当前位置: 仪器信息网 > 行业主题 > >

螺纹式温度传感器

仪器信息网螺纹式温度传感器专题为您提供2024年最新螺纹式温度传感器价格报价、厂家品牌的相关信息, 包括螺纹式温度传感器参数、型号等,不管是国产,还是进口品牌的螺纹式温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合螺纹式温度传感器相关的耗材配件、试剂标物,还有螺纹式温度传感器相关的最新资讯、资料,以及螺纹式温度传感器相关的解决方案。

螺纹式温度传感器相关的论坛

  • 内螺纹轮辐式称重传感器

    产品特点:TQ-1A内螺纹轮辐式称重传感器采用优质合金钢材质,表面镀镍防腐处理。具有高精度,高稳定性,低外形,安装简便、快速等特点。产品用途:TQ-1A内螺纹轮辐式称重传感器适用于汽车衡、试验机和大型料斗秤等。量程:5kN(500kg)、10 kN(1t)、20 kN(2t)、30 kN(3t)、50 kN(5t)、100 kN(10t)、200 kN(20t)、250 kN(25t)、300 kN(30t)、500 kN(50t)、600kN(60t)、1000 kN(100t)、1500 kN(150t)、2000 kN(200t)、3000kN(300t)、5000kN(500t)技术参数及外形尺寸:序号产品技术参数1额定载荷0.5-500t2综合精度0.05%F.S3灵敏度2.0mV/V±0.25%4蠕变±0.03%F.S/20min5零点输出±1%F.S6输入阻抗385±5Ω/775±20Ω7输出阻抗350±3Ω/700±5Ω8绝缘阻抗≥5000MΩ9推荐激励电压10V(DC)10适用温度范围-30~70℃11安全过载150%F.S12材质优质合金钢13接线方式红……E+(输入正)黑……E-(输入负)绿……S+(输出正)白……S-(输出负)型号量程(kN)DD1D2D3HH1TT1T2H2nTQ-1A5-751058932753734M16×1.57.510.57.28TQ-1A100-250120.6101.839834841M32×1.58.51410.58TQ-1A300-500141116.850.496.957.250.8M40×1.51118118TQ-1AT600153130701105851M40×1.510.517168TQ-1A600-1000200162761328370M60×213201816TQ-1A1500-200025021011017010090M80×317282016TQ-1A5000400343240286125120M150×418282016

  • 在线密度传感器

    FWT系列在线密度和浓度传感器可实时在线的进行密度(浓度)检测。也可以作为监测和密度相关的如:基本密度、波美度,°API、白利糖度以及浓度百分比、质量百分比、体积百分比、比重等参数的传感器使用。FWT在线密度和浓度传感器,它可以运用于以密度为基本参数产品的过程控制或者以固体百分比或浓度百分比为参照质量控制中。典型行业包括,石油化工行业,酿酒业,食品行业,制药行业和矿物加工(如粘土,碳酸盐、硅酸盐等),具体应用于以上行业中的多产品管道中的界面检测,搅拌混合物的密度检测,反应釜终点监测,离析器界面检测,应用于很宽范围的工作温度,工作压力以及流体粘度变化 FWT在线密度和浓度传感器采用法兰插入式安装和三通螺纹安装等形式,广泛适用于管路,开阔的罐体容器和封闭的罐体容器中的介质密度检测。传感器内置温度传感器为其提供温度补偿。具有简洁的工业在线安装方式,无须特殊安装. 适用多种流体。本产品不适用于:絮状溶液(如纸浆等)。 测量原理:传感器是根据元器件振动原理而设计,叉体被稳定在固有谐振频率上。当介质流经叉体时,因介质质量的改变,引起谐振频率的变化。根据谐振频率变化来判断被测液体的密度值。介质的密度的均方根与振动频率变化量符合线性关系 。技术参数测量参数密度/温度响应时间0.5S分辨率0.5CP测量范围精度电源输出联接方式被测流体运行环境maxDC24V或DC12V0.5A1型.频率2型,RS485温度压力粘度A型0.5- 2.5 g /cc2%FS螺纹M36*1580℃40bar1000cpB型2%FS100℃40bar20000cpC型2%FS法兰180℃40bar20000cp1.输 出: 1型: 频率信号500-2000HZ (高电平5V方波 ) 2型: RS485(MODBUS-RTU)(参数:频率值和温度2 材 料: 探头316L不锈钢;壳体304或316L不锈钢3探头联结: 螺纹联接(基本型)M36×1.5mm /标准法兰联接4.内置PT100温度传感器

  • HZD-A振动速度传感器

    HZD-A振动速度传感器也称磁电式振动速度传感器主要安装在各种旋转机械装置的轴承盖上(如汽轮机、压缩机、电机、风机和泵等),可测量振动速度或者振动幅度。它是由运动线圈切割磁力线产生的信号,因此工作时无需电源,安装、维护容易等特点。已广范用于热电厂、水泥厂、水泵厂、磨机设备、造纸厂、机械厂、风机厂、煤矿机械等。 HZD-A系列主要用来提前诊断旋转机械的故障或实验室完善产品提供改善依据,为企业预先做好维护的准备,减少事故隐患的发生,提高工作效率!2、HZD-A振动速度传感器主要技术指标 * 灵 敏 度: 50mv/mm/s±5% * 频率响应: 5~1000Hz * 自振频率: 10Hz ±1Hz * 可测振幅: ≤2000μm(PP) * 最大加速度:10g * 质 量:约350g * 安装方式:垂直或水平安装于被测振动源上 * 安装螺纹:M5/M10×1.5螺纹或磁吸座 * 使用环境:温度 -40℃~95℃ 、相对湿度≤90%

  • GC-MS柱温箱温度传感器缺失

    有没有小伙伴遇到这种情况呀,说是“柱温箱传感器缺失”,致电工程师说是柱温箱温度传感器坏掉了,需要购买新的温度传感器,有没有自己安装这个传感器的,介绍一下经验呗

  • 智能温度传感器的发展趋势

    智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。   能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化   目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计   传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。   为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。   LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。   为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。   最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器   虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器   网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统   单片系统(

  • 光电液位传感器工作原理及参考资料

    光电液位传感器工作原理及参考资料

    LLC廉价系列液位传感器提供单点液位检测,为大批量OEM客户特别设计传感器含有一个红外发射源和一个探测器,安装位置精确,以确保两者在空气中达到很好的光耦合。当传感器的锥形端浸入液体时,红外光会透射出锥形面,到达探测器的光强就会变弱。[align=center][img=,196,133]http://ng1.17img.cn/bbsfiles/images/2018/01/201801121556518991_8521_3345088_3.png!w196x133.jpg[/img][/align][b]低成本光电液位传感器LLC200A3SH特点:[/b](1)响应速度快,(2)10mA驱动电流,光电晶体管开关输出。(3)工作温度:-20~85度,M12螺纹。(4)引线为250mm 24AWG,8mm 镀锡等特性。[b]低成本光电液位传感器LLC200A3SH典型应用:[/b]温泉池,漏液检测,自动贩卖饮料机,食品与饮料机,医疗,压缩机,打印机,水泵,家用电器,油位监控,HVAC,机床,高低液位开关,水位控制,汽车电子。[b]低成本光电液位传感器LLC200A3SH电性参数:[/b]供电电压(Vs)任意供电电流10 mA 标称输出类型光电管 (数字)输出信号见下页工作温度25 ~ 80°C储存温度-30 °C ~ 85 °C[b]技术参考资料:[/b]

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 金属水箱检测液位怎么选择传感器?

    金属水箱检测液位怎么选择传感器?

    [size=18px][font='Microsoft YaHei', 微软雅黑, sans-serif]如果金属水箱需要液位检测怎么选择水位传感器呢?[/font]光电水位传感器[font=Microsoft YaHei, 微软雅黑, sans-serif]更适合金属容器。光电水位传感器采用光反射原理,其使用非常简单,将传感器安装在被检测的位置,然后通电检测液位。光电水位传感器可以上、下安装,也可以安装在侧面,斜面可以多方位安装,而且安装过程非常简单,传感器的直径可以沿螺纹拧紧,也可以用两颗螺丝固定。至于安装,我们需要注意一个问题。光电水位传感器需要在水箱上打孔。[/font][font='Microsoft YaHei', 微软雅黑, sans-serif]不仅光电水位传感器需要打孔,其他浮球水位传感器和电极水位传感器也需要打孔。非接触式电容式水位传感器不能用于金属容器。[/font][/size][align=center][img=,626,474]https://ng1.17img.cn/bbsfiles/images/2021/06/202106241402074572_2547_4008598_3.jpg!w626x474.jpg[/img][/align][size=18px][font='Microsoft YaHei', 微软雅黑, sans-serif]水位传感器安装在支架上。为什么光电水位传感器更适合金属水箱?由于光电式水位传感器采用光学原理,温度、腐蚀性、水箱容器材质、壁厚等因素不会影响其工作。液体的腐蚀性、粘度和小杂质会影响浮球式水位传感器的工作。[/font][/size][align=right][font='Microsoft YaHei', 微软雅黑, sans-serif][size=18px]——深圳市能点科技有限公司[/size][/font][/align]

  • FOT-L光纤温度传感器在生物医疗领域中的应用

    FOT-L光纤温度传感器在生物医疗领域中的应用

    医学临床及动物实验要求对温度进行精确快速的测量,尤其在肿瘤热疗中,温度传感器在对组织温度进行多点实时测量的同时还要消除传统温度计受电磁辐射干扰的问题。相比于传统温度传感器,光纤温度传感器以其良好的电绝缘性可以很好的应用于生物医疗领域。[img=,301,300]https://ng1.17img.cn/bbsfiles/images/2018/12/201812140942513236_2945_3332482_3.jpg!w301x300.jpg[/img]本文针对现有医用温度传感器的不足,根据光纤布拉格光栅(FBG)和长周期光纤光栅(LPFG)的理论,找到由工采网从加拿大进口的光纤温度传感器 - FOT-L-BA,这是一款非常适合在极端环境下测量温度的光纤温度传感器,这种极端环境包括低温、核环境、微波和高强度的RF等。都是完全不受EMI和RFI影响,同时,它们的尺寸小、针对危险环境内置安全装置、耐高温、耐腐蚀并且具备较高的精度。最后并对其传感特性进行了研究,具体工作如下:1、医用FBG温度传感器的研制及其特性研究 利用相位掩模板法在普通石英光纤和包层模抑制(CMS)光纤上刻制FBG,并进行了温度和弯曲特性的相关实验研究。实验发现,两种光纤刻制的FBG具有相似的温度灵敏度,分别为11.5pm/℃和10.6pm/℃,且具有良好的线性度,相关系数大于0.99。CMS光纤制备的FBG对弯曲曲率的敏感度较普通光纤制备的FBG低,更适用于人体温度的测量。2、医用FBG温度传感器的温敏式封装及其特性研究 根据温敏式封装的原理,选用热膨胀系数大、温变性质稳定的材料对FBG温度传感器进行了封装,在对FBG起到保护作用的同时,使其具有较高的温度灵敏度,较好的重复性、线性度和稳定性。首先用环氧树脂将FBG封装在聚四氟乙烯管中,虽然温度增敏效果明显,约为裸FBG的12倍,但其线性度不如裸FBG。为了不破坏裸FBG良好的线性度,使FBG在毛细套管中处于自由状态,在毛细套管两端点胶用来固定光纤光栅。分别使用毛细玻璃管,毛细钢管,聚四氟乙烯管作为基底材料,其温度灵敏度系数分别为8.7pm/℃,38pm/℃,23.4pm/℃,并且中心波长的漂移量与温度变化呈现良好的线性关系。为了避免粘胶剂对光纤光栅的影响,提出一种双管无胶封装方式,封装后的温度传感器具有更好的线性度,温度灵敏度系数为18.9pm/℃。实验结果表明,封装后的FBG温度传感器的灵敏度不仅与热膨胀系数有关,与封装材料的导热性也有密切的联系。3、LPFG温度传感器的研制及其传感特性的研究 用高频CO_2激光脉冲在普通石英光纤中写入LPFG。实验研究了LPFG的温度及弯曲特性。其温度灵敏度约为75pm/℃,约为裸FBG的7.5倍,并且呈现良好的线性度。其透射峰幅值对温度不敏感,但对弯曲曲率敏感。为了使其更适合于工程中的应用,提出了一种灌装酒精的封装方式。封装后出现两个明显的谐振峰。1508nm处的谐振峰随温度的升高发生蓝移,温度灵敏度为56.9pm/℃。1472nm处的谐振峰随温度的升高发生红移,温度灵敏度为531.2pm/℃,是裸LPFG的7倍,裸FBG的53倍。有效提高了长周期光纤光栅温度传感特性、避免外界其他因素的干扰。4、封装后的光纤光栅温度传感器在微波及超声波环境中测试将封装好的光纤光栅温度传感器分别放入微波环境及超声波环境中,并进行温度特性测试。实验表明,封装后的光纤光栅温度传感器不受微波及超声波的干扰,仍然保持原有的温度灵敏度,并且具有良好的线性度及稳定性。本项目研制的光纤光栅温度传感器分辨率达到0.02℃,并且具有抗微波、超声波、电磁干扰的优点,可以广泛应用于磁流体热疗、核磁共振等有电磁场、微波、超声波干扰的生物医疗领域。

  • 超声波大量程物/液位传感器

    MHZ(兆洲)牌超声波大量程物/液位传感器MH-A30A4是重庆兆洲科技发展有限公司在新的一年里, 最新专业制造的通用型超声波物/液位传感器,它博采众长,吸取了国内外多种物/液位传感器优点,实现了全数字化,人性化设计理念,具有完善的物/液位测控功能.数据传输功能和人机交流功能。主芯片采用进口工业级单片机,数字温度补偿和超宽电压输入稳压等数十块相关专用集成电路。具有抗干扰性强,可选择模拟量,开关量及RS485输出,方便的与相关设施接口。本机是ABS材料外壳,防护等级为IP65,它不必接触工业介质就能满足大部分物/液位测量要求,从而彻底地解决了压力式、电容式、浮子式等传统测量方式带来的缠绕、堵塞、泄露、介质腐蚀、维护不便等缺点。最大量程:30m 盲区:1m 指向角(Q)≈12°工作频率:20KHz~43.0KHz(因型号规格而不同)输出信号:4~20mA (其它方式可选)最大负载阻抗:300Ω最小显示分辨率:1mm 精度:±0.3%×最大量程工作温度:-10℃~60℃ 工作压力:常压外形尺寸:φ110x160mm 重量2.5kg工作电压:DC12—36V 功耗1.5W进线电缆: Φ5~10mm×5m方便的螺纹安装(M30×1.5)

  • 压力传感器原理_压力传感器怎么用

    [align=center]压力传感器跟压力变送器比较相似,但是它们在功能上也是有一些细微的差别的,当您在使用压力传感器的过程中需要提前对压力传感器的量程,精度,信号输出,电源,环境温度,介质,是否防爆,安装螺纹等特性做一定的了解,只有这样才能知道压力传感器的正确的使用方法。[/align]压力传感器实际上是一种输出电流为4-20 mA的传输方式。以下是OFweek Mall对压力传感器原理的描述。压力传感器将要测量的物理量转换为可读取和处理的另一物理量。在现代控制中,这个物理量是一个电信号 压力传感器的主电信号转换为标准电信号。例如电流信号4--20mA,0-20mA,电压信号0-10V,1--5V。压力传感器是一种产生毫伏信号变化的压力诱导应变。如果传感器已经具有输出标准电流或电压信号的放大和整形电路,则这样的传感器也可以被称为压力传感器;压力传感器的名称与先前输出毫伏信号的压力传感器相比,大多数现代压力传感器都直接输出标准信号。因此,可以合并压力传感器和压力变送器。看到这里,相信大家对压力传感器(压力变送器)有了新的认识,这是选择不可或缺的参数,例如:1,测量介质2,输出信号3,压力测量范围(量程)4,安装方法5,准确性要求6,工作温度根据上述要求,相信压力传感器(压力变送器)的选择将是清晰明了的。压力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器丨[url=http://mall.ofweek.com/2071.html]压力传感器[/url]丨电流传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 温度传感器的标定方法

    温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。  由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。  由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。  温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。

  • 微差压传感器的特点及应用

    微差压传感器又可称为风压差传感器、气压差传感器、管道风压差传感器、室内气风压差传感器等。其中微差压传感器的核心部件是一个电容式压力敏感元件,由不锈钢膜片与固定电极构成一个电容,其值随压力变化而变。微压差传感器具有零点、满度可调、精度高、温漂小、抗干扰能力强、稳定可靠、价廉物美等特点。 微差压传感器采用进口差压集成感差芯片,电路部分的关键元器件选用国际著名品牌的元器件,全封闭式电路,具有防潮、防结露、防渗漏、防雷功能。微差压传感器外壳为铝合金或有锈钢两种结构,两个压力接口为螺纹或旋塞结构,可直接安装在测量管道上或通过引压管连接。非常狭窄的微流体通路降低了流进气体的流速,极低的气体流速保证了微压差传感器连接管路和滤器后不必重新校正。 微差压传感器可用于测量炉内压等微小差压,然后转变成4~20mA DC信号输出,以及有气压要求的实验室、消防工程用的室内气压力控制领域。微差压传感器广泛应用于锅炉送风、井下通风、中央空调、风管风力、楼宇自控等电力、煤炭行业压力过程等领域。

  • 光电水位传感器代替浮球式水位传感器其作用是什么?

    浮球式传感器是利用水位变化带动浮球,从而浮球内部磁铁都带动内部干簧管开/关实现缺水保护开关,运作十分简单。但又因为其工作原理十分落后的原因,因此极易出现不良现象,如浮子卡死、寿命短等。因为浮球式传感器可靠性极低的原因,目前大多数厂家逐渐用光电式、电容式等水位传感器代替此类传感器来检测液位,而光电式传感器作为可靠性极高、精度高的水位传感器,应用十分广泛。那么由原本的浮球式传感器更换成光电式传感器,有什么优点呢?光电水位传感器是利用光学原理来检测液位,因此对被测液体影响小,受外界因素影响小,也因此具有耐高温、耐高压、耐腐蚀等特点。举个例子,如果一款电蒸锅是原本是用浮球式水位传感器,那么在使用一段时间后会出现水垢问题,而其结构又是不放方便清洗的。由水垢导致的浮球增重又会影响到其精度,而浮球式水位传感器原本的精度就比较低,这对于需要液位控制要求十分精确的电器设备就产生了极大的限制。通常浮球式传感器会有上下3mm的公差,那么当浮球精度受影响时,则有可能精度更低,那么会有可能在电蒸锅内部的水箱还有水时给出信号报警提示,这对于用户使用体验来说是会有负面影响的。除了精度、可靠性外,安装也是一个问题。浮球式传感器安装十分不方便,只能从水箱内部往外安装,若水箱体积很小,或者结构不允许,那就无法采用浮球式水位传感器,大大的局限了产品。且因为其结构松散,因此所占空间大。其安装工艺复杂又增加了安装成本。但如果将电蒸锅水位控制的浮球式传感器换成了光电式传感器,则极易安装,体积小,头部只需外旋螺纹拧进去即可,或是采用螺丝固定,或者从内部直接朝外拧,多种安装方式选择,十分方便,安装时间快。除了安装工艺简单外,光电式水位传感器还可以上、下、侧、斜向等多方位安装。光电式水位传感器精度高,可控制在±1mm以内,且不受水垢、杂物等影响。与浮球式传感器会受水垢影响,遇到杂物会被卡死不同,光电式水位传感器针对杂物、水垢都不会影响的,针对此类情况都有方案可以解决。而关于水垢问题,传感器只有头部小部分面积接触液体(下图),而这部分是属于光顺的采购材料,因此极易清洗,且只需头部材料符合食品级,即可用在电蒸锅等视频机械中。若是水箱需要移动,如咖啡机的水箱需要拿出清洗、加湿器的水箱需要拿出加液,那么则采用分离式光电水位传感器即可。则水箱与传感器即可分离,这是浮球式水位传感器无法做到的。[img=,651,]https://uploader.shimo.im/f/UaF0gam8DdZQzcFS.png!thumbnail[/img]光电式水位传感器还有分离式的多点水位传感器(一个传感器可以检测多个液位点),还有一体式的多点水位传感器,应用是十分广泛的。由此可见使用光电式传感器对比浮球式传感器更由具有优势。[align=right][/align]

  • 一体式风向传感器

    一、概述: TX系列风向传感器,外型小巧轻便,便于携带和组装,三杯设计理念可以有效获得外部环境信息,壳体采用优质铝合金型材,外部进行电镀喷塑处理,具有良好的防腐、防侵蚀等特点,能够保证仪器长期使用无锈琢现象,同时配合内部顺滑的轴承系统,确保了信息采集的精确性。被广泛应用于温室、环境保护、气象站、船舶、 码头、养殖等环境的风速测量。二、功能及特点:风向传感器采用铝合金材料,使用特种模具精密压铸工艺,尺寸公差甚小表面精度甚高,内部电路均经过防护处理,整个传感器具有很高的强度、耐候性、防腐蚀和防水性。电缆接插件为军工插头,具有良好的防腐、防侵蚀性能,能够保证仪器长期使用,同时配合内部进口轴承系统,确保了风速采集的精确性。电路PCB采用军工级A级材料,确保了参数的稳定和电气性能的品质;电子元件均采用进口工业级芯片,使得整体具有极可靠的抗电磁干扰能力,能保证主机在-20℃~60℃,湿度10%─95%范围内均能正常工作。风向传感器体积小巧,法兰盘底座,携带、安装方便快捷、外观精美,测量精度高,量程宽,稳定性能好,低功耗,数据信息性度好,信号传输距离长,抗外界干扰能力强,信号输出形式多样,铝合金材料质量轻,强度高。三、产品安装方式介绍采用法兰安装,螺纹法兰连接使风向传感器下部管件牢牢固定在法兰盘上,底盘Φ65mm,在Φ50mm的圆周上开四个均Φ6mm的安装孔,使用螺栓将其紧紧固定在支架上,使整套仪器保持在最佳水平度,保证风向数据的准确性,法兰连接使用方便,能够承受较大的压力。名称内部线外部线电源棕色棕色地黑色黑色信号蓝色蓝色四、技术参数展示测量范围: 8个方向/360度角使用场所: 室外防水类型: 防水 ▲ 输出信号 输出信号:电压0到5V 输出信号:电流4到20MA输入电压: 12 V DC五、输出方式两线制4-20MA电流三线制4-20MA电流0-5v电压0-10V电压RS485ZIGBEE无线RF无线GPRS无线光纤以太网WIFI网络继电器控制、报警信号

  • 不同的水位传感器有什么特点?

    水位传感器的主要功能为侦测水位,部分类型还可以达到自动加水等功能。水位传感器的范围很广,不同类型的水位传感器适合不同的领域。也有不了解的朋友会有疑问,哪一类的水位传感器比较好呢?那么下面我们来对各类水位传感器做一个简单的介绍。[b]超声波水位传感器:[/b]超声波水位传感器重量轻,检测精度高,非接触式的检测,更加卫生。具有安全、寿命长、可靠性高的特点。且受液体的粘度、密度等而影响精度比较低具有较强的抗干扰性,适用环境广,安装方式多样(如螺纹/法兰、固定孔/支架)超声波式水位传感器易有盲区,盲区内则检测不到液体或物体。超声波水位传感器下面不易有障碍物,以及有粉尘、水雾、易产生大量泡沫的液体,或者液体易挥发的情况下不适合超声波水位传感器。容易导致测量误差、信号丢失、精度下降等等。超声波式传感器价格较贵。[b]电极式水位传感器:[/b]电极式水位传感器结构简单,价格低廉,电极式传感器是直接利用水的电阻检测水位,这种传感器一般以不锈金属,或导电硅橡胶作为导电体,其封装工艺的优劣直接关系到产品的质量。电极式水位传感器在使用时间长久后会产生电解,产生的电解物质是有毒的,会影响人体健康。[b]浮球式水位传感器:[/b]浮球式水位传感器价格便宜,但工作原理和采集方法都是传感技术中较原始、落后的部分,所以可靠性低,稳定性差。极易出现浮子卡死无法动作的现象。浮球式水位传感器检测精度低,且因其结构设计原因,容易产生污垢,不易清洗。[b]电容式[url=http://www.eptsz.com/Products.aspx][color=#000000]水位传感器[/color][/url]:[/b]电容式水位传感器可以贴在容器壁外即可检测,具有卫生、易清洁的特点。且可以检测各类高粘度、有杂质等液体,可测量液体多样。缺点是电容式水位传感器对容器壁厚有要求,容器壁过厚的则无法用电容式水位传感器检测。且电容式水位传感器不能检测金属材料的容器,比如不锈钢材料的水箱等。[b]光电式水位传感器:[/b]体积小,安装工艺简单,能适应各种复杂环境,如高粘度、有腐蚀性。精测精度高,且稳定性强,维护简单。还可以多方位安装。食品级的光电水位传感器可用于医疗、食品工业设备,卫生、清洁方便。其实没有那种水位传感器是最好的,毕竟没有任何一样产品是十全十美的。即使同是用来侦测水位,也有电器、液体、液体环境(如温度、黏稠度)等的区别。所以不同的环境有最合适的水位传感器。

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 基于温度传感器的新型多点测温系统设计

    1、温度传感器DS18B20介绍    DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。    DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。    2、系统硬件结构    系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。    系统各模块分析如下:    2.1DS18B20与单片机的接口电路    DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。    2.2键盘及显示    键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。    2.3报警电路    当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。    3、软件设计及流程    3.1下位机软件    系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。    3.2上位机软件    系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。    4、结论    本系统具有如下特点:    a.结构简单,成本低廉,维护方便。    b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。    c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。    d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。    e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。

  • 【资料】在线监测润滑油含水传感器

    【资料】在线监测润滑油含水传感器

    FWD-1在线监测润滑油含水传感器油液的污染形式通常是金属磨粒、氧化物、油泥、结碳、水分、沉淀物、燃油以及氢、氯、热、电、空气等造成的污染。油液污染后其物理或化学性能都会发生变化,根据同牌号新油与在用油的介电常数的变化,便可综合测定在用油的总体污染程度和质量。由于水的介电常数与油相比差别较大,当润滑油中混入水时 微量的水就会引起混合油液介电常数的明显改变。将不同含水率的润滑油混合液和纯润滑油的介电常数进行比较, 再通过电路信号处理,便可得到润滑油含水率数值。本传感器采用的是综合介电常数法测量方法,在线检测各种工作机械的液压、润滑系统介质的含水率,广泛应用于外部水容易渗入机械内部的轧钢机、造纸机、汽轮机、船舶机械等领域。主要应用包括监视循环油系统是否存在泄漏,如水冷却器等; 监视工作机械的密封元件是否损坏,引起外部水渗入;监视环境空气湿度对润滑液压系统油品品质和含水率的影响,从而精确测定润滑油质量,预测设备故障,是设备润滑油管理中的关键部件。本传感器采用螺纹连接,体积小,重量轻,结构可靠,测量精度高,工作稳定,具有较强的抗电磁干扰性能。封闭型不锈钢&黄铜制外壳具有很好的防水防尘性能。可直接安装于工厂现场液压润滑管道上。是理想的在线水分检测传感器。该传感器还可与控制室中的二次仪表或控制器相连,在线、连续、实时的检测各种低水分油品的含水率。直接显示,远程控制和报警。实现数据存储,积算、传输和控制功能。普遍应用于大中型机械联动机组的液压、润滑循环系统例如:高线轧机和板带轧机润滑油系统、板带轧机和棒线轧机液压传动系统、汽轮发电机组润滑系统、造纸机组润滑系统、船舶机械润滑系统、燃料油库。技术参数测量参数: 介电常数 (总体污染度) 输入电压: 直流5V 0.5 A输出信号: 直流电压 0—5V含水量: 0.05% - 15%WT 分 辨 率 0.05%响应时间: 小于2秒储存温度: -40℃-120℃,工作温度: -30℃-120℃,联结螺纹: M22×1.5mm http://ng1.17img.cn/bbsfiles/images/2011/04/201104160840_289142_1826493_3.jpg

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 离子源温度传感器出问题

    仪器:安捷伦5975出现问题:CI源,当温度设定为150℃时,可以很快达到,并稳定下来;但是把离子源温度调为300℃时,稳定了4个小时都没有达到,温度显示一直在200-N/A波动。是温度传感器出现问题了吗?离子源温度稳定不了,调谐无法进行 ,如何解决呢?请各位帮帮忙啦~

  • 新型温度传感器的研究与发展

    温度是一个基本的物理现象,它是生产过程中应用最普通、最重要的工艺参数,无论是工农业生产,还是科学研究和国防现代化,都离不开温度测量及温度传感器。它是现代测试和工业过程控制中应用频率最高的传感器之一。然而,温度的准确测量并非轻而易举,即使有了准确度很高的温度传感器,但是,如果测量方法选择不当或者测量的环境不能满足要求,则都难以得到预期的结果。  温度测量的最新进展  当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。  光纤温度传感器  光导纤维(简称光纤)自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明它具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视。光纤传感器是一种将被测量的状态转变为可测的光信号的装置。它是由光耦合器、传输光纤及光电转换器等三部分组成。目前已有用来测量压力、位移、应变、液面、角速度、线速度、温度、磁场、电流、电压等物理量的光纤传感器问世,解决了传统方式难以解决的测量技术问题。据统计,目前约有百余种不同形式的光纤传感器,用于不同领域进行检测。可以预料,在新技术革命的浪潮中,光纤传感器必将得到广泛的应用,并发挥出更多的作用。  特种测温热敏电缆  热电偶是传统的温度传感器,用途非常广泛。近年来,又发展出了一种新的测温技术,能在火灾事故预警中有独特的应用。这种新型温度传感器称为特种测温热敏电缆,又被称为连续热电偶ConTInuous Thermocouple)或寻热式热电偶(Heating Seeking Thermocouple)。  热敏电缆利用电偶热电效应,但测量的不是偶头部的温度,而是沿热电极长度上最高温度点的温度。由于这种独特功能,最初被发达国家作为高精技术设备铺设在航空母舰、驱逐舰的舰舱以及军用飞机等军事设备中。目前,已被广泛应用到各个领域来预防和减少因“过热”引起的事故和损失。  热敏电缆的主要性能  目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。  材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。  外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。  工作温度 FTLD为-40~200℃,CTTC为-40~899℃。 石英温度计  分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。  弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。   随着生产及科学技术的发展,各部门对温度测量与控制的要求越来越高,尤其对高精度、高分辨率温度传感器的需求越来越强烈,普通的传感器难以满足要求。  石英温度计的特性  高分辨率分辨率达0.001~0.0001℃。  高精度在-50℃~120℃范围内,精度为±0.05℃。普通温度计的精度为±0.1℃。  误差小热滞后误差小,响应时间为1s,可以忽略。  性能稳定它是频率输出型传感器,故不受放大器漂移和电源波动的影响,即使将传感器远距离(如1500m)设置也不受影响,但是抗强冲击性能较差。  石英温度计的应用  石英温度计既可用于高精度、高分辨率的温度测量,又可作为标准温度计进行量值传递,也可以在现场稳态温度场合下进行精密测温或用于恒温槽的精密控温,还可用作远距离多点温度测量等。[/

  • FOT-L光纤温度传感器在食品工业温度测量中的应用

    FOT-L光纤温度传感器在食品工业温度测量中的应用

    国民经济的持续快速发展和城市化水平的提高,给中国的食品工业发展创造了巨大的需求空间,食品消费总量将不断增加,商品性消费日益取代自给型消费,工业化食品比重逐步增长,并为食品工业发展提供了巨大的市场空间。在食品工业中,工艺流程自动化程度越来越高,比如自动化技术在包装生产线中已占50%以上,大量使用了电脑设计和机电一体化控制,目的是提高生产率,提高设备的柔性和灵活性。传感器作为自动化系统的关键核心,也已经大量应用在食品工业中。[img=,535,359]https://ng1.17img.cn/bbsfiles/images/2018/12/201812040940078010_3529_3332482_3.jpg!w535x359.jpg[/img]FISO微波辅助化学和微波食品解决方案摘要:目前在食品工业领域中涉及新产品开发、食品包装、微波食品加工、、MW 食品测试、 MW 烤炉设计和测试、新材料研究、MW 和RF 相关应用等,而在研究开发过程中对重要参数—— 温度及压力的测量一直是个难题,具调查了解国内现阶段大都采用热电偶或红外测温仪测量温度,由于热电偶容易受电磁、微波、射频等干扰,所以不能实现时实测量,采集的温度数据可用性不高,而红外测量虽然能时实测量,但是它是非接触测量受很多因素干扰(特别是水蒸汽),而且测量精度也不满足研究要求,所以两种方法都不能很好的解决温度测量问题,给研究工作带来很多不便。 加拿大FISO公司的光纤传感器很好地解决了温度及压力测量问题,FISO传感器完全抗电磁、 微波、射频等干扰,多通道在线时实监测微波中食物内、外各个部位温度差异与变化,给研究食物在不同温度下的成分及含量提供可靠准确的数据,同时通过RS232与计算机连接由软件控制可 以很直观地观察温度、压力曲线变化。 光纤测试系统的构成: 加拿大FISO公司的光纤测试系统主要由探头、光纤延长线、信号解调器、附件四部分构成。原理:1.F-P原理:采用法布利-比罗特(Fabry - Perot)腔为感应物理参量的器件,对温度、压力、应变、位移等物理参量进行测试,通过光纤把相关的测试信号传输出去,与信号解调器相连采用工业标准的“SC”连接头。温度光纤传感器:[img=,301,300]https://ng1.17img.cn/bbsfiles/images/2018/12/201812040940225936_8428_3332482_3.jpg!w301x300.jpg[/img]FISO光纤传感器采用干涉原理,非常适合在食品工业环境和电介质传感器无法工作的环境。FISO传感器与其相应的信号调理器可以组成一个完整的光纤传感系统。干涉测量传感器(FPI)一般由两面相对的镜子组成,分割两面镜子的空间称为空腔(或空洞)长度。反射到FPI中的光是经波长调制的,并与空腔长度完全相同。由精确设计的FPI将应变、温度、位移或压力转变成空腔长度的函数。FISO传感器的原理是:当光束到达光纤尽头后进入一契形介质,在上下表面产生反射,进而导致光的干涉。反射发生的位置不同,相应的光程差亦不同。当契形介质的横向移动表明位移变化的时候,此位移变化将被FP腔探知并转化为。由于FISO传感器完全抗电磁、微波和射频等干扰,多通道在线实时检测微波中的食物内各个温度的差异与变化,给研究食物在不同温度下的水分及含量提供了可靠准确的数据。这里主推工采网从加拿大进口的光纤温度传感器 - FOT-L-BA/SD,这是一款非常适合在极端环境下测量温度的光纤温度传感器,这种极端环境包括低温、核环境、微波和高强度的RF等。FOT-L集所有您期望从理想传感器器身获取的优良特性于一体。因此,即使在极端温度和不利的环境下,这类传感器依然能够提供高精度和可靠的温度测量。

  • 【转帖】线性温度传感器使用指南

    1.什么是线性NTC温度传感器?   线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通以工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。 2.线性NTC温度传感器的主要特点是什么?   这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。 3.线性NTC温度传感器的测温范围是如何规定的?   就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路的温度补偿之用。 4.延长线的选用应遵循什么原则?   一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。 5.基准电压的含义是什么?   基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。其计算公式为:V(T)=V(0)+S×T示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。这一点正是线性温度传感器优于其它温度传感器的可贵之处。 6.温度系数S的含义是什么?    温度系数S是指在规定的工作条件下,传感器的输出电压值的变化与温度变化的比值,即温度每变化1℃传感器的输出电压变化之值: S=△V/△T(mV/℃)。温度系数是线性温度传感器做为温度测量元件的物理基础,其作用与热敏电阻的B值相似,这个参数在整个工作温度范围内是同一值,即-2mV/℃,而且各种型号的传感器也是同一值,这一点传统的热敏电阻温度传感器是无可比拟的。 7.互换精度这一参数有什么意义?   互换精度是指在同一工作条件下(同一工作电流、同一温场)对于同一个确定的理想拟合直线,每一只传感器的电压V(T)—温度T曲线与该直线的最大偏差,这个偏差通常按传感器的温度—电压转换系数S折合成温度来表示。由于传感器的输出线性化及温度—电压转换系数相同,即在测温范围内全程互换,所以互换精度表示了基准电压值的离散程度,即用基准电压值的离散值折合成温度值的大小来描述整批传感器之间的互换程度。一般分为三级:I级的互换偏差不大于0.3℃;J级不大于0.5℃;K级不大于1.0℃。 8.线性度的意义是什么?   线性度是描述传感器的输出电压值随温度变化的线性程度,实际上也就是传感器输出电压在工作温度范围内相对于理想拟合直线的最大偏差。一般情况下,其线性度的典型值为±0.5%,很显然传感器的线性度越高(其值越小),对于仪表的设计就越简单,在仪表的输入级完全不必采用线性化处理。 9.为什么说线性温度传感器是规范化输出?   所谓规范化输出,就是在0℃温度点上传感器在规定的工作条件下,输出的电压值仅限于某一小范围内,即使不互换,其基准电压值仅限定在690-710mV之间,这样在电路设计时,易于在宏观上把握传感器的输出情况,不论在桥路设计还是温度补偿,只要在690-710mV之间考虑,在调试中稍加调整即可。而不象普通的热敏电阻由于型号不同,其阻值也不同,针对不同的型号,需进行不同的设计计算。所以线性温度传感器的规范化输出,可以使仪表电路实现规范化设计。 10.用户如何检验线性温度传感器?   用户在购买传感器后,可在恒流的条件下,依温区的大小,采用两点或三点测试,以检验互换精度、线性度和温度系数。一般情况下,最简单的检验方法只要检验基准电压值即可。而所有电气参数,在交货时均有随货参数表(合格证),以提供该批传感器的详细参数指标。对测试条件有如下要求:恒流源:100μA±0.5%;恒温温场:波动度:≤±0.05℃;测试仪表:41/2或51/2数字电压表。 11.实际使用温度传感器是否一定要采用恒流源供电?   一般情况下是不必要的,桥路恒压供电完全可以(参见图1、图2)。这是因为在100μA左右的电流条件下,传感器的温度—电压转换系数变化量很小,可以给一个实测数量级的概念:在100μA时 S=-2mV/℃在40μA 时 S=-2.1mV/℃在1000μA时S=-1.9mV/℃而在实际的桥路恒压供电时,其电流变化不会有如此大的幅度。恒压供电时,传感器负载电阻值如何确定?   恒压供电时,负载电阻接在电源与传感器正极之间,信号从传感器正极与负极之间输出,设计电阻值R时,以在0C时使传感器工作电流为100μA即可。如传感器的基准电压为V(0)(mV),恒压源为VDD(mV),则R=(VDD-V(0))(mV)/0.1(mA)。对于计算出的电阻值R,如果实际的电阻没有这种阻值,可就近阻值选用,对测温精度没有影响。 12.线性温度补偿元件做为电路温度补偿有什么优越性?   这主要考虑热敏元件的输出规范化及温度系数的一致性,便于设计。另外,由于温度系数与晶体管电路中的晶体管基、射极电压的温度系数相同,做为稳定晶体管电路的工作点的基极偏流元件是非常合适的。而将几只元件串联使用,可以通过并联电位器方式,通过电位器的调节出不同的温度系数,以实现精确的温度补偿作用(参见图3)。这种温度系数可调的补偿元件,无须繁杂设计,对元件的工作电流也无严格要求,这也是这种线性热敏元件用于温度补偿的一大优点。 13.稳定性的含义是什么?   稳定性是指传感器的基准电压值年漂移量,这个漂移量再按温度—电压转换系数折合成温度值,即稳定性=±△V/S/年。线性温度传感器的稳定性为±0.05℃/年。这一参数描述了传感器在各种使用条件下保持原有特性的能力。 14.长线传输对传感器信号是否有影响?   应当说影响不大,一般情况下传输距离可达1000米以上。如果距离再远,可以考虑将传感器输出的信号在当地转换成数字量,这样可以方便地实现更远距离的传输。

  • 【原创】在线润滑油品质检测传感器

    电阻抗分析法(EIS)是近年来出现的一种新型测量方法,可对液压油、润滑油的品质和含水量进行检测分析。本传感器可以在线准确测定润滑油的污染程度,包括氧化程度、含水量和其它机械化学杂质污染度,从而精确测定润滑油质量,判定是否需要更换润滑油,即可节约油料,又能预测设备故障,是设备润滑管理中改变传统的按期换油,实现按质换油的关键部件。传感器采用螺纹连接,体积小,重量轻,结构可靠,可普遍应用于各类大型动力机械,轴承,齿轮箱,泵机和汽轮机的润滑油质量的实时监测中。 设备状态监测和故障诊断的重要组成部分; 正确确定润滑油的使用期限,节约资源; 正确制定设备维修周期,延长设备使用寿命; 正确规定设备的磨合规范,有效缩短磨合期技术参数测量参数: 电阻抗 (总体污染度) 输入电压: 直流5V 1.0A输出信号: 直流电压 0—5V响应时间: 小于2秒储存温度: -40℃-120℃,工作温度: -30℃-120℃,联结螺纹: M22×1.5mm [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=180256]FWD-1产品宣传页.doc[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=180262]FWD-1产品宣传页.doc[/url]

  • 螺纹及轮廓综合测量机测量螺纹环塞规的应用

    [b][color=#3366ff]SJ5300螺纹及轮廓综合测量机[/color][/b]为全自动测量,操作者只需装好被测螺纹,在检测软件上选择被测螺纹的标准和输入被测螺纹的规格、检测量程等参数后,点击“开始”按钮,系统立即进行全自动检测,系统可以实时显示螺纹轮廓的牙型曲线图,自动计算出大径、中径、小径、螺距、牙型角等各项螺纹参数,并根据系统内置的螺纹标准数据库对被测件螺纹的各项参数进行合格判定,整个测量过程不超过2分钟,检测结束后自动生成测量结果。[align=center][img=,690,466]http://ng1.17img.cn/bbsfiles/images/2017/05/201705021640_01_3712_3.jpg[/img][/align]  轮廓扫描功能模块同样为全自动测量,在轮廓扫描模式下,操作者只需选择扫描范围,装好被测零件,点击“开始”按钮,系统立即进行全自动检测,系统可以实时显示扫描轮廓的曲线图,通过计算,用户可以获得轮廓的尺寸、形位公差等参数的结果。用户完成所有参数的评定后,即可进行测量报告打印。系统带有数据库,所有评定参数都可以保存。1、 全自动检测螺纹综合参数测量中无需人工干预和计算,2分钟内即可完成所有被测参数的扫描测量,并显示所有测量结果,自动生成检测报告,大大简化了操作人员的工作强度,提高了测量效率和测量质量与精度。1) 客户选好螺纹类型、输入相关检测信息,点击“开始”后,计算机自动控制高精度伺服电机精确驱动测针与被测螺纹接触扫描,不需人工干预。 2) 高精度光栅测量系统自动记录扫描过程中的坐标变化,由计算机自动计算螺纹相关参数,自动形成分析图表。3) 检测软件自动生成检测报告。[align=center][img=,348,348]http://ng1.17img.cn/bbsfiles/images/2017/05/201705021641_01_3712_3.jpg[/img][/align]2、 单项、双向扫描轮廓功能能对物体的轮廓、二维尺寸、二维位移进行测试与检验,直接描绘出表面轮廓曲线的形状,对测量得到的零件轮廓形状数据可进行尺寸、形位公差等参数计算,测量速度快、结果可靠、操作方便。一机二用,大幅提高了仪器的性价比。3、 高精度、高稳定性、高重复性采用六大技术措施,保证仪器的高精度、高稳定性、高重复性。1) 领先的高速多路、高精度细分光栅系统:引进国际领先的高精度光栅测量系统,采用2000倍数字化细分算法和FPGA高速并行采样,实现分辨力达到0.01um和同时高速采样、处理多路光栅,完全满足被测件测量精度要求。同时设计非接触式光栅采集系统,彻底消除连接和传动带来的误差,精度更高,系统更灵敏、更可靠。2) 精确测力控制系统:精确控制的测力调节系统,实现扫描针对螺纹轮廓稳定、可靠的接触扫描测量,降低测力变化引起的测量误差。测力仅同类仪器的一半,甚至四分之一,提高了扫描针的耐用性(寿命超过1万多次),避免量规划伤。3) 高精度气浮导轨系统:掌握无磨损、超低摩擦力的高精度气浮导轨系统的核心制造工艺,保证导轨稳定、可靠地工作。4) 关键部件的特殊制作:进口特殊材料制作的高刚性、无变形测杆和刚性强、耐磨性好的扫描针,保证螺纹数据的真实采集。5) 精巧平衡臂技术:消除导轨的摆动,保证扫描时坐标系统的正交稳定性,奠定高精度测量的基础。6) 精密机械设计经验及加工、装配能力:公司拥有10多年的精密仪器设计制造经验,以及一批有丰富精密仪器设计制造经验的研发工程师和一批熟练的精密加工、装配技师,同时配有先进的检测、加工设备,保证制造工艺精良,进一步保证高精度、高稳定性。4、 SmartTouch智能扫描技术(专利一)  通过实时测力控制装置和智能测力传感装置有效解决测针磨损、大坡度螺纹不能直接扫描等问题。实时测力控制装置实现实时测力0.1~10gf可调,实现测力的精确控制。智能测力传感装置精度达到0.1gf,可以有效地保护测针。采用SmartTouch智能探针技术达到的突破性效果是:1) 突破性实现大幅提升爬坡能力。新型仪器测力只需3gf(甚至更小,1~2gf),即还不到一代仪器的一半,是进口仪器的四分之一(IAC仪器14gf)。通过微小测力,精细测力控制,实现扫描上坡85°,下坡87°。该新型技术是实现梯形螺纹、偏梯形螺纹、锯齿形螺纹等螺纹精确测量的基础,是一次突破性实现。2) 真正恒力扫描。实现保持任意位置、任意斜面为相同接触力,提高测量精度。3) 高效解决针尖磨损。实现实时监测测针受力,有效保护测针,突破性解决针尖磨损问题,测针基本不磨损。通过实时监测测力,设计智能障碍规避能力,更有效保护测针。4) 智能变速扫描。根据不同牙型,采取智能变速扫描,实现任意表面上的数据分布均匀,使分析算法更可靠。5、 简便、人性化设计螺纹装夹方便快捷,无需复杂调整过程,无需记录数据,仪器操作界面友好,操作者几分钟内即可基本掌握仪器操作,使用十分简便。1) 10多年积累的实用计量检测软件设计经验,向客户提供简洁、实用、快速的操作体验。2) 集成众多螺纹标准、规程,功能强大、自动处理数据、打印各种格式的检测报告,自动显示、打印、保存、查询测量记录。3) 测量范围广,可满足绝大多数螺纹类型的综合参数测量。4) 纯中文操作软件系统,更好的为国内用户服务。5) 打印格式正规、美观。测量数据可存档,或集中打印,不占用检测操作时间。6) 本仪器采用计算机大容量数据库储存,可自动记录保存所有测量结果。

  • 【原创】温度压强传感器出故障了

    10月份我们实验室的微波消解仪的温度压强传感器由于我们使用不当导致温度传感器异常,之后拿去供货商那里校准可以用了,之前的问题是1号罐的外管温度比内管温度高,现在温度是正常的,但是压强升不上去,直接导致温度升不上去,但是温度传感器是正常的,所以现在很郁闷啊,只有把温度压强传感器寄到总部请求帮忙,所以大家以后使用温度压强传感器的时候一定要小心使用,以免出现故障

  • 红外测温仪里的红外线温度传感器仪器对温度环境有影响吗?

    红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。  我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。  在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为:  ΔT=ΔL/L(α1-α2)  其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。  红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。  由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。  从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。

  • 花制冰机的温度传感器的作用及温控原理

    制冰机是一种将水通过蒸发器由制冷系统冷却后生成冰的制冷机仪器。雪花制冰机的温度传感器有三个,分别设置在搅冰机构上、冷凝器上、冰桶上。 搅冰机构上的温度传感器是用来感受温度是否比较低,甚至是传动机构阻力太大,也就是说当温度比较低时,水流受阻,搅冰机构需要的扭矩变大,电机输入电流猛增,这时候需要冲冰,打开电磁阀,让压缩机的冷媒直接进入搅冰机构,而不是经过冷凝器后再进入搅冰机构,这样的一些列工作的完成是由温度传感器来检测和控制系统进行的。 在冷凝器上的温度传感器是这样工作的,当冷凝器上的温度过高时,风扇电机产生的冷却效果来不及冷却,这时候温度传感器感受到的温度过高,通过A/D转换,把模拟信号转换成数字信号,通过程序进行判断,发出指令,控制压缩机电机的继电器是否做出相应,最终控制着压缩机的工作状态。 冰桶上的温度传感器的作用是控制着冰块是否达到一定的高度,当冰块达到一定的高度后,感温传感器感受到,温度比较低时,一般设置的温度为7度,也是通过A/D模块进行模数转换,通过程序判断,作出相应的指令,指令发出,控制着整个系统的通断判断,最终控制着系统的运行与否。

  • 力传感器_力传感器种类_力传感器用法

    [align=center][/align]力传感器在大家的生活中是无处不在的,力传感器是一种相对比较耐用的机电类产品,在使用力传感器的时候需要注意保证它的测试精度,如果这个没办法把握的话那测量的结果就不准确了,也没有可参考的价值,那么在使用力传感器的时候这个精度要怎么去注意呢?力传感器周围应尽量设置一些“挡板”,甚至用薄金属板把力传感器罩起来。这样可防止杂物玷污力传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。系统有无运动不爽现象,可以用以下方法判别。即在秤台上加或减大约千分之一额定负荷看看显示仪是否有反映,有反映,说明可动部分未受“沾污”。力传感器所有通向显示电路或从电路引出的导线,均应采用屏蔽电缆。屏蔽线的联接及接地点应合理。若未通过机械框架接地,则在外接地,但屏蔽线互相联接后未接地,是浮空的。注意:有3只力传感器是全并联接法,力传感器本身是4线制,但在接线盒内换成6线制接法。力传感器输出信号读出电路不应和能产生强烈干扰的设可”控硅,接触器等)及有可观热量产生的设备放在同一箱体中,若不能保证这一点,则应考虑在它们之间设置障板隔离之,并在箱体内安置风扇。用以测量力传感器输出信号的电子线路,应尽可能配置独立的供电变压器,而不要和接触器等设备共用同一主电源。力传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。力传感器使用中,必须避免强烈的热辐射,尤其是单侧的强烈热辐射。力传感器电气连接方面备(如力传感器的信号电缆,不和强电电源线或控制线并行布置(例如不要把力传感器信号线和强电电源线及控制线置于同一管道内)。若它们必须并行放置,那么,它们之间的距离应保持在50CM以上,并把信号线用金属管套起来。尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在力传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在力传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。要轻拿轻放尤其是由合金铝制作弹性体的小容量力传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的测力传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于力传感器本身的强度和刚度。测力传感器虽然有一定的过载能力,但在测力系统安装过程中,仍应防止力传感器的超载。要注意的是,即使是短时间的超载,也可能会造成力传感器永久损坏。在安装过程中,若确有必要,可先用一个和力传感器等高度的垫块代替力传感器,到最后,再把力传感器换上。在正常工作时,力传感器一般均应设置过载保护的机械结构件。若用螺杆固定力传感器,要求有一定的紧固力矩,而且螺杆应有一定的旋入螺纹深度。一般而言,固定螺杆因采用高强度螺杆。力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨[url=http://mall.ofweek.com/category_54.html]力传感器[/url]丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制