当前位置: 仪器信息网 > 行业主题 > >

土壤氮磷钾分析仪

仪器信息网土壤氮磷钾分析仪专题为您提供2024年最新土壤氮磷钾分析仪价格报价、厂家品牌的相关信息, 包括土壤氮磷钾分析仪参数、型号等,不管是国产,还是进口品牌的土壤氮磷钾分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤氮磷钾分析仪相关的耗材配件、试剂标物,还有土壤氮磷钾分析仪相关的最新资讯、资料,以及土壤氮磷钾分析仪相关的解决方案。

土壤氮磷钾分析仪相关的论坛

  • 土壤氮磷钾检测仪如何检测土壤有效磷

    土壤氮磷钾检测仪如何检测土壤有效磷

    [size=16px]  要检测土壤中的有效磷含量,您可以使用土壤氮磷钾检测仪(土壤分析仪)进行测试。以下是一般的步骤:  准备工作: 在开始测试之前,请确保您有以下物品和条件:  土壤样品:从感兴趣的地点采集土壤样品,并将其彻底混合,以获得代表性的样品。  土壤分析仪:选择适合您需求的土壤氮磷钾检测仪,这种仪器通常包括不同传感器来测量不同的养分。  校准液:通常,您需要使用标准校准液来校准仪器。  个人防护装备:戴上适当的个人防护装备,如手套和护目镜,以确保安全。  样品准备: 将土壤样品空气干燥或者使用低温烘箱干燥,以去除水分。然后,将样品粉碎成细粉末,以确保均匀性和可重复性。  校准仪器: 根据仪器的要求,使用标准校准液来校准仪器。这有助于确保仪器的准确性和精确性。  测试操作: 使用仪器的磷测量功能,将仪器的探头或传感器插入土壤样品中,并按照仪器的操作手册执行测试操作。通常,仪器会测量土壤中的有效磷含量。  记录数据: 记录仪器显示的数据,包括测量结果和单位。有效磷通常以毫克/千克(mg/kg)或其他适当的单位表示。  清洁和维护: 在完成测试后,及时清洁仪器的传感器或探头,以避免污染和交叉污染。根据仪器的要求,进行常规维护和校准。  数据分析和解释: 将测得的有效磷含量与土壤养分要求、标准或建议值进行比较。根据结果,评估土壤的养分状况以及是否需要施加磷肥料。  报告和记录: 记录测试结果,并根据需要生成报告。这些结果可以用于决策和土壤管理。  请注意,不同的土壤氮磷钾检测仪可能具有不同的操作步骤和要求,因此始终要根据您使用的具体仪器的操作手册进行操作。此外,土壤分析是决定土壤肥养情况的关键步骤,有助于合理施用肥料以提高作物产量和土壤质量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121333542543_2537_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【分享】土壤分析仪的特征及用途简介

    土壤分析仪主要是用于土壤的组成成分或土壤的物理化学性质的分析,并对土壤进行生成发育、肥力演变、土壤资源评价的仪器。土壤分析仪对土壤的分析主要是测定土壤的各种化学成分的含量和某些性质。土壤分析仪具有体积小、重量轻、普通人可手持测量的特点,具有光电比色分析、电极电位分析、电导分析功能。 土壤分析仪可分析出被测土壤中氮、磷、钾三种养分的含量,可对土壤中的金属成份进行检测。土壤分析仪能够对过滤介质进行检测,可对油漆、涂料、和有害废物进行分类,并能够对油和液体中的有害成份进行分析,也可对可对含铅涂料进行检测。 土壤分析仪可检测土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质含量,土壤酸碱度及土壤含盐量。土壤分析仪可广泛应用于农、林、牧、工业、医疗卫生、教学实验等方面的各种常规比色、PH值、电导、温度的测定,又可用于田间土壤养分速测。

  • 土壤养分分析仪用途有哪些

    土壤养分分析仪用途有哪些

    土壤养分分析仪是一种用于测量和评估土壤中各种养分含量的仪器。它的主要用途是帮助农民、园艺师、土壤科学家和环境研究人员更好地了解土壤的养分水平,以便制定合适的土壤管理和肥料施用策略。以下是土壤养分分析仪的主要用途:  土壤肥力评估: 土壤养分分析仪可以测量土壤中的关键养分,如氮、磷、钾、钙、镁等,以确定土壤的肥力水平。这有助于农民和园艺师确定土壤是否需要施加肥料以满足植物的生长需求。  肥料施用计划: 通过分析土壤养分水平,可以制定精确的肥料施用计划,确保植物获得所需的养分,同时减少肥料的浪费和环境污染的风险。  土壤改良建议: 分析仪还可以提供土壤酸碱性(pH值)和有机质含量等信息,这些信息对于确定是否需要进行土壤改良以及改良的类型和方法非常重要。  监测土壤质量和健康: 定期使用土壤养分分析仪可以帮助监测土壤的质量和健康状况。这对于长期土壤管理和保护环境非常重要。  研究和实验用途: 土壤养分分析仪广泛用于土壤科学研究和实验室分析,以深入了解土壤中不同养分的分布和相互作用。  总之,土壤养分分析仪是一项有用的工具,可以帮助农业和园艺领域的专业人士更好地管理土壤资源,提高作物产量,减少环境影响,并促进可持续农业和土壤保护。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309200950136491_7888_5604214_3.jpg!w690x690.jpg[/img]

  • 【分享】近红外土壤养分仪与传统土壤养分速测仪的应用分析

    随着社会的进步,仪器也在日异的更新。农业仪器也在不断的改变着。近些年,一些高科技术仪器也越来越普遍的应用到农业工作者的手上。如土壤养分仪,主要是测试土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质含量,土壤酸碱度及土壤含盐量。土壤养分仪的使用方法有很几种,如:实验室化学分析法,传统快速测量方法(试剂法)等。现在又研发了一种,利用光谱法测试——近红外土壤养分仪。它跟传统土壤养分速测仪在应用上有什么区别呢。下面我作一些简单的分析。一、功能:近红外土壤分析仪功能:可测出土壤中的N、P、K、有机质、水分等含量,如需其他参数可输入模型。传统土壤养分速测仪功能:可测土壤、植株、化学肥料、生物肥料等样品中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质含量,土壤酸碱度及土壤含盐量。二、操作方法:近红外土壤分析仪:应用光谱技术,结合数据挖掘和融合技术,提出了土壤养分快速测试分析方法,实现了土壤养分的实时快速测试。 不破坏样品,不需要化学试剂,直接将土壤样品放入样品室即可测出土壤中的养分含量。传统土壤养分速测仪:利用试剂法,样品需前处理,步骤烦杂,要一步一步滴试剂不能有漏项,对工作人员要求必须细心。三、测试出结果时间:近红外土壤分析仪:因为利用的是光谱法,只需1分钟即可。传统土壤养分速测仪:包括前处理时间要40分钟-1小时。四、后期成本费用:近红外土壤分析仪:除电费外无任何费用,无须任何试剂。传统土壤养分速测仪:试剂费用,每个样本在1.2元-2元之间。五、扩展性近红外土壤分析仪:可更改模型或增加模型以测试更多的参数,扩展性超强。传统土壤养分速测仪:只能测N P K,PH,EC养分,无扩展功能。终上所述,近红外土壤分析仪具有:应用光谱技术,结合数据挖掘和融合技术,提出了土壤养分快速测试分析方法,实现了土壤养分的实时快速测试。测试出结果速度快,后期成本零费用。并具有可扩展性能。当然仪器的价格也传统的土壤养分速测仪高出许多,但是根据长久考虑又不失为一种适合各科研单位及研究人员的称心仪器。因为它省时,省钱,省精力,扩展性能强。时代的不断发展近红外土壤分析仪将会普遍的进入农业研究单位,并得到广泛的应用。也愿高科技,高效率的仪器能得到更广泛的使用。从而使国家的科技水品能越来越高。

  • 土壤氮磷钾检测仪可检测什么

    土壤氮磷钾检测仪可检测什么

    [size=16px]  土壤氮磷钾检测仪是用于分析土壤中氮(氮素)、磷(磷酸盐)和钾(钾肥)等主要营养元素含量的仪器。这些主要营养元素对植物生长至关重要,因此监测它们的含量有助于优化农作物的生长条件和施肥管理。  具体来说,土壤氮磷钾检测仪可以测量以下内容:  氮(氮素)含量:氮是植物生长所需的关键元素,影响叶片生长、蛋白质合成等。土壤中的氮含量可以通过测量氨态氮、硝态氮和亚硝态氮等形态来评估。  磷(磷酸盐)含量:磷是植物生长和代谢的必需元素,影响根系发育、花芽分化等。土壤中的磷含量通常以磷酸盐形式存在,检测仪可以测量土壤中的有效磷含量。  钾(钾肥)含量:钾是维持植物渗透压、调节水分平衡的关键元素,对植物的抗逆性也有影响。土壤中的可交换性钾和可供植物吸收的钾含量可以通过检测仪进行测量。  这些检测数据可以帮助农户、农业专业人员和研究人员更好地了解土壤的养分状况,从而制定合适的施肥方案,优化农作物的生长条件,提高产量和品质,并减少对环境的不良影响。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308281508556994_5688_6098850_3.png!w690x690.jpg[/img][/size]

  • 土壤团粒分析仪有哪些特点

    土壤团粒分析仪有哪些特点

    [size=16px]  土壤团粒分析仪有哪些特点  土壤团粒分析仪是用于测量土壤团粒组成和分布的仪器,它有助于了解土壤的物理性质和土壤结构。以下是一些常见的土壤团粒分析仪的特点:  高精度分析:土壤团粒分析仪提供高精度的土壤团粒分析,可以分辨不同团粒粒径的含量,通常以毫米或微米为单位。  多尺度分析:这些仪器通常能够在不同尺度上分析土壤团粒,从粗大团粒到微细颗粒,从而提供更全面的信息。  自动化和高通量:一些现代土壤团粒分析仪具备自动化功能,可以快速分析大量样本,提高工作效率。  样品预处理:土壤团粒分析仪通常可以进行样品的适当预处理,例如去除有机质或颗粒的散度调整,以确保分析的准确性。  数据可视化:这些仪器通常提供数据可视化功能,以便用户能够直观地理解土壤团粒的分布和特性。  数据存储和导出:土壤团粒分析仪通常具有数据存储和导出功能,使用户可以随时检索和分享分析结果。  多种团粒特性测量:除了粒径分布,一些仪器还可以测量土壤团粒的形状、孔隙度、比表面积和密度等特性。  适应不同土壤类型:这些仪器通常可适应不同类型的土壤,包括沙质土壤、壤土和黏土等。  多样化的应用:土壤团粒分析仪广泛用于土壤科学、土壤物理学、农业研究、环境科学、土壤工程和地球科学等领域。  易于操作:尽管这些仪器提供高级功能,但它们通常设计成易于操作,以确保用户能够有效地使用它们。  总之,土壤团粒分析仪是一种重要的土壤分析工具,具有高精度、自动化、多尺度、数据可视化和适应多种应用的特点,有助于研究土壤的物理性质和结构,从而对农业、土壤工程、环境科学和其他领域的决策和研究产生影响。不同型号的土壤团粒分析仪可能具有不同的特点和功能。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310261058149946_7683_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 使用元素分析仪测土壤全碳全氮

    求问:测定土壤颗粒有机碳时用六偏磷酸钠进行了处理,那么上元素分析仪的时候需要在土样里面包三氧化钨吗?有没有知道的给个回复,万分感谢!

  • 【我们不一YOUNG】+适合新手的土壤分析仪器介绍和用途

    [font=宋体]土壤分析仪器是用于分析土壤的组成成分、物理化学性质以及土壤资源的评价等目的的设备。这些仪器可以帮助科学家和农业从业者更好地理解土壤的特性,从而采取适当的农业管理措施,提高作物产量和质量。以下是一些常用的土壤分析仪器:[/font][font=宋体]a.土壤分析仪:主要用于土壤的组成成分或土壤的物理化学性质的分析,包括土壤的生成发育、肥力演变、土壤资源评价等。[/font][font=宋体]b.土壤养分检测仪:用来测量土壤养分的仪器设备,可以快速检测氮、磷、钾、有机物、pH值、盐度等,一般用于各级农业检测中心、农业科研机构和种植基地等领域。[/font][font=宋体]c.土壤研磨器:土壤取样后,需要使用地面和筛分设备,如球磨机、研磨机、过筛机等,一般由科研单位和第三方检测单位使用。[/font][font=宋体]d.土壤取样器:用于采集土壤样品,采样器种类繁多,有手动、自动、采样深度、避免污染等选择。[/font][font=宋体]e.土壤水分测定仪:主要用于检测土壤湿度、温度、盐度、PH值、电导率等。[/font][font=宋体]f.土壤重金属检测仪:分析土壤重金属元素,是一种快速检测仪器,体积小,重量轻,便于携带,可直接带到田间进行检测。[/font][font=宋体]g.智能土壤分析仪:搭载了Android操作系统和智能检测系统,拥有强大的数据处理能力,能检测土壤、肥料、植物等样本的48项以上指标,还内置了测土配方施肥系统。[/font][font=宋体]h.高速比色仪:采用12通道比色设计,能一次性快速检测12个样品,极大提高了检测效率,确保了检测结果的准确性。[/font][font=宋体]i.酸碱度及电导率测定仪:能进行快速准确的测量土壤的酸碱度和电导率,测试范围广泛,精度高达0.01。[/font][font=宋体]j.便携式设计:土壤检测仪器均采用高强度PVC工程塑料和手提铝合金箱设计,坚固耐用且便于携带,无论是野外流动测试还是实验室分析,都能轻松应对。[/font]

  • 土壤氮磷钾检测仪在农业中的应用

    土壤氮磷钾检测仪在农业中的应用

    [size=16px]  土壤中的氮(N)、磷(P)和钾(K)是植物生长所需的三大主要营养元素,它们在农业生产中起着至关重要的作用。土壤氮磷钾检测仪是一种用于测量土壤中这些营养元素含量的设备,它在农业中具有广泛的应用。以下是土壤氮磷钾检测仪在农业中的一些应用:  肥料管理: 了解土壤中的氮、磷和钾含量可以帮助农民更精确地确定植物所需的肥料类型和数量。通过定期监测土壤中的营养元素含量,农民可以调整肥料投入,以确保植物得到适当的营养,避免过度施肥或营养不足的问题。  作物生长监测: 土壤氮磷钾检测仪可以帮助农民监测不同生长阶段作物所需的营养元素变化。这有助于及时调整肥料供应,以满足不同时期作物的营养需求,最大限度地促进作物生长和产量。  土壤改良: 如果土壤中某些营养元素的含量偏低,农民可以根据检测结果采取适当的土壤改良措施,如添加有机物质、矿物质或化肥,以提高土壤质量和植物生长条件。  环境保护: 过度施肥可能导致土壤和水体中的营养元素污染,从而影响生态平衡。通过准确监测土壤中的氮、磷和钾含量,农民可以避免过度使用肥料,减少环境污染的风险。  精准农业: 土壤氮磷钾检测仪结合全球定位系统(GPS)等技术,可以实现精准施肥和精准管理。农民可以根据不同土壤区块的营养状况调整肥料投入,实现资源的高效利用。  研究和教育: 土壤氮磷钾检测仪在农业研究和教育领域也有广泛应用。研究人员可以利用这些仪器来深入了解土壤中营养元素的分布规律,从而更好地指导农业实践。  总之,土壤氮磷钾检测仪在农业中的应用可以帮助农民更有效地管理肥料使用,优化作物产量和品质,减少环境影响,并促进可持续农业发展。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308281502319055_2874_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【求助】想买一台元素分析仪分析土壤和植物样品中的CNS

    我们单位从省里争取了一些专项资金,用于实验室改造。考虑到常规分析土壤有机质,全氮,硫等元素的测定比较繁琐,想买一台元素分析仪分析土壤和植物样品中的CNS,请问可以吗?如果买Elementar的至少要多少钱,还有没有更便宜的其它品牌产品,谢谢?

  • 【求助】谁用过TFY-II型土壤分析仪?

    [font=Arial]谁用过TFY-II型土壤分析仪?我用这个仪器做了土壤中铵态氮含量,样品用KCl溶解,然后取了5mL,加显色剂共15mL,显色后测出来是5ppm,可是就是不知道2g土壤中铵态氮含量怎么计算[/font]

  • 【求购】土壤团聚体分析仪

    土壤团聚体是一个很重要的土壤指标。水稳性团聚体是一个更有意义的指标。测定方法一般是采用湿筛法。 有一种仪器叫做团聚体分析仪,可以分析土壤水稳性团聚体。实际上就是一个能将一系列不同孔径的筛子在水中上下活动的仪器,有的时候也叫团粒分析仪。或者约得尔团粒(团聚体)分析仪。 有用过的朋友,或者有知道哪里提供这种仪器的朋友,可以讨论一下。[~55026~]

  • 如何采购便携式土壤重金属分析仪?

    “便携式土壤重金属分析仪” 即便携式X射线荧光测定仪(简称便携式XRF),该仪器在地质矿山、金属与合金分析、玩具及消费品、考古等方面有着广泛的应用,生产销售此类仪器的厂家众多。环保部根据国家重金属污染综合防治“十二五”规划,下达了主要污染物减排专项资金——重金属防控区监测能力建设方案,首次把便携式XRF列入了能力建设的采购名录。作为一种开展土壤、固废重金属快速筛检分析的新仪器,环保部门此前无采购或应用的经历,如何才能保证采购到性价比好的仪器呢? “欲知仪器谁家行,擂台比武见分晓”。敬请链接http://bbs.instrument.com.cn/shtml/20130707/4836620/index_1.shtml“便携式XRF比武招标记”。

  • 【每日分享一篇解决方案】元素分析仪测定土壤中的碳、氮、硫含量

    【每日分享一篇解决方案】元素分析仪测定土壤中的碳、氮、硫含量

    [align=center][font='arial'][size=21px][color=#548dd4]#[/color][/size][/font][font='arial'][size=21px][color=#548dd4]每日一篇分享一篇解决方案:[/color][/size][/font][/align][align=center][font='arial'][size=21px][color=#548dd4]今日行业领域:环保[/color][/size][/font][/align][align=center][font='arial'][size=21px][color=#548dd4]元素分析仪测定土壤中的碳、氮、硫含量[/color][/size][/font][/align][align=center][url=https://www.instrument.com.cn/application/Solution-948387.html][font='宋体'][color=#4472c4][back=#ffffff][b]点击这里[/b][/back][/color][/font][/url][font=''宋体''][color=#000000][back=#ffffff]浏览或[/back][/color][/font][font=''宋体''][color=#000000][back=#ffffff]下载原[/back][/color][/font][font=''宋体''][color=#000000][back=#ffffff]文档[/back][/color][/font][/align][align=left][size=18px][font='calibri'][back=#ffffff]土壤中碳、氮含量是评估土壤质量的重要指标,它们含量的高低影响其它元素的迁移和转化过程,[/back][/font][/size][font='calibri'][back=#ffffff]而硫是[/back][/font][font='calibri'][back=#ffffff]植物生长不可或缺的养分之一,是农作物高产、稳产的重要因素,因此,对土壤的碳、氮、硫含量的测定具有非常重要的意义。目前[/back][/font][font='calibri'][back=#ffffff]氮采用[/back][/font][font='calibri'][back=#ffffff]的是[/back][/font][font='calibri'][back=#ffffff]凯式定氮法[/back][/font][font='calibri'][back=#ffffff],碳和[/back][/font][font='calibri'][back=#ffffff]硫一般[/back][/font][font='calibri'][back=#ffffff]采用的红外[/back][/font][font='calibri'][back=#ffffff]碳硫仪[/back][/font][font='calibri'][back=#ffffff]进行测定。但都存在一些缺点,重要的是不能同时测定,检测周期长,人工成本高。[/back][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311011147428139_7458_5996718_3.png[/img][/align][align=left][size=18px][font='calibri'][back=#ffffff]氮含量的高低反映了土壤的肥力水平,是植物生长的重要营养元素之一,国内外已有大量的研究表明,植物吸收的氮素主要来源于土壤。传统的[/back][/font][/size][font='calibri'][back=#ffffff]凯式定氮法[/back][/font][font='calibri'][back=#ffffff]是测定氮含量的标准方法,但是操作比较复杂,分析效率较低,实验结果[/back][/font][font='calibri'][back=#ffffff]受操作[/back][/font][font='calibri'][back=#ffffff]环节和人为因素影响比较大,不利于大量样本的快速测定。采用高温燃烧法直接以固体粉末形式进样,不存在液体转移过程中样品的损失,保证了碳氧化完全,回收率高,无需消耗化[/back][/font][font='calibri'][back=#ffffff]学试剂,对环境污染小,不存在预处理过程中复杂繁琐的操作,极大地提高了检测速度,减少了人为误差和方法误差,在土壤碳、氮、硫测定方面具有明显的优点。[/back][/font][/align][align=left][size=18px][font='calibri'][back=#ffffff]意大利VELP公司生产的CHNS-O元素分析仪EMA 502,它由燃烧部分、热导检测器系统和数据采集分析系统组成。样品用载体吹扫并传送到发生燃烧的反应器。样品在高温 (1000°C) 下转化为其元素化合物。反应器下部的[/back][/font][/size][font='calibri'][back=#ffffff]Vcopper[/back][/font][font='calibri'][back=#ffffff]有助于将 NOx 还原为 N2。带有元素气体的载体通过连接面板( CHNS 配置),气体到达[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱,进行分析并以不同的保留时间流出色谱柱。TCD(热导检测器)可在几分钟内检测所有气体含量。[/back][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311011147431446_1532_5996718_3.png[/img][/align][align=left][font='calibri'][size=18px][back=#ffffff]在用于测定土壤中的碳、氮、硫含量时采用的参考方法主要有:[/back][/size][/font][/align][align=left][font='calibri'][size=18px]ISO 1387:土壤质量 总氮含量的测定 干烧法 (元素分析) [/size][/font][/align][align=left][font='calibri'][size=18px]ISO 15178:土壤质量 用干燥燃烧法测定总硫量[/size][/font][/align][align=left][size=18px][font='calibri']ISO 10694:土壤质量 干燃烧后(元素分析法)对有机物质[/font][font='calibri']和总碳的[/font][font='calibri']测定[/font][/size][/align][align=left][size=18px][font='calibri']EN 13654-2:[/font][font='calibri'][color=#3e3e3e]土壤改良和生长介质.氮含量测定.第2部分:杜马斯法[/color][/font][/size][/align][align=left][size=18px][font='calibri']EN 13137:[/font][font='calibri']废物表征-测定废物污泥和沉积物中总有机碳 (TOC) 的测试[/font][/size][/align][align=left][font='calibri'][size=18px]ASTM D5291:石油产品及润滑剂中碳、氢、氮测定法 (仪器测定法)[/size][/font][/align][align=left][size=18px][font='calibri'][back=#ffffff]元素分析仪测定土壤中碳、氮、硫含量的检测方法,可实现三个元素的同时测定,规避了[/back][/font][/size][font='calibri'][back=#ffffff]凯式定氮法[/back][/font][font='calibri'][back=#ffffff]和红外[/back][/font][font='calibri'][back=#ffffff]碳硫仪法[/back][/font][font='calibri'][back=#ffffff]联合检测的弊端,并且方法快速便捷,检测成本降低,数据的精密度、准确度好,适用于土壤样品的批量检测。[/back][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311011147434503_2074_5996718_3.png[/img][/align][font='宋体'][size=20px][color=#4f5862]产品配置单:[/color][/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/11/202311011147434477_6243_5996718_3.jpeg[/img][/align][align=center][url=https://www.instrument.com.cn/netshow/SH104679/C487311.htm]VELP EMA 502 CHNS-O 元素分析仪[/url]([url=https://www.instrument.com.cn/netshow/SH104679/solution.htm]淘仪科技[/url])[/align][url=https://www.instrument.com.cn/application/Solution-948387.html][font='宋体']点击这里[/font][/url][font='宋体'][color=#000000]浏览[/color][/font][font='宋体'][color=#000000]或[/color][/font][font='宋体'][color=#000000]下载原[/color][/font][font='宋体'][color=#000000]文档,更多解决方案内容请浏览[/color][/font][url=http://www.instrument.com.cn/application/][font='宋体'][color=#0081d7][back=#ffffff]行业应用[/back][/color][/font][/url][font='宋体'][color=#000000]栏目:[/color][/font][align=left][url=http://www.instrument.com.cn/application/][font='calibri'][size=13px][color=#0081d7]http://www.instrument.com.cn/application/[/color][/size][/font][/url][font='calibri'][size=13px][color=#000000]行业应用栏目简介:[/color][/size][/font][font='calibri'][size=13px][color=#000000] [/color][/size][/font][font='calibri'][size=13px][color=#000000] 【行业应用】[/color][/size][/font][font='calibri'][size=13px][color=#333333]是仪器信息网[/color][/size][/font][font='calibri'][size=13px]专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。[/size][/font][/align]

  • 土壤硝态氮和铵态氮标准物质

    各位大神们,有做过《LY/T 1228-2015 森林土壤氮的测定》里连续流动分析仪法测土壤硝态氮和铵态氮的吗?这里面的硝态氮、铵态氮标准溶液有有证标准物质买吗?

  • 《FJA-1型常规分析仪器工作站》测定土壤有机质

    《FJA-1型常规分析仪器工作站》测定土壤有机质方建安 张连第(中科院南京土壤研究所)一、测定的意义与方法原理土壤有机质是植物矿质营养和有机营养的源泉,又是土壤中某些微生物的能源物质,同时也是形成土壤结构的重要因素。因此土壤有机质与土壤的耐肥、保墒、透水、缓冲性、耕性、通气状况、土壤温度等物理化学性质有着密切的关系。所以土壤有机质是土壤肥力的重要指标之一,是土壤分析必做的常规分析项目。有机质含量的测定通常是采用中国土壤学会推荐的常规分析方法,即先测定有机碳,然后再计算机质的方法[1]。用H2SO4—K2Cr2O7溶液氧化有机碳,再用FeSO4标准溶液滴定过量的K2Cr2O7。根据标准溶液FeSO4的耗用量求出有机质的含量。有机质的百分含量用下式计算: 有机质%=C*(V0-V)*0.003*1.724*1.1/m式中,c为FeSO4标准溶液的摩尔浓度; V0为10mL重铬酸钾硫酸溶液消耗的硫酸亚铁的毫升数;V为滴定等当点时滴定剂硫酸亚铁的耗用量(Ml);0.003为1/4C摩尔质量(g);1.724为土壤有机碳换算成有机质的换算系数;1.1为校正常数;100为换算成百分含量;m为样品重量(g)。 通常都采用普通玻璃滴定管和化学指示剂进行手工滴定测定土壤有机质,但具有一定的缺点,如滴定速度和变色不明显等影响,使分析产生较大的误差。在现代分析中采用电位滴定法测定有机质含量,以白金电极作为指示电极,甘汞电极作为参比电极。克服了由于终点变色不明显等造成的测量误差。尤其采用微机控制的电位自动滴定系统测定有机质含量时,使分析速度和精度得到很大的提高,同时减轻了劳动强度。 微机控制的电位自动滴定系统应用程序适用于酸碱滴定、氧化还原滴定、沉淀滴定和络合滴定等具有S型滴定曲线的滴定。可以进行单终点或多终点滴定。二、试剂及仪器设备 1.试剂(1)K2Cr2O7—H2SO4溶液:39.225克 K2Cr2O7(GB642—77)溶于1升水中,再缓缓加入1升浓H2SO4(GB625—77)。边加边搅拌,必要时用水冷却。溶液浓度为c(1/6K2Cr2O7) = 0.4mol/L。(2)FeSO4溶液:56克FeSO4 • 7H2O(GB664—77)溶于600mL水中,加H2SO4(GB625—77)5 mL。加水至1升,用标准K2Cr2O7标定浓度。2 仪器设备(1)油浴锅、试管等消化有机质的设备;(2)FJA-1型常规分析仪器工作站;(中科院南京土壤所技术服务中心研制与生产)(3)微机滴定应用程序(中科院南京土壤所技术服务中心提供)[2]。三、分析过程1.样品前处理称土0.1—0.5克于硬质试管中,准确加入K2Cr2O7—H2SO4溶液10mL,摇匀,在油浴上170—180℃消化5分钟,冷却后用水洗入100 mL烧杯中,体积约为50mL。2. 微机滴定操作将准备好的溶液放在滴定台上,以白金电极为指示电极,饱和甘汞电极为参比电极,在机械搅拌的情况下,以FeSO4为滴定剂,进行微机控制的电位自动滴定。滴定程序启动后,首先进行人机对话,输入必要的参数、测量方式和滴定条件。 在作样品定分析时,不再打入上述参数,只要打入样品号和初绐体积(视滴定剂用量大小来确定,这样可以加快滴定速度),就能自动滴定,直至滴定到终点。如图所示。也可以打印曲线和储存与打印测定结果。四、结果与讨论1. 用FJA-1型常规分析仪器工作站(永停终点法)和手工滴定法以FeSO4标准溶液对K2Cr2O7进行六次平行滴定,其结果如表1所示。表1 用FeSO4滴定K2Cr2O7的结果次数 1 2 3 4 5 6项目工作站 17.2 17.12 17.12 17.12 17.12 17.14手工 17.2 17.15 17.10 17.10 17.20 17.15工作站 平均值 标准差 变异系数手工 17.14 0.032 0.19 17.15 0.045 0.26用微机电位自动滴定系统和手工滴定的方法对土壤有机质样品进行了对照分析,分析结果如表2所示。表2 工作站(永停终点法)和手工滴定法测定土壤有机质结果比较标本号 工作站滴定法 手工显色滴定法 (有机质%) (有机质%)1 0.57 0.572 0.47 0.453 0.51 0.48根据实验结果,表明微机控制的电位滴定具有较高的测定精度和好的重现性。在滴定剂的耗用量在17mL左右时,变异系数小于0.2%。两种滴定方法对样品的对比测定其结果完全符合要求。2.微机控制的电位自动滴定不但能打印出滴定结果,同时还能绘出滴定曲线和等当点在曲线上的位置,可以进一步判断结果的可靠性。3.整个滴定过程全部自动化,不需要操作者参与。因此在滴定时,操作者可以做其他工作,提高工作效率和分析速度。4.COD也可用本法进行。 参考文献[1]、中国科学院南京土壤所,土壤理化分析,上海科学技术出版社,1978。[2]、方建安、王敖生、杨坤玺、分析仪器,(2),(26)1989。有关《FJA-1型常规分析仪器工作站》详见www.kew.com.cn/

  • 【原创大赛】常规方法与速测方法检测土壤中氮、磷、钾含量的对比性报告

    【原创大赛】常规方法与速测方法检测土壤中氮、磷、钾含量的对比性报告

    常规方法与速测方法检测土壤中氮、磷、钾含量的对比性报告一、原理1. 常规法:检测水解氮用的是碱解扩散滴定法,检测磷是用的钼锑抗比色法,检测钾是用的火焰光度法。2. 速测法:检测水解氮用的是碱解酸吸收转化为铵态氮用的纳氏比色分光光度法,检测磷用的是磷钼蓝分光光度法,检测钾用的是四苯硼钠比浊法。二、实验所用仪器及主要器皿1. YN-2001土壤肥料速测仪2. 火焰光度计3. 紫外可见分光光度计4. 微量滴定管5. 扩散皿等三、主要操作步骤1. 常规法检测水解氮的测定;常规法检测土壤有效磷的测定(参照GB12297-90《石灰性土壤有效磷测定方法》);常规法检测土壤中速效钾的测定。2. 速测法采用的是联合浸提剂法浸提土壤中的有效磷和速效钾,通过浸提后分别加入相应的试剂后采用比色和比浊进行定量检测。其中水解氮的速测法是通过简单地蒸馏装置(本公司的专利产品)将土壤中的水解氮蒸馏出来后,经过酸吸收转化成铵态氮,通过纳氏比色来进行定量检测的。四、实验结果1.有效磷的对比常规方法是用0.5mol/LNaHCO3浸提后用钼锑抗试剂显色后,在分光光度计880nm处检测;而我们的是用联合浸提剂浸提后加入我公司有效磷试剂显色后在我们的YN-2001土壤肥料速测仪上检测的,两种检测结果的对比如下:样品编号12345678910常规(mg/Kg)2.911.378.456.096.793.363.63[si

  • 【分享】近红外用于农业土壤的化学特性分析.

    介绍Istituto Sperimentale per le Colture Foraggere (ISCF)是意大利的饲料作物研究院。它的总部位于Po Valley的Lodi,还有2个分部分别在Sardinia和Apulia。它是隶属于意大利农林部的23个研究院之一,这些研究院分别专注于不同的作物、农业实践和食品等技术。ISCF本身专业在农艺、生物学、育种和饲草,具体的研究对象包括紫花苜蓿、苜蓿(白、红、地下、埃及车轴草)、黑麦草(意大利的、多年生),观赏草皮,以及阿尔卑斯和地中海的牧场。传统农业的现代化由于采用了施化肥、控制杂草、土壤耕作新方法以及选择高产品种等手段已经大幅提高了农作物的产量。农艺技术可以可观的影响土壤的肥力。如果精确农业中的农作物生产是持续和有成本效益的,就需要更多的有关土壤成分的信息。使用化学方法对土壤进行分析是准确的,但是需要很多的时间和人工,而且成本高,并且产生有害污染物影响环境,这些使得化学方法不适合作为常规的测定方法。近红外反射光谱(NIR)是一种可能的备选方式,它同时节约了时间和人工劳力,并减少了化学试剂的成本。NIR已经被不同程度地成功的应用在一系列土壤成分的分析上。在ISCF的一个长期项目中,正在研究不同作物轮作对土壤肥力的影响。作为对各种不同农作物常规的研究的补充,从1985年开始定期地收集土壤样品,目前的收集周期是3年。主要目的是确定在土壤肥力尤其是土壤组成上的精细作物管理实施对多种农作物轮作的主要及次要影响。此项目中近红外(NIR)反射光谱用于土壤非破坏性特性分析的可能性研究已经展开,目标是开发可以预测诸如总有机碳、总氮、可交换钾及有效磷等土壤中成分的稳定定标方程,用于田间试验中的监控。材料和方法土壤样品 样品从Lodi附近的Po Valley的一个长期试验田中收集,pH为6.2的砂质土壤。比较了5种不同的轮作方式,分别代表了不同的作物强化程度的饲用作物体系:(1) 1年连续的双作物轮作,意大利黑麦草(lolium multiflorum Lam.) + 青贮玉米(zea mays L.);(2) 3年轮作,意大利黑麦草 + 青贮玉米-大麦(hordeum vulgare L.) + 青贮玉米-粮用玉米;(3) 6年轮作,意大利黑麦草 + 青贮玉米(3年)-轮作牧草(3年)(trifolium repens L. + festuca arundinacea Schreb.);(4) 永久牧草的单作;(5) 粮用玉米的连续单作。每一个轮作从属于2个作物管理实践,包括不同的营养水平、杂草控制和土壤耕种方法。在1985年实验开始,在1997年又重新开始,在总共72块土地的每一块随机钻取5个土样(0-30cm深)。化学和NIR分析 所有样品风干后充分研磨去测定总氮、总有机碳、可交换钾和有效磷,并进行NIR扫描。总氮和总碳由杜马斯燃烧法来测定,使用CE Instruments公司的NA1500元素分析仪。有效磷含量用0.5mg NaHCO3 (pH 8.5)溶液萃取后以抗坏血酸法测定。可交换钾用1mg醋酸铵萃取后以电感耦合等离子发射光谱测定。土壤的光谱使用FOSS NIRSystems公司的5000型近红外,光谱范围是1100-2500nm。开发NIR定标 初始的定标数据是142个土壤样品,对每一个成分都分别使用了Step-up,Stepwise和改进的偏最小二乘法MPLS,用所有数据建立回归模型。另外通过计算将光谱马氏距离3的反常样品去除,或者手工排除那些难以很好解释的样品,再使用MPLS方法生成定标方程。所有的模型都被用来预测1985年和1997年采集样品的总氮、总有机碳、可交换钾和有效磷含量。结果NIR定标开发 获得的定标方程对总氮、总有机碳、可交换钾和有效磷含量的预测统计数据列于表1。表1:定标方程开发交互验证过程中对总氮、总有机碳、可交换钾和有效磷含量预测的统计数据定标回归算法 总氮 总有机碳 钾 磷 n* r2 SECV n* r2 SECV n* r2 SECV n* r2 SECVStep-up 142 0.83 0.010 142 0.83 0.07 1422 0.43 7.83 142 0.70 6.92Stepwise 142 0.85 0.010 142 0.87 0.06 142 0.57 6.83 142 0.72 6.66MPLS 142 0.77 0.007 142 0.81 0.07 142 0.49 7.51 142 0.71 6.84MPLS(手工挑选样品) 129 0.87 0.005 138 0.81 0.07 127 0.70 5.81 128 0.83 4.89MPLS(软件挑选样品) 134 0.77 0.007 132 0.81 0.07 129 0.49 7.51 131 0.71 6.84* 在定标运算中使用的样品数量从表中可以看出不同回归算法得到的模型结果之间的差异。总有机碳的定标是其中最好的,总氮的略差一些。可交换钾和有效磷的结果相比于氮和碳要逊色。总之,交互验证的结果显示了近红外预测土壤中总氮和总有机碳的可行性。近红外预测 用上面获得的定标对于1985和1997年土壤样品的进行预测的结果统计数据列于表2。表2:所有预测1985和1997土壤样品中总氮、总有机碳、可交换钾和有效磷含量的定标模型准确度定标回归算法 总氮 总有机碳 钾 磷 r2 SEP Bias* r2 SEP Bias r2 SEP Bias r2 SEP Bias1985 预测 Step-up 0.93 0.004 0.000 0.84 0.054 0.003 0.50 7.114 0.381 0.25 5.441 -0.797Stepwise 0.93 0.004 0.000 0.86 0.051 -0.003 0.59 6.411 0.276 0.29 5.306 -0.203MPLS 0.93 0.004 0.000 0.88 0.049 -0.001 0.69 5.589 -0.055 0.50 4.491 -0.123MPLS(手工挑选样品) 0.93 0.004 0.000 0.88 0.049 -0.001 0.63 6.233 -0.102 0.56 4.162 -0.114MPLS(软件挑选样品) 0.94 0.004 0.000 0.89 0.047 0.002 0.66 5.855 0.757 0.57 4.083 -0.1271997预测 Step-up 0.76 0.008 0.000 0.78 0.071 -0.003 0.50 7.507 -0.370 0.23 7.556 0.775Stepwise 0.80 0.007 0.000 0.83 0.061 0.003 0.65 6.261 -0.268 0.25 7.124 0.198MPLS 0.73 0.008 0.000 0.77 0.074 0.001 0.82 4.558 0.054 0.45 6.130 0.119MPLS(手工挑选样品) 0.68 0.009 0.000 0.74 0.077 0.000 0.76 5.211 0.303 0.23 7.381 0.957MPLS(软件挑选样品) 0.67 0.009 0.001 0.72 0.080 0.001 0.48 8.208 -0.208 0.23 7.265 -0.793* 所有样品的化学分析结果平均值和近红外预测结果平均值之间的差异比较有意思的是,在总氮和总有机碳这2个成分上,1985年样品的结果要好于1997年的结果。这2个成分最成功的预测是对1985年样品,以MPLS方法回归得到的模型。这2个成分的结果表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以做为测定它们的方式。对于可交换钾,以r2和SEP作为其预测效果是相当不错的,尽管与其它模型相比没有那么成功。可交换钾也可以用近红外进行预测,结果的准确性至少可以区分不同类型的土壤样品。最后讨论一下有效磷,近红外的预测结果似乎不是很成功,用于判断磷含量高或低还是可靠的。结论通过我们的研究证明了,近红外反射光谱可以用来测定土壤的总氮和总有机碳并有很好的准确性,所以可以作为一种分析土壤样品这些成分的常规的、快速的并且是非破坏性的方法。对于可交换钾的结果稍逊,可以用于提供可靠的样品分类。对其它成分例如有效磷,至少在我们的研究中近红外反射光谱似乎可用于大致的粗测。一个利用同一长期试验的新系列的6年轮作土壤样品对近红外可靠性的验证工作正在进行中。

  • 【求助】土壤分析实验室仪器配置

    想建立一个土壤养分分析实验室,测定土壤有机质、ph、碱解氮、有效磷、钾及有效微量元素养分,还有有效硫、有效硼、有效钴等,需要那些试验仪器,型号,报价,生产商,请发邮件联系,方案通过可洽谈采购。3天有效。邮箱:xueyao28@126.com

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制