当前位置: 仪器信息网 > 行业主题 > >

淬火硬化层深定仪

仪器信息网淬火硬化层深定仪专题为您提供2024年最新淬火硬化层深定仪价格报价、厂家品牌的相关信息, 包括淬火硬化层深定仪参数、型号等,不管是国产,还是进口品牌的淬火硬化层深定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合淬火硬化层深定仪相关的耗材配件、试剂标物,还有淬火硬化层深定仪相关的最新资讯、资料,以及淬火硬化层深定仪相关的解决方案。

淬火硬化层深定仪相关的资讯

  • 荷兰轶诺|智能化测试硬化层深度CHD/SHD/NHD
    在机械众多行业中,需要对重要零部件进行表面硬化处理,尤其是那些高速负荷等受力复杂而繁重条件下的工作零件,如钢件.通过适当的表面热处理方法(以渗碳为例),使零件表层成为高碳层,以便得到高强度、高硬度、高耐磨性和高接触疲劳强度,并与低碳心部的塑性,韧性良好配合,以便改善零件的耐磨性和耐疲劳性,由此提高零部件的质量及寿命。常见的表面处理有:渗碳、氮化、碳氮共渗、火焰淬火、高频淬火、硬质阳极氧化、镀铬等。表面硬化层深度是评判工件表面质量好坏的重要指标,所以测量工件表面硬化层深度尤为重要。钢件硬化层深度测定包括总硬化层深和有效硬化层深度的测定总硬化层深: 从零件表面垂直方向测量到与基体金属间的显微硬度或显微组织没有明显变化的那一硬化层的距离。有效硬化层深: 当钢进行渗碳或碳氮共渗处理后,回火温度不超过200℃,从硬化层表面垂直向心部位置检测至HMV值550的距离。硬化层深度 常用标准如下:ISO2639-2002GB/T9450-2005GB/T5617-2005ISO3754:1976GB/T9451-2005等硬化层深度 -CHD计算方法确定硬度限值的方法有很多。因此,计算 CHD 值的方法也有很多。您选择的程序取决于所采用的硬化工艺。常见的计算方法如下:渗碳或碳部件 (EN ISO 2639)硬度限值 = 550 HVCHD (Eht) = 从表面到硬度为 550 HV 位置点的距离感应淬硬或火焰淬硬部件(EN 10328 和 ISO 3754)硬度限值 = 80% × 表面硬度(min)CHD (Rht) = 从表面到硬度为表面硬度(min) 80% 位置点的距离氮化部件 (DIN 50190-3)硬度限值 = 核心硬度 + 50 HVCHD (Nht, NCD) = 从表面到硬度为核心硬度 + 50 HV 位置点的距离(max)硬化层深度测量选 择 的 测量方法及精确度取决于硬化层的性质和估计的厚度。本篇以轶诺FALCON5000G2为例,介绍显微硬度测量法轶诺FALCON5000G2的IMPRESSIONS 智能软件有内置的CHD/SHD/NHD模板,根据标准规定进行规范化的硬度测试。该测试既可在显微图像下,也可在全景图像下直接开始测试。可单独为 NHD测试设置额外的硬度核心点。按照标准,为了确保测试正确进行,测试点的间距会按照最小距离自动设置。省时测试模式在完成所有压痕后,会自动开始测量,当硬度值达到设置下限后,测试序列会自动停止。智能软件 轶诺IMPRESSIONS软件的目的是让复杂性可控优化操作舒适度轶诺的IMPRESSIONS软件具有一系列标准功能,例如自动测量、自动对焦、报告、测试程序存储等。IMPRESSIONS软件智能图表型用户界面包含了先进的应用程序和易学易用的工作流控制系统,只需3秒即可完成一次简单的设置。IMPRESSIONS 的布局和功能不仅能与您特定的应用要求相匹配,还能满足操作人员的偏好和需求。用户分级管理系统也使工作更加舒适和高效。15英寸纵向电容触摸屏为所有可能的应用程序创造了空间。针对有特殊需求的客户,可再选配一个15英寸纵向或24英寸横向的第二屏幕。针对有教学目的的用户(如高校等),也可通过机器标配的HDMI接口外接高清投影仪。“A P P"型的IMPRESSIONS 4对于应用要求更高的用户, 也许标准应用程序还不够用, 那么, 可以选择“A P P"型的应用式软件IMPRESSIONS 4 .
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 国内首台淬火/变形相变仪将落户上海大学
    德国巴赫热分析公司的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)拥有世界上众多的金属研究的用户。由于价格昂贵,在中国一直没有此领域的使用者。日前,上海大学材料学院经过反复的调研论证,已经和巴赫公司的中国总代理-北京仪尊时代科技有限公司签署了购买合同。所以,上海大学将成为国内首台高级相变仪的使用者,希望它将成为该校金属学研究的得力帮手。 同时,仪尊时代感谢上海大学的信任和支持,将继续为推动此产品的市场而做出努力! 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 北京首台淬火/变形相变仪将落户北京科技大学
    继2006年上海大学后,北京科技大学与北京仪尊时代科技有限公司正式签约,购买德国巴赫热分析公司生产的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)。成为该设备在中国的第二个使用者。目前,德国巴赫公司在该领域的欧美市场占有率几乎百分之百。近年来,很多中国的金属、尤其是钢铁方面研究人员对该设备表现出了浓厚的兴趣,显示出中国钢铁行业在特种钢和优质钢方面长足进步,也是缩小我们与欧美国家在钢铁领域差距的一个缩影。相信该设备将成为该校金属学研究的得力帮手。 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。 screen.width-300)this.width=screen.width-300"
  • 中国科大樱花季 | 国仪量子邀您云赏樱
    四月芳菲,嫣然绽放虽然疫情放缓了人们踏春的脚步但关不住对春天的向往科大的樱花又开了,就让国仪量子带您云赏芳华中国科学技术大学东校区老北门附近的“樱花大道”迎来了一年中的高光时刻,百余株樱花尽数绽放!科大樱花属于晚樱品种,与早樱相比花开得迟一些,但开放地更为绚烂多姿,光芒毕现。与武大樱花五瓣单片不同,科大的樱花是重瓣,花朵大而瓣密,正如古人诗云:“层层围珠玑,团团锦绣簇”。樱花红陌上,杨柳绿池边。你可能不知道的是,粉艳的樱花连花粉都万分美丽!来自中国科大理化科学实验中心的周宏敏老师通过钨灯丝扫描电子显微镜SEM3100对樱花花粉进行了观察研究,让我们一起来看看吧!中国科大理化科学实验中心的钨灯丝扫描电镜SEM3100SEM3100拍摄,经伪彩上色国仪量子的研究人员又采用场发射扫描电子显微镜SEM5000对花粉进行了观察,得到了不一样的画面。场发射扫描电镜SEM5000借助国仪量子扫描电镜高分辨率、大视场、大景深的特点,和光学导航、完善的自动功能,我们可以快速清晰地观察出花粉的外观形貌。樱花花粉粒为圆球形-长球形,具三孔沟(没有经过处理的花粉,孔不明显),沟长达两极,外壁具条纹状纹饰。SEM5000拍摄,经伪彩上色特别鸣谢中国科大理化科学实验中心周宏敏老师协助拍摄的花粉图片;
  • 仪器表征,科学家开发新型纳米药物,用于治疗动脉粥样硬化!
    【科学背景】动脉粥样硬化是一种以动脉斑块逐渐沉积为特征的疾病,最终可能导致严重的动脉血栓事件。因此,抗炎策略在临床治疗中显现出巨大的潜力。近来,Canakinumab抗炎血栓结果研究(CANTOS)临床试验对约10,000名心肌梗死后患者进行了研究,结果显示,使用Canakinumab(一种中和促炎性IL-1β细胞因子的单克隆抗体)的治疗显著减少了心血管事件的发生。然而,这一疗法也增加了致命感染的风险,主要是因为中性粒细胞减少,宿主防御能力受到削弱。另一个临床试验,心血管炎症减少试验(CIRT),则表明低剂量甲氨蝶呤的系统治疗未能有效减少促炎细胞因子的表达或心血管事件。这些结果提示,若能将治疗药物有效地递送至动脉壁病变区域,将可能显著提高疗效并减少副作用。此外,病灶巨噬细胞中过量的活性氧(ROS)是促进动脉粥样硬化进展的另一个关键因素。ROS过量产生会增加氧化应激,导致细胞凋亡并激活炎症反应。由于炎症在动脉粥样硬化过程中引起ROS的过量生成,因此尽管具有挑战性,但同时解决炎症和抑制病灶ROS生成的治疗策略对于动脉粥样硬化的管理具有重要意义。虽然一些纳米治疗剂在临床前研究中显示出双重治疗功能,但其在疾病部位的低积累、复杂的合成路线和潜在的毒性问题仍然是临床转化的障碍。因此,迫切需要合成具有抗氧化和抗炎功能并且能在疾病部位高效积累的生物相容性纳米材料。为此,科学家们将研究目光投向了二维(2D)黑磷纳米片(BPNSs)。由于其独特的物理化学特性和优异的生物相容性,BPNSs在纳米医学领域得到了广泛研究。最近的一项临床前研究表明,BPNSs可以有效清除过量的ROS,改善急性肾损伤。基于这一发现,四川大学华西医院宋相容课题组和哈佛大学医学院的陶伟、Wei Chen合作开发了具有良好生物相容性和高病灶巨噬细胞积累能力的靶向BPNS纳米治疗剂。与传统的纳米载体递送药物策略不同,作者采用了一种创新的“纳米药物递送药物”方法,用于治疗动脉粥样硬化。具体而言,作者利用BPNSs的药物携带能力,将解决炎症的脂质介质Resolvin D1(RvD1)加载其中。RvD1负载的BPNSs不仅能够清除周围的ROS,且在病灶巨噬细胞中选择性地释放RvD1,从而在载脂蛋白E缺乏(Apoe&minus /&minus )小鼠的动脉粥样硬化模型中增强抗动脉粥样硬化效果。【科学亮点】(1)实验首次开发了靶向肽修饰的黑磷纳米治疗剂(BPNSs@PEG-S2P/R),旨在解决动脉粥样硬化治疗中的挑战。(2)实验通过将2D PEGylated BPNSs结合S2P靶向肽和抗炎药物RvD1,成功实现了以下几点结果:&bull BPNSs@PEG-S2P/R能有效积聚于动脉粥样硬化斑块的病灶巨噬细胞,并在S2P肽的协助下渗透斑块。&bull 药物RvD1在ROS响应性释放的方式下,被有效递送至病灶巨噬细胞,展现出显著的抗炎效果。&bull BPNSs@PEG-S2P/R不仅能同时清除ROS,还能抑制病灶巨噬细胞中ROS诱导的炎症反应。&bull 在Apoe&minus /&minus 小鼠模型中,BPNSs@PEG-S2P/R显著减少了斑块面积,并提高了斑块的稳定性。&bull 在动脉粥样硬化斑块中,BPNSs@PEG-S2P/R能有效抑制巨噬细胞负担、炎症反应和氧化应激。&bull 长期治疗后,BPNSs@PEG-S2P/R未引起小鼠免疫或毒性不良反应。【科学图文】图1:BPNSs@PEG-S2P/R的合成策略和抗动脉粥样硬化机制示意图。图2:BPNSs@PEG-S2P/R的表征及RvD1负载和释放研究。图3:BPNSs@PEG-S2P/R处理后细胞摄取、ROS清除能力、抗炎效果、氧化低密度脂蛋白摄取和泡沫细胞形成的体外分析。图4:BPNSs@PEG-S2P/R的药代动力学和生物分布。图5:通过量化病变面积和评估斑块稳定性特征,评估BPNSs@PEG-S2P/R在Apoe&minus /&minus 小鼠中的抗动脉粥样硬化效果。图6:单细胞转录组学揭示了BPNSs@PEG-S2P/R治疗调控主动脉病灶巨噬细胞的基因和关键分子通路。【科学结论】本研究深入探索了动脉粥样硬化的复杂病理机制,突出了慢性炎症和ROS过量生成在疾病发展中的关键作用。通过利用二维黑磷纳米片(BPNSs)的独特特性,如优异的生物相容性和强大的ROS清除能力,本文创新性地设计了靶向肽修饰的纳米治疗剂,实现了双重治疗功能:有效清除ROS并解决斑块中的炎症。这一“纳米药物递送药物”的策略不仅有效提高了治疗效果,还显著减少了对机体的不良影响。研究结果不仅在动物模型中验证了其显著的疗效和安全性,而且通过单细胞水平的分析揭示了治疗机制的深层次调控,为未来开发治疗动脉粥样硬化及其他炎症性疾病的新型纳米药物提供了重要的价值。这些成果不仅有望促进相关领域的进一步研究和临床应用,还为纳米技术在个体化医疗和精准治疗中的广泛应用提供了有力支持,为解决复杂疾病治疗中的关键挑战开辟了新的道路。原文详情:He, Z., Chen, W., Hu, K. et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01687-1
  • 常用硬度测试仪器 ,布、洛、维硬度计之洛氏硬度计(含一般洛氏、表面洛氏、双洛氏、塑料球压痕硬度计)
    洛氏硬度测试硬度是表征材料局部抵抗硬物压入其表面能力的物理量,常用洛氏硬度(Rockwell),维氏硬度(Vickers)和布氏硬度(Brinell)。洛氏硬度检测法最初是由美国人洛克威尔(S.P.Rockwell和H.M.Rockwell)在1914年提出。1919年和1921年对硬度计的设计进行了改进,奠定了现代洛氏硬度计的雏形。 基本知识 产品推荐 洛氏硬度计测试的国际标准EN-ISO 6508GB/T230ASTM E-18JIS Z 2245洛氏硬度测试 洛氏硬度检测的最大试验力是150kgf,所产生的压痕比布氏压痕小,对制件表面没有明显损伤。操作简单、测试迅速、使用范围广。 适于成批大量检测的半成品和成品检验。荷兰轶诺硬度计的FENIX、NEXUS、VERZUS、 NEMESIS、HAWK系列均由力传感器闭环控制。由轶诺集团研发、设计、并完成耐久测试。 洛氏硬度测试原理 洛氏硬度测试原理 将特定尺寸、形状和材料的压头按照标准规定分两级试验力压入试样表面:初试验力加载后,测量初始压痕深度;随后施加主试验力,在卸除主试验力后保持初试验力时测量最终压痕深度,从而计算出洛氏硬度值。 洛氏标尺及表示方法 洛氏硬度的标尺和表示方法洛氏共有30个标尺,分为一般洛氏和表面洛氏,即: 一般洛氏:HRA、HRB、HRC、HRD、HRE、HRF、HRG、HRH、HRK、HRL、HRM、HRP、HRR、HRS、HRV表面洛氏:HR15N、HR30N、HR45N、HR15T、HR30T、HR45T、HR15W、HR30W、HR45W、HR15X、HR30X、HR45X、HR15Y、HR30Y、HR45Y 常用的洛氏标尺常用的洛氏标尺有HRA, HRB, HRC等:HRA --适于测坚硬或薄硬材料硬度,如硬质合金、渗碳后淬硬钢、经硬化处理后的薄钢带、薄钢板等。HRB--适于测中等硬度的材料,如经退火后的中碳和低碳钢、可锻铸铁、各种黄铜、青铜、硬铝合金等。HRC--适于测经淬火及低温回火后的碳素钢、合金钢以及工、模具钢,也适于测冷硬铸铁、珠光体可锻铸铁、钛合金等。 洛氏硬度的表示方法洛氏硬度的表示方法:硬度值+HR符号+标尺。例如, 60HRC, 表示用洛氏C标尺测试的洛氏硬度值为60 洛氏硬度检测的特点和应用 洛氏硬度检测的特点和应用1) 可以测量从较软到较硬材料的硬度,使用范围宽广。可测试各种黑色金属和有色金属,测试淬火钢、回火钢、退火钢、表面硬化钢、各种厚度的板材、硬质合金材料、粉末冶金材料、热喷涂层的硬度,以及塑料等。2) 有初试验力,所以试件表面轻微的不平度对硬度值的影响比布氏、维氏小。因此,适用于成批生产大量检测的机械、冶金热加工过程中以及半成品或成品检验。特别适用于刃具、模具、量具、工具等的成品制件检测。3) 当遇到材料较薄,试样较小,表面硬化层较浅或测试表面镀覆层时,可用表面洛氏硬度试验。HR洛氏硬度计轶诺硬度计轶诺洛氏硬度计 涵盖了从传统手动型到闭环力传感器型等多种不同型号;无论您的需求是传统工业,还是高精尖航空实验室的硬度测试,都能在轶诺找到合适的解决方案。VERZUS 720 洛氏硬度计可以满足7x24不间断的高速测试需求。对于需要将工件位置固定,并有高速、全自动测试的需求,NEMESIS6200是当之无愧的优选之选。 NEMESIS 6200洛氏硬度计洛氏硬度计 NEMESIS 6100 NEMESIS 9100RS --- 洛氏硬度计洛氏硬度计 VERZUS 720洛氏硬度计 FENIX 200 DCL洛氏硬度计 FENIX 200 ACL FENIX 200 AR洛氏硬度计FENIX 300RS-IMP---洛氏硬度计洛氏硬度计 FENIX 300RS FENIX 300XL洛氏硬度计HAWK 652RS-IMP凸鼻子洛氏凸鼻子洛氏 HAWK 651RS HAWK 400RS凸鼻子洛氏凸鼻子洛氏 HAWK 250RS更多信息,欢迎联系轶诺中国。
  • 金属材料检测或试验标准汇总
    p    span style=" color: rgb(0, 112, 192) " strong 金属材料化学成分分析 /strong /span /p p   GB/T 222—2006钢的成品化学成分允许偏差 /p p   GB/T 223.X系列钢铁及合金X含量的测定 /p p   GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) /p p   GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定 /p p   GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定 /p p   GB/T 5678—1985铸造合金光谱分析取样方法 /p p   GBT 6987.X系列铝及铝合金化学分析方法& amp #823& amp #823 /p p   GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 /p p   GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) /p p   GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 /p p   GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定& amp #823& amp #823 /p p    span style=" color: rgb(0, 112, 192) " strong 金属材料物理冶金试验方法 /strong /span /p p   GB/T 224—2008钢的脱碳层深度测定法 /p p   GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) /p p   GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 /p p   GB/T 227—1991工具钢淬透性试验方法 /p p   GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 /p p   GB/T 1979—2001结构钢低倍组织缺陷评级图 /p p   GB/T 1814—1979钢材断口检验法 /p p   GB/T 2971—1982碳素钢和低合金钢断口检验方法 /p p   GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法 /p p   GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法 /p p   GB/T 3488—1983硬质合金显微组织的金相测定 /p p   GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 /p p   GB/T 4236—1984钢的硫印检验方法 /p p   GB/T 4296—2004变形镁合金显微组织检验方法 /p p   GB/T 4297—2004变形镁合金低倍组织检验方法 /p p   GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 /p p   GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 /p p   GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法 /p p   GB/T 4462—1984高速工具钢大块碳化物评级图 /p p   GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) /p p   GB/T 5168—2008α-β钛合金高低倍组织检验方法 /p p   GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 /p p   GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 /p p   GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 /p p   GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 /p p   GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 /p p   GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 /p p   GB/T 10851—1989铸造铝合金针孔 /p p   GB/T 10852—1989铸造铝铜合金晶粒度 /p p   GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 /p p   GB/T 13298—2015金属显微组织检验方法 /p p   GB/T 13299—1991钢的显微组织检验方法 /p p   GB/T 13302—1991钢中石墨碳显微评定方法 /p p   GB/T 13305—2008不锈钢中α-相面积含量金相测定法 /p p   GB/T 13320—2007钢质模锻件金相组织评级图及评定方法 /p p   GB/T 13825—2008金属覆盖层黑色金属材料热镀锌单位面积称量法 /p p   GB/T 13912—2002金属覆盖层钢铁制件热浸镀层技术要求及试验方法 /p p   GB/T 14979—1994钢的共晶碳化物不均匀度评定法 /p p   GB/T 15711—1995钢材塔形发纹酸浸检验方法 /p p   GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法 /p p   GB/T 14999.1—2012高温合金试验方法第1部分:纵向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.2—2012高温合金试验方法第2部分:横向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.3—2012高温合金试验方法第3部分:棒材纵向断口检验 /p p   GB/T 14999.4—2012高温合金试验方法第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定 /p p   YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料力学性能试验方法 /span /strong /p p   GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法 /p p   GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法 /p p   GB/T 229—2007金属材料夏比摆锤冲击试验方法 /p p   GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) /p p   GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法 /p p   GB/T 232—1999金属材料弯曲试验方法 /p p   GB/T 233—2000金属材料顶锻试验方法 /p p   GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法 /p p   GB/T 238—2013金属材料线材反复弯曲试验方法 /p p   GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法 /p p   GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法 /p p   GB/T 241—2007金属管液压试验方法 /p p   GB/T 242—2007金属管扩口试验方法 /p p   GB/T 244—2008金属管弯曲试验方法 /p p   GB/T 245—2008金属管卷边试验方法 /p p   GB/T 246—2007金属管压扁试验方法 /p p   GB/T 1172—1999黑色金属硬度及强度换算值 /p p   GB/T 2038—1991金属材料延性断裂韧度JIC试验方法 /p p   GB/T 2039—2012金属材料单轴拉伸蠕变试验方法 /p p   GB/T 2107—1980金属高温旋转弯曲疲劳试验方法 /p p   GB/T 2358—1994金属材料裂纹尖端张开位移试验方法 /p p   GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备 /p p   GB/T 3075—2008金属材料疲劳试验轴向力控制方法 /p p   GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法 /p p   GB/T 3251—2006铝及铝合金管材压缩试验方法 /p p   GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法 /p p   GB/T 3771—1983铜合金硬度和强度换算值 /p p   GB/T 4156—2007金属材料薄板和薄带埃里克森杯突试验 /p p   GB/T 4158—1984金属艾氏冲击试验方法 /p p   GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法) /p p   GB/T 4161—2007金属材料平面应变断裂韧度KIC试验方法 /p p   GB/T 4337—2008金属材料疲劳试验旋转弯曲方法 /p p   GB/T 4338—2006金属材料高温拉伸试验方法 /p p   GB/T 4340.1—2009金属材料维氏硬度试验第1部分:试验方法 /p p   GB/T 4340.2—2012金属材料维氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 4340.3—2012金属材料维氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 4341.1—2014金属材料肖氏硬度试验第1部分:试验方法 /p p   GB/T 5027—2007金属材料薄板和薄带塑性应变比(r值)的测定 /p p   GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定 /p p   GB/T 5482—2007金属材料动态撕裂试验方法 /p p   GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法 /p p   GB/T 6400—2007金属材料线材和铆钉剪切试验方法 /p p   GB/T 7314—2005金属材料室温压缩试验方法 /p p   GB/T 7732—2008金属材料表面裂纹拉伸试样断裂韧度试验方法 /p p   GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法 /p p   GB/T 10120—2013金属材料拉伸应力松弛试验方法 /p p   GB/T 10128—2007金属材料室温扭转试验方法 /p p   GB/T 10622—1989金属材料滚动接触疲劳试验方法 /p p   GB/T 10623—2008金属材料力学性能试验术语 /p p   GB/T 12347—2008钢丝绳弯曲疲劳试验方法 /p p   GB/T 12443—2007金属材料扭应力疲劳试验方法 /p p   GB/T 12444—2006金属材料磨损试验方法试环-试块滑动磨损试验 /p p   GB/T 12778—2008金属夏比冲击断口测定方法 /p p   GB/T 13239—2006金属材料低温拉伸试验方法 /p p   GB/T 13329—2006金属材料低温拉伸试验方法 /p p   GB/T 14452—1993金属弯曲力学性能试验方法 /p p   GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法 /p p   GB/T 15824—2008热作模具钢热疲劳试验方法 /p p   GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 /p p   GB/T 17104—1997金属管管环拉伸试验方法 /p p   GB/T 17394.1—2014金属材料里氏硬度试验第1部分试验方法 /p p   GB/T 17394.2—2012金属材料里氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 17394.3—2012金属材料里氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 17394.4—2014金属材料里氏硬度试验第4部分硬度值换算表 /p p   GB/T 17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢 /p p   GB/T 17600.2—1998钢的伸长率换算第2部分奥氏体钢 /p p   GB/T 26077—2010金属材料疲劳试验轴向应变控制方法 /p p   GB/T 22315—2008金属材料弹性模量和泊松比试验方法 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料无损检测方法 /span /strong /p p   GB/T 1786—2008锻制圆饼超声波检验方法 /p p   GB/T 2970—2004厚钢板超声波检验方法 /p p   GB/T 3310—1999铜合金棒材超声波探伤方法 /p p   GB/T 4162—2008锻轧钢棒超声检测方法 /p p   GB/T 5097—2005无损检测渗透检测和磁粉检测观察条件 /p p   GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法 /p p   GB/T 5193—2007钛及钛合金加工产品超声波探伤方法 /p p   GB/T 5248—2008铜及铜合金无缝管涡流探伤方法 /p p   GB/T 5616—2014无损检测应用导则 /p p   GB/T 5777—2008无缝钢管超声波探伤检验方法 /p p   GB/T 6402—2008钢锻件超声检测方法 /p p   GB/T 6519—2013变形铝、镁合金产品超声波检验方法 /p p   GB/T 7233.1—2009超声波检验第1部分:一般用途铸钢件 /p p   GB/T 7233.2—2010铸钢件超声检测第2部分:高承压铸钢件 /p p   GB/T 7734—2004复合钢板超声波检验 /p p   GB/T 7735—2004钢管涡流探伤检验方法 /p p   GB/T 7736—2008钢的低倍缺陷超声波检验法 /p p   GB/T 8361—2001冷拉圆钢表面超声波探伤方法 /p p   GB/T 8651—2002金属板材超声波探伤方法 /p p   GB/T 8652—1988变形高强度钢超声波检验方法 /p p   GB/T 9443—2007铸钢件渗透检测 /p p   GB/T 9445—2015无损检测人员资格鉴定与认证 /p p   GB/T 10121—2008钢材塔形发纹磁粉检验方法 /p p   GB/T 11259—2015无损检测超声检测用钢参考试块的制作和控制方法 /p p   GB/T 11260—2008圆钢涡流探伤方法 /p p   GB/T 11343—2008无损检测接触式超声斜射检测方法 /p p   GB/T 11345—2013焊缝无损检测超声检测技术、检测等级和评定 /p p   GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级 /p p   GB/T 12604.1—2005无损检测术语超声检测 /p p   GB/T 12604.2—2005无损检测术语射线照相检测 /p p   GB/T 12604.3—2005无损检测术语渗透检测 /p p   GB/T 12604.5—2008无损检测术语磁粉检测 /p p   GB/T 12604.6—2008无损检测术语涡流检测 /p p   GB/T 12604.7—2014无损检测术语泄漏检测 /p p   GB/T 12604.8—1995无损检测术语中子检测 /p p   GB/T 12604.9—2008无损检测术语红外检测 /p p   GB/T 12604.10—2011无损检测术语磁记忆检测 /p p   GB/T 12604.11—2015无损检测术语X射线数字成像检测 /p p   GB/T 12605—2007无损检测金属管道熔化焊环向对接接头射线照相检测 /p p   GB/T 12966—2008铝合金电导率涡流测试方法 /p p   GB/T 12969.1—2007钛及钛合金管材超声波探伤方法 /p p   GB/T 12969.2—2007钛及钛合金管材涡流探伤方法 /p p   GB/T14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验 /p p   GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验 /p p   GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验 /p p   GB/T 15822.1—2005无损检测磁粉检测第1部分:总则 /p p   GB/T 15822.2—2005无损检测磁粉检测第2部分检测介质 /p p   GB/T 15822.3—2005无损检测磁粉检测第3部分设备 /p p   GB/T 18694—2002无损检测超声检验探头及其声场的表征 /p p   GB/T 18851.1—2005无损检测渗透检测第1部分总则 /p p   GB/T 18851.2—2008无损检测渗透检测第2部分:渗透材料的检验 /p p   GB/T 18851.3—2008无损检测渗透检测第3部分:参考试块 /p p   GB/T 18851.4—2005无损检测渗透检测第4部分设备 /p p   GB/T 18851.5—2005无损检测渗透检测第5部分验证方法 /p p   GB/T 19799.1—2005无损检测超声检测1号校准试块 /p p   GB/T 19799.2—2005无损检测超声检测2号校准试块 /p p   GB/T 23911—2009无损检测渗透检测用试块 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料腐蚀试验方法 /span /strong /p p   GB/T 1838—2008电镀锡钢板镀锡量试验方法 /p p   GB/T 1839—2008钢产品镀锌层质量试验方法 /p p   GB/T 10123—2001金属和合金的腐蚀基本术语和定义 /p p   GB/T 13303—1991钢的抗氧化性能测定方法 /p p   GBT 15970.X系列金属和合金的腐蚀应力腐蚀试验第X部分 /p p br/ /p
  • SANS:凤凰涅盘 淬火重生——访美特斯(MTS)工业系统(中国)SANS产品线总经理Darragh Murphy先生
    2008年5月,试验机行业跨国巨头美国MTS系统公司宣布并购中国试验机龙头企业深圳新三思(SANS)公司。并购完成后,仪器信息网曾经于2009年6月对美特斯(MTS)工业系统(中国)有限公司总裁陈国瑜先生,就MTS并购新三思的背景与缘由、整合过程、以及对试验机行业影响等问题进行过独家专访。现在,MTS已经完成对SANS的整合,整合后的SANS将怎样发展、SANS品牌是否会继续保留,笔者带着这样的问题,值MTS于2010年9月9日在上海举行MTS Criterion(信标)万能测试系统全球新品发布会之际,采访了MTS(中国)SANS产品总经理Darragh Murphy先生,MTS(中国)SANS品牌营销总经理赵和平先生、MTS(中国)SANS液压产品运营总经理王斌先生全程陪同。 MTS(中国)SANS产品总经理Darragh Murphy先生   Instrument:请您介绍一下,在2008年新三思(SANS)被美国MTS并购之后,目前的发展状况?   Darragh Murphy:MTS于2008年9月底完成了对SANS的并购,到现在已经快2年了。从一开始,我们就制定了详细的全局计划来指导我们并购的各个关键阶段——从第一天到第一百天,再到一周年,直到今天。在并购的开始阶段,我们把工作重点放在保证公司的日常运行、关键系统和程序管理上。虽然在整合过程中经历了金融危机,但SANS的发展状况非常良好。通过有效整合双方的优势资源,MTS及SANS的发展都向前迈出了很大的一步,并且现在,我们面向市场隆重推出了第一个联合开发的产品:Criterion信标系列万能试验机。   Instrument:并购后,MTS的SANS部门开展了哪些工作?   Darragh Murphy:所有的并购都是具有挑战性的(也是有风险的)。对SANS的并购,我们既要面对东西方两种文化差异所带来的挑战,又要面对将私人公司并入上市公司所带来的挑战。   并购的第一年,MTS很明确地把重点放在维护现有业务、现有市场和现有客户上,并尽可能地将并购给SANS运行带来的影响最小化。在这期间,双方都花费了大量的时间进行互相了解,包括更多地了解对方的业务和产品,双方人员之间的相互熟悉。   并购第二年(2010年)的工作重点放在了Criterion系列产品的开发上。这是一条联合开发的产品线,其产品具备世界顶级水平的质量、性能及安全要求。该系列产品整合了MTS和SANS的优势,既满足了客户需求,又向客户提供了最佳的总体价值。   Instrument:在这2年中,MTS是用什么策略消除原SANS用户的后顾之忧的?   Darragh Murphy:我们双方一直并将继续致力于保证客户的最大利益。MTS的使命就是为客户提供最大的总体价值。我们听到客户关心最多的问题就是关于并购后SANS的服务、对现有客户的承诺,以及对他们现有系统的支持。SANS在客户服务方面已具有很好的口碑,并购后我们很好地延续了这种好的口碑。我们用了大量的时间走访我们中国各地的客户,听取他们的问题和意见反馈,并就他们关心的问题予以答复。事实上,我们刚刚完成了第二次客户见面活动,在50多个地区召开了客户会议,就他们对并购所关心的问题进行了专门解答。 MTS(中国)SANS品牌营销总经理赵和平先生   赵和平先生:在中国,对于SANS老客户,我们用大量的时间去和客户沟通,相继举办了很多场客户交流会去打消客户的顾虑,并承诺SANS对原有的服务、技术支持不变。例如,我们举办的“质量在行动”活动,就是为了确保我们能够听到客户的声音,并增强与客户之间的交流 对于新客户,可加入SANS的客户服务保障体系,以便预防一些问题的出现。   Instrument:现在,MTS在中国制订了怎样的发展计划,与并购SANS时的发展计划是否一致?   Darragh Murphy:MTS曾经在中国制订了一个5年计划,该计划于2007年10月1日开始,预计利用5年时间,MTS在中国的销售额从2006年的1600万美元,达到4600万美元。收购SANS也是MTS的5年计划的一部分,与MTS的5年发展计划相一致。   虽然2009年的经济动荡给我们带来了很多挑战,但我们仍然会坚持实现我们在中国的目标。MTS与SANS当前的目标就是保证将Criterion信标成功推向市场,并继续为客户提供保证他们的产品质量和性能的解决方案。这与我们并购初期的计划是完全一致的,即,将长期的工作重点放在中国市场,将MTS中国的市场份额扩大。   对MTS来说,中国是一个战略性的市场,因此我们在并购SANS后,将继续加大在中国的投资,开发本地产能及基础设施。在MTS中国领导团队的带领下,我们已经成功开始了第一个5年战略计划,我们将制定第二个5年计划,并且将继续沿着这条道路走下去。   Instrument:MTS(中国)目前在MTS的战略地位如何?收购SANS对MTS开发中国市场起到怎样的作用?   Darragh Murphy:毋容置疑,当前的中国即使不是全球唯一的最重要的市场,也是全球最重要市场中的一个,而且这种状况在未来多年内都不会改变,所以MTS(中国)在MTS具有重要的战略地位。   中国早已成为世界的制造业中心,所进行的大部分试验都集中在制造和质量控制上。我们相信,MTS越来越多的研发将会在中国进行。这里非常适合MTS运用长期积累的、有效的技术来帮助客户解决最棘手的问题。   收购SANS后,一方面有助于MTS深入了解中国客户所开发的产品在不同工作条件下的表现,并将这些工作条件在试验室精确复制,进而支持客户对这些产品的研究、开发,以及对设计、材料、元件及结构的验证,这也符合MTS “同心协力竖立产品信心” 的服务宗旨 另一方面有助于扩大MTS的产品系列,提供更加经济的测试解决方案,满足客户在生产制造、质量保证及质量控制方面的需求。   Instrument:此次发布会推出的Criterion信标产品的市场定位如何,其产品是否主要着眼于全球静态试验机市场?   Darragh Murphy:Criterion信标是以满足全球标准及MTS内部最高质量和产品开发标准设计的,不仅在MTS内部进行了测试和验证,还通过了独立认证机构的测试和验证。该系列产品整合了MTS的技术优势和SANS的价格优势,以更加经济的价格向客户提供在质量和性能上可以与世界品牌相媲美的产品。Criterion信标产品线可以满足多种需求,并可以满足制造和产品开发方面的所有静态材料测试需求。其主要应用于质量保证和质量控制中的静态材料试验,还可以应用于科研院所的研发实验。除中国外,MTS还将会在其他几个重点区域销售Criterion信标系统。   Instrument:SANS被MTS收购后,除Criterion信标系列外,还推出了哪些新产品,在核心技术上有哪些改进?   王斌先生:在过去的两年里,Criterion信标 当然是我们开发的最重要的项目。此外,我们还提升了电子万能、专机和静态液压的几条主要产品线,我们还为客户的特殊需求提供了定制化的系统。就技术提高而言,我们在自动化测试技术、提升测试系统的高级诊断智能,以及在测量和控制方面取得了很大进步。 MTS(中国)SANS液压产品运营总经理王斌先生   Instrument:SANS被收购后,在产品研发投入、产品宣传推广等方面,又有怎样的变化?   Darragh Murphy:其变化最大的就是在研发方面。在并购的初期,MTS就成立了联合技术委员会,来指导和协调产品的开发。例如,Criterion信标项目从一开始就在性能、质量和安全标准方面对SANS研发团队提出了挑战性的要求。MTS对这些要求很了解,但也只是在动态试验解决方案中运用,并不具备在静态测试中运用的经验,而SANS对于客户的静态测试需求很了解。这样MTS和SANS就一起建立了一个比较强的研发团队,引进新的技术方法用于设计和制造,同时也引进了新的控制和测量技术。因此,新推出的Criterion信标产品汲取了双方的精华,成功的将SANS在客户应用方面的知识、可靠机械设计的经验,与MTS的控制和软件技术结合起来。   通过Criterion信标的开发,MTS不仅建立了一条具有7种机型和大量附件及可选配件的产品线,我们还锻炼了新产品开发能力,并提高了中国产品开发团队的整体水平。我们正期待着MTS(中国)为MTS集团的发展做出持续贡献。   在市场方面,我们成立了联合市场委员会,为中国团队带来了新思路,并拓展了他们在产品营销和推广方面的能力。在MTS中国,我们密切合作来协调整个营销活动。   Instrument:进行市场宣传时,SANS品牌是否会继续保留?   赵和平先生:SANS品牌在中国的知名度很高,代表了中国试验机行业领先水平的产品质量、技术以及客户服务。SANS产品覆盖了很多测试需求,从塑料到金属、再到建筑材料。我们将继续保持和维护SANS品牌在中国的存在,用以支持我们当前的广大客户和行业。   Darragh Murphy:在全球范围,我们会将重点放在MTS品牌,因为MTS已经被认为是高技术和高级测试方案的领导者。这就意味着我们将同时使用两个品牌,以确保为客户提供他们想要的最大总体价值。   Instrument:SANS被收购后,其产品销量产生了怎样的影响?   Darragh Murphy:并购对销售有影响是很正常的。但总体上讲影响比较小,这主要归功于我们小心地制定了整合计划,帮助我们把工作重点放在并购后的日常运作和快速稳定上。   在这期间还发生了一个重要的事件,不仅影响了我们的运行,对全球市场也产生了影响。那就是2009年的经济不景气,直到今天,它对市场的影响还没有完全消失。   我们很高兴地说,即便是经历了经济衰退、客户项目的延迟和取消,以及激烈的市场竞争,我们还是成功地保住了在中国市场的领导地位。   Instrument:SANS被并购后,MTS对其销售服务体系做了怎样调整?   Darragh Murphy:SANS的销售及服务团队是很有实力的,并且客户认为SANS的服务是快速而专业的。并购后,我们当前的主要目标是保持这种高水平的服务,同时我们也努力直接与客户快速沟通,答复他们所关心的问题。   Instrument:请您展望一下MTS在中国的发展愿景?   Darragh Murphy:对MTS-SANS而言,我们会继续发挥我们的优势,也就是继续重点关注材料测试领域,开发出具有创新性的领先技术方案,成为我们客户的好帮手。在中国材料测试市场,我们将继续强化并扩展我们领先地位。   后记:   当新三思(SANS)被MTS收购时,几乎所有仪器行业的人都不禁慨叹:又一民族品牌消亡了。但当大家慨叹的同时,我们不可否认,外资并购所带来的是机遇与挑战并存。当外来资本侵吞民族企业,“本土品牌”消亡的同时,外资企业也带来了新的技术与新的管理理念,增加了企业发展的资金供给,并很有可能促进产业升级。   并入MTS的SANS,无论在技术上还是在管理理念上,都将会实现很大的跨越,而其发展也会翻开崭新的一页,犹如涅磐的凤凰,淬火重生。   采访编辑:周如久 MTS(中国)高层与仪器信息网采访人员合影 (从左至右:王斌先生,仪器信息网副总经理王志博士,Darragh Murphy先生,赵和平先生,仪器信息网编辑周如久)   相关报道:   MTS全球发布静态试验机新品CRITERION系列   MTS成功并购新三思之始末——访美特斯(MTS)工业系统(中国)有限公司总裁陈国瑜先生   附录1:美特斯(MTS)工业系统(中国)有限公司   仪器信息网展位:http://mts.instrument.com.cn   中文网站:http://www.mtschina.com/   英文网站:http://www.mts.com/   附录2: MTS发展历程.pdf
  • 常用硬度测试仪器 ,布、洛、维硬度计之维氏硬度计(含显微硬度计和努氏硬度计)
    维氏硬度计显微硬度计 硬度测试硬度测试能成为力学性能试验中常用的方法,是因为硬度检测的结果在一定条件下能敏感地反映出材料在化学成分、组织结构和处理工艺上的差异。这种方法在检查原材料、监督热处理工艺正确性以及在研究固态相变过程和研究新材料、新合金中被广泛地加以利用。在常用的硬度计(洛氏、布氏、维氏、努氏,布洛维一体机)中,本篇说说维氏硬度计(包括宏观维氏硬度计、显微维氏硬度计和努氏硬度计)。维氏硬度测试维氏硬度检测是在使用布氏和洛氏检测法的基础上发展起来的。维氏法从压头设计和压头材料的选择上进行了改进。维氏硬度检测法是1924 年由史密斯(R.LSmith)和桑德兰德(G.E.Sandlnd)合作首先提出的。后来由英国维克斯-阿姆斯特朗(Vickers-Armstrongs)公司于1925年制造出这种硬度计. 因而习惯称为维氏(Vickers)硬度检测方法。✦维氏硬度检测原理✦维氏硬度检测法是用面角为136°的正四棱锥体金刚石压头,在一定的检测力作用下压入试样表面,保持规定时间后,卸除检测力,测量试样表面压痕对角线长度。并据此计算出维氏硬度值。✦维氏硬度表示方法✦维氏硬度计用HV表示,HV前面的数值为硬度值,后面为试验力值。标准的试验保持时间为10~15s。但对于有色金属则不能小于30s,如果选用的时间超出这一范围,在力值后面还要注上保持时间。例如:300HV30—表示采用294.2N(30kg)的试验力,保持时间10~15s时得到的硬度值为300。450HV30/30—表示采用294.2N(30kg)的试验力,保持时间30s时得到的硬度值为450。✦维氏硬度检测标准✦GB/T 4340DIN EN ISO 6507 ASTM E-92ASTM E-384✦维氏硬度检测特点和应用✦维氏硬度计试验测量范围宽广,从很软的材料(几个维氏硬度单位)到很硬的材料(3000个维氏硬度单位)都可测量。维氏硬度试验方法除特别小和薄试验层的样品外,测量范围可覆盖所有金属。适用范围:热处理、碳化、淬火硬化层,表面覆层,钢,有色金属和微小及薄形零件等。配备努氏压头后能测玻璃、陶瓷、玛瑙、人造宝石等较脆而又硬的材料的努氏硬度。✦按力值分类✦显微维氏硬度计:10gf-2kgf小负荷维氏硬度计:200gf-5kgf维氏硬度计:大于5kgfHVINNOVATEST荷兰轶诺维氏硬度计INNOVATEST荷兰轶诺维氏硬度计均采用特有的闭环力传感器力反馈系统。能够满足不同客户对测试设备的各层次需求。不论是新购仪器还是已经使用多年的老仪器,均可进行更新和升级。对于手动/电动工作台、摄像系统、工作台全景摄像头、光学元器件及软件等附件,既可一次性选择全部配置也可后续升级更新。✦荷兰轶诺维氏硬度计✦FALCON 5000G2 FALCON 5000 FALCON 600G2 FALCON 600 FALCON 500G2 FALCON 500
  • 天津英华学校量子科技创新实验室揭牌,量子第一课开讲!
    6月27日,由中国科学技术大学、天津英华实验学校、国仪量子(合肥)技术有限公司联合建设的量子科技创新实验室在天津英华实验学校正式揭牌,这是国内首个面向高中教育阶段,包含了量子计算、量子精密测量等量子科技领域的科技创新实验室。量子科技创新实验室揭牌基于先进的实验教学仪器和系统化的课程解决方案,实验室将全面满足学生对于量子科技的理论学习与实验需求,提升高中阶段学生的创新意识与创新能力,助力量子科技后备人才培育,为加快建设科技强国夯实人才基础。老师为学生们授课当前,全球量子科技竞争激烈,人才短缺问题日益凸显,美国、日本与欧洲都将培养量子科技人才纳入中学甚至小学阶段的教育培养规划。2020年10月,习近平总书记在中央政治局第二十四次集体学习时强调,要充分认识推动量子科技发展的重要性和紧迫性,加强量子科技发展战略谋划和系统布局,把握大趋势,下好先手棋;要加快量子科技领域人才培养力度,加快培养一批量子科技领域的高精尖人才,建立适应量子科技发展的专门培养计划。揭牌仪式上,天津英华实验学校常务副校长孙方表示,学校作为全国多所重点大学的优质生源基地,联动高中、高校、高企,以校内外等高端教育资源为重要依托,以全程学业生涯规划为引领,打造高端学科提升课程、国内外学科竞赛课程和科研项目背景提升等顶尖课程资源,致力于为高校输送拔尖创新人才,培养具有坚定的理想信念、能够为民族复兴建功业的国家英才。天津英华实验学校常务副校长孙方致辞中国科学技术大学理化科学实验中心副主任王雨松认为,在国民教育体系中,高中教育处于十分重要的位置,对上支撑大学人才培养,对下引领义务教育发展。希望高中教育能建立起“高中—高校”人才贯通的培养模式,增强顶层设计和课程体系安排,加强对学生实验动手能力与科技创新意识的培养。中国科学技术大学理化科学实验中心副主任王雨松致辞国仪量子教育事业部副总经理陈明在接受采访时说:“量子科技创新实验室以建立和开设量子科技相关课程为核心,以量子前沿科技实验仪器为主要载体,面向中学生传授量子力学基础知识,体验、感知、探究量子技术在计算和精密测量等主要领域的应用为目标,激发学生好奇心和想象力,增强对物理和量子科技的兴趣,进而培养学生的创新意识和创新能力,力争培育一批具备科学家潜质的青少年群体。量子科技创新实验室在天津英华实验学校中学校区的落地将为国内高中教育阶段的量子科技人才乃至科技创新人才培养起到示范作用,为量子科技发展储备规模化的后备人才,同时也营造对量子科技发展的强有力促进与友好支撑的社会环境。”国仪量子教育事业部副总经理陈明讲话量子科技发展具有重大科学意义和战略价值,是一项对传统技术体系产生冲击、进行重构的重大颠覆性技术创新,将引领新一轮科技革命和产业变革方向。量子科技教育与社会化科普的发展水平将直接影响国家未来的科技竞争力。在高中阶段系统性地开设相关课程,一定程度上既能够帮助我国扩大量子技术科普教育,提高国民科学素养,也将推动量子科学和量子产业发展,助力我国在全球量子科技竞争中取得优势。
  • 中国齿轮钢、轴承钢、弹簧钢生产现状及未来发展方向
    p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/09330cc9-62db-4b7b-9512-4a9b7e0dcd27.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p strong   一、齿轮钢现状和发展方向 /strong /p p   齿轮在工作时,长期受到变载荷的冲击力、接触应力、脉动弯曲应力及摩擦力等多种应力的作用,还受到加工精度、装配精度、外来硬质点的研磨等多种因素的影响,是极易损坏的零件,因此要求齿轮钢具有较高的强韧性、疲劳强度和耐磨性。为了生产出优质齿轮钢,一方面要求钢厂为用户提供淬透性稳定且适应用户工艺要求的齿轮钢产品,另一方面齿轮厂也要优化现有工艺,引进新工艺来提高齿轮的质量。 br/   与日本、德国、美国生产的齿轮钢相比,中国齿轮钢存在的差距主要是:钢的牌号未形成系列化,产品标准落后 钢的淬透性带较宽,国外钢的淬透性带已经达到4HRC,而中国在6-8HRC左右,并且不够稳定 钢的纯净度较低,从日本、德国、奥地利等国进口的齿轮钢,其氧含量波动在(7-18)× 10-6,中国在(15-25)× 10-6左右,并且非金属夹杂物弥散程度不够,分布不均,大颗粒夹杂物较多 晶粒度要求不同,中国齿轮钢晶粒度级别一般要求5-8级,而日本特别强调渗碳齿轮钢的晶粒度应不粗于6级 日本开发了低硅抗晶界氧化渗碳钢系列,可使晶界氧化层降低到≤5μm,而SCM420H等Cr-Mo钢为15-20μm 平均使用寿命短,单位产品能耗大,劳动生产率低。此外,在轧制过程中如何保证疏松等低倍缺陷在很小且芯部范围内,也是中国未曾研究的领域,因为低倍组织缺陷会对零件后续加工以及热处理变形带来很多不利影响。 /p p   目前,中国汽车用齿轮钢的主体钢种仍是20CrMnTi,该钢种通常采用气体渗碳工艺,由于渗碳气氛中氧化性气体的存在,导致渗层中对氧亲和力较大的元素Si、Mn、Cr在晶界处发生氧化,形成晶界氧化层。晶界氧化层的发生会导致渗层Si、Mn、Cr等合金元素固溶量下降,降低渗层的淬透性,从而降低渗层的硬度并导致非马氏体组织的产生,进而显著降低齿轮的疲劳性能。为解决这一问题可以采用两种手段: /p p   采用特殊的热处理工艺。真空渗碳可降低渗碳气氛中的氧势,从而可以较为有效地减小渗碳层晶界氧化的发生程度 稀土渗碳工艺也可以降低晶界氧化程度,由于稀土优先在工件表面富集并择优沿钢的晶界扩散,而且与氧的亲合力远比Si、Mn、Cr高得多,它将优先与氧结合,阻碍氧原子继续向内扩散,从而有助于减轻非马氏体组织的产生。 /p p   通过合金设计,开发抗晶界氧化的齿轮钢。Ni、Mo具有很强的抗氧化能,Cr元素次之,Mn抗氧化能力弱,而Si的抗氧化能力最弱(Si氧化倾向是Cr、Mn的10倍)。因此为减小晶界氧化并保证淬透性,在齿轮钢成分设计时,应适当降低易氧化元素的含量,特别是Si的含量,相应地提高难氧化元素Ni、Mo的含量。据报道,将Si、Mn、Cr分别控制在0.05%、0.35%、0.01%可以完全抑制表面组织异常,而且即使在1000℃也很少有晶界氧化的发生。 /p p   为满足汽车行业高性能以及轻量化的发展要求,未来应重点开发:淬透性带窄的齿轮钢、超低氧渗碳钢、低晶界氧化层渗碳钢、超细晶粒渗碳钢、提高高温硬度和高温抗软化渗碳钢、易切削齿轮钢、冷锻齿轮用钢等。 /p p strong   二、轴承钢现状和发展方向 /strong /p p   轴承广泛应用于矿山机械、精密机床、冶金设备、重型装备与高档轿车等重大装备领域和风力发电、高铁动车及航空航天等新兴产业领域。中国生产的轴承主要为中低端轴承和小中型轴承,表现为低端过剩和高端缺乏。与国外相比,在高端轴承和大型轴承方面存在较大差距。中国高速铁路客车专用配套轮对轴承全部需要从国外进口。在航空航天、高速铁路、高档轿车及其他工业领域用的关键轴承上,中国轴承在使用寿命、可靠性、Dn值与承载能力等方面与先进水平存在较大差距。例如,国外汽车变速箱轴承的使用寿命最低50万公里,而国内同类轴承寿命约10万公里,且可靠性、稳定性差。 /p p   航空方面:作为航空发动机的关键基础零部件,国外正在研发推力比为15-20的第2代航空发动机轴承,准备在2020年前后装配到第5代战机中。近10年来,美国研发了第2代航空发动机用轴承钢,其代表性钢种为耐500℃的高强耐蚀轴承钢CSS-42L和耐350℃高氮不锈轴承钢X30(Cronidur30),中国则在进行第2代航空发动机用轴承的研发。 /p p   汽车方面:对于汽车轮毂轴承,中国目前广泛应用的是第1代和第2代轮毂轴承(球轴承),而欧洲已广泛采用第3代轮毂轴承。第3代轮毂轴承的主要优点是可靠、有效载荷间距短、易安装、无需调整、结构紧凑等。目前,中国引进车型大多采用这种轻量化和一体化结构轮毂轴承。 /p p   铁路车辆方面:目前,中国铁路重载列车用轴承采用国产电渣重熔G20CrNi2MoA渗碳钢制造,而国外已经将超高纯轴承钢(EP钢)的真空脱气冶炼技术、夹杂物均匀化技术(IQ钢)、超长寿命钢技术(TF钢)、细质化热处理技术、表面超硬化处理技术和先进的密封润滑技术等应用到轴承的生产和制造,从而大幅度提升了轴承的寿命与可靠性。中国电渣轴承钢不仅质量低,而且成本比真空脱气钢高出2000-3000元/吨,未来中国需要开发超高纯、细质化、均匀化与质量稳定的真空脱气轴承钢取代目前采用的电渣轴承钢。 /p p   风电能源方面:对于风电轴承,目前中国还无法生产技术含量较高的主轴轴承和增速器轴承,基本依靠进口,3MW以上风电机组配套轴承的国产化问题还没有解决。国外为了提高风电轴承的强度、韧性和使用寿命,采用了新型特殊热处理钢SHX(40CrSiMo),对于偏航和变浆轴承,通过表面感应淬火热处理控制淬硬层深度、表面硬度、软带宽度和表面裂纹 对于增速器轴承和主轴轴承采用碳氮共渗,使零件表面得到较多稳定残余奥氏体体积分数(30%-35%)和大量细小碳化物、碳氮化物,提高了轴承在污染润滑工况下的使用寿命。 /p p   为提高轧机轴承的使用寿命以及运转精度,未来需要进行轧机用GCr15SiMn和G20Cr2Ni4等轴承钢的超高纯真空脱气冶炼和轴承表层大奥氏体量控制热处理等技术的研发。日本NSK与NTN轴承公司分别开发了表面奥氏体强化技术,即通过增加表层奥氏体含量,开发出了TF轴承和WTF轴承,从而将轴承的寿命提高了6-10倍。 /p p   未来中国轴承钢的研发方向主要体现在四个方面: /p p   一是经济洁净度:在考虑经济性的前提下,进一步提高钢的洁净度,降低钢中的氧和钛含量,达到轴承钢中的氧与钛的质量分数分别小于6× 10-6和15× 10-6的水平,减小钢中夹杂物的含量与尺寸,提高分布均匀性。 /p p   二是组织细化与均匀化:通过合金化设计与控轧控冷工艺的应用,进一步提高夹杂物与碳化物的均匀性,降低和消除网状和带状碳化物,降低平均尺寸与最大颗粒尺寸,达到碳化物的平均尺寸小于1μ m的目标 进一步提高基体组织的晶粒度,使轴承钢的晶粒尺寸进一步细化。 /p p   三是减少低倍组织缺陷:进一步降低轴承钢中的中心疏松、中心缩孔与中心成分偏析,提高低倍组织的均匀性。 /p p   四是轴承钢的高韧性化:通过新型合金化、热轧工艺优化与热处理工艺研究,提高轴承钢的韧性。 /p p strong   三、弹簧钢现状和发展方向 /strong /p p   弹簧钢主要用于汽车、发动机制造业以及铁路行业。目前,中国弹簧钢产品存在的问题是,中低端产品过剩,高端及特殊品种缺乏 中国弹簧钢在纯净度、抗疲劳性、表面质量以及质量稳定性等方面与国外存在较大差距,无法满足高档乘用车悬架簧、气门弹簧、铁路及重载货车专用弹簧等对弹簧钢性能的要求。中国高档次及深加工弹簧钢仍然依赖进口。进口品种主要为轿车用弹簧钢、铁道用弹簧圆钢、油泵阀门弹簧钢丝等。 /p p   虽然降低钢中氧及夹杂物含量是获得纯净钢的一种途径,但是要想得到零夹杂的弹簧钢比较困难,为此有研究者提出了氧化物冶金技术,这是一种有效的晶粒细化的方法,是实现钢铁材料强度与韧性成倍提高的最有效方法。它利用钢中细小弥散的高熔点非金属夹杂物,主要是氧化物、硫化物以及氮化物,作为晶内铁素体的形核核心,从而起到细化晶粒的作用。国内外已经对Ti、Zr氧化物体系做了系统的研究,认为含钛氧化物是最理想的。在奥氏体晶粒内钛的氧化物质点成为针状铁素体有效形核地点,促进晶内铁素体形成。但是,由于钢种成分的限制,钛氧化物冶金的推广受到了限制。最近几年开始对稀土元素进行研究,可以利用稀土元素的强脱氧脱硫能力及产物熔点高的特点来研究稀土氧化物对钢材性能的影响。 /p p   汽车行业对悬簧强度的要求越来越高,设计应力提高到1100-1200MPa,为此日本开发出添加合金来提高强度和提高耐腐蚀疲劳强度的钢材。中国弹簧钢无法满足高档乘用车悬架簧用钢性能需求,强度1200MPa及以上悬架弹簧产品用弹簧钢全部依赖进口。然而,近年来,为规避资源风险、降低成本和实现原材料的全球化供给,强烈要求使用标准钢(SAE9254)维持高强度,而且强烈要求提高钢的韧性,因此越来越多地采用喷丸硬化处理取代处理费用高的表面硬化热处理。喷丸硬化处理将压缩残余应力作用于表面,可提高抗疲劳强度,减小表面缺陷的影响程度,因此近年来将它视为表面处理不可或缺的技术。随着表面强化技术的发展,悬簧的设计应力也达到了1200MPa级。预计今后对高强度悬簧用钢的强度、韧性和耐腐蚀性及耐用性的要求将越来越高。未来,随着汽车轻量化,发展高强度、优良抗弹减性能和抗疲劳性能的汽车悬架用弹簧钢是提高中国高端装备零部件自主配套能力、有效替代进口的必然趋势。 /p p   所有弹簧产品中,气门弹簧对材料要求最为严格,特别是高应力及异型截面气门弹簧对材料要求近乎苛刻。例如,要求抗拉强度达到2000MPa 对氧化物、硫化物的夹杂物等级要求均达到0级 异型截面材料对曲率、长短轴等有特殊要求。目前,国外气门弹簧专用弹簧钢生产主要集中在日本、韩国、瑞典,生产企业有日本铃木、三兴、住友、神钢钢线、韩国KisWire、瑞典Garphyttan等,几乎垄断了中国全部异型截面和高应力气门弹簧钢市场。2000年以后,随着新型发动机的开发,对发动机的旋转速度和轻量化、紧凑化的要求越来越高,因此日本开始采用2100-2200MPa的OT钢丝。在此情况下,不仅要调整合金成分,还要对现有制造工艺进行改进,低温弥散硬化成为必不可少的工艺。然而,低温弥散硬化后的弹簧形状发生变化,为了提高形状和尺寸的控制精度,控制整个制造工序中的形状变化的技术开始引人关注。 /p p   未来,为满足高端弹簧基础零部件国产化的发展需求,应不断开发高性能弹簧钢产品,一方面是向高强度方向发展,要求在高应力下同时提高疲劳寿命和抗松弛性能 另一方面是向功能性方向发展,根据不同的用途,要求具有耐蚀性、非磁性、导电性、耐磨性、耐热性等。 /p p br/ /p
  • 石墨烯成医学检测工具其声学特性有助诊断肌萎缩侧索硬化症
    p style=" text-indent: 2em text-align: justify " 石墨烯是一种很神奇的材料,具有优异的光学、电学、力学特性,应用前景广阔。而美国伊利诺伊大学芝加哥分校的一项新研究,又赋予了这种材料一种新用途——检测肌萎缩侧索硬化症(ALS)。研究人员指出,石墨烯是一种很有用的检测工具,其声学特性能够帮助科学家开发新的神经退行性疾病诊断方法。相关研究发表在美国化学学会期刊《应用材料与界面》上。 /p p style=" text-indent: 2em text-align: justify " 石墨烯是由碳原子构成的二维材料,材料中结合原子的化学键会因弹性而产生共振,其振动波,即声子,可以非常精确地测量。当分子与石墨烯相互作用时,这种共振会以可量化的方式发生改变,其变化模式取决于分子的独特电子特性。通过测量由分子引起的石墨烯声子能量的变化,就可以确定该分子的电子特性。 /p p style=" text-indent: 2em text-align: justify " 正是基于这一原理,研究人员通过石墨烯声子能量的变化来检测ALS。在研究中,他们将来自ALS患者、多发性硬化症患者及没有神经退行性疾病的志愿者的脑脊液放置在石墨烯上,然后通过石墨烯声子振动特性变化情况进行脑脊液成分分析,进而识别脑脊液所属——是来自ALS患者,还是多发性硬化患者,抑或是没有神经退行性疾病的志愿者。研究人员称,由于目前还没有可靠的ALS实验室检测手段,所以这种客观的诊断测试可以帮助ALS患者尽早开始接受治疗,减缓病情。 /p p style=" text-indent: 2em text-align: justify " 论文作者之一、伊利诺伊大学芝加哥分校工程学院副教授维卡斯· 贝里指出,石墨烯是一种“超级材料”,目前科学家对其声学特性的研究甚少。他们的研究表明,依仗其声学特性,石墨烯可以作为一种极其通用且准确的探测手段。 /p
  • 石墨烯成医疗检测工具 有助于诊断肌萎缩侧索硬化症
    p style=" line-height: 1.5em "   科技日报华盛顿12月5日电 (记者刘海英)石墨烯是一种很神奇的材料,具有优异的光学、电学、力学特性,应用前景广阔。而美国伊利诺伊大学芝加哥分校的一项新研究,又赋予了这种材料一种新用途——检测肌萎缩侧索硬化症(ALS)。研究人员指出,石墨烯是一种很有用的检测工具,其声学特性能够帮助科学家开发新的神经退行性疾病诊断方法。相关研究发表在美国化学学会期刊《应用材料与界面》上。 /p p style=" line-height: 1.5em "   石墨烯是由碳原子构成的二维材料,材料中结合原子的化学键会因弹性而产生共振,其振动波,即声子,可以非常精确地测量。当分子与石墨烯相互作用时,这种共振会以可量化的方式发生改变,其变化模式取决于分子的独特电子特性。通过测量由分子引起的石墨烯声子能量的变化,就可以确定该分子的电子特性。 /p p style=" line-height: 1.5em "   正是基于这一原理,研究人员通过石墨烯声子能量的变化来检测ALS。在研究中,他们将来自ALS患者、多发性硬化症患者及没有神经退行性疾病的志愿者的脑脊液放置在石墨烯上,然后通过石墨烯声子振动特性变化情况进行脑脊液成分分析,进而识别脑脊液所属——是来自ALS患者,还是多发性硬化患者,抑或是没有神经退行性疾病的志愿者。研究人员称,由于目前还没有可靠的ALS实验室检测手段,所以这种客观的诊断测试可以帮助ALS患者尽早开始接受治疗,减缓病情。 /p p style=" line-height: 1.5em "   论文作者之一、伊利诺伊大学芝加哥分校工程学院副教授维卡斯· 贝里指出,石墨烯是一种“超级材料”,目前科学家对其声学特性的研究甚少。他们的研究表明,依仗其声学特性,石墨烯可以作为一种极其通用且准确的探测手段。 /p p br/ /p
  • 西安交大《自然通讯》:百纳米级金刚石颗粒自驱动进入钢铁晶体
    近日,西安交通大学材料学院单智伟教授团队与材料创新设计中心团队合作,研究发现数十、甚至百纳米级别的金刚石颗粒可以在远低于钢铁熔点的温度下,以颗粒而非单个原子的形式,自驱动地进入钢铁晶体内部并且持续向内“行走”,最大行程可达数毫米且主体部分始终保持金刚石晶体结构。关于这一发现及其背后的物理机制的文章,以《纳米金刚石颗粒在铁晶体内部中的运动》(“Inward motion of diamond nanoparticles inside an iron crystal”)为题发表在《自然通讯》杂志上。西安交通大学为该工作的第一作者单位和唯一通讯单位,西安交通大学王悦存副教授、王旭东博士、丁俊教授为共同第一作者;西安交通大学单智伟教授和马恩教授为本文通讯作者;为该研究作出重要贡献的还有美国麻省理工学院李巨教授、西安交通大学张伟教授、沈阳理工大学段占强教授、贾春德教授和西安交通大学的梁倍铭硕士、黄龙超博士,范传伟工程师及博士研究生徐伟、刘章、郑芮,硕士研究生左玲玲等。该研究得到了国家自然科学基金委、西安交大青年拔尖人才计划、西安交通大学王宽诚青年学者等项目的支持。钢铁渗碳的历史可以追溯到两千年多年前,其主要过程是:外界碳源(固/液/气)在高温下分解为活性碳原子并逐渐渗入进钢铁,从而使低碳钢工件拥有高碳表面,再经淬火、回火处理,获得高硬度、高耐磨的表面。传统认知中,渗碳所用的碳源必须要先分解成活性碳原子,然后才能在浓度梯度驱动下,以单个原子的形式扩散进入铁晶格并间隙固溶其中,过饱和后以碳化物或石墨的形式析出。然而,进入的碳无法以最理想的强化相——金刚石出现。由此引发了一个科学上的创新思考:金刚石小颗粒有没有可能整体进入钢铁晶体中,并且保留金刚石结构。为验证这一大胆设想,研究团队以金刚石纳米颗粒和高纯铁及低碳钢为对象(图1a, b),利用原位透射电子显微镜对加热过程中金刚石纳米颗粒的运动过程进行实时观察:当表面附着有金刚石颗粒的钢铁被加热到一定温度后,其表面氧化膜首先发生分解,暴露出新鲜的铁原子。然后这些铁原子迅速向上扩散覆盖金刚石颗粒的表面,金刚石颗粒在毛细应力驱动下被快速“吞没”进钢铁基底中。冷却至室温后观察发现:金刚石颗粒不仅能够大量进入到钢铁内部(图1c),并且沉入深度可达到纳米金刚石颗粒自身尺寸的数千倍以上(毫米级)。图1d示意了整个进入过程。结合第一性原理计算、蒙特卡洛模拟及多维度表征,进一步揭示了纳米金刚石颗粒在钢铁晶体内部运动的微观机制:在铁的催化作用下,金刚石颗粒表面发生石墨化并部分溶解,在钢铁基底中及纳米金刚石颗粒周围分别形成长程和局部的碳浓度暨化学势梯度。在与此伴生的铁化学势梯度驱动下,金刚石周围的铁沿着金刚石和铁基底的界面不断上涌并形成一个向下局部应力,“推动”着金刚石向下前进。铁原子在金刚石颗粒表面的石墨层内的界面扩散,恰好为其远程迁移提供了快速通道(铁原子沿此通道向上迁移的速率得以高于铁晶格中碳原子向下运动的速率)。图1 (a)研究中所用的纳米金刚石粉的透射电镜表征;(b)纳米金刚石颗粒进入纯铁基底中的原位扫描观察;(c)纳米金刚石颗粒在铁内部的透射表征;(d)纳米金刚石自驱动进入钢铁基底的全过程及原理示意。由于纳米金刚石具有超高强度、热导率、化学稳定性与低热膨胀系数、低摩擦系数、超高等特点,是一种理想的金属强化粒子。基于上述发现,将纳米金刚石渗入进钢铁材料中,形成钢铁和金刚石的梯度复合材料,有可能大幅改善钢铁的表面性能,如硬度、导热性和耐磨性等。中国是最大的人造金刚石制造国,生产了世界上90%以上的人造金刚石,其中作为副产品的纳米金刚石粉的价格仅为~2000元/公斤。初步估算显示1公斤纳米金刚石粉能处理10吨的钢材(形成mm级的硬化层)。中国的钢铁年产量超过10亿吨,占世界总产量的一半以上,同时,中国也是钢铁的最大使用国,应用需求非常旺盛。该研究为钢铁材料的表面强化提供了新的思路和方法。文章链接:https://www.nature.com/articles/s41467-024-48692-5#citeas
  • 新无损检测技术:磁巴克豪森噪声技术国内外研究现状
    p   磁巴克豪森噪声(Magnetic Barkhausen Noise,MBN)技术作为一种新的无损检测技术,可实现对铁磁性材料早期性能退化及微损伤的检测和评估,能够在材料使用早期确定材料表面应力状态、疲劳损伤状况及微观组织变化特性,从而能够及早发现材料早期损伤的部位,为重要设备或构件的安全评价和剩余寿命评估提供可靠依据。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/8512b097-7a8a-4cfc-93a1-05e223c0f2f0.jpg" title=" 640.webp.jpg" / /p p style=" text-align: center " MBN检测装置框图 /p p   span style=" color: rgb(255, 0, 0) "   strong 1. 国外研究现状 /strong /span /p p   目前已有多国的研究人员开展了MBN技术的研究,如德国弗劳恩霍夫研究所、英国纽卡斯尔大学、牛津大学、美国爱荷华州立大学、芬兰Stresstech公司、坦普雷科技大学、巴西圣保罗大学、伊朗马什哈德菲尔多西大学以及印度科技大学等。 /p p   国际上对于MBN效应的研究及应用主要集中在应力检测、疲劳状态分析、硬度检测、微观组织分析、晶粒度测量及表面热处理工艺评价等方面,并提出了许多改善MBN信号的处理方法。 /p p    strong (1)材料应力检测 /strong /p p   材料所受应力主要有两大方面: /p p   一是外界加载应力,涵盖压应力与拉应力、单向应力与周期应力、低应力和超限应力等 /p p   二是材料内部残余内应力,包括残余拉应力和残余压应力等。 /p p   对于外加应力,英国的M. Blaow等研究人员在探究铁磁性材料受外力加载弯曲过程中的MBN信号变化时,指出应力会影响材料的磁化能力,改变MBN信号的波峰幅值和波峰位置,并且指出拉应力下的MBN信号多为单峰信号,而压应力下的MBN信号会出现多个峰值。2014年,德国的M.S. Amiri等研究人员指出应力的各向异性和晶体的各向异性对材料的磁化起决定性作用,在铁磁性材料的易磁化轴方向上,应力对MBN信号的影响大于其他方向,并通过磁致伸缩曲线和磁化曲线进行了验证说明。 /p p   对于材料内部的残余应力,目前已有较多的研究成果。如印度的M. Vashista长期研究材料表面残余应力和MBN信号的关系,并指出材料在弹性范围内,MBN磁响应信号与残余应力成正相关的关系。 /p p    strong (2)疲劳状态检测 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/d4675d39-fa9e-403a-ac32-e3ebfd429b27.jpg" title=" 640.webp (1).jpg" / /p p style=" text-align: center " 金属疲劳过程中产生的缺陷 /p p   目前非常急需铁磁性材料疲劳状态的全生命周期无损检测和评估技术,特别是针对疲劳裂纹形成前和形成初期的检测技术,而MBN技术为解决这一问题提供了有效的理论支撑和技术支持。目前疲劳过程中的MBN信号变化的研究主要集中在位错密度的增加、滑移带的形成、裂纹的萌生等微观结构的变化,以及缺陷数目、畴壁与MBN峰值电压的相互作用等方面。 /p p   金属在循环载荷的作用下,MBN信号变化显著,为了探究循环载荷和单向载荷对MBN信号影响的区别,2004年英国的V.Moorthy研究了En36钢在超限应力(最大达1700MPa)循环作用下的MBN信号特性,指出与单向载荷相比,高应力下的循环载荷会增加材料的位错密度,会使MBN信号峰值减小,加速材料疲劳。 /p p   对于部分非磁性的金属材料,利用MBN技术也可进行疲劳检测。2005年,Vincent等研究人员将MBN技术用于304L奥氏体不锈钢低周疲劳的检测,由于不具有磁性的& amp #947 铁在冷轧及循环载荷作用下会产生形变,诱导马氏体产生,所以研究人员提出了& amp #945 ’-马氏体内应力计算的复合模型,通过MBN技术可以测得马氏体体积分数,评估非铁磁性奥氏体不锈钢的疲劳损伤特性。 /p p    strong (3)金属微观组织和晶粒度分析 /strong /p p   关于金属内元素化学成分对MBN信号的影响,巴西的M.F.Campos等研究人员于2011年重点研究了合金钢中镍含量对材料硬度和MBN信号幅值的影响,总结出镍含量少的合金磁畴更易发生偏转。英国的V.Moorthy在2014年比较了碳含量不同(含碳量分别为0.20%和0.41%)钢的MBN信号的差异,并对试件进行了金相组织分析,指出碳含量的变化只会影响波峰的位置,对波峰的高度影响不大,还指出低频激励下的碳钢MBN信号存在两个波峰,而高频激励时只有一个波峰。 /p p   材料中的相含量(如马氏体、铁素体等)不同会影响MBN信号。2014年,伊朗的S. Ghanei详细研究了双相钢中马氏体含量和MBN信号峰值的关系,得出马氏体含量的增大会使MBN信号峰值增大的结论。VINCENT A等研究人员通过研究奥氏体和马氏体相互转换前后MBN信号的差异,来判断材料中的马氏体含量。 /p p   在晶粒度方面,S. Ghanei等研究人员于2014年分析了铁素体-马氏体双相钢中晶粒各向异性、晶体边界等微观结构对MBN信号的影响,指出晶粒尺寸的减小会使晶界密度增大,导致MBN信号增加。墨西哥的P. Martí nez-Ortizyan等研究人员于2014年研究了晶粒的易磁化轴和MBN信号主峰之间的关系,通过转动试样对其进行360& amp #176 的MBN检测,通过MBN信号能量的不同来确定材料的易磁化轴方向。 /p p   目前对于金属内部化学成分、相含量和晶粒度的研究,大多结合金属材料的金相组织分析进行,虽然得出了MBN信号与相含量相关的定性规律,但是实际工程中通过MBN信号来反向估测相含量的应用或仪器甚少。主要原因在于: /p p   ①MBN信号受多种因素的影响,相含量改变往往伴随着其他影响因素的改变,缺乏通用的定量结论来描述相含量与MBN之间的关系,若单从MBN信号来推测相含量往往精度不高,有失偏颇。 /p p   ②在进行化学成分和含量检测时,往往需要通过和已知含量的标准试样MBN信号进行参考比对,实际工程中获取一致的标准试样难度较大。 /p p    strong (4)材料硬度测量 /strong /p p   为了探究由温度变化引起材料硬度不同对MBN信号的影响,2003年,英国的V.Moorthy等研究人员将En36钢加热至不同温度(192℃~900℃)后进行MBN检测实验。结果表明En36钢的MBN信号对材料温度的变化十分灵敏,材料温度越高,其表面硬度越小,测得的MBN信号幅值越大,实验中可检测到的MBN信号的最大深度为425& amp #956 m。材料热处理后的冷却速率对硬度的影响也较大。2012年,巴西的F.A.Franco等研究人员探究了冷却速率对MBN信号的影响,用顶端淬火的方法设计出材料中不同区域的不同冷却梯度,指出材料冷却速度越快MBN信号越弱。 /p p   国外许多学者都总结得到材料硬度越大MBN信号越弱这一结论,这对于材料硬度测量有很好的指导作用。由于MBN技术只能检测材料表面硬度,而对内部不同的硬度梯度无法进行有效检测,因此无法实现材料内部深度较大区域的硬度检测。 /p p    strong (5)材料表面处理工艺评价 /strong /p p   德国弗劳恩霍夫研究所在金属表面处理和表面残余应力的MBN研究方面有较为显著的成果。2009年利用MBN对不同热处理的合金进行了微残余应力的检测研究,重点比较了室温(20℃)和居里温度(230℃)下残余应力趋于饱和时MBN信号之间的差异,发现材料处于居里温度下的MBN信号远小于室温下的MBN信号。2011年,通过MBN设备对齿轮表面质量进行检测,通过表面(50& amp #956 m内)MBN信号的特征,推断出材料表面硬度和硬化层深度。 /p p   芬兰的Suvi Santa-aho等研究人员近年来将研究方向聚焦在探究铁磁性材料表面激光加工工艺和MBN信号的关系上,分析了硬化钢渗碳层深度、残余应力等表面质量与激光工艺之间的关系,提出了避免材料重淬火和应力饱和的铁磁性材料表面控制热损伤的技术。 /p p   MBN技术是评价材料表面加工工艺的有效方法之一。目前,通过MBN技术进行表面处理工艺的检测已有成熟的商业化设备,已经应用于一些金属零部件的表面加工工艺检测中,如芬兰Stresstech公司的Rollscan 300检测仪可实现对材料表面加工工艺、残余应力的检测。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201607/insimg/ef0dccfa-f27f-4b09-9fa8-ff5b5743963f.jpg" title=" 640.webp (2).jpg" / /p p style=" text-align: center " Rollscan 300表面质量检测仪 /p p   strong   span style=" color: rgb(255, 0, 0) " 2. 国内研究现状 /span /strong /p p   国内对MBN技术的研究始于20世纪80年代中期,近年来开展MBN信号研究的机构主要有南京航空航天大学、北京化工大学、上海交通大学、沈阳工业大学、吉林大学等。 /p p   1988年,原北京钢铁学院的穆向荣等研究人员开展了对双相钢的MBN效应的研究,指出利用MBN技术,可以实现对材料组织结构和组织性能的研究。1994年,华中理工大学的马咸尧等研究人员研究了MBN效应受应力影响的规律,还将MBN技术和磁声发射(MAE)技术进行了对比,指出MBN信号特征依赖于铁磁材料的组织结构和应力状态,拉应力降低了MAE信号强度,而增加了MBN信号强度 压应力可降低MBN信号强度,提出将两效应结合测量,既可提高测量拉应力的灵敏度,又可判别应力的正负值。 /p p   2003年,上海交通大学的陈立功等研究人员开始研制MBN传感器及信号采集处理系统,研究了残余应力和MBN信号的关系,建立了结合虚拟仪器技术的MBN残余应力检测系统,利用该系统进行了铁磁材料热处理后残余应力的分析,指出热处理后的板材MBN强度呈下降趋势。2008年,他们改进了针对各向异性及非均匀残余应力的MBN传感器。 /p p   从20世纪90年代初至今,北京化工大学的祁欣等研究人员持续开展了巴克豪森效应在残余应力检测、硬度和晶粒度分析、相含量的检测及疲劳寿命的预测这四个方面的研究,结果指出:在利用MBN效应进行铁磁性材料内部应力的测量时,激励信号不能过大,否则材料处于饱和磁场中时,会降低MBN信号对内部应力变化的敏感度。2011年,他们设计了抗干扰、输出信号信噪比高的MBN传感器。 /p p   南京航空航天大学的王平等研究人员于2008年开始对MBN现象进行研究。2010年,提出了在高速运行条件下,利用MBN效应,用直流电源作为线圈的激励信号来进行钢轨应力检测。2011年,比较了三角波和正弦波对MBN信号的影响,总结出用三角波作为激励信号时MBN信号的特征值呈现出更好的线性度。2012年,研制了第一代便携式MBN铁轨应力检测仪。2013年,将BP神经网络算法引入了MBN信号处理中,得到应力测量值和真实值的平均误差为1.0618%,检测可靠度较高。2015年,丁松提出了一种名为“偏度skweness”的新的MBN信号特征值评估方法,利用该方法可以获得比均方根电压(RMS)评价法更多的MBN信息。 /p p style=" text-align: right "   节选自《无损检测》2016年第38卷第7期 /p p style=" text-align: right " 本文作者:沈功田,博士,研究员,博士生导师,中国机械工程学会无损检测分会主任委员、中国特种设备检测研究院副院长,主要研究方向为声发射、红外和电磁等无损检测新技术。 /p p br/ /p
  • 综述硬度计的应用领域,包括布氏、洛氏、维氏、努氏,以及布洛维硬度计等
    硬度测试重要性&应用布、洛、维、努氏硬度是材料抵抗弹性变形,塑性变形或破坏的能力。对于被检测的材料而言,硬度代表着在一定的压头和力的作用下所反映出的弹性、塑性、强度、韧性,以及抗摩擦性能等一系列不同物理量的综合性能指标。01硬度测试两种材质的物体相互划磨,软的材质会产生划痕,人类最早就是根据材料抵抗划磨的能力来比较材料的软与硬。随着科学技术的发展,测定材料硬度的方法有了很大的进步,硬度试验法有十几种,按施加试验力的方法分为静载压入法和动载试验法。 常用的布氏、洛氏及维氏硬度试验等属静载试验法;肖氏、里氏硬度属动载试验法。硬度试验具有以下特点:非破坏实验硬度试验对工件的损伤极小,一般不影响使用 方法不复杂试验方法方便不复杂,对大小部件均可直接测量;操作简单、快速硬度试验操作简单、效率高;换算关系硬度值与其他机械性能,如强度极限有近似的换算关系;应用广泛硬度试验是理化分析,金相试验及材料科学的重要手段。02硬度检测的重要性硬度是衡量金属材料力学性能的重要参数,硬度检测能反映金属材料的显微组织和结构变化,通过硬度检测可以发现材料的微观结构和相组成,从而评估其力学性能和加工性能。硬度检测是质量控制和生产过程控制的重要手段之一,在铸造、锻造、焊接和热处理等加工过程中,通过硬度检测可以监测工艺参数和产品质量,及时发现并解决潜在问题,确保生产过程的稳定性和产品质量的一致性。洛氏硬度计洛氏硬度测试通过测量压痕深度来计算硬度值,在成批生产和大量检测的机械、冶金热加工过程中以及半成品或成品检验中得到广泛应用,特别适用于刃具、模具、量具、工具等的成品制件检测。常用于测试金属和硬质塑胶材料的硬度,如钢、合金钢、不锈钢等。全自动洛氏硬度计,推荐轶诺的NEMESIS 6200.维氏硬度计维氏硬度测试通过测量压痕对角线的长度来计算硬度值,具有较高的精度和分辨率,测量范围可覆盖所有金属。适用范围:热处理、碳化、淬火硬化层,表面覆层,钢,有色金属和微小及薄形零件等。配备努氏压头后能测玻璃、陶瓷、玛瑙、人造宝石等较脆而又硬的材料的努氏硬度。全自动维氏硬度计,推荐轶诺的FALCON600 G2.布氏硬度计常用于测试金属材料零件的硬度,如铸铁、锻件、轧制件等。通过测量压痕直径来计算硬度值,具有较大的测试压痕和较高的测试精度,适用于大型零件检测。全自动布氏硬度计,推荐轶诺的NEXUS3400FA.03硬度计的应用领域硬度计在材料测试、研发、失效分析和预防、质量控制、工艺优化等领域有着广泛的应用,遍及汽车、航空航天、钢铁、机械、高校、科研、船舶、铁路、交通、电子、能源、医疗、石化等行业。汽车零部件的硬度检测,如发动机活塞、曲轴、缸体、刹车盘、齿轮、紧固件、轴承等,确保零件的耐磨性、耐久性和可靠性,从而提高汽车的整体性能和安全性;检测航空发动机零部件的硬度,如涡轮叶片、涡轮等硬度,可以及时发现材料内部的缺陷和问题,为发动机的维护和修复提供重要依据;能源行业通过硬度测试,及时发现设备内部的损伤和缺陷,预防事故的发生;医疗行业需要测试医疗器械和人工假体的硬度;电子行业需要测试材料的硬度,以确保其在使用过程中的可靠性和耐久性;石化行业检测管道的硬度,可以预防管道腐蚀和泄漏等安全问题,等等。质量控制硬度计用于生产过程中的监控与质量控制,确保产品符合质量标准和客户要求。通过定期对产品进行硬度测试,及时发现材料的质量问题,预防不合格品的产生。硬度计还可用于生产过程中的快速筛选和分类,提高生产效率和产品质量。轴承的硬度检测通过硬度测试可以评估轴承材料的硬度和质量,确保轴承具有足够的耐磨性和耐久性。以及,监测轴承在使用过程中的硬度变化,预测其寿命和可靠性,预防早期失效的发生。失效分析通过测量材料硬度,并与标准值进行比较,提供失效原因的线索。例如,如果材料过度磨损或腐蚀,其硬度可能会降低。通过分析硬度变化,分析失效的原因,提出相应的改进措施,减少材料的失效可能性,提高产品的质量和可靠性。工艺过程控制在工艺过程中,材料经过各种处理,如热处理、加工、焊接等,可能会影响材料的硬度。通过对材料硬度的测量,可以监测工艺过程对材料的影响,从而控制和优化工艺过程,减少失效的可能性。焊接结构的失效预防:检测焊缝的硬度和热影响区的范围,分析焊接接头的机械性能。通过了解焊缝和热影响区的硬度分布,评估焊接结构的可靠性和安全性,避免因硬度分布不均或热影响区过宽导而致焊接结构失效。复合材料的失效预防复合材料是由两种或多种材料组成的新型材料,具有优良的力学性能和多功能性。在复合材料的研发和应用中,硬度计被用于评估复合材料的硬度和相关机械性能,预测其在不同环境和使用条件下的适用性和可靠性,预防因材料不匹配或性能不稳定导致的失效问题。材料研发通过对比不同材料的硬度值,可以评估材料的性能优劣,为新材料的研发提供依据。例如,研究新型材料的硬度特性、比较不同材料的硬度差异、分析材料的微观结构和硬度之间的关系等。硬度计为这些研究提供重要的实验数据和结果。教学科研主要体现在实验操作与演示、比较不同材料的硬度、研究材料的微观结构、实践应用与案例分析,以及实验数据处理与分析等方面。学生可以更好地理解硬度的概念、测试方法和实际应用,培养实验技能和科学素养,也有助于提高教学质量和学生的综合素质。科研人员也经常使用硬度计进行科研项目,研究新型材料的硬度特性、材料的微观结构和硬度之间的关系等,推动材料科学的发展。表面硬度检测通过表面硬度检测,可以评估热处理工件的耐磨性、耐久性和抗疲劳性能等,为后续的热处理工艺调整提供依据,提高热处理工件的质量和性能。热处理工艺控制在热处理过程中,硬度是衡量材料内部组织结构变化的重要参数。通过硬度检测,可以了解热处理过程中材料的硬化程度和相变过程,从而优化热处理工艺参数,提高热处理工件的质量和性能。总之,硬度测试广泛应用于各种材料,包括金属、非金属、硬质塑料、复合材料和新材料等。用硬度计进行材料性能检测,对于评估材料性能、控制产品质量、实效分析、优化工艺参数、教育和科学研究等方面都具有重要意义。轶诺INNOVATEST品质硬度计荷兰INNOVATEST轶诺高品质硬度计,涵盖布、洛、维、努氏等多种测试方法,具有创新性的技术和工艺、高精度和可靠性、自动化和智能化、人性化的软件系统,以及全面的售后服务等优势,满足不同的硬度测试需求。轶诺为全球诸多用户提供了先进的硬度测试解决方案,行业遍及汽车、航空航天、钢铁、机械、高校、科研、船舶、铁路、交通、电子、能源、医疗、石化、桥梁、建筑、骨科/牙科实验室等领域。
  • 我国引进新型计算机断层扫描仪宝石能谱CT
    中国已批准引进国际最新型的计算机断层扫描仪——宝石能谱CT,首批将陆续在香港、北京、上海、广州等城市安装使用。这是记者从北京举行的新技术介绍会获得的信息。 由通用电气公司医疗集团研发的这一高端CT已通过国家食品药品监督管理局认证,并在北京医院、解放军总医院进行了临床试验使用。 参加临床实验使用的中华放射学会副主任委员、北京医院教授周诚称,新仪器为临床影像诊断研究提供了全新平台。由于其采用宝石做为探测器材料,并使用瞬时变能高压发生器和动态变焦球管等新技术,可消除金属硬化伪影,发现普通CT不能发现的小病灶,对于疾病的早发现、早诊断有显著优势。 北京阜外心血管医院吕滨教授指出,该仪器能精确观察冠脉狭窄程度与三毫米以下支架腔内结构,解决了长期困扰放射诊断医生的冠状动脉钙化与支架的硬化伪影问题,可显著提高诊断成功率,同时还可降低超过百分之九十以上的放射剂量。此外,它还可实现目前最高的图象空间与密度分辨率,临床常规扫描能显示支气管的五至七级分支,清晰显示毫米级血管。
  • TA仪器沈阳金属所热物性高级研讨会成功举办
    6月中旬,全球热分析和热物性产品的领导者TA仪器与沈阳金属所联合举办了一场热物性的高级研讨会。 在这次研讨会上,来自TA仪器美国总部的热物性高级产品专家王恒博士向在座的金属业界的朋友介绍了TA仪器在热物性产品线的最新技术和产品进展,2014年初TA仪器并购了先进光学膨胀仪和加热显微镜的制作商ESS公司以及专业于绝热材料测试的美国Laser Comp公司,使得TA仪器的热物性产品线得到了更好的补充,与原有的导热仪及传统热膨胀仪一起形成了中国市场上最完整的热物性产品及技术供应商。 除此以外, 王恒博士还与大家分享了热性产品在金属行业的各种典型应用,更结合了其之前在日本和美国的一些研究成果,获得了在场与会者的一致好评。 除了王恒博士精彩的报告以外,我们还还特邀了东北大学轧制技术及连轧自动化国家重点实验室的易红亮博士就TA仪器DIL805在轧钢领域的应用于大家展开了讨论,易博士高度评价了TA仪器的DIL805淬火相变仪,称这款功能强大的仪器是现在市场上最好的一款相变仪、 会后王恒博士和易红亮博士又回答了大家众多的问题,其中不少是行业内未来发展的研究方向,此次高级研讨会不仅参会者受益良多,TA仪器也通过和用户的交流更明确了中国市场的需求,为未来的市场拓展打下了坚实的基础沈阳金属研究所高级研讨会现场东北大学轧制技术及连轧自动化国家重点实验室的易红亮博士演讲中更多资讯请关注美国TA仪器微信:
  • 岛津EPMA在高速工具钢中的应用
    工具钢常用于切割零件以及成品精加工,可大致分为:碳素工具钢(SK)、合金工具钢(SKS,SKD,SKT)以及高速工具钢(SKH)。其中由于高速工具钢所具备的突出的硬度、耐热性和耐磨损等性能,使其更适用于各型高速切割及高速钻孔工具。随着科学技术的迅速发展以及高难度应用场景的更迭出现,通用性能的高速工具钢已无法满足工业和科研需求,对于其机械性能的提升和精准控制提出了更严苛的要求,下文将举例介绍电子探针(EPMA)在高速工具钢中的应用。图1. 岛津场发射电子探针EPMA-8050G岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现:01优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。(加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA)02大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。岛津研发部门使用EPMA-8050G仪器对高速工具钢开展了表面元素面扫描(mapping)及相分析(phase diagram)等研究。高速工具钢的制作过程简单来说是在高温条件下将大量的V、Cr、Mo、W等合金元素与钢材混熔,淬火然后回火至500℃,这一过程中金属元素碳化物不断沉淀达到回火硬化的效果。依据合金元素组成的差异,高速工具钢可分为W系高速钢、Mo系高速钢以及V系高速钢。图2. 分别展示了Mo系高速工具钢表面钢本体元素(Fe、C、Si)及添加元素(Mo、V、Cr、W)的面分布情况。图2. 高速工具钢表面各元素面扫描图合金元素碳化物分析:在钢中同时加入多种特殊合金元素时,数量最多的合金元素往往以碳化物形式优先析出,如果加入数量一致的多种元素,则与碳亲和性更强的添加元素更多以碳化物形式沉淀。研究表明,对于添加多种具有强的碳亲和性碳化物形成元素的合金钢,根据合金元素的绝对含量和相对比例,从第一相碳化物析出到形成最后的多种稳定碳化物相,其中的碳化物沉淀类型、顺序以及其韧性和硬度的变化均遵循一个复杂的规律轨迹。从低温升至500℃的过程中,主要以M3C碳化物组织形式沉淀,当温度逐渐超过500℃以后,碳化物以Fe3C型结构为主,直至达到固溶极限以后,除Fe3C以外的合金元素碳化物开始析出。以本文中的Cr、V、W、Mo合金元素为例,Cr优先以Cr7C3形式与Fe3C同时沉淀,其他元素则随后在回火硬化阶段分别以V4C3、W2C和Mo2C形式析出。碳化物相分析:从元素mapping图中可以看出各合金元素碳化物并不是以单一物相产出的,而是多物相混合存在的。因此图3. 相图中展示的是主要物相的分布情况,而依据图4. 三元混合相图所展示的主要物相划分依据,当区域内V元素含量超过24 wt.%时该区域被划分为红色的V碳化物主物相区,以此类推当Mo含量超过18 wt.%时被划分为蓝色的Mo碳化物主物相区,当Cr含量大于24 wt.%时被划分为绿色的Cr碳化物主物相区,而黄色区域则代表富Fe基体且合金元素呈低含量固溶混合的区域,其中没有一种合金元素含量超过其碳化物主物相区划分阈值。图3. 相图图4. 三元混合相图图5. 则选择三对两两不共存的元素分别作为X/Y/Z轴的+/-两端元,其中X+/-分别代表Mo和Cr端元,Y+/-分别代表Fe和C端元,Z+/-分别代表V和W端元,因此XYZ 3D图中的8个象限则可分别代表8种不同的三元混合相图,研究者可以从中提取出更多的多物相混合的信息。图5. 3D混合相图(XYZ)更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。本文内容非商业广告,仅供专业人士参考。
  • 126万!上海交通大学拉伸流变仪采购项目
    项目编号:0773-2241SHHW0182/02/校内编号:招设2022A00256项目名称:上海交通大学拉伸流变仪预算金额:126.0000000 万元(人民币)最高限价(如有):126.0000000 万元(人民币)采购需求:设备名称: 拉伸流变仪数量:1套简要技术参数:1.最小应力(取决于力传感器范围)≤ 15 Pa ;其余详见“第八章货物需求一览表及技术规格”。设备用途: 拉伸流变仪通过有效测定材料流变性能和数据,获取材料的流变参量,进行流变分析。通过一定的温度加热塑胶粒等材料,在一定的拉伸作用下,得出材料粘度与速率,应变与应力关系,分析材料应变硬化行为,得出特定分子的拉伸粘度依应变速率而变化的规律。指导材料的配方和应用开发。交货期:收到信用证后6个月内;交付地点:上海交通大学用户指定地点;合同履行期限:收到信用证后6个月内本项目( 不接受 )联合体投标。
  • 层压板拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,参考《ASTM D638-22塑料拉伸性能的标准试验方法》,进行了层压板的拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应层压板的拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 层压板 PCB基板 拉伸试验 拉伸模量 泊松比层压板是层压制品中的一种。层压制品是由两层或多层浸有树脂的纤维或织物经叠合、热压结合成的整体。层压制品可加工成各种绝缘和结构零部件,广泛应用在电机、变压器、高低压电器、电工仪表和电子设备中。随着电气工业的发展,高绝缘性。高强度、耐高温和适应各种使用环境的层压塑料制品相继出现。印制电路用的覆铜箔层压板也由于电子工业的需要迅速发展。层压制品的性能取决于基材和粘合剂以及成型工艺。按其组成、特性和耐热性,层压制品可分为有机基材层压板和无机基材层压板,本次应用选用电路板行业常用的PCB基板-环氧玻纤层压板作为样品进行试验,通过万能材料试验机可以进行层压板的各项力学试验,表征层压板的各项力学性能,从而做好层压板的质量控制。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠 的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取层压板长度为165mm,中间平行段宽度约10mm,数量3个。图1 标准试样2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能后将自动消除因夹持产生的夹持力,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,再将两个引伸计清零,以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后卸除引伸计并直至拉伸到样品断裂。测量过程中的力以及变形数据,并生成拉伸试验曲线。图2 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图3-试验曲线从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析,数据重现性良好,可满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《ASTM D638-22塑料拉伸性能的标准试验方法》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得层压板的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 中国铁道科学研究院签订铺地材料热辐射测试仪采购合同
    莫帝斯技术(中国)有限公司,2010年承接中国铁道科学研究院金属及化学研究所,德国轨道高速列车阻燃测试项目DIN 4102-14及ISO 9239-1仪器制造项目,交货期限为2个月,不日将交付中国铁道科学研究院使用。 该测试装置为了满足中国铁道科学研究院,对于德国标准化研究所轨道车辆标准委员会所制定机车阻燃标准测试及研发,其中对于铺地材料DIN 4102-14及ISO 9239-1标准而设计而成。该测试装置装备了烟密度检测装置,风速流量调节装置、热辐射版装置等,并配备相关的测试软件并将测试报告进行了内置,便于客户的使用。 莫帝斯技术(中国)有限公司将独立完成了该测试装置的设计、研发、制造,相信日后对所有轨道高速列车阻燃性测试可提供强有力的研发及检测保证,在仪器制造过程当中,得到了中国铁道科学研究院专家及学者的帮助,再次表示由衷的感谢! 莫帝斯技术(中国)有限公司再次用实践证明,我司的技术研发,制造实力完全可承接各类国内外阻燃测试仪器的生产制造。今年,公司还将推出,符合英国轨道交通阻燃测试要求的德国阻燃测试标准DIN 5510-2系列仪器、BS 476系列检测仪器,以及法国阻燃测试NF F16-101系列检测仪器,以为了更好的满足我国轨道高速列车的发展及需求。 客户背景介绍: 铁道科学研究院金属及化学研究所(简称金化所)成立于1950年春,是中国铁路系统从事铁道新材料、新工艺、失效分析及检测技术等研究的综合性科研开发机构。 金化所现有职工150余人,其中高级研究人员60多人,设有金属材料性能与工艺、焊接技术与工艺、无损检测、润滑材料、高分子材料及应用化学等6个专业事业部,有专营所内研制开发的轮轨润滑装置与其他机电产品的产品中心和专门从事钢轨淬火生产的淬火中心两个生产企业。拥有通过国家进出口商品检验实验室认可委员会认可的铁道器材实验室,主要承担铁道器材的商检任务;拥有铁道部产品质量监督检验中心金属化学检验站,负责铁路用金属、非金属材料及其制品的抽查和委托检验工作;中国铁道学会材料工艺委员会的办事机构挂靠在该所。 金化所自建所以来,共承担近500项研究课题,已取得300多项科研成果,其中获国家发明、国家科技进步奖30余项,获省部级科技进步奖70余项,院、局级科技成果奖50多项,拥有各类专利10余项,为中国铁路的现代化建设作出了积极的贡献。 www.motis-tech.com
  • 北京市海外高层次人才申报工作启动
    根据《关于实施北京海外人才聚集工程的意见》、《北京市鼓励海外高层次人才来京创业和工作暂行办法》、《“海聚工程”青年项目工作细则》和《“海聚工程”短期项目实施细则》精神,现就第七批海外高层次人才申报工作通知如下:   一、申报种类   第七批海外高层次人才申报共分四类:全职工作类、创业类、青年项目和短期项目。   二、申报范围   北京市属单位,各区县、各类园区(包括科技企业孵化器、留学人员创业园、大学科技园和工业园)内非公有制企业或民办非企业单位引进的海外高层次人才。   三、申报条件   (一)全职工作类   申报全职工作类人才,须具备以下条件:   1、申报人符合《北京市鼓励海外高层次人才来京创业和工作暂行办法》中规定的基本条件。申报人在年龄、学历、职务、职称等方面需破格的,请说明理由。   2、申报人已与用人单位签订正式劳动合同或意向性工作合同。如已签订合同的,其合同签订时间须在2011年1月1日之后。   3、申报外裔专家应在引进后至少连续来京工作3年、每年不少于9个月,申报年龄可放宽到65岁。   (二)创业类   申报创业类人才,须具备以下条件:   1、一般应在海外取得学位。   2、拥有的自主知识产权或技术成果国际领先,具有产业化开发潜力。   3、有海外创业经验或国际知名企业的工作经历,有较强的经营管理能力。   4、申报人为所创办企业的主要创办人,且为第一大自然人股东,所占股权一般不低于30%。一家企业只能申报1名创业类人才。   5、所创办的企业成立时间在1年以上、5年以下,且其拥有核心技术的产品已经产业化或处于中试阶段。   (三)青年项目   申报青年项目人才,须符合《“海聚工程”青年项目工作细则》中规定的条件:   1、属自然科学或工程技术领域。截至2012年2月,年龄一般不超过40周岁。   2、在海外取得博士学位,并有3年以上的海外科研工作经历。   3、申报前曾在海外著名高校、科研机构或知名企业研发机构有正式教学或科研职位。   4、已与用人单位签订正式劳动合同或意向性工作合同,引进后每年在京工作不少于6个月,至少连续工作3年。如已签订合同的,其合同签订时间须在2011年1月1日之后。   5、为所从事科研领域同龄人中的优秀人才,有成为北京市该领域学术或技术带头人的发展潜力。   对博士在读期间已取得突出研究成果的应届毕业生,或其他有突出成绩的,申报时应说明破格理由。   (四)短期项目   申报短期项目人才,须符合《“海聚工程”短期项目实施细则》中规定的条件:   1、系北京市重点产业发展、行业、学科建设和中关村国家自主创新示范区建设急需、紧缺领域的战略科学家或学术技术带头人,符合《北京市鼓励海外高层次人才来京创业和工作暂行办法》中规定的工作类人才引才标准。   2、在北京有固定的工作单位,有明确具体的工作目标任务,能够突破关键技术、带动高新产业和新兴学科的发展。   3、已与用人单位签订至少连续3年、每年在国内工作不少于2个月的正式劳动合同或意向性工作合同,并明确合同期内工作成果知识产权的归属。如已签订合同的,其合同的签订时间须在2011年7月1日之后。   上述四类项目,申报人每年度一般只申报一次,如重复申报,应着重阐明申报理由。   四、申报程序   (一)工作类人才(全职类、青年项目、短期项目)   由主管部门组织所属单位申报。各用人单位作为申报单位,对应填写相关类别《申报表》并准备相应附件报主管部门审核。经主管部门审核同意、汇总后,报送北京海外学人中心。   (二)创业类人才   北京市各区县、各类园区(包括科技企业孵化器、留学人员创业园、大学科技园和工业园)的创业人才填写《北京市海外高层次人才申报表 (创业类)》。申报人所在孵化器、创业园、专业园作为申报单位,上报主管部门审核。如申报企业不在园区内,由所在区县委组织部进行审核同意、汇总后,报送北京海外学人中心。   符合相关引才标准,拟来京工作的海外高层次人才,尚未落实工作单位的,可填写《北京市海外高层次人才自荐、推荐表》进行申报,报至北京海外学人中心。申报人经过专家评审等程序取得入选资格,并与用人单位正式签订劳动合同后,报北京市海外学人工作联席会审批,落实相关政策待遇。   五、申报材料   (一)工作类人才(全职类、青年项目、短期项目)   需报送申报表一式5份,附件材料5份,其他个人信息表1份。申报表、附件分别装订,其他个人信息表另附。   附件材料一般应包括:个人资质证明(最终学历/学位证书及教育部认证材料、身份证/护照)、与申报人签订的劳动合同书或意向性工作合同、在海外任职的证明材料、现任职务(职称)有关证明材料、代表性成果证明(领导或参与过的主要项目、论著、获得专利、奖励证书等)、用人单位的营业执照副本或法人证书、组织机构代码证书等材料的复印件。如用人单位为企业,请同时提供企业运营的基本情况(包括企业章程、企业近三年审计报告、主营产品及服务的市场前景等)。具体附件材料内容要求请参照相关《填表说明》准备。   (二)创业类人才   需报送申报表一式5份,附件材料5份,其他个人信息表1份。申报表、附件分别装订,其他个人信息表另附。   附件材料一般应包括:个人资质证明(最终学历/学位证书及教育部认证材料、身份证或护照)、海外任职证明、主要成果(知识产权权属证明、获得专利、奖励证书等)、创业企业证明(营业执照、股权结构证明、技术和管理团队简介、创业项目等材料)的复印件,以及工商部门备案的公司章程、商业计划书、企业上年度审计报告、主营产品及服务的市场前景等材料的复印件。   (三)材料要求   1、《申报表》严格按照“填表说明”要求填写,确保内容完整、真实、准确   2、附件材料须制作目录,以便检索相关申报材料   3、附件材料中提供的外文书证资料需附有中文说明   4、论著(论文)、专利等代表性成果证明需选择重要性的,原则上提交5份以下   5、申报表与附件材料需采取无线胶装方式单独装订,同时以光盘形式报送与书面材料一致的电子文本。   六、申报时间   各单位接到本通知后,请抓紧组织部署相关工作。申报材料请于2012年2月17日前报至北京海外学人中心。   北京市海外学人工作联席会将根据专家评审组评审情况,择优推荐申报人参评中央“千人计划”。   七、联系方式   1、北京市委组织部人才工作处(北京市海外学人工作联席会办公室):   联系电话:010-63088708   联 系 人:方友刚   2、北京海外学人中心人才开发部:   地址:西城区德外大街83号,德胜国际中心B座6层   邮编:100088   联系电话:58540526、58540525   电子邮箱:botc@8610hr.cn 传真:58540568   联 系 人:王佳怡 崔巍微   附件:   1、北京市海外高层次人才申报表(全职工作类)   2、北京市海外高层次人才申报表(创业类)   3、北京市海外高层次人才申报表(青年项目)   4、北京市海外高层次人才申报表(短期项目)   5、北京市海外高层次人才自荐、推荐表   6、申报人其他个人信息表   7、北京市海外高层次人才申报人选情况汇总表   8、北京市海外高层次人才申报单位情况汇总表   9、北京市海外高层次人才申报材料清单   10、附件材料目录参考格式
  • 泰坦怒放年|樱花烂漫季,雷霆战爆启
    3月纯净烂漫的樱花在怒放 斗志昂扬的泰坦科研服务郎在拼命忙 22个工作日11场校园行华东、华南、华中、西南这方唱罢那方登场全国范围全力开推 ......俗话说“兵马未动,粮草先行”为了将“怒放”年打的更漂亮我们做的第一步就是各大区作战物资的准备和校园推广展台形象的升级 一切准备就绪后便开启了我们的连轴转模式titan/泰坦耗材、adamas-beta/阿达玛斯、general-reagent/通用试剂、titan/泰坦仪器、“阿达玛斯”学术论文奖等纷纷走进校园得到了高校师生们的热烈欢迎也使得泰坦科技在高校中的知名度进一步上升下面我们就一起看看泰坦科研服务郎都在哪些高校完成“打卡”了吧~华南区域1月11-12日北京大学深圳研究生院2018迎新晚会 作为晚会的赞助商,泰坦科技(titan)华南区销售代表上台为学生们颁奖。展台展示 论文奖咨询 产品咨询华中区域3月24-25日武汉大学有机化学樱花论坛(第二届)论坛现场及泰坦科技(titan)展台 现场咨询西南区域3月20日西华师范大学 展台展示 现场产品咨询、试用在西华师范大学,泰坦移液枪、泰坦手套可是诸多老师的“心头好”。3月21日西南医科大学摆展现场 产品咨询论文奖咨询西南医科大学位于泸州,泰坦服务郎是首次来到这座闻名全国的“酒城”。此次摆展现场,第五届“阿达玛斯”学术论文奖引起了来往师生们的浓厚兴趣,纷纷咨询评选详情。3月22日四川理工学院论文奖咨询 产品咨询在四川理工学院,论文奖依然很受欢迎,再加上琳琅满目的产品展示,人气不旺就没天理啦~ 苏皖区域3月19-20日安徽师范大学此次在安师大开展校园推广活动,得到了仪器供应商ika的大力支持。泰坦科技(titan)联合ika进行校园售后巡检服务的举动得到了学校师生的称赞。3月21-22日安徽工业大学探索平台&ika展台 现场咨询 在安工大,我们与ika一起进行的实验室巡检服务仍在继续...3月27日蚌埠学院展台展示3月份,与ika 联合举行的校园推广活动第三场来到了蚌埠学院。在这里,仪器供应商艾尔杰加入我们,一起奋斗,共同开拓市场。3月28日南京中医药大学产品咨询 扫码关注种类全、品质高的产品赢得了一众师生的“芳心”!!!3月29日中国药科大学摆展现场 产品咨询在药科大,泰坦科技(titan)最新上市的新仪器产品超声波清洗器、超薄磁力搅拌器,加入展品方阵。3月29日淮北师范大学展台展示淮北师范大学是我们与ika本月的第四场活动目的地。在这里,titan/泰坦仪器受到老师们的诸多喜爱,不过我们的另一自主品牌general-reagent/通用试剂也不遑多让。生命不息,奋斗不止!4月我们将继续以雷霆之姿尽展怒放拼搏的决心 第五届论文奖投稿倒计时点击“阅读原文”了解更多投稿详情
  • 气相色谱质谱破解基层禁毒难题——“送科技到禁毒基层一线”走进喀什
    8月中旬,新疆喀什。  某公安检查站安检大厅内,站长马未来(化名)和几名民警正在对携带疑似毒品的可疑人员进行查验。  跨过人证核验区域,通过机器扫描,民警在可疑人员携带的物品中发现了异常,当即通过气相色谱质谱联用仪对可疑物品进行检验。  几分钟后,比对结果精准呈现:是一种尚未被列管的新精神活性物质。  “当前,市场上出现了多种新精神活性物质,通过气相色谱质谱联用仪检验,我们能搞清它们到底是什么,助力后续处置工作。”马未来说。  “能准确识别查获的是什么物质,气相色谱质谱联用仪里的EI源质谱数据库起到了很关键的作用。”公安部第三研究所安防处副研究员李维姣介绍,质谱数据库里面存储有大量物质的特征值,通过比对特征值,就能确认物质种类。  目前,各地公安机关毒品实验室大多配备了气相色谱质谱联用仪,但随着毒情形势的发展变化,特别是新精神活性物质不断出现,质谱数据库中原有毒品质谱信息种类明显不足,无法检验出更多的新型毒品,导致气相色谱质谱联用仪要么使用效率降低,要么需要花费较高费用更新数据库,不能满足禁毒基层一线实战需求。  今年8月,公安部禁毒情报技术中心启动“送科技到禁毒基层一线”系列活动,充分发挥科技提升禁毒工作核心战斗力的作用,助力破解禁毒基层一线面临的科技难题。  8月14日下午,公安部禁毒情报技术中心、公安部第三研究所与全国重点地区公安禁毒部门在喀什地区举行了质谱仪质谱数据库捐赠仪式,签署质谱仪质谱数据库授权协议,承诺终身免费为质谱仪升级,保证质谱仪质谱数据库满足新时代毒品查缉需要。  “这次活动旨在填补数百种相关物质的质谱数据库信息空白,解决基层公安机关毒品查缉过程中的困难。”公安部禁毒情报技术中心毒品分析一处警务技术三级主任樊颖锋说。  据了解,公安部禁毒情报技术中心在日常开展毒品检测工作中积累了大量毒品、新精神活性物质和易制毒化学品样品数据,并建立了400余种物质的质谱数据库。公安部第三研究所承担公安部禁毒情报技术中心设立的禁毒科技攻关项目,也开发了100余种物质的质谱数据库。这两个数据库基本覆盖了目前常见的毒品、新精神活性物质和易制毒化学品。“送科技到禁毒基层一线”活动就是使用这两个数据库优化整合后形成新的质谱数据库,取代原装质谱数据库,从而实现对公安禁毒部门新精神活性物质EI源质谱数据库的升级改造。  乌鲁木齐市公安局禁毒支队纪委书记董新丽表示:“此次活动是一场‘及时雨’,为禁毒基层实验室开展新精神活性物质检验鉴定提供了强大助力。”  为了确保质谱数据库的高效使用,公安部禁毒情报技术中心还特意编写了不同格式的质谱数据库在仪器数据工作站中的操作手册,采用图文并茂的方式详细介绍了导入说明、自建库办法、检索使用方法等。下一步,公安部禁毒情报技术中心将根据新精神活性物质滥用情况,不断更新质谱数据库中的新精神活性物质种类,并开发基于相关平台的质谱数据库比对功能。
  • 没特殊手段难申项目:风光基层科研背后的辛酸
    p   随着年底封账大限到来,不少高校迎来了科研项目报销的高峰期。针对有媒体曝出的“某高校学生排队替导师报销经费”,新华社记者在采访中了解到,类似情况实际上在很多高校都存在。 /p p   而费时费人费力的项目经费报销场景仅仅是表面的。一些高校和科研机构的基层科研人员反映,项目申请猫腻多、申报文书复杂、经费设计僵化等问题,才是“捆”住科研人员手脚的最大弊端。 /p p    strong 项目申请:没点“特殊手段”不行? /strong /p p   准备申请资料是科研项目申请的第一步,然而这项看似简单的基础工作却给基层科研人员带来了很多苦恼。吉林大学一位青年教师透露,申请一个省部级重大或产学研项目,从开始申请到结项,超过10项材料。 /p p   湖北一所高校教师王越峰(化名)说,申请一项国家级课题要填报教育部、省厅、学校、学院等几个部门的表格,包括工作汇报表、评估表、课题创新表等各种各样的表格。而填表的内容也十分复杂,包括仪器设备费用、交流费用、调研费用、材料费等预算。 /p p   “人文学科项目虽然少了一些科研仪器设备的预算,但是填表依然复杂,基本上一张表填下来都要上万字,而且很多问题都没有实际意义。”某高校新闻学专业教师夏洁(化名)说。 /p p   为了提高项目的中标率,有高校还办起了专门的申报指导培训班。北京某市属高校副教授华向峰(化名)表示,现在省部级、国家级项目申请人多,中标率有时不到两成,如果能有名家和业内人士指点,对项目方向等进行把握,成功率肯定会更高。 /p p   北京师范大学一位教授告诉记者,现在基层科研“僧多粥少”现象突出,为了完成项目课题和论文等重要的考核指标,一些人不得不使用“特殊手段”。“科研项目申请时裙带关系和人情非常重要。如果项目组里没有一些‘大咖’坐镇领衔,或者不认识评审专家,没有硬关系,项目基本申请不到。” /p p   strong  资金使用:咋就成了“头疼事”? /strong /p p   一些科研人员表示,费了九牛二虎之力拿到项目,只是更多纠结的开始。其中经费使用是最让人头疼的项目。 /p p   北京建筑大学一位青年教师表示,拿到项目后钱不好花已经成为大家面临的共性问题。“在写计划的时候就要把未来几年内所有花钱的计划都列好,一旦确定就不能更改,哪一项花多了就要自己补。” /p p   吉林某高校一位青年教师告诉记者,在此前做项目时他和同事曾遇到过这样的情况:其他经费先用完了,但是发论文的经费还没有用完,想申请对资金项目作出调整,又遭到了学校和项目管理方的踢皮球,最终只能自己搭钱完成项目。 /p p   武汉一所高校副教授王慧娟(化名)说,课题研究中总会碰到新问题,并不在最初的预算当中,基本上每个课题项目都会有20%的支出经费不能通过财务报销,迫不得已只能找其他途径填补漏洞。 /p p   山东省一家科研机构负责人王新(化名)说:“我们要买一个服务器,就要一级一级往上打报告,先给计算中心,再给科学院,再到省级政府采购中心统一采购,正常周期要半年甚至一年,耽误大量科研时间,完全等不起。”有高校教师表示,做项目时甚至连买一本书都要层层上报,往往等批下来了书也用不到了,并且稍有不慎,购书款便会因为“与项目无关”等原因而无法报销。 /p p   记者从中国传媒大学、吉林大学等部分高校了解到,在科研报销中,不仅排队麻烦、手续复杂,还要承受很多额外的压力:由于负责报销的财务人员一般不懂科研,稍有疑问就拒绝报销,甚至还有财务人员“认熟脸”“看心情”,给基层科研人员带来很多麻烦。 /p p   此外,一些项目经费还要被“雁过拔毛”。据了解,一般高校对于本校项目采取不提取或5%左右低比例提取,而一些高校和科研院所对于校内外合作项目等的管理费提取比例高达10%以上。北京某高校一位青年教师人员向记者抱怨:“本来一个5万元的项目,单位直接就划走1万元,极为‘简单粗暴’。” /p p    strong 行政的“手”:不该伸得太长 /strong /p p   采访中记者了解到,在当前的高校和科研机构管理体系中,从申报、审批,到考察、结项等各个环节中,行政的“手”伸得过长,“影子”几乎无处不在,对科研人员管理多、服务少,制度设计僵化,不利于基层科研顺利开展。 /p p   有高校科研人员建议,在建立起一套完善的科研监管和审计制度后,科研项目的审批应当结合实际情况处理。项目申报、结项审计等大的审批权力应保留在上级部门手中,而增购材料、设备等审批可留给基层科研单位自己处理,科研单位应当有一定的自主决定权,这样才能保证科研工作及时顺利地推进下去。 /p p   南开大学周恩来政府管理学院教授徐行表示,不管容易出毛病,但管理也要有度,留给科研必要的发展空间,为科研人员“减负”“松绑”。 /p p   天津市科委相关负责人表示,为了缓解目前基层科研趋于僵化、矫枉过正的问题,在加强审计的同时,也应该改革目前管理过死的审批方式,建议完善结项审计,弱化立项前预算严格结项审计,让科研活动得以顺畅进行。 /p p   一些基层科研人员建议,应该增加项目评审的透明度,建立透明、公开、专业的评审机制,严格避免把个人关系带入其中,同时提高监督管理效率,切实管好用好科研项目和经费。 /p
  • 规模更大,观众参与活动更多,2024华中科教装备展邀您樱花季赴约
    随着科技的发展,科教装备行业出现人工智能与数字化技术融合迅猛发展趋势。国际风云变幻,市场重洗,仪器国产化比例日益提高,数字化教育产业转型与调整,形成挑战与机遇并存局面!2024第十二届华中科教仪器与技术装备展览会(以下简称“2024华中科教装备展”)以“科教创新赋能产业”为主题、以市场为导向,以创新为动力,将于2024年3月26-28日在武汉中国光谷科技会展中心举办。上届展会已于2023年3月31日落下帷幕,交出答案:展出面积1万㎡,展商300家,专业观众近万人,5场论坛同期举办,共有近70所高校或采购单位大巴组团前来观摩采购,现场人气火爆。一、上届开幕式回顾2023年3月29日,由湖北省高等学校实验室工作研究会、湖北省预防医学会、湖北省教育信息化专委会、武汉贸促会、武汉风向标会展公司等联合举办的第十一届华中科教仪器与技术装备展览会在武汉中国光谷科技会展中心隆重开幕。出席领导华中科技大学党委常委、副书记 马建辉武汉市人民政府办公厅副主任 姚晴中国国际贸易促进委员会武汉市分会党组书记、会长 孙远松人民网湖北频道总编辑 荣先明武汉市科技局一级调研员 程乐学中国国际贸易促进委员会武汉市分会党组成员、秘书长 沈斌湖北省卫健委疾控处处长、湖北省预防医学会副会长兼秘书长 彭旭湖北省高等学校实验室工作研究会秘书长 李震彪武汉市商务局会展处处长、党支部负责人杨小琴湖北省机电工程学会会长 赵大兴湖北省3D打印产业技术创新战略联盟秘书长 周钢湖北省高等教育学会教育信息化与网络安全专委会主任 万维新武汉科技报 总经理 陈金枝湖北武汉无损检测学会副理事长 康宜华武汉市软件行业协会秘书长温晖武汉质量与认证认可协会副会长兼秘书长 刘翠群武汉东湖国家自主创新示范区生物医药行业协会秘书长 王作燕华中科技大学党委常委马建辉书记致辞中国国际贸易促进委员会武汉市分会孙远松会长致辞武汉市人民政府办公厅副主任 姚晴人民网湖北频道总编辑 荣先明武汉市科技局一级调研员程乐学中国国际贸易促进委员会武汉市分会党组成员、秘书长 沈斌湖北省卫健委疾控处处长、湖北省预防医学会副会长兼秘书长 彭旭湖北省高校实验室工作研究会秘书长 李震彪武汉市商务局会展处处长、党支部负责人杨小琴二、上届现场人气回顾上届展会主题为“科技创新 智慧教育”,A1馆展示科学仪器及生命科学/生物技术,A2馆展示科学仪器及实验室装备,A3馆展示教育装备/智慧校园。华中地区科教全产业链“一站式”采购平台。三、上届实验室仪器特装回顾四、上届智慧教育特装回顾五、上届参观团剪影六、上届论坛会议回顾2024华中科教装备展规模全新升级:A1馆展示科学仪器及生命科学/生物技术,A2-A3馆展示科学仪器及实验室装备,B1馆老师接待餐厅,B2馆展示教育装备/智慧校园,B3馆论坛区,展示规模面积较上届扩大25%,更多专业参观团、更多场次论坛将同期上演。2024华中科教装备展持续与湖北省高校实验室工作研究会联袂举办,并且新邀约湖北省智能科教研究会、湖北省环境科学学会、湖北省科技企业家协会、武汉仪器仪表学会、湖北省软件企业协会模拟仿真分会、咸宁市检验检测学会等权威机构联合举办,众人拾柴火焰高,在稳定高校参观基础上,将加大科研院所、卫生疾控、生产制造企业对口观众群体邀约力度。向高校、科研院所、企业研发,政府疾控、质检、食药品安全、环境监测等单位推荐最新科仪产品。目前,2024华中科教装备展招展启动两个月,已经预定60%面积,上届72% 展商已经报名或加大展示面积,显示良好势头。2024年3月樱花季,相约美丽江城。
  • 首批“上海千人计划”下月起申报 关注四层次人才
    日前,根据《上海市实施海外高层次人才引进计划的意见》 (沪委办发[2010]28号),市人才工作协调小组办公室等就开展第一批上海市海外高层次人才引进计划(简称“上海千人计划”)申报工作发布通知,旨在引进海外高层次创新和创业人才。   重点关注四类高层次人才   “上海千人计划”引进人才分创新和创业两大类。创新人才一般应在海外取得博士学位,创业人才一般应在海外获得学位。引进人才年龄不超过55周岁,应在本领域有较高的知名度,得到同 行专家认可,并符合下列条件之一:   (一)在国(境)外著名高等学校、科研院所、知名实验室担任相当于副教授及以上职务的专家学者   (二)在国际知名企业、金融机构、其他相关专业机构和国际组织中担任重要职务的专业技术人才和经营管理人才   (三)拥有自主知识产权或掌握核心技术,具有海外自主创业经验,熟悉相关产业发展和国际规则的创业人才   (四)推进“四个率先”、加快“四个中心”建设紧缺急需的,具有国际领先或国内一流专业水平的其他海外高层次人才。   引进人才申报条件要求高   根据通知,海外高层次创新人才具体分为重点实验室、重点创新项目、重点学科、重大工程重大项目、企业、金融、航运、文化八大类,每个大类各有相关分类标准。申报人需在2008年1月1日之后回国且与用人单位签订的正式工作合同或意向性工作合同时间需在2008年1月1日之后。若申报人每年回国工作时间少于9个月,需说明理由或提出过渡计划。   海外高层次创业人才需拥有自主知识产权和发明专利,且技术成果为国际先进或能填补国内空白,具有产业化开发潜力 需有海外创业经验或曾任国际知名企业中高层管理职位,熟悉相关领域(行业)国际规则,有较强的经营管理能力 为所在企业的主要创办人且为第一大股东 企业成立1年以上、5年以下,且拥有核心技术的产品已处于中试或产业化阶段 引进人才作为主要发起人,能够组建一个由专业技术人员、经营管理人员组成的创业团队 引进人才创办的企业符合上海产业优化发展方向,市场化前景广阔。   用人单位12月起可推荐上报   根据通知,12月起由各用人单位进行推荐上报。各类申报书及填写说明可登录 “千人计划”网站(www.1000plan.org)下载。   2011年1月起,九大评审平台将组织聘请若干名海内外领域 (行业)专家,对申报人选进行评审,提出推荐人选建议名单。   2011年2月至3月,上海市引进海外高层次人才工作专项办公室将聘请业内专家组成顾问评审组,对各平台上报的推荐人选进行综合审核,确定拟入选人员名单,报市引进海外高层次人才工作小组审批后正式发文确定入选人员名单。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制