当前位置: 仪器信息网 > 行业主题 > >

手动控制泵

仪器信息网手动控制泵专题为您提供2024年最新手动控制泵价格报价、厂家品牌的相关信息, 包括手动控制泵参数、型号等,不管是国产,还是进口品牌的手动控制泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手动控制泵相关的耗材配件、试剂标物,还有手动控制泵相关的最新资讯、资料,以及手动控制泵相关的解决方案。

手动控制泵相关的论坛

  • 液相泵软件无法控制流速

    dina[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵控制流速故障,如设置初始压力0.5MPa,流速300nL/min,实际压力未达到0.5,则流速会不断增加,软件设置流速无法控制,反之会逐渐下降至0。之前曾出现过一下,重新手动drain和fill,莫名其妙就好了,现在是有人重新拔插了泵插头,又故障了,重启都没有效果。。

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 【原创】中真空控制系统

    一、操作便捷性:1、抽气口及气路连接口采用KF式快速连接结构。简化安装过程,只需一支卡箍便可完成连接,方便操作。2、配置两种电源连接线,即可直接与我公司的产品直接连接组合使用,也可单独连接独立使用。二、控制智能化:1、采用数显真空计,配合热偶规管采集数据。测量精度高、稳定性好、抗干扰能力强。真空度显示采用科学计数法,数字显示,使用方便直观。2、自动控制与手动控制切换功能。自动控制模式能通过设定值自动开启/关闭真空泵,时容器内保持在一定的真空压力范围内。手动控制模式使用户通过真空泵开启/关闭按钮直接操作真空泵。以满足不同实验的需要。3、电磁阀缓启动技术,使电磁阀在真空泵开启10秒钟后打开,使炉管内压力保持准确,也保证了废气不会返回到容器内影响实验效果。三、结构实用性:1、内置双极旋片式机械真空泵,有效的提高了抽气效率。2、内置压差式防返油机构,使真空泵中的油不会返出。结合气镇阀在使用时更加安全可靠。3、本身作为真空控制系统的同时,也可作为活动平台使用,方便放置电炉及其它设备。

  • 冷热源动态恒温控制设备低温泵安装要点

    冷热源动态恒温控制设备中每个配件的性能都是不同的,我们要充分发挥每个配件的作用才能使得冷热源动态恒温控制设备更好的运行,其中低温泵是主要的配件之一,其安装的时候也需要按照要求来进行安装。  冷热源动态恒温控制设备中低温泵在安装的时候需要注意安装设施及要求,前级泵—低温泵要求一台前级泵预抽真空室,抽到低温泵的启动压力。吸附井—安装水冷挡板,如果油蒸汽返到低温泵,可以使它的吸附阵被污染,则必须更换吸附阵。  高真空阀门安装在低温泵与真空室之间,这样可以缩短启动时间,还可以实现在真空室不放气的情况下,还可以随时对真空室进行检漏。预抽阀在低温泵的预抽接口处,必须安装一只阀门,该阀门在预抽是打开的,而在低温泵运行期间是关闭的,另外还有一只是用来用同一台机械泵对真空室进行预抽的。  接着安装低温泵,高真空法兰连接,低温泵可以借助其高真空法兰固定在真空室需要的任何地方,在安装前请检查“O”型圈是否完好,以其表面无压痕和杂物为准则。抽气接口和安全阀的连接,低温泵在运行过程中,不能排气,所以在启动以前需要利用机械泵等粗抽泵通过抽气接口来预抽低温泵。要保证把低温泵的抽气接口接到相应尺寸的前级泵上去。  连接冷热源动态恒温控制设备低温泵和压缩机,把低温泵和压缩机,以及金属软管上所有自密封接头上的保护帽取下。注意:在如下的步骤中,决不可以使用清洁剂去擦拭自密封接头。在进行连接之前必须保证接头上没有灰尘、油迹、颗粒杂物等,必要时用一柄刷子去清洁螺纹,用一块没有棉丝的软布去擦拭密封面上的任何赃物。连接金属软管,按照气流方向连接软管,从压缩机开始到低温泵,然后从低温泵到压缩机,用两个扳手去拧紧每一只自密封接头以保护软管不至于扭曲而漏气,适度拧紧每一只接头,连接好之后在检查压缩机的压力表的指示。  冷热源动态恒温控制设备的低温泵在安装的时候建议按照以上说明来进行安装,切勿自己凭感觉安装,避免安装不当导致冷热源动态恒温控制设备故障。

  • 医用导管和球囊成型过程中的自动和手动精密压力控制

    医用导管和球囊成型过程中的自动和手动精密压力控制

    [align=center][img=球囊成型机压力控制,600,332]https://ng1.17img.cn/bbsfiles/images/2023/01/202301121420079811_2409_3221506_3.jpg!w690x382.jpg[/img][/align][color=#3366ff]摘要:在医用导管和球囊成型过程中对压力控制有非常严格要求,如高精度和宽量程的控制能力,需具备可编程、自动手动切换和外接压力传感器功能,还需具备可用于球囊泄漏、爆破和疲劳性能测试的多功能性。本文介绍了可满足这些要求的压力控制解决方案,解决方案的核心技术是采用超高精度的多功能压力控制仪,控制仪可根据不同的成型压力范围选择相应的型号规格,可达到很高的压力控制精度。解决方案的另一特点是多功能性和灵活性,除了可用于导管球囊成型压力控制和性能测试之外,也可以用于球囊成型机的温度控制。[/color][align=center][/align][align=center]~~~~~~~~~~~~~~~~[/align][size=18px][color=#3366ff][b]1. 医用导管和球囊成型压力控制要求[/b][/color][/size] 医用导管和球囊是人体血管和其他腔管疏通以及广泛使用的支架输送的关键器材,如图1所示,一般要求具有极高的抗爆性能,同时要求薄壁,柔软,可折叠。为达到这些要求,不仅要求所使用的聚合物材料具有极强的力学物理性能,同时对成型工艺提出很高的要求,成型设备必须准确高效的提供温度和压力控制。[align=center][color=#3366ff][b][img=医用导管球,500,250]https://ng1.17img.cn/bbsfiles/images/2023/01/202301121422416109_2224_3221506_3.jpg!w690x345.jpg[/img][/b][/color][/align][align=center][color=#3366ff][b]图1 医用导管球囊[/b][/color][/align] 在成型机的成型过程中,对压力控制的主要要求如下: (1)可编程程序控制:可按照设定程序进行压力变化控制,如设定不同的升降压速率和恒压时间,可存储多个设定程序满足在不同球囊成型工艺需要。 (2)宽范围和高精度:压力控制范围最高至5MPa,控制精度优于0.1%,以满足不同规格和壁厚的球囊成型及其性能测试需要。 (3)自动和手动功能兼顾:即可按照设定程序进行自动压力控制,也可采用手轮进行手动压力调节,以满足人工探索和优化成型压力参数的需要。 (4)可外接压力传感器:为了保证压力控制的准确性,除了压力控制仪自带的压力传感器之外,还能外接其他位置处的压力传感器。同时,外接传感器功能还能为实现导管球囊性能测试提供便利。 (5)多功能:对于单机结构的压力控制装置,除了可以连接到球囊成型机进行成型压力控制之外,希望还可以用来进行球囊质量测试评价,如可用来测试球囊的泄露、爆破和疲劳性能以及泄压时间等。 为满足上述导管球囊成型过程中的压力控制要求,本文提出了相应的解决方案,解决方案的核心技术是采用高精度的多功能压力控制仪,控制仪可根据不同的成型压力范围选择相应的型号规格,并可达到很高的压力控制精度。[b][size=18px][color=#3366ff]2. 解决方案[/color][/size][/b] 为实现医用导管球囊成型和性能测试过程中的压力控制,解决方案将采用VPC-2021系列多功能超高精度的PID控制器和不同压力范围的阀门调节器,解决方案的整体结构如图2所示。[align=center][b][color=#3366ff][img=医用球囊成型机压力控制系统结构示意,690,210]https://ng1.17img.cn/bbsfiles/images/2023/01/202301121423100632_8989_3221506_3.jpg!w690x210.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 医用导管和球囊成型机压力控制系统结构示意图[/color][/b][/align] 解决方案的技术路线是在成型机上使用了多功能和超高精度的压力控制仪,压力控制仪的主要功能和特点如下: (1)压力控制仪主要由VPC2021系列PID真空压力控制器、压力传感器和压力调节器等组成,由此构成闭环控制回路对密闭容器进行压力控制,控制形式为外接高压气源进行减压控制。 (2)VPC2021系列PID真空压力控制器具有可编程控制功能,可存储多个控制程序曲线,采用了具有标准MODBUS协议的RS485通讯,并随机配备了控制软件,可在计算机上直接进行压力控制仪的调试和所有操作,图形化软件界面可直观显示压力变化过程,过程数据自动存储。 (3)VPC2021系列PID真空压力控制器采用了24位AD,16位DA和双精度浮点运算,最小输出百分比为0.01%。压力传感器精度为0.05%,可保证压力控制仪的控制精度达到0.1%。 (4)压力控制仪除可进行自动控制之外,同时还配备了手动调节功能,即通过控制仪面板上的手动旋钮进行操作,便于现场进行成型工艺压力参数的试验和优化。 (5)压力控制仪内已安装有压力传感器,但为了进行压力监视和进一步保证成型压力控制的准确性,压力控制仪也可以外接压力传感器。此外接压力传感器可以用作监控传感器,也可以用作控制传感器。 (6)压力控制仪的功能十分强大,除可以进行导管球囊成型机中的压力控制之外,也可以用作导管球囊与压力相关的性能测试,如泄露、爆破和疲劳性能测试以及泄压时间测量。[b][size=18px][color=#3366ff]3. 总结[/color][/size][/b] 本文解决方案尽管只涉及了医用导管和球囊成型过程中的压力控制,但其核心控制技术和软硬件装置还可以应用到温度和真空度控制,如上述压力控制仪中可以再添加一个VPC2021控制器就可实现对球囊成型温度的加热和冷却控制,由此组成完整的球囊成型机温压控制系统。 在各种医疗仪器和器械以及众多临床过程中,精密的真空、压力和温度控制一直是一项重要技术内容。本文首次尝试将我们在高精度真空压力控制方面所做的工作应用到医疗领域,以逐渐在医疗领域推广应用和产品迭代,后续还将不断推出可在医疗领域内应用的各种相关产品和解决方案。[align=center]~~~~~~~~~~~~~~~~~~[/align]

  • 【求购】Waters 510双泵控制器

    本人老师有Waters510双泵,现控制梯度的控制器损坏,想买个2手的控制器。不知哪位有相关信息。请与赵老师联系。电话13957149763(杭州)

  • 【求助】求教恒压泵与恒流泵的控制原理

    我在使用液相时发现,泵在工作时有恒压和恒流两种工作模式,一般的性况下均选择恒流模式;为此,请教坛子里的高手,两种工作模式的控制原理和应用范畴是什么?(注:由于偶是新手,积分不多,暂时就不实施积分奖励了,请高手见谅吧!以后偶发财了再补偿老师们吧)

  • 岛津液相泵控制

    各位老师,紧急请求帮助,现用的是岛津液相,用的是LC-20AT泵,双泵串联使用,上周使用一切正常,今早来准备好流动相开启仪器后,结果发现B泵不工作了,一直都是A泵控制整个泵的运行,今天排气后启动泵,发现B泵灯不亮,在A泵上设置B泵的流量B泵流量也是不改变,之前未有过这种情况,泵的接头也重新拔插了几次,没用。请教这是什么原因,拜托各位老师帮帮忙

  • 【求助】10A液相手动怎么加控制器改为自动?

    我有两台10A的紫外单泵闲置,想改为自动二元梯度或者低压四元梯度,怎么改?还要配置什么东西?是不是买个20A的控制器和自动进样器就可以呢?目前以有的东西:两台LC-10AT泵,两台SPD-10AVP检测器,混合器一套,Labsolution软件和加密狗一套。

  • 有没有20段以上的多段程序控制的注射泵??

    市场上有没有20段以上的多段控制,能顺序执行的注射泵??有点类似多段程序控温那样,可不断改变注射速度的注射泵?一直找不到这样的东西,自己又不会做http://simg.instrument.com.cn/bbs/images/default/em09509.gif

  • 流量控制仪表系统介绍

    (1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。  (2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。  (3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数PID不合适,如果波动仍频繁,则是工艺操作方面原因造成。

  • 流量控制仪表系统故障的分析步骤

    1)流量控制仪表系统指示值达到最小时,首先检查现场检测仪表,如果正常,则故障在显示仪表。当现场检测仪表指示也最小,则检查调节阀开度,若调节阀开度为零,则常为调节阀到调节器之间故障。当现场检测仪表指示最小,调节阀开度正常,故障原因很可能是系统压力不够、系统管路堵塞、泵不上量、介质结晶、操作不当等原因造成。若是仪表方面的故障,原因有:孔板差压流量计可能是正压引压导管堵;差压变送器正压室漏;机械式流量计是齿轮卡死或过滤网堵等。(2)流量控制仪表系统指示值达到最大时,则检测仪表也常常会指示最大。此时可手动遥控调节阀开大或关小,如果流量能降下来则一般为工艺操作原因造成。若流量值降不下来,则是仪表系统的原因造成,检查流量控制仪表系统的调节阀是否动作;检查仪表测量引压系统是否正常;检查仪表信号传送系统是否正常。(3)流量控制仪表系统指示值波动较频繁,可将控制改到手动,如果波动减小,则是仪表方面的原因或是仪表控制参数PID不合适,如果波动仍频繁,则是工艺操作方面原因造成

  • 液相软件无法控制泵流速

    dina[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵,设置初始压力和流速比如 0.5MPa和300nL/min,如实际压力未达到0.5,那么流速会不断上升,反之不断下降至0,更改软件流速无法控制流速,除非设置压力与实际显示压力一致,流速才不会变化。之前曾出现过一次,drain和fill一下莫名其妙又好了,现在被别人重新拔插了连接线后又故障了。试过重启之类,均无效。

  • 液相软件无法控制泵流速

    dina[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵,设置初始压力和流速比如 0.5MPa和300nL/min,如实际压力未达到0.5,那么流速会不断上升,反之不断下降至0,更改软件流速无法控制流速,除非设置压力与实际显示压力一致,流速才不会变化。之前曾出现过一次,drain和fill一下莫名其妙又好了,现在被别人重新拔插了连接线后又故障了。试过重启之类,均无效。

  • HZD-HX型微机智能自动巡检控制设备

    HZD-HX型微机智能自动巡检控制设备技术参数 1、对于消防水泵来说,普遍存在一个问题:那就是在建筑物发生火灾时,有相当多的消防泵在接到启动信号后不能启动,没有水无法灭火,延误了灭火时机,给国家财产和人民的生命安全造成了极大的损失。 2、即变为“一用一备”。如果用户要求增加“四用”工作模式(即四台泵同时使用),请订货详细说明。 3、这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。 4、因消防泵生锈等原因造成不能启动给国厂财产与人民生命安全造成极大的严重后果。 5、巡检柜面板设有数字电流表、巡检信号灯、手动/自动选择开关、电笛解除按钮和紧急停止按钮。 6、巡检控制设备和消防泵配电柜之间的【HZD-HX型微机智能自动巡检控制设备】互锁、启动信号线,在连接时必须保证接线正确无误。7、消防泵控制柜是消防泵的控制盘,必须接收消防泵的状态反馈信号。8、消防巡检装置具有完备的接口功能,可与公司监控中心或公安消防部门的计算机联网, 24小时对设备实时监控、监测,实现计算机远程监控、全方位网络中心管理,从而进一步加强了安全监控。9、故障显示: 当水泵传感器故障时,显示E1,并停机10、甲、乙类厂房设置在建筑的地下、半地下室。 HZD-HX型微机智能自动巡检控制设备功能特点 1、上述现象的根本原因就是消防水泵及消防泵控制柜在平时无灾情时是不启动的,随着时间的推移, 2、巡检使等官职,都是职高权重之位;现在也有巡检员,也是各行业安全生产,正常运营的强有力保证。 3、高层建筑的举高消防车作业场地被占用,影响消防扑救作业。 4、消防泵控制柜操作方法:【HZD-HX型微机智能自动巡检控制设备】开启、关闭控制器: 按开/关键()可在开启、关闭控制器之间切换。系统首次上电,控制器为关机状态。 5、主回路巡检完成后,巡检控制器会发生下一个巡检指令至无压巡检装置,该装置接到巡检指令后会依次对消防水泵进行低速无压巡检。巡检时电机转速较低,系统不产生水压。巡检时,消防泵的驱动功率很小,约是泵电机额定功率的百分之一左右,所以节能显著。整个巡检过程中如设备接到消防命令智能巡检控制器会立即发出停止巡检的指令,瞬时启动消防泵完成消防任务。只有到了下一个巡检周期且无消防事件发生时,才开始一个新的巡检运行过程。巡检时,若水泵发生故障会给出故障报警信息。 6、巡检柜电源条件:电压:380V/220V(±10%) 频率:50HZ(±5%) 7、多种主备泵切换方式及各类起动方式。 8、对风机的检测运行速度、排烟保护阀值可按需独立设定; 9、工作泵故障时备用泵延时自动投入,水泵由消火栓箱内按钮、水流继电器、压力开关及消防系统等控制,水源无水报警。 10、消防发生时,可编程控制器接到消防命令后会自动瞬时停止巡检,启动消防泵,消防结束手动关机。 HZD-HX型微机智能自动巡检控制设备工作原理 1、整个巡检过程中如设备接到消防命令智【HZD-HX型微机智能自动巡检控制设备】能巡检控制器会立即发出停止巡检的指令,瞬时启动消防泵完成消防任务。 2、电流表电流表采用嵌入式安装,指针式,要求符合IEC51/73标准,塑壳,碳黑遮光屏, 3、优点:对电网电压波动影响小,对电网冲击小,对电动机保护较好,延长电动机寿命,较适用大功率和重载的电动机。 4、800X600X2000 5、这些电池是否可换。 5、人工控制就是当发生火灾时需要工作人员打开消防泵为主干管道供压力水,喷淋头在水压作用下开始工作。6、出口侧与系统管路和喷头相连,一般为空管,仅在预作用系统中充气。雨淋阀的开启由各种火灾探测器装置控制。7、系统的单向阀阀瓣损坏或被杂物卡死;8、阀门开启度不够,局部水头损失增加很多。9、每项安装在内部的装置,应有一个标签来指示其在回路图中的参考编号和熔体的电流等级,该标签应在白色的塑料上镂刻黑色的字,并用螺丝固定(不允许用黏合剂)。 10、启动信号灯亮,若失控时可派人到风机房进行手动操作。

  • 实验室温度控制问答的翻译

    我觉得慢慢读英文的过程也是慢慢理解这些问题的过程,再说让我改成中文难免会有些歪曲一部分理论。不过既然大家都要求,我也就花点时间翻译一下,直接翻译了,有些语句不顺或者拗口的地方请大家提出来我再做详细解释。先翻译了前一部分,我一有时间就会在这个帖上继续翻译的。整个的内容也在这个版的实验室温度控制常见问题那个帖中,大家也可以看看那个帖。有疑问的再提,我们再讨论:)1.什么是工作温度范围工作温度范围是指在没有外界制冷的情况下温度控制器自己所能达到的温度范围。这个温度限一般为20度的外界温度.2.什么是运行温度范围运行温度范围是被控制电信号限制的温度范围。举例来说,加热控制器的工作温度范围可以通过各种方式在操作温度范围中缩小。3.什么是温度稳定性温度稳定性就是在温度浴槽一个精确测量点上多次测量温度的差值。4.什么是温度均匀性?温度均匀性就是在温度浴槽中多个测量点上温度的差值。这对温度的校准特别重要。对JULABO温度循环器而言温度均匀性和稳定性只有微小的不同。其中黏度浴槽和温度专用校准槽提供了最好的温度均匀性。5.JULABO在显示方面有什么特点和优势?JULABO的显示屏在远距离和各个角度都能非常清晰的进行数据显示。多行LED显示屏不仅显示实际和设定温度,而且能显示最高和最低报警温度以及安全断电温度。另外,多行LED显示屏还可以显示电子控制水泵的泵压奇数以及振荡水浴的震荡频率。6.JULABO高端产品以高亮度VFD温度显示为其显示特色这种显示技术目的是为了提高显示亮度,清晰度和对比度和更简便的操作支持。它可以同时显示出浴槽内实际温度,设定温度和外循环实际温度,而且还可以显示出用户选择的泵压级别。7.JULABO什么型号的仪器可以提供交互式操作支持?JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器可以提供LED/LCD多重显示面板。除了显示实际和设定温度外,还可显示众多的系统参数。例如循环控制方式(外循环或者内循环)。加热和制冷功率以及外循环设定温度等。8.PID和ICC温度控制技术有什么不同?JULABO PID1 PID2 PID3控制技术有固定的XP TV TN参数。有时为了提高外循环控制的温度稳定性,这些参数在PID2 和PID3控制技术下可以手动更改。ICC是世界上最先进和绝对唯一的温度控制技术,它可以根据温度控制的具体需要自动更改和优化XP TV TN 参数,以获得最好的温度稳定性在上面提到过的高JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器中运用了这个先进的技术。9.TCF(特色温度控制技术)提供了什么优势?内外差极限:当仪器进行外部温度控制时,这个功能允许客户任意设定浴槽温度和外循环温度的最大差值。这样做可以保护温度控制设备,也可以保护整个反应釜中的玻璃设备,防止冷热变化引起的破裂。Dynamics:这个功能允许客户在内部温度控制时进行aperiodic和normal PID behavior中转换Aperiodic:从实际温度达到设定温度的精确度特别高,但可能因为要避免温度的过冲而花费较长的时间。normal PID behavior:能在很快的时间中到达设定温度,但可能因升温速度快而在达到设定温度时有一定的温度过冲。极限设定:在进行外部温度控制时可以设定控制浴槽内的最高和最低极限温度,控制器在工作过程中是不允许超过这个设定极限的。Co-speed factor:和Aperiodic一样,它也可以控制达到设定温度时的温度过冲现象,唯一的不同在于它的设定是在仪器进行外部温度控制时进行的。10.JULABO水泵的主要功能在Economy‘ and ‘TopTech‘ 系列中,水泵是无机械磨损和热磨损的设计,它主要是用来为浴槽内循环和一些小型的封闭体系的水循环提供动力。在MC, ME and ‘Presto‘中,水泵的泵压级别可以调节在HighTech‘系列中,所有的泵都有加压和抽吸两种模式,它可以达到设定的压力,抽吸力和流速来完成对外循环或者封闭体系的水循环。在外接各种反映釜时,它可以被调节到合适的压力,从而避免由于意外压力对反映釜体系造成的损伤

  • 冷水机制冷装置控制方式的设计

    在冷水机的实际运行中,由于外界条件的变化,热负荷和设备运行参数都会不断地波动变化,这就必须对整个冷水机制冷装置进行及时准确的调节,以保证冷水机制冷装置在安全、稳定和经济合理的条件下运行。 随着科技的发展,现在冷水机制冷系统中已经应用各种自动化装置。按照自动化程度的不同,大致分为:1、手动控制配合安全保护装置。2、局部自动控制:在实现安全保护的基础上,增加液泵回路和蒸发器回路的自动控制,它可以提高调节精度,稳定被冷却对象温度,节省能耗。目前,国内对冷库的局部控制应用越来越多,已经总结了成熟的设计管理阶段。3、半自动控制:除了局部控制内容外,主要体现在压缩机的自动启停和能量调节上。4、全自动控制:除了半自动控制的内容外,还实现辅助设备操作及湿度等自动控制,如制冷装置自动加油、自动放油、自动放空气、自动调节冷凝器冷却水量等。5、最佳工况调节控制:所控制的参数不是一个确定的数值,而是引入微型计算机随着实际运行条件的变化,按输入的程序对各种条年作出判断,从预定的同种工况中选出相对节能效率高的一种工况进行控制,使系统保持在最佳工况运行。这种控制方式要求对制冷装置运行有更深的认识,建立合理的数学模型,开发出更好的控制模式,这样才能使制冷装置的控制和节能提高到更高的水平。 随着自动控制程度的提高,控制精度越来越高,冷水机制冷产品质量也随之提高,装置能耗随之降低,同时还有效地降低了操作人员的劳动强度,防止事故发生,保障操作人员人身安全。但设备一次性投资将增加,装置的维护检修也将更加复杂。因此,在选择控制方式时,不要盲目追求自动控制的程度,而要从节能、经济、操作和维护等实际因素来综合考虑。

  • 有没有精确控制负压的压力控制器

    现有一台设备,目前使用斜管压力计监控压力变化并手动调节控制旋钮使压力稳定在196Pa±2Pa,整个实验过程持续一小时,占用一个人力,欲改成自动压力控制,不知有没有合适改造方案或压力控制系统推荐?最好是国产的,进口的也行,就是预算不多。请各位专家们不吝赐教,谢谢

  • 【资料】WAW-600B微机控制电液伺服万能试验机(双控制)

    [b][color=#3300ff][img]http://www.okyiqi.com/uploadfile/081201200632.jpg[/img]WAW-600B微机控制电液伺服万能试验机(双控制)[/color][/b]一、主要功能及特点:试验机主机采用液压缸下置式:液压油缸在试验机的下部,活塞在液压力的作用下向上顶,可实现对试样的压缩、弯曲、剪切试验;上下钳口座为全开式结构,装夹试样方便,稳定性好。该结构设计合理、简洁、稳定性好,可靠、易维护,液压伺服加载系统, ,确保系统高精高效、低噪音、快速响应, 实现对试验的自动控制加载、换向;[b]WAW-600B微机控制电液伺服万能试验机[/b]微机控制及处理系统:a:电液伺服控制系统:准确完成试验过程中试验参数的设定、试验过程的自动控制、数据采集、处理、分析、存储及显示(试验数据包括:上下屈服点、抗拉强度、断裂强度、弹性模量、各点延伸率、非比例伸长等)。它除了具备基本的试验力、试样变形、活塞位移和试验进程的闭环控制及等速应力、等速应变、等速试验力、等速位移、试验力保持、位移保持等控制功能外,还具备方便快捷的开环控制功能。b: 试验力,峰值、试样变形、活塞位移、试验曲线的屏幕显示功能,全键盘输入操作和控制模式智能设置专家系统,实现了控制模式的任意设置和各种控制方式之间的平滑切换,使系统具有最大的灵活性。加、卸载平稳,试验过程中既可进行程序控制,同时兼有固定程序的“快捷键“操作,也可采用鼠标灵活调整试验速度;[img=326,257]http://www.okyiqi.com/uploadfile/20081201200223769.jpg[/img] c:可以按GB228-2002《室温材料 金属拉伸试验方法》等国家标准的要求完成试验的数据自动采集和处理。试验过程能够模拟再现和试验数据的再分析、试验曲线放大、比较、遍历。试验曲线可任意选择坐标轴,并可自由放大和缩小;d:基于WindowsXP操作系统的试验软件,放大器调零、传感器标定采用可靠的硬件支持和软件支持相结合使得品质更臻完美;可对使用者实行分权限管理,具有多种图形显示窗口和单位换算功能;e:试验数据以数据库化管理,可以进行网络数据库通讯和管理;f:试验机具有扩展和更新能力;g:强大的自检功能。 6、保护功能: a) 油缸限位保护;b) 液压系统过载溢流保护;c) 试验力过载保护;d) 过流、过压保护;e) 试样破断时安全保护;f) 试验结束自动保护。 [b]二、WAW-600B微机控制电液伺服万能试验机主要技术指标:[/b]1、最大试验力:600kN2、试验力测量范围及精度:0-600kN;0-300kN;0-120kN;0-60kN;4级;试验力精度:优于±1%(从每档满量程的20%起) 3、 变形测量范围及精度:分1;2;5;10四档测量;优于±0.5%FS4、 位移测量范围及精度: 250mm;优于0.01mm5、 拉伸钳口之间最大距离(包括活塞行程): 600mm6、 上下压盘之间的最大距离: 550mm7、 圆试样夹持直径: Ф13-40mm8、 扁试样夹持宽度及厚度: 70mm ;0-30mm9、 上下压盘尺寸: Ф160mm10、 弯曲试验支座间距: 10-500mm11、 活塞最大行程: 250mm12、 应力速度范围: 1MPa/S-25MPa/S13、 应变速度范围: 0.00025/S-0.0025/S14、 拉伸速度: 0.5-70mm/min15、 试验空间调整速度: 120mm/min16、 主机尺寸(长x宽x高包括活塞行程mm): 890×580×2400m17、 控制台尺寸(长x宽x高mm): 1200x800x1100 mm18、 总功率:3.0kW[b]三、WAW-600B微机控制电液伺服万能试验机控制部分技术参数:[/b]〈1〉、试验力测量显示部分:(1).测量方式: 采用高精度油压传感器测量试验力(2).量程转换方式: 自动\手动切换(3).试验力显示方式: 微机屏幕显示〈2〉、变形测量显示部分:(1).测量方式: 采用高精度引伸计测量试样变形(2).量程转换方式: 自动/手动切换(3).变形显示方式: 微机屏幕〈3〉、位移测量显示部分:(1).测量方式: 采用高精度光电编码器测量活塞位移(2).变形显示方式: 微机屏幕〈4〉、自动控制部分:(1).控制方式: 微机自动控制/手动控制两种模式(2).自动控制阀: 进口高精度高频宽电液伺服阀(3).控制模式:a.等速率活塞行程控制:等速设定范围:0.5-70mm/min 控制范围:活塞置零点---活塞行程最大点b.等速率试验力控制:速度设定范围:0.1-2.0满量程/min控制范围:5-100%满量程c.等速率应变控制:速度设定范围:0.1-50%/min控制范围:伸长满量程的5-100%伸长满量程0.1-100mmd.金属材料自动拉伸试验控制:应力速率控制:1-50MPa/sec等速率活塞行程控制:0.5-50mm/min带有试样破断而自动停止机能 (4).试验条件设定方式:人机对话形式:微机键入式(5).试验条件设定项目: 试样截面积、控制速度、保持点、保持时间等〈5〉手动控制部分: 开环功能:可手动控制试验力、位移、变形。三、[b]WAW-600B微机控制电液伺服万能试验机[/b]基本配置1、下置式试验机主机(600kN) 1台2、综合操作台 1台3、液压试样夹紧系统(控制台内) 1套主要元件:3.1、液压泵机组 1套 3.2 、电磁换向阀 1套 3.3 、叠加溢流阀 1套4、液压伺服加载系统 1套5、高精度油压传感器 1套6、变形测量引伸计(标距100mm 变形25mm北京钢院) 1支7、位移测量装置 1套8、附具类: 8.1、拉伸附具(圆钳口 Ф13-40mm;平钳口0-30; ) 各1套8.2、压缩附具(Φ 160mm ) 1套8.3、弯曲附具 (10-500mm) 1套9、联想微机(M260E/ P4/160G/17”液晶) 壹台 10.A4激光打印机(HP1008 ) 壹台11、 试验机WindowsXP中文版软件 1份.

  • 超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    [size=16px][color=#339999][b]摘要:当前各种测试仪器中的低温温度控制过程中,普遍采用电增压液氮泵进行制冷和辅助电加热形式的控温方式。由于液氮温度和传输压力的不稳定,这种方式的控温精度仅能达到0.5K,很难实现小于0.1K的高精度控温。为此本文基于饱和蒸气压原理提出了液氮温区高精度温度控制解决方案,通过对液氮罐内的正压压力进行恒定控制,使液氮温度处于准确稳定状态并提供恒定的液氮输送流量,为后续试验台的电加热控温提供了稳定的制冷量。[/b][/color][/size][align=center][size=16px][color=#339999][b]---------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 液氮作为一种廉价且易于获得的低温介质,在科学仪器领域的低温环境实现中应用十分广泛,如各种各种探测器、热分析仪(TGA,STA,TMA,DMA,DMTA)、激光器、电子显微镜和各种低温试验平台等,都在采用液氮进行低温控制。在这些液氮温度范围内的低温控制系统中,普遍采用加压泵送方式将液氮传输到指定容器或试验平台中,如果进行低温宽温区的温度控制则还需在低温管路和试验平台上增加辅助加热器进行温度调节和控制。[/size][size=16px] 现有的加压输送液氮的手段主要是基于增大液氮罐内压力,从而将液氮压出,具体增加罐内压力的方式是通气法和电加热法。这两种方式利用了液氮自身物理变化而获得液氮蒸汽压力,没有借助其他介质的加压,不会影响液氮的纯度,关键是可以采用不同压力输送出低温氮气和气液混合液氮,以满足不同低温温度的需要。[/size][size=16px] 由于电加热方式结构简单,加热功率大且易于控制,液氮输送速度速度快,目前绝大多数低温温度控制多采用这种电加热方式的液氮泵,结合试验台上配备辅助电加热器,可对试验台或样品温度进行一定精度的低温温度控制。这种液氮试验平台的温度控制系统典型结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=常用液氮冷却低温温度控制系统结构示意图,500,444]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271408453472_5868_3221506_3.jpg!w690x614.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 常用液氮冷却低温温度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示的常用低温控制系统,通过液氮冷却并配合加电热器的正反向PID调控可实现低温温度控制,但这种方式只适用于远离液氮沸点区域(≥110K)的低温控制,不能在接近液氮沸点附近(77~110K)达到优于±0.1K以内的高精度控温,因为在接近液氮沸点附近存在气液两相共存状态,这两种状态在接近液氮沸点的温度区域非常不稳定,特别是在杜瓦瓶内压力波动较大时极易出现两相互转现象,从而导致冷却温度出现比较大的无规律波动。[/size][size=16px] 另一个影响低温温度产生无法控制波动的因素是室温环境对输送管路和阀门内液氮的加热作用,这对高精度的低温控制影响十分明显且不稳定。[/size][size=16px] 由于冷却温度波动较大,尽管在试验台上采用了高导热材料进行快速均温,以及辅助电加热器进行补偿调节,但这种常用的流动液氮形式低温控制方法也只能勉强达到±0.5K的控温精度,基本无法提高低温温度的高精度控制。由此可见,在必须采用流动液氮进行低温冷却的情况下,实现高精度的低温控制是个需要解决的技术问题,为此本文提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 根据影响高精度低温控制的压力因素和室温环境加热因素,基于饱和蒸汽压时气液处于两相平衡的物理现象,本文提出的解决方案所设计的流动液氮高精度低温温度控制系统如图2所示,实现高精度低温控制的具体方法主要包括以下两方面的内容:[/size][align=center][size=16px][color=#339999][b][img=高精度液氮冷却低温温度控制系统结构示意图,500,468]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271409104704_2148_3221506_3.jpg!w690x647.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 高精度液氮冷却低温控制系统结构示意图[/b][/color][/size][/align][size=16px] (1)对液氮罐内气体压力进行高精度恒定控制,使杜瓦瓶中的液氮始终处于已知可控的温度下,由此获得温度和流量稳定的液氮输出源。[/size][size=16px] (2)液氮输出管路中,避免使用很难进行绝热处理的各种阀门,而是采用了真空输送管,最大限度减小室温环境对管路内液氮的影响。[/size][size=16px] 此解决方案的核心是将液氮温度控制和试验台温度控制分开构成两个独立控制回路,通过双通道PID控制器同时进行控制,具体如下:[/size][size=16px] (1)压力控制通道是由压力传感器、电加热器和PID控制器第一通道构成的闭环回路,通过调节电加热器功率使杜瓦瓶内气体的正压压力保持恒定,使得整个杜瓦瓶内的气液两相液氮温度相同,此压力同时将液氮压出进行输送。[/size][size=16px] (2)加热控制通道是由温度传感器、电加热器和PID控制器第二通道构成的闭环回路,在加载到均热试验台上的制冷量恒定的条件下,通过调节电加热器功率使样品控制在不同的设定温度上,由此最终实现样品不同低温温度的精密控制。[/size][size=16px] 对于液氮输送管的热防护,尽管采用了液氮真空输送管,但要做好输送管两端的隔热防护,尽可能减少室温环境的加热影响。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决液氮温度精密控制问题,关键是采用控压方式可使得杜瓦瓶内的液氮温度保持恒定,压力稳定的同时也使得所液氮介质的压出流量也同样稳定,这使得液氮介质的整个输送过程处于可控稳定状态,为高精度低温控制提供了最为重要的温度稳定的冷媒。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制