制放电; /span span style=" font-size: 14px " 不正常充电; /span span style=" font-size: 14px " 错误安装; /span span style=" font-size: 14px " 过放电 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 低气压; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 冲击; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 撞击; /span span style=" font-size: 14px " 挤压; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 自由跌落; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 温度冲击 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" IEC 62133 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 持续低速率充电; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 外部短路; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp & nbsp /span /span span style=" font-size: 14px " 强迫放电; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 高速率充电; /span span style=" font-size: 14px " 过充电 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 振动; /span span style=" font-size: 14px " 机械冲击; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 自由跌落; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 热冲击; /span span style=" font-size: 14px " 挤压; /span span style=" font-size: 14px " 低气压; /span span style=" font-size: 14px " 电池外壳应力 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" IEC 61960 /span /p /td td width=" 156" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td td width=" 152" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td td width=" 117" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 20 /span span style=" font-size:14px" ℃放电; /span span style=" font-size: 14px " -20 /span span style=" font-size: 14px " ℃放电; /span span style=" font-size: 14px " 高速率放电; /span span style=" font-size: 14px " 荷电保持及恢复; /span span style=" font-size: 14px " 长时间贮存; /span span style=" font-size: 14px " 循环能力; /span span style=" font-size: 14px " ESD; /span span style=" font-size: 14px " 内阻 /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" JIS C 8714 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 强制内部短路; /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " & nbsp /span /span span style=" font-size: 14px " 过充电保护 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 热冲击; /span span style=" font-size: 14px " 挤压; /span span style=" font-size: 14px " 跌落 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" UL 1642 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 异常放电 /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " ; /span /span span style=" font-size: 14px " 强制放电 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size: 14px" span span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span span style=" font-size:14px" 挤压; /span span style=" font-size: 14px " 重锤冲击; /span span style=" font-size: 14px " 热冲击; /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 机械冲击; /span span style=" font-size: 14px " 低气压 /span span style=" font-size: 14px " span style=" font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: " times=" " new=" " ; /span /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 弹射 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr tr td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" UL 2054 /span /p /td td width=" 156" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 外部短路; /span span style=" font-size: 14px " 异常充电; /span span style=" font-size: 14px " 滥充电; /span span style=" font-size: 14px " 强制放电; /span span style=" font-size: 14px " 限功率测试; /span span style=" font-size: 14px " 元器件温升 /span /p /td td width=" 152" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" 挤压; /span span style=" font-size: 14px " 重锤冲击; /span span style=" font-size: 14px " 热冲击; /span span style=" font-size: 14px " 温度循环; /span span style=" font-size: 14px " 振动; /span span style=" font-size: 14px " 燃烧; /span span style=" font-size: 14px " 机械冲击; /span span style=" font-size: 14px " 跌落 /span /p p style=" margin-bottom:0 text-indent:0" span style=" font-size:14px" ;250N /span span style=" font-size:14px" 挤压; /span span style=" font-size: 14px " 外壳应力; /span span style=" font-size: 14px " 外壳防火 /span /p /td td width=" 117" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" margin-bottom:0 text-align:center" span style=" font-size:14px" —— /span /p /td /tr /tbody /table p style=" text-indent: 2em text-align: justify " strong 附: /strong 更多锂电池相关检测信息,点击进入 a href=" https://www.instrument.com.cn/application/SampleFilter-S25001-T000-1-1-1.html" target=" _self" style=" color: rgb(112, 48, 160) text-decoration: underline " span style=" color: rgb(112, 48, 160) " 锂电池检测方案专场 /span /a 。 /p
  • 一层隔膜两重天:国产锂电池尚需拨云见日
    p   “也不知道这辆车的电池能坚持多久?” /p p   6月15日上午,望着窗外驶过的又一辆新能源汽车,南开大学新能源材料化学研究所所长、博士生导师周震习惯性地自语道。 /p p   从事新能源材料研究20多年,看着日渐增多的新能源汽车,周震欣喜之余,仍存忧虑,“锂电池的基础材料研究,我们与世界一流水平还有差距,尤其高端电池隔膜材料仍然依赖进口”。 /p p   在周震等业内专家看来,作为新能源车的“心脏”,国产锂离子电池(以下简称锂电池)目前“跳”得还不够稳。 /p p style=" text-align: center " strong   跨越太平洋的“四国游戏” /strong /p p   去年全球动力电池销量前10的企业中,中国企业就占了7席,在市场份额上超越日本,占据了世界第一位 预计到2020年,我国在全球电池市场所占的份额将达七成以上 目前我国电池生产企业已超过了200家,是全球拥有锂电池生产企业最多的国家……然而这一串的数字,并没有让业内人士觉得骄傲,不少人接受采访时指出,虽然我国已经形成了比较完善的动力电池产业链,电池产业规模够大,但是还远称不上强。 /p p   在锂电池领域存在着一个跨越太平洋的“四国游戏”。“从行业角度来看,美国有比较强的研发设计能力,目前仍然引领锂电池原始创新、核心材料研发 日本作为电池材料制造大国,生产规范严格,能够最先制造出新的成品电池 我国和韩国作为第二梯队,后续跟进……”周震解释说,“相较日、韩,我国的低端锂电池产品更有优势,主要是由于人工和原始材料相对便宜,但是在部分高端产品,尤其是事关电池安全性的核心材料和制造工艺,仍有较大的差距。” /p p   据了解,电池四大核心材料中,正、负极材料、电解液都已实现了国产化,唯独隔膜仍是短板。国产隔膜主要供应低端3C类电池市场,高端隔膜目前依然大量依赖进口。核心专利缺乏,隔膜等关键材料不给力,不仅成了国产锂电池难以承受之痛,也拖了国产锂电池企业“走出去”的后腿。 /p p   天津力神电池一位负责人在接受科技日报记者采访时表示,锂电池最前沿的三元材料,核心专利掌握在美国3M公司和阿贡国家实验室的手中,3M公司持有常规化学计量比的NMC材料的专利,阿贡国家实验室拥有层状富锂材料专利。目前,松下、三星、LG等主流厂商都要花钱购买相关专利授权。“国内锂电池企业众多,未来进入国际市场,面对国际巨头竞争,缺乏核心专利和材料技术是中国电池企业未来最大的隐忧和短板。”该负责人表示。 /p p style=" text-align: center " strong   一层薄膜两重天 /strong /p p   采访中,有电池材料专家告诉记者,隔膜是锂电池的关键组件之一,隔膜主要材质为多孔质的高分子膜,包括聚乙烯及聚丙烯。锂电池用的隔膜对安全性、渗透性、孔隙度及厚度都有严苛的要求。 /p p   “在锂电池内部,带有电荷的离子,在正负极间流动穿梭,才能形成电流,而隔膜位于电池内部正负极之间,既要防止正、负极直接接触,又要确保电解质离子顺利通行。”周震形象地解释说,电池电解液犹如河流,锂离子好比河上行驶的小船,隔膜是拦腰而建的大坝,一个个隔膜孔就像是大坝上的闸门,正常情况下,离子自由穿梭到达正负极,完成充放电的循环。 /p p   “高端的隔膜一般附带有陶瓷材料,如果电解液温度过高,材料膨胀,孔隙会像闸门一样关闭,切断离子交流,从而避免电池因温度过高而起火爆炸。”周震介绍说,隔膜是锂电材料中技术壁垒最高的一种材料,其技术难点在于造孔的工程技术、基体材料,以及制造设备。“技术要求高,价格自然也就贵,差不多占到了电池总成本一成以上。” /p p   目前,世界上最好的锂电池隔膜材料出自旭化成和东燃化学两家日本公司,而国内锂电池铝塑膜市场九成份额也被昭和电工等日本厂商垄断。天津力神公司的工程师告诉记者,与日本相比,我国的高端隔膜差距明显。国产隔膜产品一致性不高,存在孔隙率不达标,厚度、孔隙分布以及孔径分布不均等问题。 /p p   隔膜的品质直接影响电池容量、充放电循环寿命、阻燃止爆安全性能等指标。业内人士感慨:“一层隔膜两重天,迈过去就是晴天!” /p p style=" text-align: center " strong   国产隔膜急需突破 /strong /p p   目前锂电池隔膜制造工艺主要分湿法和干法。记者采访中了解到,我国在干法工艺上已迈入了世界第一方阵,但在湿法隔膜领域,国内企业虽掌握方法,但整体仍难以与外国巨头抗衡,此外,核心生产设备也主要依赖进口。 /p p   数据显示,2017年,国内锂电市场规模达到了1130亿元左右,其中动力锂电池规模大约600亿元。而国家工信部印发的《节能与新能源汽车产业发展规划(2011—2020年)》也显示,到2020年我国纯电动汽车和插电式混合动力汽车生产能力达200万辆/年。有电池行业协会据此估算,我国未来每年需要的高品质车用动力电池隔膜材料需求量将达到数亿平方米。 /p p   “锂电池发展要想不受制于人,隔膜等高端材料无法回避!”天津巴莫股份有限公司总经理吴孟涛认为,如此巨大的市场需求,完全依赖外国厂商,不仅不现实,也将是国产动力锂电池最大隐忧。 /p p   高端隔膜技术具有相当高的门槛,不仅要投入巨额的资金,还需要有强大的研发和生产团队、纯熟的工艺技术和高水平的生产线。“对于湿法制造工艺来说,树脂材料与添加剂的挤出混合过程以及拉伸过程是两大核心难点。”周震认为,国内隔膜企业要想有更大的作为,必须要在基础材料表面处理工艺、胶粘剂配方工艺、产品冲压拉伸等涉及材料、设备和工艺控制等三大领域“补课”,此外,在隔膜产业链上游,包括国产涂布机等在内核心生产装备也需要迎头赶上,尽快实现国产化更大突破。 /p p   “好比登山,离山顶越近成功登顶的希望就越大,而这时需要付出的努力也多!”周震说道。 /p p br/ /p
  • ACCSI2018“新材料检测技术及仪器论坛”关键词:锂电池、半导体
    p    strong 仪器信息网讯 /strong 2018年4月15-16日,中国科学仪器行业的“达沃斯论坛”——2018 (第十二届)中国科学仪器发展年会(ACCSI 2018)在江苏省常州市香格里拉大酒店隆重召开。ACCSI 2018借助十一年的品牌积淀,发挥常州的区位优势,吸引科学仪器及检验检测行业的1000余位高端人士参会。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/4434112d-6bcd-408a-806c-a4594d4dc16e.jpg" title=" IMG_5735_副本.jpg" / /p p style=" text-align: center " strong 大会掠影 /strong /p p   继大会首日的大会报告、仪器企业周年庆启动仪式、I100峰会之“中国科学仪器发展高峰论坛”、仪器及检测风云榜颁奖盛典等日程精彩上演后,4月16日,大会第二天,十个分论坛相继火热进行。 /p p   16日下午,“新材料检测技术及检测仪器发展论坛”作为重要分论坛之一,在酒店二层聚德堂会议厅如期进行。该论坛由仪器信息网与北京材料分析测试服务联盟共同主办,聚焦新能源、锂电池、半导体等新材料检测热点领域,特邀9位相关学术及企业专家代表与参会者分享最新检测技术及仪器报告。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/516ea58e-fb2f-4173-90b8-5fc07faec353.jpg" title=" QM4B8404_副本.jpg" / /p p style=" text-align: center " strong “新材料检测技术及检测仪器发展论坛”现场 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/2b08d021-95cc-4d01-9d90-abcc0562ca0c.jpg" title=" IMG_6146_副本.jpg" / /p p style=" text-align: center " strong 北京材料分析测试服务联盟秘书长关璐主持 /strong /p p   值得一提的是,在专家报告前,聚焦材料物性测试仪器的2017年“第三届国产好仪器”在有着共同聚焦方向的材料论坛上进行了项目汇报及最终入选颁奖仪式,颁奖仪式请关注仪器信息网后续报道。 /p p style=" text-align: center " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 九位专家报告速览 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6779341c-8a8a-45e6-98d4-7a1cd828674f.jpg" title=" QM4B8413_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :广州邦禾检测技术有限公司董事长 苗春茂 /p p style=" text-align: center " strong 报告题目 /strong :电池相关检测的技术进展及对仪器的需求 /p p   电池涉及的终端产品种类繁多,由最初的手机、笔记本、MP3等少数电子产品,延伸到医疗器械、电动车、无人机、电动汽车等各个行业数千种产品。伴随电子产品的日益轻便、小型化,电动车续航里程需求的增加,高能量/高密度成为电池发展的趋势。但苗春茂也表示,这也随之带来事故几率及事故后危害的增大。而检测手段则可以降低电池的潜在风险,相关电池检测对仪器及设备的需求包括充放电池设备,记录间隔从 1s到5ms,对设备数据进度从± 1%到± 0.1%等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/60a50985-8205-4dbf-993b-c94ec219f12d.jpg" title=" IMG_6111_副本.jpg" / /p p style=" text-align: center " strong 报告人: /strong 珀金埃尔默仪器有限公司材料表征技术支持 方伟宇 /p p style=" text-align: center " strong 报告题目: /strong LCD/LED液晶面板行业材料性能检测探讨 /p p   液晶面板行业包括上游材料或元件、中游面板制造厂、下游各类应用终端等,该行业面临的的检测需求包括原材料是否合格?如果发现不合格产品,原因何在等。方伟宇主要针对面板行业的需求,详细介绍了能够带来的相关仪器及解决方案,包括紫外/可见/近红外分光光度计、红外及其显微系统、热分析及其联用系统,及微小颗粒检测方案等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c49f8de5-095f-4022-983c-18dcfcb8874d.jpg" title=" IMG_6140_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :丹东奥龙射线仪器集团有限公司营销总监 杨国芳 /p p style=" text-align: center " strong 报告题目 /strong :工业CT在电池检测领域的应用 /p p   杨国芳在报告中表示X射线无损检测在电池制造业正逐步从二维检测走向CT检测,甚至开始了在线CT检测的应用。国产工业CT正在以更优异的分辨能力,便携性和可定制性服务于该行业,为客户更快更准确的解决问题。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/3ccef5c4-2a4c-4531-a0cc-825d0b032a5a.jpg" title=" IMG_6148_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :上海微谱化工技术服务有限公司副总经理 吴杰 /p p style=" text-align: center " strong 报告题目 /strong :微谱分析助力企业研发与质量升级 /p p   微谱分析,是指通过微观谱图(光谱、色谱、质谱、能谱、核磁共振谱、热谱等)对未知成分进行分析的技术方法。吴杰在报告中以对比分析、竞品分析、汽车内饰件气味/VOC评价及溯源等示例讲解了微谱分析对企业研发与质量升级的帮助。接着介绍了微谱分析最新技术进展,包括前处理升级、物质筛查体系及成分定性定量方法开发、微量物质结构解析及聚合物结构解析等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/31bc84cb-326c-42b4-bcac-3c6edd38fe60.jpg" title=" IMG_6173_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :丹东百特仪器有限公司总经理 董青云 /p p style=" text-align: center " strong 报告题目 /strong :颗粒表征技术在能源颗粒材料中的应用与进展 /p p   首先,董青云通过概念解释、传统测试方法示例解析等方式对颗粒测试的“前世今生”进行了详细解答。接着,讲述了颗粒表征技术在能源颗粒材料中的应用,并着重介绍了两种能源颗粒粒度粒形测试最常用的两种方法:激光法和图像法。报告以丰富的产品及技术示例阐明,国产激光粒度仪的关键器件、原理性研究与进口品牌相比是过关的,现在的国产激光粒度仪、显微图像粒度仪能满足能源颗粒以及其它粉体材料粒度粒形分析要求。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/796c554d-7520-4341-8b6a-48db2d2d620a.jpg" title=" IMG_6187_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :安捷伦科技(中国)有限公司资深应用解决方案专家 王少珍 /p p style=" text-align: center " strong 报告题目 /strong :浅谈液质在新材料检测分析上的技术分享与应用解决方案 /p p   王少珍表示,安捷伦液质产品技术可以帮助用户应对不同的挑战,分离技术方面,包含通用型的HPLC,SFC,2D-LC等 不同的实验目的和要求,可选择不同类型的质谱进行检测,如四极杆,Tof,IMS仪器 对未知样品进行定性分析方面,可使用MSC、MP、MPP等软件进行数据解析。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8d72862f-4663-43d8-a89f-8d8a96619fde.jpg" title=" IMG_6198_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :国家纳米科学中心纳米加工技术实验室副主任 褚卫国 /p p style=" text-align: center " strong 报告题目 /strong :锂离子电池纳米正极材料及表征 /p p   2003-2018年,锂电池增长态势良好,2018年产值达320亿美元。增长主要来源于电动汽车等动力电池领域、笔记本小型锂电池领域需求的快速增长。褚卫国认为,良好的电子离子导电性及结构、表面稳定性,取决于高性能的材料,而高性能的材料则离不开各种表征手段。电池材料相关表征手段很多,包括电镜、X射线、中子衍射、颗粒测试、核磁共振等。但褚卫国建议,要根据材料本身的特点来选择适当的表征方法,多种表征方法联合,相互印证结果。同时,表征技术在特定条件下与分析方法结合能够获取某种特定的重要信息。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/311bb580-20fb-4c0b-8b7d-e927d9a84061.jpg" title=" IMG_6233_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :日立高新技术公司电镜产品经理 席小宁 /p p style=" text-align: center " strong 报告题目 /strong :电子显微学表征技术在电池领域的应用及最新进展 /p p   锂电池材料的研究主要集中在正负极材料及隔膜材料的形貌、结构、成分、电学特性等方面。席小宁表示,日立高新针对这些需求,有一系列的对应产品及解决方案。如锂电池的正极材料在制样、转移及观察过程中非常容易受空气的氧化,对形貌和成分分析产生影响。为了解决这一问题,日立提供了一整套空气隔离系统,包括离子研磨,SEM、FIB、TEM、AFM(真空型)以及连接所有设备的真空转移盒等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6d75b1ff-0a53-4597-a62e-2b91b7a64647.jpg" title=" IMG_6250_副本.jpg" / /p p style=" text-align: center " strong 报告人 /strong :国家半导体器件质量监督检验中心主任 黄杰 /p p style=" text-align: center " strong 报告题目 /strong :半导体产业现状及相关检测技术进展 /p p   我国是世界上半导体芯片产品最大的消耗国,半导体芯片年进口额超过2300亿美元, 是我国第一大宗的进口产品。按照产业链划分,半导体产业链可分为上游支撑产业链、中游核心产业链以及下游需求产业链。黄杰介绍到,半导体检测技术包括过程工艺控制检测及后道测试环节,电路测试中三大核心设备技术难点包括测试机、分选机,及探针台等。而我国半导体测试的发展方向包括大力发展推广低成本测试技术、着重研发前沿的测试技//积极与外商合作,引进先进测试技术等。 br/ /p
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • 破解锂电池水分检测难题,AKF-BT2015C水分仪精度高达0.1ug
    聚合物锂电池是在原有钢壳、铅壳电池的基础上发展起来的第二代锂离子电池,以其更轻、更薄、能量密度更高的特点,受到国内外通讯终端厂商及设计公司的青睐。聚合物锂离子电池与液态锂离子电池最根本的区别在于二者所采用的电解质不同。聚合物电池的电解质从外观上看为固态,称为聚合物固体电解质。这种电解质是一类处于固体状态,但能像液体那样溶解支持电解质,并能发生离子迁移现象的高分子材料。聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,正极材料分为钴酸锂、锰酸锂、三元材料和磷酸铁锂材料,负极为石墨,电池工作原理也基本一致。 随着通讯技术的飞速发展,手机彩屏技术、彩信技术、蓝牙技术及摄像技术相续出现,对电池的容量、体积、重量及电化学性能等指标提出了更高的要求,传统的液态锂电已越来越不能适应新的需求。新型聚合物锂离子电池的出现,迎合了这一需求。电池安全性一致性要求的不断提升,给诸多精密检测设备应用于锂电池制造提供了良好的发展机会。AKF-BT2015C是国产第一台带卡式加热炉的电池水分测定仪,由上海禾工科学仪器有限公司研发生产,禾工AKF-BT2015C从而为锂电池企业提供一套完美的锂电池水分检测解决方案。AKF-BT2015C锂电池水分仪测量原理:样品称量后放置在加热炉内,试样中的水分在高温下蒸发,用惰性气体将水蒸气送至滴定池内,以卡尔费休库仑法测定其水分,卡式加热炉采用瓶式加热技术。 AKF-BT2015C锂电池水分仪国内百家锂电池生产企业用户共同之选,累计销售量数千台,电解液、正负极材料、极片、电池粉末等固体、液体样品轻松检测。低于进口同类产品30%。
  • 岛津原子力显微镜-锂电池隔膜观测
    岛津原子力显微镜锂离子电池锂电池的结构由正极、负极、隔膜材料构成。 对于隔膜而言,其作用是分隔正极和负极,避免内部短路;同时,隔膜具有孔隙,可以吸附电解液使锂离子在充放电过程中可以双向通过。 目前常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜非常合适的观察工具。 以上三张图片是用原子力显微镜对不同制作工艺的隔膜材料进行成像的图,范围为5μm×5μm。因为原子力显微镜获得的形貌图像为三维图像,因此隔膜多孔结构可被很显著的表现出来。 对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,希望隔膜可以在快速产热温度(120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。 岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状,范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。 本文内容非商业广告,仅供专业人士参考。
  • Hiden Analytical推出二次离子质谱仪,适用于锂电池检测
    科学仪器供应商 Hiden Analytical 近期宣布,其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。这项技术具有高灵敏度和分辨率,适合低质量锂检测,将大幅推进锂离子电池研究的进程。  (图片来源:Hiden Analytical)  现在,人们对电动汽车和便携式电子设备的需求日益增长,更加需要可靠、有效的储能系统。锂离子电池被视为有前景的解决方案,但只有深入了解电池内部的复杂过程,才能进一步提高性能和安全性。Hiden Analytical 的 FIB-SIMS 为这一挑战提供了强大的解决方案,使研究人员能够获得关于电池内部锂分布和浓度的重要信息。  该研究展示了 Hiden Analytical 的 FIB-SIMS 在高灵敏度和高精度检测锂等低质量元素方面的能力。Hiden Analytical 的 FIB-SIMS 可与聚焦离子束扫描电子显微镜(FIB-SEM)无缝集成,为研究人员提供诸多优势,如相关成像、原位样品制备和三维元素分析。这样的组合有助于全面了解锂离子电池的微观结构,从而开发更高效、更安全的储能系统。该公司技术营销经理 Dr. Dane Walker 表示:" 很高兴看到 FIB-SIMS 技术在锂离子电池研究领域得到应用。这项突破表明,Hiden Analytical 致力于推进科学研究,为不断发展的储能市场提供尖端解决方案。"  产业分析人士表示,锂电池检测主要应用在锂电池领域,受到锂电池产业快速发展带动,锂电池检测应用需求持续攀升,行业发展前景较好。在生产方面,我国众多企业布局在领域,市场竞争激烈,但国内产品目前主要布局在低端的单体电池领域,在高端的电池组领域仍依赖进口。未来随着终端对于锂电池要求提升,未来锂电池检测向高精度方向发展。关于Hiden Analytical(点击了解)  Hiden Analytical 成立于1981年,位于英格兰沃灵顿。是世界著名的四极杆质谱仪及相关分析仪器的设计和生产者。客户多数都是工作在新技术研究的前沿,如等离子体、表面科学,致力为全球有关领域的研究者提供了最先进的技术手段,使其研究水平居于国际领先地位。产品
  • OPTON的微观世界|第12期 锂电池负极材料的显微世界
    概 述 锂离子电池作为一种新型无污染、可再生的二次能源装置,具有输出电压高、比容量高、寿命长等优点,因此成为了手机、笔记本电脑、电动汽车以及航空航天领域的理想电源之选。正极材料、负极材料、电解液以及隔膜是锂离子电池的核心组成部分,电解液的主要作用是承载着锂离子在正负极之间的传导,组成部分包括锂盐、有机溶剂以及功能添加剂。隔膜起着隔开正、负极材料的作用,防止二者接触造成短路,其主要是由过孔的高分子聚合物薄膜构成,在实际应用过程中,锂离子电池充电/放电就是靠锂离子在正、负极材料中可逆的嵌入/脱出来完成。作为锂电池的核心组成之一——负极材料,今天就随小编来一起探究锂离子电池负极材料的神秘世界吧。一、样品制备 为了更好地观察锂电池负极材料的内部结构,小编们决定观察负极材料的截面,但是传统的截面样品制备方式或多或少地会使样品形貌失真,比如剪切的话会使样品表面产生应力,为了更好地观察负极材料的真实结构,于是小编们将样品制备在挡板上,采用Gatan的氩离子抛光仪对样品截面进行抛光处理后观察。图一:(A)、原始样品(B)、将样品剪切合适后粘在挡板上(C)、抛光处理后的样品图一:样品的制备二、锂电池负极材料的SEM分析采用ZEISS的sigma 500电镜观察样品的形貌,从图二的A图负极材料截面宏观形貌图可以看出锂电池负极材料分为上中下三层, 从图二的B图可以看出负极材料其形貌存在层状结构,从图二的C、D图可以看出出现了不同的成分衬度,代表着不同的元素分布。三、锂电池负极材料的元素分析 结合图三的A图SEM图和能谱面分布B、C图可以看出,锂电池负极材料的上下两层主要是石墨且掺杂有硅。自锂电池问世以来,石墨一直是负极材料的主流,石墨为层状结构,层与层之间通过范德华力结合在一起,层内碳原子统统以sp2杂化的共价键结合。其具有的优良导电性和高度结晶的层状结构,有利于锂离子的嵌入与脱出,且其具有工作电压平台较低以及稳定性好等特点,但是其理论比容量仅为372mAh/g,实际生产应用的产品已经能达到360mAh/g,接近其理论比容量,因此石墨负极已经难有提升空间。硅理论比容量高达4200mAh/g,而且具有较低的嵌锂电位,然而,硅在电化学循环过程中,体积变化高达400%,严重影响其比容量、库伦效率和循环稳定性等电化学性能,因此为充分利用硅和石墨的优点,同时克服其缺点,在石墨材料中掺硅是获得高比容量负极材料的有效途径。 根据锂电池的工作原理和结构设计,负极材料需涂覆于导电集流体上。金属箔是锂离子电池集流体的主要材料,其作用是将电池活性物质产生的电流汇集起来,以便形成较大的电流输出。通过图三的能谱面分布D图可以看出锂电池负极材料采用的金属箔是铜箔,这主要是铜箔具有良好的导电性、质地较软、制造技术较成熟、价格相对低廉等特点,因而成为锂离子电池负极集流体首选。一般将配好的负极活性浆料均匀涂覆在铜箔表面,活性材料厚度为50~100um,经干燥、滚压、分切等工序,制得负极电极,铜箔在锂离子电池内既可充当负极活性材料的载体,又可充当负极电子收集与传导体。结 论 通过扫描电镜的显微观察以及能谱分析,可以看出该锂电池的负极材料主要由掺硅的石墨涂覆在铜箔上组成,是一种常见的锂电池负极材料,人们为了获得性能更好的负极材料,已经出现了众多类型的锂电池负极材料,但是随着大家对锂电池负极材料的研究越来越深,锂电池负极材料的种类也将更加丰富。根据锂离子电池的形状锂离子电池可分为圆柱形的锂离子电池、方形的锂离子电池、扣式锂离子电池等,下图是锂离子电池的结构图。图五:(A)、圆柱形锂离子电池的结构(B)、方形锂离子电池的结构(C)、扣式锂离子电池的结构图五:锂离子电池的结构图下期有什么精彩内容呢?敬请期待吧!
  • 锂电池老客户再次购买禾工两套AKF-BT2015C锂电池专用水分仪
    近期,江西一位老客户再次购买上海禾工AKF-BT2015C锂电池专用水分测定仪,该公司主要研发、生产、销售锂电池正负极材料、电解液、隔膜纸等;是一家大型新能源汽车电池、模块及系统开发的高科技企业。 2016年的2月禾工与江西这位锂电池客户结缘,他们当时购买了一套禾工AKF-BT2015C锂电池专用水分测定仪用于公司锂电池原料的生产线上,在使用5个月的时间,仪器运行状态良好,检测精度高,稳定可靠,故障低,操作极为简便等优势得到了用户的肯定。 因公司业务发展需要,在2016年上半年首次购买我们AKF-BT2015C锂电池专用水分测定仪之后至今年3月份总共购买仪器五台,老客户是我公司及其重要的经营资源,能够吸引到老客户的只能是高性价比的产品质量和及时到位的售后服务。 AKF-BT2015C作为一台国内第一台带有卡式加热炉的卡尔费休水分测定仪,至2016年8月低,短短两年内,AKF-BT2015C锂电池水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡销售业绩。完全可替代进口仪器设备。 AKF-BT2015C水分仪能够广泛的应用在锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 相信在今后,禾工AKF-BT2015C水分仪会应用到更多的锂电池研发、生产单位。
  • 锂电池回收产业百亿风口来临 仪器企业是否需要关注?
    p   据了解,自2014年国内推广应用新能源汽车以来,截至2017年底累计装配动力蓄电池约86.9GWh。动力电池的使用年限一般为5-8年,意味着前期投入市场的新能源电池基本处于淘汰临界点。中国汽车技术研究中心数据显示,2018-2020年,全国累计报废动力电池将达12万-20万吨 EVTank通过经济模型测算认为,到2020年中国动力电池回收拆解和梯次利用的总体市场规模将达到66.8亿元,到2022年整体市场规模将达到131.0亿元。“我们分析认为,2018年之后,国内退役动力电池的规模将会快速上升。”工信部国际经济技术合作中心助理研究员白旻说。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/262098ce-ffa8-4f58-9a8f-ded05c5f7235.jpg" title=" 1521426015618006.png" / /p p   面对即将到来的动力电池报废高峰,政策层面及时跟进。近日,国家陆续发布:《新能源汽车动力蓄电池回收利用管理暂行办法》、《新能源汽车动力蓄电池回收利用试点实施方案》 2016年以来,《车用动力电池回收利用拆解规范》、《车用动力电池回收利用余能检测》等标准已经出台实施。针对即将到来的“报废潮”,《暂行办法》中可看出,回收的汽车动力电池将通过梯次利用和报废拆解两种方式实现资源的再循环。 /p p   我国对钴、锰、镍等稀缺金属的严重进口依赖和市场需求的不断释放,导致以钴为代表的锂电池材料价格持续上涨,让产业链各方面临巨大的制造成本压力。通过对废旧锂电池中的镍、钴、锂等有价金属进行提取进行循环再利用,锂电池回收的经济效益显而易见,这对整车、电池厂商等产业链而言都是一座可待挖掘的金矿。三大势力已经竞逐锂电池回收产业蓝海:(1)以华友钴业、寒锐钴业、厦门钨业、天赐材料、天齐锂业和赣锋锂业等为代表的锂电材料系。(2)以比亚迪、宁德时代、国轩高科、天能动力、中航锂电等为代表的动力电池主流企业。(3)以格林美、湖南邦普、赣州豪鹏、芳源环保、金泰阁、长优实业、威能环保等为代表的第三方动力电池回收拆解企业。可以看到,2015年,宁德时代通过子公司宁德和盛持股69.02%,取得主业为废旧锂电池拆解的广东邦普控制权 2017年8月,国轩高科公告显示,与钴产品生产商兰州金轩分别出资5000万元在安徽、甘肃成立了安徽金轩和甘肃金轩两家电池资源循环利用技术公司 2018年,3月9日,国内的电池制造商骆驼股份发布公告,拟投资50亿元建设骆驼集团动力电池梯次利用及再生产业园项目。 /p p   按《车用动力电池回收利用余能检测》标准,梯次利用的电池需利用性能检测仪进行性能评估。废旧电池回收利用涉及拆解、萃取等物理和化学复杂工序回收有价值元素,并进行无害化处理,减小对于环境的压力,这需要具有冶金、化工、物理等行业的专业技术及仪器设备的支持。业内普遍认为,废旧动力电池回收途径、安全拆解、环保处理、保证产品质量以及再利用技术仍是行业面临的共性难题,国内针对动力蓄电池的回收工艺路线还处于探索阶段,以循环制造为目标的回收技术还未开展。随着最新的《新能源汽车动力蓄电池回收利用试点实施方案》发布,众多相关仪器设备供应企业或可对这锂电池回收“蓝海”加以关注。 /p p   a href=" http://www.instrument.com.cn/news/20180328/243064.shtml" target=" _self" title=" "  《新能源汽车动力蓄电池回收利用试点实施方案》发布(附全文) /a br/ /p p    a href=" http://www.instrument.com.cn/news/20180302/240981.shtml" target=" _self" title=" " 六部委联合发布《新能源汽车动力蓄电池回收利用管理暂行办法》 /a /p p br/ /p
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制