当前位置: 仪器信息网 > 行业主题 > >

深冷装配箱

仪器信息网深冷装配箱专题为您提供2024年最新深冷装配箱价格报价、厂家品牌的相关信息, 包括深冷装配箱参数、型号等,不管是国产,还是进口品牌的深冷装配箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合深冷装配箱相关的耗材配件、试剂标物,还有深冷装配箱相关的最新资讯、资料,以及深冷装配箱相关的解决方案。

深冷装配箱相关的资讯

  • 中科院沈阳自动化所:利用气泡作为微型机器人实现零件的操纵和装配
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。
  • 大型飞机装配中的高精度测量技术研究进展
    新一代飞机向着大型、重载、长寿等方向发展,对其装配质量、精度等提出更高的要求。装配中几何尺寸、物理损伤等的高精度测量是调控飞机装配工艺、保证装配指标的基础和关键,对飞机服役性能有着重要的影响。本文围绕新一代飞机结构尺寸大幅增加、承力结构复材化发展下的需求,论述了大型飞机装配中高精度测量技术的研究进展,具体从大空间点位高精度测量方法、大型结构外形高精度测量方法、复合材料结构装配缺陷高精度检测技术等方面对国内外理论研究和技术应用进行了梳理和总结,并指明相关技术的未来发展趋势和前景。1 飞机装配那些事儿 飞机装配是飞机制造的关键环节,装配过程中涉及的学科范围广、技术标准要求高,属于典型的高端装备制造技术。飞机装配是将各种零、组、部件按照规定的技术条件和质量要求进行配合与连接,并进行检验与试验的工艺过程,装配的质量直接决定了飞机产品的外形精度、制造质量和服役性能等。 新一代飞机向着大型、重载、长寿等方向发展,其制造也向着高精度、低成本、柔性化、智能化等方向转变,对装配的精度、效率与质量均提出了更高的要求。此外,以纤维增强型复合材料为代表的轻质高强材料也逐渐由次承力结构升级为主承力结构。对此,开展大型飞机的大空间高精度测量、复合材料损伤的高精度检测方向的研究,是新一代飞机高效、高质装配的强有力支撑。图1高精度测量技术在飞机装配现场的应用2 飞机装配大空间测量场高精度测量方法 传统大空间测量场多使用单台或者单种测量设备进行构建,为满足大尺寸部件的高精度测量需求,组合式测量系统应运而生。通过组合多个测量设备或不同测量系统,往往可以达到一个较好的效果。 由于大空间测量场的特点,需要对其进行坐标配准,即将测量点坐标转换到全局坐标系下,并将数据进行融合。坐标配准、环境等因素往往会影响测量场的精度,所以还需要对测量场进行不确定度评估,并对误差进行补偿。因此,测量场配置优化、坐标系配准和不确定性评估等三个方面的内容是影响大空间测量场测量精度和效率的关键技术。图2 组合式大尺寸测量3 飞机大部件装配外形数字化高精度测量方法 飞机装配是保证飞机外形精度的重要环节,提高飞机部件装配外形检测水平对于提升飞机制造质量具有重要意义。飞机装配部件外形尺寸大、曲面形状复杂、型面测量数据量大,传统单一测量设备测量精度和效率之间的矛盾突出。随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。本章将具体针对数字化测量技术在飞机外形轮廓及蒙皮表面质量检测过程中的应用以及大规模点云数据的处理方法展开介绍。3.1 飞机大尺寸外形轮廓高精度检测航空产品中的大部件装配曲面外形准确度决定着飞机的气动/隐身性能,采用合理的方式对飞机大部件装配外形进行检测尤为重要。飞机曲面外形具有尺寸大、形状复杂、测量数据量大的特点,通常采用数字化测量方法实现大部件外形的高精度测量。早期数字化测量多采用接触式测量方法,以三坐标测量机为代表,常应用于整体叶片型面、中间整流罩的检测过程中。接触式测量具有测量精度高的优点,但缺点是效率低、易划伤目标表面且无法实现自动化测量。激光扫描法、结构光法、激光雷达法、摄影测量法等非接触式测量方法的出现提升了测量范围和测量效率,而且可开发性和自动化程度高的特点使它们在飞机大部件外形自动化测量方面展现出优势。表1列举了几种数字化测量系统并对其主要参数及优缺点进行了分析对比。表 1. 外形数字化测量系统对比但随着测量要求的进一步提高,单一设备无法兼顾测量精度和测量效率的矛盾愈发明显,近年来许多学者通过构建数字化组合测量系统,使设备性能互补,从而提高测量精度与效率。将关节臂测量仪、激光跟踪仪以及摄影测量组合,在飞机内襟翼上翼面外形精度测量上进行应用与验证,在保证外形测量精度的同时进一步提高了测量效率。此外,结合结构光重建和摄影测量技术也可实现高精度、高效率、非接触的大尺寸飞机结构外形的三维重建,精度可达到亚毫米量级(0.16 mm以下)。如图6所示。图 3 基于后方摄像机视觉定位的全局三维重建原理图为了进一步提升飞机大部件曲面外形的测量精度,需要对数字化测量系统进行站位规划与测量轨迹规划。测量仪器的站位规划是数字化测量的前提,站位的合理性直接影响着测量效率和精度。早期测量站位主要由操作者的经验决定,往往需要反复调整才能满足测量要求,测量效率低,难以满足现代飞机高效的测量需求。针对激光雷达测量飞机大部件外形测量需求,采用基于区域生长算法的站位规划方法得到初始站位,之后引入测量不确定度对其进行优化,该方法相比于经验法和聚类算法更具可行性和有效性。而对于飞机大型蒙皮柔性测量系统,效率优化的扫描站位规划被提出,提升了扫描效率和完整性。此外,规划轨迹可以使测量设备在满足测量条件的情况下充分发挥性能,最大程度上降低系统误差,提高扫描数据的精确度,从而提升测量精度与测量效率。对于包含激光跟踪仪和工业机器人的自动化扫描系统中的测量轨迹规划问题,首先在CATIA中按照结构特征类别进行轨迹的初始规划,之后对测量误差进行分析,建立系统误差预测模型并通过粒子群算法对测量轨迹做进一步优化,可达到快速找到满足扫描约束的同时系统误差最小的姿态的目的,从而提高曲面扫描的测量精度。为了提升结构光的检测精度,一种以改进贪心算法为基础的覆盖路径规划方法被提出,降低了视点数目,提升了结构光检测精度,从而提升了曲面外形测量精度,如图4所示。图 4 测量不确定度对比图。(a)文献方法;(b)目标采样法3.2 飞机部件外形表面质量高精度检测高精度数字化测量技术也广泛应用于飞机外形表面质量检测过程中,包括蒙皮对缝检测以及铆钉平齐度检测等。飞机蒙皮主要通过铆钉固定在机翼骨架外围,其作用是维持飞机的气动外形,必须承担一定的局部气动力,装配时要保证蒙皮对缝的间隙及阶差在允许范围内。此外,蒙皮表面铆钉平齐度对飞机的隐身性能及气动性能也有着比较重要的影响,随着新一代战机对隐身性能及气动外形的要求越来越高,相应地对飞机蒙皮铆接质量提出了更高要求。传统的蒙皮对缝检测采用塞尺测量,对人工操作要求高、效率低、误差较大,且不能有效采集和处理测量数据。随着数字化测量技术的不断发展,为了提高缝隙测量的精度和效率,国内外学者以线结构光视觉测量和激光扫描为代表的非接触测量方法应用于对缝检测中,如图8所示,相关的数字化检测设备,包括美国Origin Technologies公司的Laser Gauge系列产品、德国8Tree公司的Gap Check相关产品等均采用非接触测量方法快速测量蒙皮阶差和间隙。线结构光视觉传感器可以实现对蒙皮对缝阶差与间隙的尺寸测量,阶差和间隙的重复测量精度分别达到了0.04 mm和0.05 mm以下。针对二维激光对缝检测多次测量重复精度不高的问题,基于三维激光扫描的蒙皮对缝检测方法被提出,其间隙和阶差测量精度可分别达到0.04 mm和0.02 mm。此外,有学者利用机器视觉的方法,提出了一种基于改进优化算法的飞机蒙皮对缝视觉测量方法,达到精确测量蒙皮对缝间隙的目的,测量精度达到了0.02 mm以下。图 5 基于线结构光的阶差与间隙测量模型对于铆钉齐平度的检测,传统的检测靠人工抽检来实现,即采用传统卡尺或指针式三脚千分表手动检测,测量误差大且有较大局限性。非接触式数字化测量技术在铆钉平齐度检测方面同样展现出优势,构建双目多线结构光测量系统对铆钉齐平度进行测量,可实现对蒙皮表面铆钉头部凸台或凹坑特征的精准测量,精度可达到0.03 mm以下,但该系统无法同时测量多个铆钉。而基于3D激光扫描仪的图像采集系统,利用深度学习算法分析处理采集到的图像,可以同时检测多个结果,效率高,重复检测精度达到0.015 mm,精度相比人工抽检提高较大。此外,针对铆钉逐一检测任务量大且检测可靠度低的不足,基于面结构光的铆钉平齐度检测方法先提出了一种图像噪声轮廓分割方法,之后基于图像-点云映射策略实现了快速且稳定的分割铆钉点云,铆钉平齐度测量偏差达到了0.006 mm以下。如图6所示。图 6 铆钉标准件及平齐度测量结果。(a)标准件;(b)测量结果随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。4 面向复合材料装配缺陷的高精度检测技术 航空复合材料具有重量轻、比刚度大等优点,既能减轻飞机重量,也提高了飞机的整体互换性,方便维护,在飞机制造领域得到了广泛的应用。但此类复合材料由于装配时的应力变化会产生脱粘、分层、夹杂等装配缺陷,对产品的安全使用及长时间服役造成严重威胁,因此需要对复合材料装配过程中产生的缺陷进行高精度检测。 针对不断装机应用的各种新的航空复合材料、新的复合材料成型工艺、新的复合材料结构和新的检测与缺陷评估要求,从检测方法分类上,主要体现在:激光检测、超声检测、X射线检测和太赫兹检测技术等。近几年,随着众多学者对信号处理、图像处理和三维信号重构等技术的研究,使得检测精度和缺陷数据后处理能力逐步提升,面向复合材料装配缺陷高精度检测方法及技术逐步趋于智能化、自动化、可视化。图4 复合材料缺陷三维可视化[1]5 飞机装配测量为我国飞机制造保驾护航 大尺寸高精度测量技术已经成为但广泛应用中的核心关键技术尚处在积累阶段,需要不断的应用验证。数字化测量系统正朝着便携、网络、高效、精密方向发展,飞机装配大尺寸高精度测量技术也已从单一技术走向多传感器技术的融合。 对于飞机装配大空间测量场高精度测量,传统方法多基于单台或单种测量设备,导致精度及效率不足,通过测量场配置优化、坐标系优化、精度评估与补偿等技术来提升测量场的构建效率及精度是当前及未来的提升方向。而对于飞机大部件装配外形数字化高精度测量,飞机部件装配外形尺寸大、曲面形状复杂,型面测量数据量大,单一设备测量精度和效率之间矛盾突出。通过优化测量轨迹、提高视觉检测精度、大规模点云数据融合等技术手段充分发挥各测量设备的优点,来保证飞机大尺寸外形轮廓和飞机外形表面质量检测应用过程中的效率及精度。 因此,组合式数字化测量系统及多技术的融合研究是未来发展和提升的重要方向。在保持高检测精度的前提下,智能化、可视化、自动化的无损检测是未来的发展方向。 在数字化工厂和智能制造的背景下,根据目前大型飞机装配中的高精度测量技术及系统的特点,未来应立足于具体型号及实际应用场景,深入开展高精度测量技术及系统的应用和研究,并形成相应技术体系,充分发挥数字化高精度测量技术的优势。未来,多数字化测量系统协同工作,大空间数字化测量场构建,部件装配外形数字化及装配缺陷检测,这对提高我国飞机制造的水平和核心竞争力具有十分重要的意义。参考文献:[1] Qin L, Zhang S, Song Y, et al. 3D ultrasonic imaging based on synthetic aperture focusing technique and space-dependent threshold for detecting submillimetre flaws in strongly scattering metallic materials[J]. NDT & E International. 2021, 124: 102523.原文下载:张开富, 史越, 骆彬, 童长鑫, 潘婷, 乔木. 大型飞机装配中的高精度测量技术研究进展.pdf通讯作者介绍 张开富,西北工业大学教授、博士生导师,教育部“长江学者”特聘教授、冯如航空科技精英奖获得者,飞行器高性能装配工业和信息化部重点实验室负责人,兼任中国图学学常务理事、中国机械工程学会生产工程分会技术委员会委员。长期从事航空航天制造领域先进装配与连接、结构损伤及疲劳等研究工作,主持国家自然科学基金、国家重点研发计划、重大型号攻关计划等项目近20项,发表高水平学术论文70余篇、授权中国发明专利27件,主持制定航空行业标准2项,以第一完成人获国家科学技术进步二等奖、陕西省自然科学奖一等奖、陕西省科学技术一等奖各1项。课题组介绍 西北工业大学航空宇航装配团队依托于工业和信息化部重点实验室、西北工业大学航空宇航科学与技术学科(A+学科、双一流学科),获批陕西省科技创新团队、国防科技创新团队,长期从事航空航天领域装配建模与优化、先进装配与连接工艺、复材结构设计制造、智能测试技术与工艺等方向研究。团队拥有正高级职称人员6人(其中国家级人才3人)、副高级职称人员6人,硕博士研究生80余人。近年来,团队承担国家级科研项目30余项,授权国家发明专利50余项,在Composite Science and Technology、IEEE Transactions on Robotics、Additive Manufacturing、Composites Part B、航空学报、复合材料学报、机械工程学报等期刊发表学术论文百余篇,参与制定行业标准/型号研制规范10余项,研究成果在运20、C919、ARJ21等我国航空航天重大型号得到持续工程应用,先后获国家科学技术进步二等奖1项、省部级一等奖2项、其他省部级奖励5项。
  • 冷=͟͟͞͞冷=͟͟͞͞冷=͟͟͞ =͟͟͞ =͟͟͞的=͟͟͞͞不=͟͟͞͞想=͟͟͞͞伸=͟͟͞͞手,样=͟͟͞͞品=͟͟͞͞还=͟͟͞͞咋=͟͟͞͞测?=͟͟͞
    马上是“寒冬三九”头一天我国进入此次寒潮过程中的核心降温时段多地创下近几十年来的新低 到底有多冷?大概就是,有人跟我求婚,都不想伸手的那种 用数据说话,这个“新低”有多低?对比下北极咱就知道了 丹东-19℃,沈阳-22℃,北极也才-22℃!看来寒冷北极圈也不过如此嘛伤心的人儿不敢哭鼻涕眼泪冻成柱 气温虽然差不多但咱们可没有北极熊那一身厚实保暖的皮毛老板也不会因为天儿冷就给你放假在东北还好,我们有地暖,有暖气进入室内就是盎然春意南方的小伙伴可就遭罪了里三层外三层不裹成球不能成 门外冷冻室 屋里冷藏室通红的小手根本不想伸出兜实验测样可咋整? 没事呀!选丹东百特的仪器全自动测样系统帮你忙!Bettersize2600激光粒度仪配备自动循环分散与自动测试技术防干烧超声波分散、离心循环、自动进水系统、自动排水和溢水系统并且适用于所有样品既保证样品充分分散又保证了测试的准确性和重复性而你呢?只需要小手一插、结果你有,岂不快哉? 如果既需要测颗粒的图像,又要测大小选择Bettersize3000Plus激光图像粒度粒形分析仪准没错手不用伸脚不用挪粒度粒形一台掌握免去操作两台仪器浪费两次样品的麻烦仍然小手一插、结果你有,岂不快哉? 别走开!我们还有环境仪器!百特“采称一体”智能采样器能在无人值守的情况下将PM2.5的采样数据通过无线网络自动传回到各个环境监测中心站实现了空气颗粒物采样工作由手工到智能的转变不用环境监测工作人员去现场就避免了凛冽寒风的吹拂刺骨寒气的侵入在屋里坐享结果简直不要太快乐! 总之一句话选择丹东百特许你解放小手温暖一冬
  • 利用气泡作为微型机器人实现零件的操纵和装配
    工业机器人已被广泛应用于制造和组装,但是在微观尺度上,大多数组装技术只能将微模块简单的排列在一起,很难将其装配在一起形成一个不易分散的实体。近日,中国科学院沈阳自动化研究所刘连庆研究员领导的微纳米机器人课题组利用激光产生和控制的气泡作为微型机器人,将不同形状和功能的微小零件装配在一起。这些微小零件是通过PμSL 3D打印技术(摩方精密,nanoArch S130)制备而成。在这项研究中,表面气泡充当芯片上的微型机器人。这些微型机器人可以移动、固定、抬起和放下微型零件,并将它们集成在一起,形成紧密连接的实体。以燕尾形零件的装配过程为例(图1),气泡机器人首先将带有榫舌的微型零件抬起,而后另一个移动微气泡机器人将带有卯眼的微型零件移动至指定的位置,原先的微气泡在激光关闭后缓慢消失从而使得榫舌结构插入卯眼中。用此方法装配的微型零件可以作为一个整体运动而不会分离。类似地,将不同类型的零件整体组装可以得到不同的结构,例如齿轮、蛇形链条和车辆,然后由气泡微型机器人驱动它们以执行不同形式的运动。这种组装技术既简单又有效,有望在微操作、模块化组装和组织工程中发挥重要作用。该工作以“Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots”为题发表在ACS Applied Materials & Interfaces上。https://doi.org/10.1021/acsami.0c17518 图1. 装配过程和实验系统示意图。A) 燕尾形零件的装配过程。B) 系统的示意图。 当激光照射在非晶硅表面时,由于光热效应,在固液界面处会产生一个气泡,并可在激光的控制下进行移动。当气泡产生在微模块的底部时,气泡可将微模块抬起。本研究利用气泡产生过程快而溶解过程慢的特点,先控制一个气泡将微零件抬起,然后利用第二个气泡移动另一个微零件。当第一个气泡缓慢消失时,第一个零件缓慢落下,两个微零件能够装配在一起。利用气泡对微零件的三维操作能力,将二维组装变为三维装配。利用不同形状的微零件,可以得到齿轮(图2)、链条(图3)和小车(图4)等不同的结构,这些结构在气泡的驱动下可以进行多种灵活的运动。图2. 齿轮结构的装配过程及运动 图3. 链条结构的装配过程及运动图4. 小车结构的装配过程及运动 总而言之,该研究利用微小气泡作为机器人,对微零件进行抬起、移动、固定等操作,并利用气泡机器人的三维操作能力,将多个零件装配成整体,提供了一种新的微尺度操作和装配技术。(以上相关介绍内容由中科院沈阳自动化所微纳米机器人课题组代利国博士提供)上述研究工作涉及的PμSL微尺度3D打印技术由摩方精密提供,因此摩方公司就这一创新型成果对中科院沈阳自动化所微纳米机器人课题组进行了更进一步的补充访谈,以下为部分内容:1、BMF:请问利用气泡作为微型机器人来操纵微型零件有哪些优势?潜在的应用有哪些?代博士:气泡作为微型机器人,可以对单个的零件进行多种形式的操作,特别是可以控制微模块的三维姿态,这是其相比于其他微纳操作技术的优势。其可以用于操作细胞、颗粒和微模块等,在生物医学、组织工程等领域都有应用前景。2、BMF:请问在这次研究中,为什么采用微尺度3D打印的制备方式?代博士:我们设计的零件包含各式各样的微米尺度接头,比如燕尾形的榫舌和卯眼等,其中最小细节尺寸30μm,并且这些结构有尺寸配合的要求。摩方公司的3D打印技术可以很好的满足我们的要求,尺寸和形状都可以按照设计进行灵活加工,误差也在可控范围内。此外,面投影光刻3D打印技术可以批量化快速制作零件,有助于实验的顺利完成。官网:https://www.bmftec.cn/links/10
  • 海尔超低温冰箱连续三年为南澳生命科研事业提供深冷呵护
    海尔超低温冰箱连续三年为南澳生命科研事业提供深冷呵护三年前,悉尼大学某品牌超低温冰箱因供水供电系统意外故障,多台设备无法使用,造成巨大损失。海尔水冷超低温冰箱的自动保护功能,及时解决了用户难题,赢得了澳洲用户的首肯和至高评价"Haier water-cooled ULT freezer is the best in the world!"三年中,海尔超低温冰箱运行稳定,并派驻专业的工程师进行定期巡检,领先的产品和服务保障获得悉尼大学认可。近日,悉尼大学健康与医疗研究中心再次采购20多台海尔水冷超低温冰箱,用于样本保存,进行生命科学研究。海尔生物医疗在众多国际品牌中脱颖而出  是十年的技术积淀、是行业制冷关键技术的突破,证明了品牌实力、给予了用户信心!  在能源紧缺、全球环境问题凸显的今天,海尔超低温冰箱在全球率先采用HC碳氢制冷技术,并获得中国质量认证中心 001号节能环保认证。据测算,近10年来,海尔累计为用户提供50000台超低温冰箱,深冷存储15亿生物样本。如果全部升级为节能超低温冰箱,节约能源50%,将节约用电1.8亿度,减少碳排放1.5亿吨。世界领先的水冷制冷系统,同等存储量下能耗降低20%以上,超高效率超低能耗,为用户节约样本存储成本,同时,水冷型冷凝器可将冰箱制冷过程中产生的热量利用循环水系统带到室外释放,减少90%热量回排,节能空调投入,自然凉爽,工作环境清新舒适。海尔超低温冰箱遍布全球  海尔生物医疗通过创新的技术,不断为全球用户创造价值。在亚洲,参与了中华骨髓库、中国凤凰工程、国家基因库、南极科考等国家重要科研项目,为中国生命科学研究和发展奠定了坚实的基石。在美洲,打破国外垄断,通过北美UL实验室严格验证,陆续入驻美国各大高校。在欧洲,海尔超低温冰箱成为了英国UK-Biobank,牛津大学,布莱顿大学生物样本库的首选。在澳洲,入驻悉尼大学的澳大利亚健康研究中心,支持南澳生命科学研究。
  • 工业内窥镜——飞船装配检测的左膀右臂
    工业内窥镜早在10年前就被我国科学家应用在航天器总装工作中,并起到了重要的作用。航天任务中任何一个微小的失误,都能造成致命的事故以及不可挽回的损失。 由于航天器的密封结构、设备密集程度高、盲区多、空间狭小等特点,航天器的装配及安全检测是存在极大难度的,在经过科学家们多方的尝试后,选用了工业内窥镜无损检测新技术的手段,在当下高效地解决了航天器装配的问题。 在航天飞船的检测中,飞船的舱内空间小、结构复杂,需要解决的问题有很多,如以下三点: 飞船中多余物的查找和去除在装配飞船的过程中,总会有遗留在飞船内的多余物,比如螺丝钉、胶布、电缆碎片等,而这些遗留物又通常在非常狭小而手臂等无法到达的地方,如果通过奥林巴斯工业内窥镜进行检测,能清楚地看到杂质,并可以通过窥镜导管内置的机械手将杂物抓取出来。 飞船装配中的测量任何的机械装备都需要有一定的标准,飞船的也不例外,它的标准与我们所知的空间不同,标准更加严格,任何的装配都要做到精确再精确。在操作盲区的装配中,人眼无法进行测量位置安装,需要通过工业内窥镜来进行间隙测量,以确定安装的位置以及调整垫片的厚度。 飞船的故障查看功能飞船在正式发射前会经过无数遍的测试,在未使用内窥镜检测之前,每次飞船发生测试故障时,飞船的设计师不能进舱只能依靠工作人员的描述来进行诊断,信息在阐述中存在误差。而在引工业内窥镜之后,这种情况就会得到改善,诸如奥林巴斯工业内窥镜拥有图像共享功能,它通过连接无线网络,将所检测到的图像共享在电脑、手机或者平板上,可以进行多方观察,这不仅能让设计师及早时间清楚看到飞船舱内的情况做出准确的判断,同时也减少了工作人员频繁进出舱的危险性。 奥林巴斯 IPLEX NX系列工业内窥镜 除此以外,工业内窥镜还能做到很多人难以做到的事情,能检查舱内一些监控设备的状态和设计。还有它的3D测量技术,能清晰知道所探测到的缺陷等具体的位置和距离,同时还能对内窥探头进行远程控制,这对于飞船的检测较为合适。 工业内窥镜,能够在航天器的装配检测中起到的作用远不止以上提到的,它不仅可以校正了插头的状态,找出了舱内的冗余物,更是能够帮助飞船完成装配间隙的测量等各种复杂问题,真正成为飞船装配检测的左膀右臂。 而随着技术的发展,工业内窥镜也不断升级,它的3D测量及建模技术,以及在亮度、图像、便捷、智能等功能上也更强大,致力给未来更加先进的航天器带来强有力的无损检测设备。 更多细节您可以访问以下网页,联系我们了解:www.olympus-ims.com.cn/contact-us 您也可以拨打我们的电话:400-969-0456
  • 贺汇凯科技与豫北转向器签订装配生产线项目合同
    2013年10月29日,长春机械院长春汇凯科技有限公司与豫北转向系统股份有限公司就转向器精密装配生产线项目达成技术协议并签订合同。 此次豫北转向系统股份有限公司招标的齿轮齿条机械转向器总成装配生产线,是豫北转向器历次招标装配线中技术要求最高的装配线,装配生产的转向器产品专供美国福特汽车公司。该线可谓&ldquo 三高装配线&rdquo 即:装配生产效率高,防误措施全面;检测及控制水平高,并带有产品装配可追溯系统;装配精度及产品一致性水平高,这些措施将充分保证装配产品质量。可以说整条生产线技术难度大,接近国际先进水平。 在此次投标项目预研过程中,长春机械院汇凯科技课题项目组积极展开密集的产品调研和项目技术方案论证。针对该项目招标要求,最终设计出的装配生产线除满足招标方的技术要求外,整条生产线还具有适应性强、柔性好、易变换产品、生产节能、工作可靠等特点。 在招标过程中,长春机械院项目团队以优异的产品特性,精湛的技术实力,完善的设计方案,吸引了豫北转向系统股份有限公司招标专家组的青睐,力排其他竞争团队,以绝对优势胜出。 此次项目中标及完成,标志着长春机械院研制的装配线技术水平已经达到国内汽车零部件制造装配行业的先进水平。 注:豫北转向系统股份有限公司隶属中国航空工业集团公司,在汽车转向器设计研发和制造领域有近30年历史,40余项专利技术,公司主打产品动力转向器在技术上处于国内领先水平。
  • Hexagon协助空客A380挑战超大尺寸的装配任务
    面临的问题: 位于图卢兹的Jean-Luc Lagardère工厂主要负责A380 的最后装配。作为空中客车最新的装配线,包括了几个部分。第一个单元负责飞机主体承重部分的装配,第二个单元对装配的飞机进行测试,并进行动力系统的安装。第三个单元负责进行露天试验并准备飞机的第一次飞行。 第一个单元的第40 个工位负责的是飞机的最终装配(包括飞机截面和机翼)。为完成这项任务,不同的部件相互间进行适配比较。需要对工件几何量执行严格的要求。A380 的装配项目始于1998 年,克服了诸多新的挑战:每个截面的超大尺寸、整个飞机本身的外形、双层机身以及诸如此类的难题。另外A340 的工装需要继续使用。这些工装需要按照很高的精度进行调整,需要进行周期检查,这样才能保证不同的飞机截面能够按照要求进行定位。 新的装配基本思路是直接测量飞机,就是检测每个飞机截面相互间的关系,而不是利用工装作为参考系统,完全避免了混合误差的问题。第二项任务是为装配复杂曲面寻找适合的方法(如整体机身和双层飞机的轮廓)。 ----------------------------------------------------------------------------------海克斯康的解决方案: 基于激光的进行装配的方法被管理层确定用于A380 项目。过去,与Leica 工业测量系统激光跟踪仪相结合的一系列项目在空中客车法国工厂(南特的RCT,位于Meaulte 的Erebus,在St. Nazaire的装配15/21 工序,图卢兹A320 项目的截面测量),还包括德国不来梅、英国的Broughton 和Filton。 选择了四台Leica 激光跟踪仪:两台用于机身、两台用于机翼。所有四台激光跟踪仪通过统一的坐标 系相互关联。这种安排保证了激光跟踪仪相互间的统一和交互替换。 专门开发的控制和测量软件,具有简化的人机界面,实现与Leica 工业测量系统的EmScon 软件的接口,在软件开发阶段,Leica 工业测量系统公司与空中客车密切合作。来自Leica 工业测量系统的帮 助确保了软件间的相互兼容,并确保了使用正确的功能。 持久的提升并确保为飞机截面定位提供可靠、高品质的命令,使得整个工作周期减少- 这是空中客车公司技术人员的主要关注点,无论是现在还是将来。这种提升,包括了优化飞机部件间定位的算法。基于Leica 激光跟踪仪的功能与可靠性,利用激光测量实现飞机装配成为一项成熟的技术,能够在空中客车组织内的其他项目中使用。在图卢兹工厂的测量方法开发后,被使用在另外一个军方的A400M项目,同时很可能还会用在即将到来的A350 项目! --------------------------------------------------------------------------------------------------------------------------------- 关于用户: 空中客车A380 是有史以来最现代、最大规模并且功能最强的民用航空系统。其第一次的露面是在2000 年的12 月,被命名为“21 世纪的旗舰”。该飞机是在与航空公司、机场和航空运输管理部门紧密合作的基础上开发的。 A380 采用了当今最先进的技术,包括材料技术、系统和工业流程,并坚持采用最严格的国际标准制造。空中客车位于欧洲各地:法国、德国、英国和西班牙的公司参与了A380 飞机的设计与制造。
  • 综述:可变冷光阑红外探测器研究进展和关键技术分析
    为了进一步提高红外变焦光学系统的性能,兼顾其空间分辨率和灵敏度的要求,基于可变冷光阑技术的制冷型变F数红外探测器需求迫切。相较于传统的红外变焦光学系统,变F数红外变焦光学系统可在大视场和小视场切换时保持分辨率和灵敏度的平衡,提高光学系统的孔径利用率,进而缩小光学系统的径向尺寸,有利于红外光学系统成像质量的提升和小型化设计。昆明物理研究所科研团队对变F数与变焦之间的关系进行研究,概述了国内外在可变冷光阑红外探测器技术领域的研究进展,并对主流技术路线的关键技术难点进行了分析。相关研究内容以“可变冷光阑红外探测器研究进展和关键技术分析”为题发表在《红外技术》期刊上。变焦和变F数的关系变焦光学系统的理论依据:光学系统的焦距是一项重要的设计指标,其关系到系统的视场角、空间分辨率等关键性能。变F数与变焦的关系:为了理清变焦与变F数的关系,首先对传统的红外变焦系统进行分析。传统变焦系统中,探测器的F数是固定不变的,而光学系统(为方便讨论,将冷屏作为光学系统的一部分)的F数则分以下几种情况:① 假设系统在最长焦距时入瞳尺寸与物镜尺寸相等:该种情况下,光学系统的F数由最长焦距和物镜尺寸的比值决定,此时冷屏开口即为系统的孔径光阑。在系统由最长焦距切换到短焦状态时,孔径光阑及其尺寸均保持不变,入瞳由原来占满整个物镜逐步等比例缩小。由F数的公式可知,此时光学系统的F数保持不变。如图1所示,探测器的F数固定不变,为F/3,在长焦窄视场时,通光孔径被完全利用,见图中浅蓝色部分;当系统切换至短焦大视场状态时,通光孔径大幅减小,见图1中深蓝色部分。图1 传统变焦红外光学系统的孔径利用率示意图② 假设系统在最短焦距时入瞳尺寸与物镜尺寸相等:该种情况下,系统的F数由最短焦距和物镜尺寸的比值决定。在系统由短焦向长焦切换时,由于物镜尺寸固定,孔径光阑不再是冷屏开口,物镜边框成为了新的孔径光阑,也就是说此时虽然焦距在变大,但是入瞳直径保持不变,使得光学系统的F数逐步增加,并大于探测器的F数,造成冷屏效率的下降。如图2所示,光学系统的F数为F/6,探测器的F数为F/3,光学系统的F数大于探测器,光学系统自身产生的红外辐射大量的进入焦平面,大幅增加系统的NETD,干扰成像。图2 25%冷屏效率系统的辐射示意图实际的变焦光学系统设计时,往往是上述两种情况的平衡,通常不会只考虑某一个状态的性能。而对于变F数光学系统来说,在设计时保证系统在各个焦距下的孔径光阑均为探测器冷光阑,则当系统由长焦变换到短焦时,通过等比例增大冷光阑尺寸,可保证入瞳尺寸保持不变,通光孔径被充分利用,如图3所示。图3 变F数红外光学系统的孔径利用率示意图当系统由短焦变为长焦时,变F数光学系统可以通过等比例减小探测器冷光阑开口尺寸,使得探测器的F数变大,从而保持100%的冷屏效率,避免系统自身的杂散辐射进入焦平面,如图4所示。图4 100%冷屏效率系统的辐射示意图变焦光学系统可兼顾大视场搜索目标和极小视场识别目标的需求,但是由于探测器的F数固定不变,因此要么不能充分利用通光孔径,要么引入大量杂散辐射,不能达到最佳的成像质量。而变F数光学系统则可以很好地解决上述问题。因此理论上,凡是红外变焦光学系统应用的场合,变F数光学系统均可应用,具有广泛的应用前景。可变冷光阑红外探测器的研究进展可变冷光阑的优势可变冷光阑红外探测器技术是目前实现变F数红外系统的重要技术路线。相对于温阑来说,其具有以下几个优势:F数调节范围大且可连续调节。为了解决温阑自身及反射的杂散辐射对成像的影响问题,通常做成球面温阑,这使得F数调节范围小,通常只有两个F数可以选择,或者只能在某两个接近的F数之间进行调节,而可变冷光阑红外探测器可实现系统F数的连续可调,且调节范围较大。可降低系统的复杂度。在传统变焦光学系统中增加温阑设计,将大幅增加光学系统的复杂度和成本。而采用可变冷光阑红外探测器,只需针对探测器杜瓦封装结构进行设计和装配,可大幅降低系统的复杂度。可提升系统的灵敏度。长春光机所的常松涛等人研究了球面温阑对中波640×512(15 μm)红外探测器的NETD的影响,假设球面温阑的温度为20℃,球面温阑的发射率为0.01,当温阑发生0.5℃的温度变化时,温阑引入的NETD达到3.6 mK,虽然引入的NETD很小,但也接近目前探测器本身的NETD。而采用可变冷光阑探测器的方法,引入的NETD可进一步降低。可变冷光阑红外探测器的研究进展国外研究进展:美国弹道导弹防御局(BMDO)在2000年为高空观测系统(HALO)进行更新时设计了一个双波段红外分光系统。如图5所示,该系统在中波和长波的焦平面前端分别设置滤光片转盘,每个转盘上可放置5片不同带通的滤光片以及一片用于背景测试的空白片。美国OKSI公司的Nahum Gat等人先后开发了两套中继光学系统,如图6所示。2013年Nahum Gat等人提出了与杜瓦集成封装的内置式可变冷光阑结构,该结构相较于外置可变冷光阑结构来说结构紧凑,如图7所示。2014年,雷神公司的Jeffrey和Eric等人在Nahum Gat的基础上改进了刀片虹膜式的可变冷光阑结构,其结构示意图如图8所示。雷神公司的第三代前视红外系统是可变冷光阑探测器技术的集大成者。其冷光阑结构如图9所示。此外,雷神公司将中长双波段探测器芯片、双F数可变冷光阑、制冷机、制冷机驱动电路、成像控制电路、冷光阑控制电路等均集成为一个前视红外系统,该系统的体积和重量相对于第二代长波标准先进杜瓦组件(SADA Ⅱ)来说反而更小。包含中长双波段探测器芯片、双F数可变冷光阑、制冷机、成像控制电路、冷光控制电路等均在内的第三代前视红外系统的组成以及实物如图10所示。图5 HALO的双色红外系统图6 带可变冷光阑的真空密封结构和外置可变光阑与滤光片转盘的集成结构图7 刀片虹膜式可变冷光阑图8 双稳态螺线管驱动的可变冷光阑示意图图9 雷神公司可变冷光阑杜瓦俯视图图10 第三代前视红外系统的主要组成部件及系统的实物图国内研究进展:国内对基于可变冷光阑的变F数红外探测器研究较少。上海技物所于2001年发明了一种带可变冷光阑功能的用于红外探测器芯片中测的杜瓦(如图11所示),上海技物所的可变冷光阑结构用于芯片的中测筛选,对结构的小型化以及制冷时间、制冷量的要求不高,因此不适合正式的红外探测器。2014年长春光机所发明了一种与滤光片转盘相似的可变光阑机构(如图12所示)。在光学系统设计方面,613所于2017年设计了可以匹配不同F数探测器的中波大视场光学系统;中电科11所于2022年设计了F/2和F/4可调的变F数光学系统。图11 用于中测杜瓦的可变冷光阑图12 可变式的固定光阑目前国内对于可变冷光阑红外探测器的研究较少,相关产品不够成熟;国外也只有美国雷神公司对该技术进行深入研究,目前产品已进行小批量试制。通过对国内外研究现状的对比,可以发现雷神公司采用的与杜瓦集成封装的内置式可变冷光阑是实现变F数红外探测器的可行的技术路线。该技术路线有如下几点优势:1)集成度高:针对640×480(20 μm)的芯片封装,雷神公司的探测器体积和重量甚至还略小于SADA II探测器;2)可靠性高:可变冷光阑在制冷状态下可进行1万次的开合运动,在非制冷状态下可进行10万次的开合运动;3)功耗低:由于可变冷光阑机构与杜瓦进行集成封装,无需单独为其再配备制冷机,因此功耗不大于75 W,且常温降温时间小于10 min;4)响应时间快:虽然雷神的报道中没有明确说明F数的切换时间,但是根据其使用的压电电机的特性,F数的切换时间可满足光学系统视场切换时间的要求。可变冷光阑红外探测器的关键技术采用刀片虹膜式的可变冷光阑结构,并将其与杜瓦进行集成封装,存在以下关键技术:1)可变冷光阑杜瓦的整体设计技术可变冷光阑杜瓦与传统的固定光阑杜瓦在设计上有很大的不同,需从整体设计上来保证功能的实现。主要需考虑整体结构设计、光阑片的设计、驱动方式的选择、结构的温度控制、整体装配集成、小型化以及可靠性等多方面的技术。2)可变冷光阑精密装配技术可变冷光阑涉及到光阑片的精密装调、驱动电机的隔热装配以及整体结构的精密封装等装配步骤,由于其结构比传统冷屏结构复杂得多,且存在运动部件,其装配更加困难。而光阑片的装配精度关系到运动机构的长期可靠性以及运动过程中的摩擦力,同时影响驱动功率的大小;而驱动电机的装配精度关系到光阑片的受力均匀性以及温控效果;整体结构的装配精度关系到成像的质量。因此需从设计和工艺等多方面进行综合考虑,保证其装配精度及长期可靠性。3)微型电机设计和制造技术对于可变冷光阑来说,压电陶瓷电机是一种比较适合的驱动方式。压电陶瓷电机单位体积下的力矩较大,没有电磁干扰,具有断电自锁功能。一方面,为了缩小可变冷光阑红外探测器的体积,压电陶瓷电机的体积必须很小,另一方面,光阑片的运动阻力要求压电电机的力矩不能过小。因此需通过电机结构设计优化、高性能压电陶瓷的制造、电机制造工艺的改进等多个方面实现小型化大力矩电机的研制,将杜瓦的体积控制在可接受的范围内。4)杜瓦热固耦合设计技术可变冷光阑由于引入了复杂的运动机构,冷头热质量大幅增加,因此,需从结构设计以及材料选择等多方面进行研究和考虑,减小杜瓦热质量,解决快速制冷的问题。此外,可变冷光阑通过电机与杜瓦外壳热连接,需通过结构设计减小杜瓦的漏热。最后,光阑片之间通过叠加的方式互相贴合,热阻很大,需减小光阑片之间以及光阑片与冷屏之间的热阻,从而使光阑片温度降低至不影响焦平面成像的水平。5)可变冷光阑运动控制技术探测器的F数由冷光阑的开口尺寸决定,因此需精确控制冷光阑的运动,从而精确控制探测器的F数。压电陶瓷电机具有断电自锁的功能,即电机断电后可变冷光阑将立即停止运动,停在断电瞬间的位置,因此在控制方面只需要考虑可变冷光阑运动的反馈问题即可,这关键在于选择合适的小型化位置传感器,并结合可变冷光阑的结构设计,将传感器安装固定在合适的位置。6)光阑片表面镀膜技术光阑片表面需进行镀膜处理,膜层需满足摩擦系数小、耐磨以及反射率低3个条件。摩擦系数小可以减小光阑片之间的摩擦力,减小压电电机的力矩需求,有利于电机的小型化;耐磨性高则有利于可变冷光阑机构的可靠性,防止出现膜层脱落干扰成像的现象;反射率低则可以防止芯片的冷反射。结论这项研究从变焦和变F数的关系出发,阐述了变F数光学系统的优势。与传统的变焦光学系统相比,具有可变F数功能的变焦光学系统可兼顾系统的空间分辨率和灵敏度需求,提高系统的孔径利用率,有利于成像质量的提升和系统的小型化。对可变冷光阑的研究进展进行了分析,发现雷神公司的内置刀片虹膜式可变冷光阑是可行性高、性能优异的技术路线,并对该技术路线的关键技术进行了详细分析。对可变冷光阑红外探测器的研究和应用提供了参考。论文信息:http://hwjs.nvir.cn/cn/article/id/7222d189-ab24-490d-9bd9-98f665c31ed1
  • 仪器信息网美国之行:访赛默飞世尔科技色谱、质谱装配工厂
    2011年3月11日,Pittcon 2011在美国亚特兰大召开,仪器信息网编辑参加了此次展会并在期间先后走访了5家美国著名仪器制造商:麦克仪器公司、AB SCIEX公司、沃特世公司、戴安公司和赛默飞世尔科技公司。   这5家仪器厂商都具有至少几十年的相关仪器制造经验,并且都很早就进入了中国市场。此次我们参观的生产工厂和应用中心均是每个仪器厂商重点保护的“核心区域”,在征得各厂商相关负责人的同意后,现将仪器信息网编辑的采访见闻展现给国内用户,以飨读者。   美国圣何赛2011年3月21日上午,仪器信息网编辑如约来到了位于美国硅谷的赛默飞世尔科技(Thermo Fisher)色谱、质谱工厂进行参观访问。   赛默飞世尔科技媒体沟通负责人Stephanie Kubina女士,策略与市场部经理黄莹莹博士、科学仪器部蛋白质组市场总监Andreas FR Huhmer先生、生命科学质谱部副总裁Iain Mylchreest先生等与我们进行了深入的沟通和交流,详细耐心地回答我们提出的一些问题。   赛默飞世尔科技可以称作仪器领域的航空母舰,目前已经至少进行了超过250起并购,经过整合目前拥有Thermo Scientific 和 Fisher Scientific 两个首要品牌。赛默飞世尔科技2010年销售额接近 110 亿美元,在全球拥有37000名员工,在中国约有1500名员工,也许只有赛默飞世尔科技自己才知道在全球有多少工厂,我们此次参观拜访的是位于美国硅谷的赛默飞世尔科技色谱和有机质谱装配工厂。   一、与赛默飞世尔科技质谱专家探讨质谱技术发展趋势 赛默飞世尔科技科学仪器部蛋白质组市场总监Andreas FR Huhmer先生(左),媒体沟通负责人Stephanie Kubina女士(中)与我们进行交流   据Andreas FR Huhmer先生介绍,赛默飞世尔科技Orbitrap技术的发明是质谱领域的一次革命性突破,它带来的最大好处就是可以让用户获得接近FT-MS分辨率的同时,只需付出普通质谱所需要的维护费用。赛默飞世尔科技将这一技术进一步提升,将LTQ的高速度和高灵敏度与Orbitrap精确质量鉴定能力、高分辨能力(100000)很好地结合在一起,完全可以满足低丰度蛋白质测定要求,支持所有同位素标记的和非标记的(label-free)蛋白定量方法。Andreas FR Huhmer先生还与我们探讨了他对于Q-TOF以及便携式质谱的一些看法。 赛默飞世尔科技生命科学质谱部副总裁Iain Mylchreest先生(左),媒体沟通负责人Stephanie Kubina女士(中)与我们进行交流   Iain Mylchreest先生在谈话中提到一个非常重要的概念就是“Workflow”。Workflow是以客户的应用为终极目标,开发完整的样品处理、样品分析、数据处理和管理的工作流程,建立研究领域样品分析的SOP,使得客户端的分析工作大大简化,从而提高工作效率。   蛋白组学研究是生命科学中的一个重要领域,赛默飞世尔科技目前可提供的Workflow有蛋白质表达谱、翻译后修饰、生物标志物发现、目标蛋白定量,每个Workflow包括了从样品前处理、样品制备、仪器分析、数据处理的所需的消耗品、仪器、软件和方法,因而复杂的蛋白质分析得以实现高通量和高质量。   在制药领域,赛默飞世尔科技同样可以提供在药物发现和临床试验阶段完整的Workflow。   二、参观赛默飞世尔液相色谱、三重四极杆、LTQ Obitrap装配车间,零配件从世界各地采购   我们此次主要参观了赛默飞世尔科技这个工厂的三个部分:液相色谱区域、三重四极杆质谱区域和LTQ Obitrap区域。每种产品都有一个系统集成区域和产品测试区域。 通往工厂走廊的墙壁上绘制了赛默飞世尔科技的发展简史,最早可以追溯到1910年 专利证书挂满了整个墙壁   (1) 色谱装配区 赛默飞世尔科技的HPLC系统集成区域,这里的零配件从世界各地采购,据介绍有相当一部分零配件来自中国 HPLC系统集成区很重要的一部分就是泵组装区域   赛默飞世尔科技今年在液相色谱泵性能方面进行了很大的提升,Accela 1250的液相泵最高操作压力可达1250 bar,最高流速可达2mL/min,而延迟体积只有70μL。传感器不会由于接触流动相而产生响应波动。压力反馈控制技术确保Accela 液相泵在没有脉冲阻尼器的情况下也能提供精确的梯度。 HPLC系统成品测试区域   这个工厂所有的单元按照地上各种颜色的划线进行整齐摆放,严格注意细节才能保证质量。   (2)质谱装配区 数十台LTQ Velos双压线性离子阱质谱系统正在进行最后的测试   这种测试非常严格,各种指标测试完毕通常要2个月。双压线性离子阱质谱系统是赛默飞世尔2009年推出的新产品,该产品的推出弥补了单压离子阱的不足,高压单元能够将离子捕获能力提高90%,将碎裂时间缩短到原来的1/3 而低压单元能够将扫描速度提高2倍,同时提高质谱分辨率至0.1 μ FWHM,可以与超高压液相色谱兼容,并同时快速分析大量低丰度含量成份。 正在进行测试的LTQ Orbitrap Velos   这是一台组合质谱,将LTQ的高速度和高灵敏度与Orbitrap精确质量鉴定能力、高分辨能力很好地结合在一起,LTQ Orbitrap Velos是赛默飞世尔独有的产品。 4套LC与一台MS组成一套系统   这个是很有意思的一套系统,可以把4套LC连接到一台MS上组成一套系统。我们之前在AB SCIEX、Waters都看到了一台质谱服务于多台色谱,看来这将成为一种技术趋势。 物流仓库   这是一个非常先进物流仓库,货架上装备有电脑控制的自动传送带上,可以自动分检和传输。   这个区域摆放的是完成测试准备交付用户的质谱仪器   编者后记   赛默飞世尔科技的发展速度惊人,其通过收购和兼并迅速获得相关领域的核心技术和市场的方式堪称是业内典范,而质谱领域又是其重中之重。目前,赛默飞世尔科技在有机质谱领域布局了三大系列产品:离子阱、三重四极杆质谱和Orbitrap,另外还有由这三个系列延伸出的组合产品,如LTQ Orbitrap Velos等。赛默飞世尔科技收购戴安的程序正在进行中,如果成功将大大加强其在液相色谱领域的竞争力,对这一领域的格局将产生重要影响。   撰稿编辑:刘向东
  • 贺中国首届转向器装配线技术交流会在长春机械院汇凯科技召开
    5月20日,“2014转向器装配线中高端产品技术交流会”在长春机械院汇凯科技圆满召开,来自蒂森克虏伯、TRW、阜新德尔、一汽光洋、大连瑞谷科技、大连创新、荆州恒隆、浙江金道、长丰等10多家行业重点企业的30多位行业专家、工程技术人员齐聚一堂,共同探讨转向器装配技术的发展方向。 本次交流会采用专题讲座+分组讨论的方式,与会嘉宾围绕转向器装配技术发展及应用等相关问题进行了深入讨论,提出了很多实际问题,为转配线产品技术发展,指明了方向。 会上,汇凯科技技术人员针对汇凯科技转向器装配线产品的性能、技术特点、产品创新方向及应用领域等方面进行了深入的讲解,并结合产品视频,介绍了汇凯科技转向器装配线的实际工况。 会议期间与会嘉宾还参观了汇凯科技产业化基地和转向器装配线生产调试现场,对汇凯科技的发展速度、产业规模、技术水平等方面都给予了很高的评价,参会嘉宾还就设备技术指标、产品性能等与技术人员进行了详细的交流。 此次会议在与会嘉宾的阵阵好评声中圆满结束,这是一次技术交流的盛会。 今后汇凯科技将会组织更多更好的装配线方面的交流会议,邀请更多装配线方面的专家与一线技术人员参与交流会议,一同探讨装配线中高端产品的发展和技术问题及解决方案,助力中国汽车装备产业持续发展。关注:【长春机械院】微信号:cimachtest
  • 关于举办“2024年高端装备装配数字化计量与测量技术交流会”的通知
    关于举办“2024年高端装备装配数字化计量与测量技术交流会”的通知各单位:为推进高端装备装配数字化计量与测量技术发展,提升高端装备智能制造质量,促进国家创新驱动发展战略的实施,中国航空工业集团公司北京长城计量测试技术研究所定于2024年9月组织召开“高端装备装配数字化计量与测量技术交流会”。会议面向航空、航天、核能、船舶、兵器、高铁等高端装备制造行业,以几何量数字化计量与测试技术为导向,通过探讨数字化制造过程中涉及的精密零部件智能检测、大型零部件的数字化装配测量、大型试验设施的数字化校准等相关技术,推动数字化计量技术的发展,促进行业内相关技术人员的交流与合作。现将有关事项通知如下:01 组织机构主办单位:中国航空工业集团公司北京长城计量测试技术研究所协办单位:《计测技术》学刊 仪器信息网02 时间和地点会议时间:2024年9月11日至9月14日会议地点:新疆伊犁伊宁03 会议主要内容会议主要就近年来在国内外高端装备制造领域中的复杂零部件高效测量方法与校准技术、外观智能检测方法与技术、大部件装配所涉及的柔性装配测量方法与校准技术、数字化计量及计量仪器技术展开交流,采用主题报告和专题报告的形式。主题报告以计量院所的知名专家和重点高校的知名教授为主,介绍当前智能制造过程测量、数字化计量、几何量极值参数测量、智能识别等技术研究进展。专题报告以各航空航天主机厂所、计量院所、中科院等为主,介绍航空、航天、兵器、船舶、核能、高铁等高端装备领域的精密集成数字化装配测量与校准中所存在的问题及解决方案,包括零部件的外观智能检测技术、多测量系统协同校准技术、机器人及动态跟踪测量系统的校准技术、大尺寸柔性测量与校准技术。在专家的引领下通过共同交流、互通有无、分享成果,实现“计量与制造融合、推进高端制造业发展”的目标。04 注意事项为确保会议顺利进行,请有意参加的单位于9月2日之前安排报名,以便安排食宿。05 会议安排1、报到时间:2024年9月11日2、会议时间:2024年9月12日~9月14日3、报到地点:伊犁骏锦酒店 酒店地址:新疆伊犁州伊宁市南岸新区伊河大道9号 总台电话:0999-78988884、乘车路线:⑴.伊宁火车站:乘坐11路往新月亮弯建材市场方向,乘坐9站,在逸翠湾站下车,转乘302路乘坐16站,在二道桥站下车步行419米即到(出租车费用约30元);⑵.伊宁机场:乘坐19路凯旋城线开发区停车场方向,乘坐19站,在广东路路口站下车,步行230米,转乘伊宁302路,往伊犁河游乐园方向乘坐7站,在二道桥站下车步行419米即到(出租车费用约25元)。06 会议费用1、会议费:9月2日前报名汇款的人员2500元/人;9月2日后报名汇款的人员2800元/人;缴费方式为汇款,具体汇款信息如下:单位名称中国航空工业集团公司北京长城计量测试技术研究所开户银行工行海淀西区支行帐 号0200 0045 0900 3500 979备 注汇款请标注“装配计量交流会”2、会议期间食宿统一安排、费用自理,酒店账户信息如下:单位名称新疆宏睿嘉敏酒店管理有限公司开户银行新疆银行股份有限公司伊犁分行帐 号0806 2000 0000 068507 会议报名报名请扫下方二维码报名咨询电话:010-62457116,13691190990本次会议由北京华君伟业会议服务有限公司协办
  • 一个小技巧,轻松实现三根弯管的装配关系三维检测
    技术讲堂——秀磊谈扫描随着高精度三维扫描技术的应用深入,其不仅仅可以检测单个工件的全尺寸信息,也可以进行一些装配关系的检测,例如大型上下模具的装配是否契合,阀门和水泵的装配是否密封等。这种两个工件之间简单的装配关系,用三维检测较为简单。本期,李老师要为大家介绍的是三个工件之间的装配关系检测,其中最关键的操作是确定好三个工件之间的相对空间位置。技术讲师——李秀磊先临三维工业级扫描仪应用工程师资深3D数字化应用专家,深耕3D数字化多年,在三维数字化及工业检测领域拥有丰富行业经验。第6期-THE SIXTH-三根弯管装配关系的三维检测汽车弯管的三维检测,是高精度3D视觉检测非常普遍的应用之一,这次,我们需要在这个基础上进行难度的提升,需要检测三条弯管的装配关系,包括接口处的位置度与形面偏差以及三根弯管之间的空间距离。01三维检测样件这是需要检测的其中一根弯管,这些弯管单独的全尺寸三维检测非常方便,三维扫描,导入软件检测,弯曲的弧度等是否符合要求一目了然。但是要进行三根弯管的装配检测时,遇到了问题,若使用夹具,将会遮挡部分的数据信息,特别是接口处;若不采用夹具,则不能确定三根弯管的空间位置,无法进行三维检测。“如何实现既可以获取每条弯管接口处的三维数据,又可以实现相互之间的空间位置的确定?这是完成这一检测任务的关键,李老师给出了一个灵活的处理方式。02三维检测流程1.首先将弯管固定在夹具上,对于弯管和夹具进行三维扫描,来获取弯管的模拟装配位置,但是由于夹具与弯管有接触,弯管的三维数据不全,特别是接口处。图中红色标注部分即为被夹具遮挡的弯管位置2.将弯管从夹具上取下来,获取完整的接口处弯管三维数据。3.将弯管的三维完整数据与弯管在夹具上的数据进行对齐,获得弯管在模拟装配下的完整数据。4.检测弯管的相对位置以及角度等是否能够匹配。03扫描设备此次采用FreeScan UE激光手持三维扫描仪,其具有计量级精度(0.02mm)且重复精度稳定,保证检测结果;同时,具有广泛的材质适应性,汽车弯管无需喷粉,直接三维扫描。通过这种灵活的处理方法,拓宽了三维扫描的应用范围,不仅可以检测单根弯管的生产尺寸是否符合要求,还可以检测多根弯管之间的装配关系;同时,由于可以准确模拟装配时的场景,使得弯管的生产质量更加符合实际需求,提高生产效率。随着高精度3D视觉检测技术的不断深入,其将提供更多应用可能性,助力生产质检进入更加高效高质的新阶段。往期推荐【技术讲堂】干货速递,三维扫描中喷粉的那些事儿【技术讲堂】小体积工件表面难以贴点,如何获取高精度三维数据?【技术讲堂】干货速递,三维扫描的贴点技巧有哪些?【技术讲堂】55mm黑色骨钉,如何获取高精度三维数据?【技术讲堂】零件最薄处仅1mm的管道泵铝叶轮,该如何三维扫描?
  • 冷湖天文观测基地中红外观测系统太阳磁场光谱仪收官在即
    当前我国正在紧锣密鼓地推进冷湖天文观测基地的建设,该基地位于我国柴达木盆地西北边缘的青海省海西州茫崖市冷湖镇赛什腾山区域,平均海拔约4000米。偏僻荒凉的赛什腾山成为火热的建设工地(央广网发 王小龙 摄) 冷湖天文观测基地由多个平台组成,其中D平台用于太阳磁场精确测量的中红外观测系统,为科学家对当今太阳物理前沿如太阳发电机、纤维化磁对流过程、日冕加热的研究提供测量手段。系统的核心部件——太阳磁场测量光谱仪由上海技物所研制。光谱仪光机部分光谱仪调试科研团队经过了多年的艰苦攻关,中红外观测系统的研制工作接近尾声。光谱仪在实验室环境下测试表明,性能达到任务书指标要求,后续将在冷湖太阳观测基地开展实测。该系统主要由望远镜、偏振光路和超高光谱分辨率成像型红外傅里叶变换光谱仪组成,能够测量出太阳谱线通过磁场所产生的微小裂距,从而解算出太阳磁场强度。其中,太阳磁场测量光谱仪部分具有极高的光谱分辨率(指标为0.004cm-1)和极高的空间分辨率(探测元尺寸不到1/4衍射斑),技术难度极大且为国际上首次研制。为满足项目对光谱仪性能的要求,除干涉仪主体外,科研团队还需要完成一系列分系统的研制:如高性能长波红外探测器、冷箱-杜瓦两制冷机系统以及低温光学系统等。 5年来,在所领导和各部门的支持下,研制团队群策群力,克服了种种困难。从技术方案论证,到探测器、制冷系统、杜瓦组件、光学薄膜、整机光机电技术攻关,一路走来的桩桩件件难忘而珍贵:有一年除夕夜,各部门参研人员在地下室完成后继光学集成工作;西藏那曲高原试验期间,大家在海拔4475m的高原上一边吸氧一边对仪器关键部件进行环境模拟测试;曾因一根薄膜电缆的接地造成的测试结果不佳而感到沮丧;也因一根管脚莫名导通而需打开冷箱大费周折。近两年多来,各地的疫情辗转反复,给研制任务造成了不少困扰。研制团队始终发扬坚韧不拔的精神,把疫情的影响降低到尽小。如杜瓦陶瓷基片加工,团队和总体轮番与加工单位协调进度,到货后又立即安排加班加点,第一时间完成装配!西藏那曲对关键部件进行环境模拟测试正如一名攀登者攀到每个峰顶收获的高兴和经历,是为登顶珠穆朗玛累积经验。前路漫漫,相信在大家的通力协作,专家的指导和研究所的全力支持下,团队成员能够一同拾级而上,创出辉煌!“用于太阳磁场精确测量的中红外观测系统”项目是国家重大科研仪器研制项目,由国家天文台、上海技物所和西安光机所联合承担,获国家自然科学基金委员会资助。
  • 冷冻电镜实验+计算:佰翱得与深势科技达成战略合作
    近日,无锡佰翱得生物科学有限公司和北京深势科技有限公司宣布达成战略合作协议。双方将结合深势科技在“AI+分子模拟”领域的算法能力及佰翱得国际领先的药靶蛋白制备及结构生物学研发能力,在冷冻电镜(cryoEM)算法及计算机辅助药物设计(CADD)领域开展合作,共同聚焦新药研发的“源头创新”,建立计算与“湿”实验相结合的商业化合作新模式。根据协议,双方将充分发挥各自专长的协同优势,基于佰翱得强大的冷冻电镜平台所产生的海量实测数据,结合深势科技在蛋白结构预测、分子动力学以及微观尺度上的建模能力,对电镜算法及蛋白三维模型构建进行持续优化,并探索开发新一代自动化数据处理方法,同时结合RiD增强采样算法,进一步提高冷冻电镜的结构解析效率和准确度。在商业化协同方面,双方充分发挥计算+“湿”实验相结合的模式,基于深势科技的超高通量虚拟筛选引擎和Uni-FEP自由能微扰计算模块,充分利用佰翱得强大的药靶结构数据库,提供从药靶结构出发的苗头化合物筛选和先导化合物优化的交付能力,为行业客户打造新型研发范式,提供更具价值的服务体系。未来,双方还将在商业化拓展及CADD人才发展等领域展开进一步的合作。佰翱得首席运营官金雷博士表示:“佰翱得已经建成全球新药研发界最大的冷冻电镜CRO平台,赋能新药研发‘源头创新’。新药发现和优化阶段的节奏很快,客户对药靶结构交付的速度和精度上,提出了更高的要求。深势科技在数据处理的算法和蛋白结构建模上有独特的优势。相信双方在电镜技术开发上的合作,会大大促进冷冻电镜在药靶结构测定中的应用。佰翱得的‘千靶万苗’计划已经开始实施,药靶蛋白库、药靶结构库和苗头化合物库初步建成。与深势科技强大的计算优势相结合,将极大地提升佰翱得基于结构的药物研发服务的广度和深度。同时,佰翱得也可利用其技术平台为深势科技CADD的结果提供‘湿’实验的验证,形成研发闭环,加速新药的发现和优化迭代。”深势科技创始人、CEO孙伟杰表示:“佰翱得拥有全球领先的商业冷冻电镜平台,在药靶蛋白制备和结构生物学领域有非常丰富的技术积累和研发经验。本次合作将充分发挥双方在产研和商业化领域的协同效应,通过计算+实验相结合的模式,双方将共同在实际的研发项目中不断迭代电镜平台及Uni-FEP相关算法,打造从结构出发到高通量筛选及化合物评估的完整产业链条,共同为国内外新药研发企业提供真正的‘源头创新’服务能力。”关于佰翱得无锡佰翱得生物科学有限公司由“中国企业500强”之一的双良集团与多名拥有国际药企工作经历的海归科学家联合创立。自2009年成立以来,公司致力于为全球创新药物研发机构提供“以复杂蛋白制备为核心,以结构生物学为特色”的创新药物早期研发CRO服务,促进基于结构的药物研发,打造结构生物学细分领域的国际领先品牌。佰翱得拥有蛋白表达与纯化、生物分析与筛选、结构生物学、药靶蛋白库等生物平台技术,拥有X-射线衍射仪、300KV冷冻电镜等先进科研设备,具有国际一流的蛋白样品制备和生物结构解析技术,组建了由经验丰富的领军人才带领的强大的队伍,是目前全球唯一一家具备从基因到冷冻电镜解析结构的全方位服务能力的标杆企业,建有全球新药研发CRO行业最大的冷冻电镜服务平台。公司客户覆盖了美国波士顿、旧金山、圣地亚哥、新泽西等生物医药企业聚集地,包含了在美洲、欧洲和亚洲的数十家合作伙伴,其中既有国际大药企,也有新兴的生物科技公司。关于深势科技深势科技是“AI+分子模拟”领域的领跑者,致力于将过去业内以实验为主的试错式研发模式,逐渐转变为“计算设计-实验验证”的理性设计研发模式。深势科技的新一代分子模拟平台能够实现效率与精度的统一,结合高性能计算,能够对数十亿原子规模的体系进行量子力学精度的计算模拟。团队核心成员获得2020年全球计算机高性能计算领域的最高奖项“戈登贝尔奖”,相关工作当选2020年中国十大科技进展,以及2020年全球人工智能十大科技进展。深势科技具有强大的科研与产业落地能力,目前,深势科技已在医药和材料领域与数十家工业界客户携手合作。
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • “高性能制造技术与重大装备”重点专项2022申报指南:拟3.38亿启动26项任务
    4月27日,科学技术部发布国家重点研发计划“高性能制造技术与重大装备”重点专项2022年度项目申报指南。指南明确,2022年度围绕基础前沿技术、高性能基础件、高性能基础工艺、高性能基础试验与分析、集成应用示范等5个技术方向,按照基础研究、共性关键技术、应用示范3个层面,拟启动26项指南任务,拟安排国拨经费3.38亿元。其中,在基础研究类拟部署4个青年科学家项目,每个项目200万元。共性关键技术类项目配套经费与国拨经费比例不低于1.5:1,应用示范类项目配套经费与国拨经费比例不低于2:1。项目统一按指南二级标题(如1.1)的研究方向申报。除特殊说明外,每个方向拟支持项目数为1~2项,实施周期不超过3年。 申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题不超过4个,项目参与单位总数不超过6家;共性关键技术类和应用示范类项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名项目负责人,项目中每个课题设1名课题负责人。青年科学家项目不再下设课题,项目参与单位总数不超过3家。项目设1名项目负责人,青年科学家项目负责人年龄要求,男性应为1984年1月1日以后出生,女性应为1982年1月1日以后出生。原则上团队其他参与人员年龄要求同上。指南任务如下:1. 基础研究类1.1 高性能制造理论与技术体系研究研究内容:研究性能与材料、几何及工艺参数的耦合机理与模型表达形式,性能指标的逐级分配方法与评价准则,面向性能的设计、面向制造的设计与面向性能的制造的协同原理,跨层级性能仿真建模理论与调控机制等,突破以产品性能精准保证为目标的设计制造一体化、全流程制造工艺优选和高效参数反求、定域定量定式的性能可控制造等关键技术,构建高性能制造理论与技术框架体系,并面向空天及核电装备研发等国家重大需求进行试验验证。1.2 性能驱动的高端装备稳健性设计理论与方法研究内容:研究多样化极端条件下重大装备多场信息驱动的稳健性建模与表征、重大装备关重件数字化模型的工程一致性校验、多精度数据驱动的重大装备性能快速预测等理论和方法,形成几何-材料-载荷等不确定性下装备性能稳健性优化设计方法,并在典型重大装备设计中试验验证。1.3 高端装备协同智能故障诊断理论与预测方法研究内容:研究高端装备服役过程中关键性能的退化机制与失效机理,建立基于协同高精度故障诊断与预测的装备性能失效模型;研究数据非共享式协同特征提取、非直接读取式监测数据质量评估与无数据式多实体故障诊断知识靶向迁移方法,构建装备个体定制化故障诊断模型。1.4 多场耦合下异质异形构件的材料-结构-性能一体化成形理论研究内容:研究异质异形构件的强力学性能差异材料之间的属性匹配、应力与变形协调等机制,建立异质构件设计方法;研究多场耦合下的异质异形构件层间界面结合性能的控制机制,构建层间界面和层内失效准则,形成异质异形构件的多尺度、多维度性能评价理论体系,实现异质异形构件的材料-结构-性能一体化设计与成形,并在典型异质异形构件成形中试验验证。1.5 面向性能的超精密加工理论与精准调控方法(青年科学家项目)研究内容:研究超精密加工构件关键性能的表征方法,揭示构件关键性能与加工质量之间的关联机制,建立加工工艺与构件关键性能之间的模型,构建面向性能精确调控的超精密加工理论与方法,并在高温等离子体屏蔽防护件加工中试验验证,形成高能粒子吸缚性能可调控的超精密加工理论和方法。1.6 极端服役条件基础件接触界面力学行为及性能调控方法(青年科学家项目)研究内容:研究极端条件下基础件接触界面力学行为及性能演变机理,建立面向高服役性能的几何形貌与表面织构协同设计理论,提出考虑奇异点的基础件接触面分区修形加工方法,开发基础件接触表面织构确定性调控新技术,研发极端条件下基础件服役性能测试系统,在承载能力、接触疲劳强度寿命等方面进行试验验证。1.7 智能复合材料结构一体化成型理论与方法(青年科学家项目)研究内容:面向未来复合材料结构健康监测-承载一体化的需求,研究光纤等传感器嵌入复合材料结构的新型方法,实现传感器的高效率、低损伤嵌入;探明传感器/高性能纤维混合预制体的变形跨尺度传递、宏-微观结构作用规律及多尺度建模方法,揭示传感器/高性能纤维二元异质混合体的树脂填充-固化过程典型缺陷形成机制与时空演化机理;突破传感器/高性能纤维混合预制体高精度低缺陷预成型-固化一体化成型制造与控制技术,形成健康监测-承载一体的智能复合材料结构制造原始创新,研制智能复合材料模拟样件进行性能评价与试验验证。1.8 装备与工艺融合的制造精度可靠保障方法(青年科学家项目)研究内容:探索机床装备与工艺融合的制造精度可靠保障新原理,突破传统固定装夹思路的局限,研究装备与工艺融合的数据监测原理与方法,研制面向变形控制的自适应装夹工艺装备,突破监测数据和知识混合驱动的制造精度可靠保障技术,保障机床装备服役过程中的制造精度可靠性,在新一代飞机铝合金、钛合金大型结构件加工中验证。2. 共性关键技术类2.1 超高速空气轴承电主轴关键技术研究内容:研究超高速空气轴承气体支撑和润滑机理、超高速空气轴承电主轴设计方法、主轴电机气隙磁场调制方法;突破空气轴承高精度节流部件制造、轴承气浮间隙精密调节与控制、主轴内置高速电机发热控制、主轴在线动平衡测试等关键技术;研发超高速空气轴承电主轴,在典型高端制造装备中应用验证。2.2 空间机构长寿命高可靠齿轮传动系统关键技术研究内容:研究空间环境高真空、微重力、温度交变载荷作用下齿轮失效机理和典型材料的服役性能,空间环境齿轮副固体润滑摩擦磨损仿真分析,超薄高强齿轮传动系统高可靠高转矩密度设计方法;突破切-磨-渗-抛全工艺流程高效精密齿轮制造工艺技术;建立空间机构齿轮传动系统拟实工况下服役性能试验平台及评价体系;研制空间环境长寿命高可靠齿轮传动系统,并在重大型号空间机构中应用验证。2.3 超高速动车组双斜齿形齿轮传动系统关键技术研究内容:揭示400km/h以上高速动车组轮-轨-构架传动系统振动机理及辐射噪声映射关系;研究受限空间下双斜齿形齿轮传动系统设计、齿形宏观构型与微观修形、齿轮副高精齿面成形技术;突破高速时变地域和超长服役周期下系统振动、噪声、温升等控制关键技术,建立寿命评估方法与试验验证体系;研制智能感知、诊断、预测一体化的齿轮传动系统。2.4 高频响高可靠数字液压元件关键技术研究内容:研究高频响数字先导级驱动和多模式主级的构型原理和结构设计;突破容腔压力、油液温度、阀芯位移、阀口流量等多状态信息的高频响应与精确感知、融合处理与集成传输等关键技术;研发高压数字液压元件精密加工与装配等关键工艺;研制具备多通讯接口的数字式控制器及其配套控制/调试软件,实现从元件、系统到主机层面的多功能控制。2.5 超低速大转矩永磁电驱动系统关键技术研究内容:研究永磁电机“机-电-磁-力-热”多域协同、基于电机-传动或直驱的永磁电驱动系统全域高效等设计方法;突破轻稀土复合磁体建构与抗失磁、振动噪声靶向主动抑制、热耦合与热管理、状态数据交互与智能控制等关键技术;研制超低速大转矩永磁电驱动系统,在典型高能耗领域配套应用。2.6 非道路车辆大功率电驱动传动系统关键技术研究内容:研究非道路车辆大功率电驱动用发电机、驱动电机、控制器、驱动单元等高性能、高功率密度协同设计方法;突破电驱动传动系统构型设计、深度集成与动力高效耦合技术难题;开展电驱动传动系统综合能源管理技术及能效提升控制策略研究;构建大功率电驱动传动系统性能综合测试与评价技术体系;研制非道路车辆用大功率电驱动传动系统,并在百吨级装载机、矿用卡车上进行应用验证。2.7 大规模微细阵列结构超精密加工技术研究内容:研究大规模阵列式光学结构的高效高一致性超精密切削原理、微细结构保形超光滑抛光机理和多工序误差传递规律;突破多尺度光学结构原位超精密测量、脆性材料高精度成型以及形性调控等关键技术;研制大规模阵列式光学结构的超精密加工-测量一体化装备,在红外探测、光电感知等领域实现应用验证。2.8 大口径复杂曲面光学元件超光滑制造技术研究内容:攻克光学元件超光滑物化作用原子级材料去除基础理论;突破跨尺度气动磨头柔性研抛、磁流变高精度低损伤抛光、弹性自适应磨头超光滑控制、原位一体化轮廓测量与补偿、原位表面与亚表面损伤全口径检测等关键技术;研制复杂曲面柔性自适应抛光与原位一体化检测制造装备;在强激光系统、空间遥感、天文观测等光学系统中应用验证。2.9 超薄碳碳材料筛网结构精密制造技术研究内容:研究超薄碳碳材料筛网结构设计和精密控形加工理论;构建符合超薄碳碳材料特殊性能要求的纤维预制体结构;形成制备高精度超薄碳碳复合材料的致密化、热处理等工艺及相关辅助工具;突破高密度阵列孔热消散分区控参精密加工、耐溅射损伤检测与寿命评估、变形抑制与低损加工全流程协同调控的“材料制备-测量-再规划-加工”闭环制造等关键技术;研制超薄碳碳材料筛网结构精密制造成套装备及碳碳栅极组件,在深空探测器、通信卫星平台等电推进系统中应用验证。2.10 惯性器件硬脆复杂结构高效精密加工技术研究内容:研究硬脆材料表面去除、界面损伤与构件使役性能生成机制,突破热力耦合加工形性一体化调控、亚表层微观去除与损伤抑制、构件性能高精度在位无损表征等关键技术,研制硬脆材料精密复杂构件加工-检测-修调一体化成套装备,在大型水面/水下平台、运载火箭等的高精度惯导系统上进行应用验证。2.11 大截面异形承力构件整体成形技术研究内容:研究微区快速凝固和非均匀强塑变成形全过程中组织缺陷演变、内应力遗传演化、特征微结构适配等共性问题,突破大规格细晶和成分均匀的锭坯制备、大型异形截面整体构件成形成性控制、大尺寸结构残余应力消减等关键技术,研制大截面铝合金异形整体成形框及成形装备,在新一代直升机等装备应用验证。2.12 探测制导复杂光机电产品精密装配技术研究内容:研究几何量和物理量复合的精密装配理论,揭示装配连接界面应力形成与非线性时变规律,突破装配应力形成机理与检测、极端服役环境下装配性能的多源不确定性分析与优化、跨尺度系统装配性能预测与工艺调控等关键技术,研制精密光机电产品测装调一体化自动装配系统,在航天、飞机等领域的光机电导航制导系统上进行应用验证。2.13 高端装备核心零部件多维度应力场测量平台研究内容:建立多维度应力场测量平台,研究核心零部件多维应力场高准确度定量表征、加工误差与残余应力的映射方法;突破高动态运动系统超精密控制、声功能新材料性能调测与制备等关键技术;形成跨尺度/高空间分辨率应力场的现场在役测量与分析、高动态下的应力场测量与评估等试验能力。3. 应用示范类3.1 航发燃烧室环形薄壁件多品种混线制造技术研究内容:研究航发燃烧室环形薄壁件混线加工误差形性协同控制机理与多工位误差流传递机制等理论,突破毛坯铸锻形性一致性控制、特征驱动的零件加工工艺自动规划、车/铣复合加工误差自适应补偿、薄壁零件加工残余应力调控、多品种混线生产智能协同管控等关键技术;研发车铣、铣车两类复合加工中心以及工艺自动规划、智能协同管控等系统;在航发燃烧室火焰筒和机匣等多品种环形薄壁件混线制造中应用验证。3.2 大型构件柔性加工检测一体化智能制造技术与装备研究内容:研究智能化柔性加工工艺,突破加工装备动态精度主动调控、自感知与性能自持、大场景测量及激光视觉引导定位、振动抑制等关键技术;研发高效率智能化的中空电机驱动部件、五轴联动加工单元;研制移动式或可重构龙门桁架式柔性加工检测一体化智能制造装备,在飞机、航天器、核岛汽轮机或盾构机等装备大型结构件的原位加工中应用示范。3.3 一体化承载式车身压铸成型工艺与装备研究内容:研究新型免热处理高强韧压铸铝合金材料性能调控机理;突破多材料一体化车身多目标优化设计、超大型复杂薄壁压铸件模具/工艺、大型车身一体化压铸件与环境件连接等关键技术;研发新能源乘用车一体化结构件及其压铸成型工艺;研制超大型智能压铸成套装备,在新能源乘用车下车体等实现示范应用。3.4 超薄界面异质异构晶圆键合关键技术与装备研究内容:研究金刚石与GaN、SiC与InP/GaAs等异质晶圆键合机理与方法;突破异质晶圆精确对位、原位表面等离子体活化、异质化合物材料键合等关键技术;研制对准模块、静电卡盘、键合台等核心零部件,研发异质异构晶圆键合设备;研制金刚石与GaN微波功率器件、SiC与InP/GaAs光电器件等异质异构器件;实现设备在超大功率雷达、舰载激光器关键电子器件制造中的示范应用。3.5 大尺寸超高真空分子束外延技术与装备研究内容:研究大尺寸生长室高流导仿真设计等方法;突破大尺寸超高真空腔体设计与制造、高流导冷阱、大面积基片均匀加热、全自动高效率晶圆传输、高稳定大容量阀控裂解源炉等关键技术;研发大容量束源炉、大尺寸高均匀衬底架和高可靠快门等核心功能部件;研制大尺寸全自动分子束外延装备;开展外延薄膜材料生长工艺研究,制备III-V族化合物外延材料,在光电器件或相控阵雷达/5G基站通讯用固态微波射频器件等方向应用示范。
  • 西安光机所自由曲面冷光学红外探测终端获得应用
    近日,由西安光机所飞行器光学成像监视与测量技术研究室设计研制的制冷中继长波红外探测终端,配合总体单位完成在云南天文台丽江观测站2.4米口径天文望远镜外场的装机、调试和标定工作,成功实现了接近极限灵敏度的天文目标探测,顺利获得天文“首光”,助力总体填补国内天体目标特性测量领域的空白。这也是西安光机所进入我国天体目标特性测量领域的首次尝试。作为研究所主责主业作用发挥的全新应用领域,项目组充分讨论用户应用需求,针对关键核心问题多次请教相关领域的技术专家,紧密与总体单位的沟通迭代,在系统小型化、大视场和超灵敏的要求下,最终确定采用冷光学自由曲面探测系统实施方案。   飞行器室项目团队在前期设计阶段攻坚克难、集智攻关,先后攻克了大视场离轴四反自由曲面中继系统设计、低温光学组件柔性支撑和装调、全系统红外背景辐射仿真和抑制、真空恒温器微振动主被动隔离等关键技术。整个项目仅历时10个月便完成了光学系统设计以及设备集成工作,在4个多月的连续观测中获得了大量高质量数据,充分验证产品性能指标的同时,也为总体后续的天体目标特性测量奠定了坚实的数据基础。   近年来,西安光机所在创新领域布局以及先进制造能力提升方面不断下大力气改革,激光通信终端、全铝自由曲面相机、红外衍射相机的成功发射,科研生产体系重组显效,大口径光学载荷装配能力顺利建成,基础研究与工程应用更加紧密融合等都充分说明改革“组合拳”获得预期。   该项目的成功,也是改革的受益者,飞行器室、空间光子信息室、热控技术研究室、装校技术研究中心和检测技术研究中心等多个部门集中力量、通力协作,在加工和装配方面,解决了大陡度全铝自由曲面光学元件的加工难题;克服了低温光学组件制冷效率低以及全系统温度均匀性差的困难;实现了离轴多反冷光学系统的高精度快速装调和预置。   除此之外,项目组还开展多项冷光学组件的指标检测方法研究和验证的工作,为日后在领域将路走宽走好做好筹划和准备。
  • 冷冻电镜+清华大学=7篇Cell、Nature、Science
    每天关注Cell、Nature、Science(合称CNS)等顶级期刊是小编的日常工作之一。近两年,小编发现,除了“魔剪”CRISPR,冷冻电镜也是这些期刊的“常客”。中国科学家在这一领域取得的成果是有目共睹的,而清华大学无疑是这一领域的“领军者”之一。“冷冻电镜+清华大学=CNS”这个公式虽有点夸张,但也不是毫无根据。  施一公  该校的施一公院士、颜宁教授是这一领域的知名科学家。最近,两位学者都有新成果发表在CNS上。7月22日,施一公教授研究组在Science杂志就剪接体的结构与机理研究发表两篇长文,题目分别为“Structure of a Yeast Activated Spliceosome at 3.5 A Resolution”和“Structure of a Yeast Catalytic Step I Spliceosome at 3.4 A Resolution”。研究报道了酿酒酵母剪接体激活和剪接反应催化过程中两个重要状态的剪接体复合物近原子分辨率的三维结构,阐明了剪接体的激活和催化机制,从而进一步揭示了前体信使RNA剪接反应的分子机理。  颜宁  颜宁教授在5月、8月和9月相继在Cell、Nature和Science杂志上发表了3篇论文。发表于Cell杂志上的论文(题目:Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection)中,颜宁研究组与中国疾控中心、中科院微生物所高福院士研究组合作,首次报道了人源胆固醇转运蛋白NPC1的4.4埃分辨率冷冻电镜结构,并探讨了NPC1和NPC2介导细胞内胆固醇转运的分子机制 同时还报道了NPC1与埃博拉病毒GPcl蛋白复合体6.6埃分辨率的冷冻电镜结构,为理解NPC1介导埃博拉病毒入侵的分子机制提供了分子基础。  8月31日,在线发表于Nature杂志上的研究(题目:Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution)中,颜宁研究组报道了首个真核电压门控钙离子通道的近原子分辨率三维结构,为理解具有重要生理和病理功能的电压门控钙离子和钠离子通道的工作机理奠定了基础。  9月22日,颜宁研究组与加拿大卡尔加里大学陈穗荣研究组合作在Science杂志上在线发表标题为 “Structural basis for the gating mechanism of the type 2 ryanodinereceptor RyR2”的研究长文,揭示了目前已知分子量最大的离子通道Ryanodine受体RyR2亚型处于关闭和开放两种状态的三维电镜结构,探讨了RyR2的门控机制。关闭及开放构象的RyR2(图片来源:清华大学医学院)  高宁& 杨茂君  除了上述成果外,清华大学近期还发表了另外两篇基于冷冻电镜的Nature论文。5月25日,该校高宁研究组与合作者在Nature杂志在线发表了题为“Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles”的研究论文。文章报道了位于酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构,确定了近20种装配因子在核糖体上的结合位置及其原子结构。该校生命科学学院高宁研究员和美国卡内基梅隆大学John L. Woolford Jr教授是这一研究的共同通讯作者。  9月21日,清华大学研究小组在Nature杂志上发表了最新论文,首次报道了迄今为止分辨率最高的线粒体呼吸链超级复合物—呼吸体的冷冻电镜三维结构。清华大学杨茂君教授和高宁研究员是该研究的共同通讯作者。图注:a,不同侧面呼吸体结构模型及密度。b,复合物I结构模型及密度。(引用自清华大学生命科学学院)  据清华大学生命科学学院报道,呼吸体蛋白分布于线粒体内膜上,是执行呼吸作用的超大分子机器。哺乳动物呼吸体I1III2IV1是由81个蛋白亚基(70种不同蛋白分子)所构成的分子量高达1.7兆道尔顿的膜蛋白超级复合物。该研究中,科学家小组拿到了结构稳定、均一性好的呼吸体超级复合物,同时验证了一系列小分子化合物对呼吸体超级复合物的特异调节作用,为进一步的药物开发奠定了良好的基础。  借助冷冻电镜技术,并利用单颗粒三维重构的方法,研究小组最终获得了整体5.4埃的近原子分辨率结构,其中复合物I和复合物III的分辨率达到3.97埃(图a)。这一目前为止世界上所解析的最大也是最复杂的膜蛋白超级复合物结构为深入理解哺乳动物呼吸链复合物的组织形式、分子机理以及治疗细胞呼吸相关的疾病提供了重要的结构基础。  小编还注意到,在一年前的同一天(2015年9月21日),杨茂君教授、高宁研究员和该校医学院肖百龙研究员研究组合作在Nature杂志上发表了题为“Architecture of the Mammalian Mechanosensitive Piezo1 Channel”的研究论文,首次报道了哺乳动物机械力敏感离子通道Piezo蛋白的高分辨率冷冻电镜结构。  中国内地科学家近年冷冻电镜成果一览  那么,除了清华大学,冷冻电镜在中国其它机构的应用状况如何?它在中国的发展历史是怎样的?有哪些其他科学家发表了代表性的论文?这些问题的答案可以从施一公院士近期发表的题为《Biological cryo-electron microscopy in China》的综述中找到。清华大学王宏伟(Hong-Wei Wang)教授(现任生命科学学院院长)、雷建林(Jianlin Lei)研究员(冷冻电镜平台主管)以及施一公院士是这一综述的共同通讯作者。  点击以下链接可以查看完整综述:  http://onlinelibrary.wiley.com/wol1/doi/10.1002/pro.3018/full  文章表示,冷冻电子显微镜(cryo-EM)在结构生物学的发展中越来越重要。目前,中国的生物学冷冻电镜(biological cryo-EM)已进入快速发展阶段。这一综述具体回顾了生物学冷冻电镜在中国的发展历史,汇总了目前的使用情况,讨论了这一技术对生物学研究的影响,并展望了它未来的前景。  该综述列举了近年来(2008-2016)中国内地科研人员发表的多项代表性成果,共计53篇(如下图),解析了冷冻电镜在染色质组织、免疫反应、离子通道、光合作用、核糖体生物起源、RNA代谢和病毒结构等研究中的应用。在结论部分,作者们表示,尽管冷冻电镜在其它国家也在快速、健康的发展,但是中国的增长速度远超过世界平均水平 并且,这一趋势预计会再持续5-10年。  特别备注:本文研究成果具体介绍参考自清华大学生命科学学院、医学院官网多篇报道,综述内容编译自原文。  参考资料:  施一公研究组在《科学》发表背靠背两篇论文 捕获酵母剪接体两个关键工作状态高分辨率电镜结构  清华大学颜宁研究组在《细胞》发表论文报道人源NPC1蛋白结构, 并揭示其介导胆固醇转运和埃博拉病毒入侵的分子机制  高宁研究组《自然》在线发表论文报道酵母核糖体组装前体的高分辨冷冻电镜结构  杨茂君研究组在《自然》发表论文首次报道了线粒体呼吸链超级复合物结构  清华大学医学院颜宁研究组等在《科学》发文揭示心肌钙离子通道RyR2长程门控机制的结构基础  PROTEIN SCIENCE:A family tree of the Chinese electron microscopists  原始出处:  Wei Peng1,2,*, Huaizong Shen1,2,3,*, Jianping Wu1,2,3,*, Wenting Guo4, Xiaojing Pan1,2, Ruiwu Wang4, S. R. Wayne Chen4,?, Nieng Yan1,2,3,Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2.Science 22 Sep 2016  Jinke Gu,Meng Wu,Runyu Guo,Kaige Yan,Jianlin Lei,Ning Gao & Maojun Yang The architecture of the mammalian respirasome.21 September 2016
  • 西光所自由曲面冷光学红外探测在天体测量领域成功应用 顺利获得天文“首光”
    近日,由西光所飞行器光学成像监视与测量技术研究室设计研制的制冷中继长波红外探测终端,配合总体单位完成在云南天文台丽江观测站2.4米口径天文望远镜外场的装机、调试和标定工作,成功实现了接近极限灵敏度的天文目标探测,顺利获得天文“首光”,助力总体填补国内天体目标特性测量领域的空白。  这也是西安光机所进入我国天体目标特性测量领域的首次尝试。作为研究所主责主业作用发挥的全新应用领域,项目组充分讨论用户应用需求,针对关键核心问题多次请教相关领域的技术专家,紧密与总体单位的沟通迭代,在系统小型化、大视场和超灵敏的要求下,最终确定采用冷光学自由曲面探测系统实施方案。飞行器室项目团队在前期设计阶段攻坚克难、集智攻关,先后攻克了大视场离轴四反自由曲面中继系统设计、低温光学组件柔性支撑和装调、全系统红外背景辐射仿真和抑制、真空恒温器微振动主被动隔离等关键技术。整个项目仅历时10个月便完成了光学系统设计以及设备集成工作,在4个多月的连续观测中获得了大量高质量数据,充分验证产品性能指标的同时,也为总体后续的天体目标特性测量奠定了坚实的数据基础。  近年来,西安光机所在创新领域布局以及先进制造能力提升方面不断下大力气改革,激光通信终端、全铝自由曲面相机、红外衍射相机的成功发射,科研生产体系重组显效,大口径光学载荷装配能力顺利建成,基础研究与工程应用更加紧密融合等都充分说明改革“组合拳”获得预期。该项目的成功,也是改革的受益者,飞行器室、空间光子信息室、热控技术研究室、装校技术研究中心和检测技术研究中心等多个部门集中力量、通力协作,在加工和装配方面,解决了大陡度全铝自由曲面光学元件的加工难题 克服了低温光学组件制冷效率低以及全系统温度均匀性差的困难 实现了离轴多反冷光学系统的高精度快速装调和预置。除此之外,项目组还开展多项冷光学组件的指标检测方法研究和验证的工作,为日后在领域将路走宽走好做好筹划和准备。
  • 深度学习辅助从冷冻电镜密度图逐步组装多结构域蛋白质
    冷冻电子显微镜的进展为大分子蛋白质结构测定提供了潜力,但是在多域蛋白质的域间方向建模,成功率仍然很低。近日,Nature子刊,作者使用冷冻电子显微镜开发了自动的域增强建模(DEMO-EM)方法。DEMO-EM方法通过结合刚体域拟合和柔性装配模拟(具有深度神经网络域间距离分布的灵活装配模拟)的渐进式结构精调程序,从冷冻电子显微镜图中组装多域蛋白结构。该方法在包含多达 12 个连续和不连续结构域的大规模蛋白质基准集上进行了测试,这些结构域具有中到低分辨率的密度图,其中,对于 97% 的案例,DEMO-EM 生成的模型具有正确的域间方向(模板建模分数(TM 分数)0.5),并且优于最先进的方法。DEMO-EM流程图使用结核分枝杆菌依赖性因子的三域蛋白进行说明从查询序列开始,域边界首先由FUpred和ThraDom预测,每个域的模型由DI-TASSER生成。同时,使用深度学习卷积网络DomainDist预测域间距离。其次,每个域模型都通过拟牛顿搜索独立地拟合到密度图。第三,初始全长模型通过两步刚体REMC模拟优化,以最小密度图和全长模型之间的DCS。第四,使用由DCS、域间距离分布和基于知识的力场引导的REMC模拟,通过原子级、分段级和域级精调的柔性装配对从刚体装配模拟中选择的最低DCS模型进行精调,得到decopy构象由SPICKER聚类以获得质心模型。最后,对全原子模型再次进行柔性装配模拟,其中质心模型的约束增加了能量,最终模型是用FASPR和FG-MD侧链重新包装后的最低能量模型构建。DEMO-EM是一种基于冷冻电镜图的多域蛋白质结构确定的分层方法,由四个连续步骤组成:(1)确定域边界并对单个域建模(2)将域模型与密度图匹配初始框架生成(3)用于域位置和方向优化的刚体域结构组装(4)全长结构模型的柔性结构组装和细化模拟从冷冻电镜合成密度图构建多结构域蛋白从查询的氨基酸序列开始,首先应用LOMETS[1]从PDB创建多个模版比对,其中ThreaDom用于根据域保守分数预测域边界。如果蛋白质被LOMETS定义为“简单”目标,并且比对覆盖率95%,则应用ThraDom预测的域定义。否则,通过FUpred(通过最大化域内接触的数量[3]和最小化由基于深度学习的神经网络ResPRE[2])预测的接触图上的域间接触的数量来预测域边界。接下来使用DI-TASSER[4]生成每个域的结构模型,它是I-TASSER[5]的一个版本,通过将深度学习预测的残基间接触和距离图以及氢键电位结合到迭代搜索全基因组和宏基因组序列数据库来构建多序列比对(MSA)。然后根据TripletRes预测的接触选择最前面的MSA,将其输入到ResPRE[2],TripletRes是基于深度残基神经网络预测距离图、氢键网络和扭转角。这些预测的约束被集成到I-TASSER力场中以指导replica-exchange 蒙特卡洛模拟(REMC)。最终模型由SPICKER聚类并由FG-MD改进。对于包含来自查询序列不同区域的两个或多个片段的不连续域,域模型是通过顺序连接所有片段的序列获得的。基于深度神经网络的域间距离预测为了帮助指导域方向组装,域间距离图由深度残差神经网络算法DomainDist预测,DomainDist 是TripletRes 的扩展,最初开发它是为了基于共进化矩阵的三元组预测残基间接触图,但在这里扩展以预测 2-20 Å 范围内 36 个 bin 内残基间距离的概率。DomainDist 程序在从 PDB 收集的 26,151 种蛋白质的非冗余数据集上进行训练,其中每种蛋白质的 MSA 是使用 HHblits搜索 Unilust30 序列数据库构建的. 除了 TripletRes 中采用的二维 (2D) 协同进化特征外,还采用了三个一维 (1D) 特征,包括隐马尔可夫模型、Potts 模型的序列和场参数的 one-hot 表示并平铺到两个维度并与二维协同进化特征连接。神经网络结构是按照卷积策略设计的,使用 ResNet 基础模块。神经网络模型由 Adam 优化算法训练,以最小化交叉熵损失。尽管 DEMO-EM 只考虑了域间距离信息,但在训练过程中同时考虑了域内和域间距离信息。基于拟牛顿的域匹配和冷冻电子密度图对于来自 DI-TASSER 的每个单独的域模型,我们使用有限内存Broyden-Fletcher-Goldfarb-Shanno (L-BFGS),一种具有六维 (6D) 平移-旋转自由度的准牛顿优化算法,来识别与密度图相关性最高的域的最佳位置和方向。由于L-BFGS是一种局部优化方法,其结果取决于初始解,因此作者通过枚举欧拉角的所有组合( φ, θ and ψ ),以步长Srot_ang穿过密度图空间。对于domain pose,密度相关分数(density correlation score,DCS)用于指导L-BFGS模拟。Nvol是voxels的个数(网格点),ρEM (vi ) 是第i个voxel的实验密度。decopy结构探针密度定义为:刚体域组装执行两轮刚体域组装模拟以优化域位置和方向。在第一轮中,这些域被视为粒子,并进行快速的REMC模拟,以根据全局模拟密度相关性调整各个域的位置。第二轮刚体REMC模拟用于微调域位姿,其具有更详细的能量立场。原子级灵活的域组装和细化灵活的域组装和细化过程包含两个阶段的模拟,具有渐进的voxels分辨率和采样焦点。在第一阶段,实施了6种不同的动作,(1)LMProt 扰动,(2)围绕连接两个末端的轴的片段旋转,(3)片段沿序列的构象移位,(5)刚体段平移,(5)刚体尾部旋转和(6)刚体域级平移和旋转。第二阶段,使用在所有原子上计算的DCS实现Voxel大小为2 Å 的更精细的密度图。此外,所有残基都有相同的概率被选中进行移动和采样。当交换次数达到 100 时,模拟终止。选择最低能量的诱饵来构建最终模型,侧链原子由 FASPR 重新包装,然后是 FG-MD 细化。结果表2显示了从同一组预测域模型开始时从 MDFF 和 Rosetta 获得的结果,其中初始构象由 Situs 和 MAINMAST 建模组装。这些数据再次表明,DEMO-EM 的表现优于 MDFF、Rosetta 和 MAINMAST,全长模型的平均 TM 分数分别比 MDFF、Rosetta 和 MAINMST 高 60.0%、87.2% 和 144.4%。最后,作者在所有 51 个案例上将 DEMO-EM 与最先进的端到端深度学习结构预测方法 AlphaFold2 进行了比较。由上表所示, 虽然 AlphaFold2 预测的单个域的 TM-score (0.89) 比 DEMO-EM (0.84) 高,这可能是因为 DI-TASSER 构建的域模型质量较低,整体质量DEMO-EM 构建的全长模型(TM-score 为 0.88)优于 AlphaFold2(TM-score 为 0.84),DEMO-EM 在 28 出时获得了比 AlphaFold2 更高的 TM-score 51 种蛋白质。作者还将 AlphaFold2 构建的相同全长模型输入 MDFF、Rosetta 和 DEMO-EM,以检查灵活组装和细化过程的性能。所有方法都改进了初始全长模型,即使对于最佳预测模型,也显示了冷冻电镜数据的有用性。源代码:https://zhanggroup.org/DEMO-EM/参考资料[1] Zheng, W. et al. LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Res. 47, W429–W436 (2019)[2]Li, Y., Hu, J., Zhang, C., Yu, D.-J. & Zhang, Y. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics 35, 4647–4655 (2019)[3] Zheng, W. et al. FUpred: detecting protein domains through deep-learning based contact map prediction. Bioinformatics 36, 3749–3757 (2020)[4] Zheng, W. et al. Protein structure prediction using deep learning distance and hydrogen‐bonding restraints in CASP14. Proteins 89, 1734–1751 (2021)[5]Yang, J. et al. The I-TASSER suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).
  • CO2环保制冷剂在欧盟F-gas新规中的应用
    CO2环保制冷剂在欧盟F-gas新规中的应用 ——Memmert新环保制冷系列产品发布 Memmert在ACHEMA2018上推出了采用CO2(R744)作为制冷剂的系列产品:ICHeco 与ICPeco,这是两个新系列不但是环境友好型,而且,跟温室气体制冷箱体更加高效。 CO2制冷剂气候中性 伴随着合成制冷剂的淘汰进程推进,Memmert正在扩充其环境友好型温控箱体的范围,在此之前数十年间Memmert已经依托Peltier技术推出了无需制冷剂的HPP环境测试箱及IPP/IPS低温培养箱,并逐渐形成完整的产品系列。 GWP值(全球变暖潜能)被用来衡量废气对地面附近大气层变暖(温室效应)的影响程度大小,Memmert ICHeco/ICPeco系列立即使用的制冷剂CO2(R744)的GWP值仅为1,因此实际上是气候中性的。 相比之下,制冷剂R134a的GWP高达1430,以100年为跨度考察,在其排放到空气中引起的温室效应是CO2的1430倍。此外,R744不含氯,既不可燃,也无毒,不会造成臭氧层变薄,也不需要处理或回收。这是工业过程的副产品,这就是生产所消耗能源要远比合成含氟制冷剂要少的多的原因所在。欧盟含F气体F-gas法规促使转变 欧盟关于含氟气体F-gas气体新法规旨在到2050年将含氟温室气体的排放量比1990年削减90%。措施包括逐步减少交易量和颁布销售禁令。例如,从2022年1月1日起禁售GWP大于150的商用冰箱制冷剂。“Memmert第一时间做出了反应,以下几个原因,”Memmert研发部门负责人Stefan Kaufmann解释说。“一方面,我们的新款环保箱体有利于改善客户的环境资产负债表,另一方面,它们实际上是免维护的,并且在改善制冷效能方面表现突出。“ICH750eco对比的测量实验结果,显示其平均温升速率快出20%(22℃环境温度)。 ICHeco与ICPeco这两个系列产品还装配有业已验证有效的空气夹套系统。封闭的夹套系统拥有许多优点,适应范围广,可供温湿度环境模拟用。 关于美墨尔特(Memmert)全球领先的温控箱体领导品牌德国美墨尔特(Memmert)成立于1933年。近九十年来,美墨尔特一直致力于精确温控箱体的研发和生产,并引领箱体的发展方向与潮流。公司同时拥有悠久的半导体控温技术(Peltier)经验,为仅有的全系列半导体技术温控箱体制造商。产品包括二氧化碳培养箱、恒温恒湿箱、光照培养箱、低温培养箱、环境测试箱、真空烘箱、通用烘箱、灭菌箱、生化培养箱、超低温冰箱、至尊水浴油浴等。2010年9月11日,德国美墨尔特(Memmert)大中华区全资子公司——美墨尔特(上海)贸易有限公司在上海成立,现在北京、南京及广州设有代表处。“至尊品质,追求卓越,永不妥协”!
  • 随时随地,深冷聚焦 | 谱育科技Pre 4000 三级冷阱大气预浓缩仪 新品上市
    仪器研发背景HJ 759-2015要求实验室分析VOCs,预浓缩仪要采用三级冷阱技术和液氮制冷方式,经过市场长期证明,三级冷阱技术路线可靠,但准备液氮耗时且成本极高,市场亟需一款既能继承优点,又能弥补缺点的仪器...集十年积淀技术,经五代轮番升级谱育科技乘新而来首推Pre 4000 三级冷阱大气预浓缩仪采用三级冷阱技术 及 斯特林制冷技术有效达到液氮冷冻VOCs的效果满足30ppt以下痕量分析要求免操心,即开即用,无需日常维护体积小,功耗低,样品轨迹可溯源# 系统集成,全面溯源 #谱育科技Pre 4000 三级冷阱大气预浓缩仪可与自动进样器、静态稀释仪、多通道采样系统和自动清罐仪组成苏码罐系统,配套强大的溯源系统,从清洗、采样、配气到进样,自动记录样品全流程轨迹,解决了传统手抄笔录,难以溯源的问题。仪器可广泛应用于环境监测站、空气站、第三方检测单位、企事业单位、科研高校等单位的VOCs检测。# 技术亮点 #Technological Superiority三级冷阱技术一级冷阱低温除水,二级冷阱特殊填料,捕集VOCs的同时,有效去除CO2、O2、N2,三级冷阱为毛细空管,凭借超低温的优势,同时达到高效捕集和脱附的效果,实现脉冲不分流进样。灵活的内标进样可采大体积、低浓度内标气,也可直连高浓度内标钢瓶,定量环定体积,免去标气稀释的烦恼。低吸附设计8路加热,全系统无冷点,所有流路硅烷化镀膜。自动化检漏可通过加压或者真空的方式,对系统进行自动化检漏。# 规格参数 #Product Parameters温度控制一级冷阱:-80℃~150℃ 二级冷阱:-90℃~280℃ 三级冷阱:-160℃~200℃流量控制采样流量:0.2~60mL/min采样体积:10~2500mL采样时间:≥50%循环时间# 应用案例 #Application■ 《2019年地级及以上城市环境空气挥发性有机物监测》要求78个城市监测PAMS、TO-15和醛酮,谱育科技推出的三级冷阱大气预浓缩仪,FID检测C2-C3,MS检测其他物质,一次进样得到116种VOCs分析结果,x overflow-wrap: break-word !important "|
  • 文天精策原位拉伸试验机冷热台助力超低温金属材料研究
    文天精策原位拉伸试验机冷热台助力超低温金属材料研究随着现代各行业的飞速发展,越来越多的金属材料需要在低温环境中使用,如低温压力容器、桥梁、建筑材料等,因此对于这些材料的各项力学性能的准确测量也就显得至关重要,尤其是试样的屈服强度、抗拉强度、延伸率和面缩率等拉伸性能指标。如:液体火箭发动机的结构材料除了承受高温冲击外,由于液氢(沸点-253℃)、液氧(沸点-183℃)等低温贮存推进剂的存在,还有超低温(-100℃以下)环境要求,故液体火箭发动机理想的结构材料需要具备优良的低温力学性能;用于低温手术的医疗器械,使用液氮对患者的局部肉体进行低温瞬时低温冷冻,使得肉体固化后进行快速和无痛手术。文天精策仪器科技原位拉伸试验机冷热台,作为可适配多数拉伸试验机的低温试验平台,通过准确控温,实现不同环境温度下材料的力学性能测试,从而准确的考察不同变形温度下材料的力学性能,为其在复杂环境温度下的服役,提供数据支撑。原位拉伸试验机冷热台降温过程超低温单向拉伸试验对金属材料而言,其服役温度显著影响其力学性能。部分金属在超低温(77 K)条件下时,其断裂强度、延伸率等会显著提升。并且相比高温成形工艺会造成材料的氧化的缺点,低温下的成形工艺则不存在这样的问题,这为金属材料成形工艺的成形能力提升,提供了新的途径。Ÿ 材料的硬化、脆化Ÿ 材料的塑性变形能力改变Ÿ 材料的应变分布演化更加均匀Ÿ 材料的塑性变形机制发生变化超低温单向拉伸试验检测试样在单向应力状态下,温度对其力学性能与变形机制的影响。降温程序控制过程295 K与77 K下纯铜的单向拉伸应力-应变曲线研究内容及关键点:Ÿ 原位拉伸试验机冷热台的温控算法可准确控制变形所需温度;Ÿ 原位拉伸试验机冷热台可适配大多数万*能试验机实现低温拉伸试验,准确测试材料的低温力学性能;Ÿ 原位拉伸试验机冷热台的氮气回流除雾技术与可视窗口,可结合DIC测试技术实现超低温变形过程中应变的实时监测;Ÿ 通过设置拉伸试验机参数,可实现变温单向拉伸试验,测试复杂温度环境下材料的力学性能。试验表明:文天精策仪器科技研发的原位拉伸试验机冷热台,可与各种万*能试验机适配,在试验过程中通过文天精策原位拉伸试验机冷热台中的温控程序,实现实时控温,进行不同变形温度下的单向拉伸试验力学性能测试。并且,通过设置拉伸过程中的实验参数,完成试样在复杂变温环境下的力学性能测试,指导在复杂温况下材料的服役。
  • 专注精密控温、低温冷却和深冷技术领域——“创新100”访长流仪器总经理游方园
    p style=" text-indent: 2em " strong 仪器信息网讯 /strong 2018年10月31日,第九届慕尼黑上海分析生化展在上海新国际博览中心盛大开幕。北京长流科学仪器有限公司(以下简称“长流公司”)携众多产品亮相本次大会。 /p p   在长流仪器展位,仪器信息网采访了长流仪器总经理游方园,就长流仪器创立初衷、产品系列以及下一步市场规划做了详细了解。 /p p   据介绍,长流公司主要专注于精密控温、低温冷却技术和深冷技术等领域。其中,深低温技术水平能达到﹣160℃,恒温系列产品温度误差为± 0.01℃,高精准的温度控制能够达到所需理想状态。 /p p   详细内容请点击下方采访视频: /p script src=" https://p.bokecc.com/player?vid=1E8EDF34FA5C08DD9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai " span style=" margin: 0px padding: 0px color: rgb(255, 0, 0) " strong style=" margin: 0px padding: 0px "   附:国产仪器腾飞行动“创新100”介绍 /strong /span /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   为秉承“国产科学仪器腾飞行动”宗旨,在中国仪器仪表行业协会的指导下,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研,在企业发展的关键时期“帮一把”,助力国产仪器中小厂商腾飞发展。 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "    strong style=" margin: 0px padding: 0px " 一、“创新100”入选标准 /strong /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   (1) 企业主营业务为科学仪器 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   (2) 企业主营产品具有自主知识产权,具备创新性 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   (3) 企业总部设在中国 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   (4) 企业科学仪器产品的年产值在3000万元以下 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   (5) 企业需是中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网会员之一。 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "    strong style=" margin: 0px padding: 0px " 二、“创新100”申报流程 /strong /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "   国产仪器腾飞行动“创新100”筛选流程包含以下环节:企业在线申报——企业创新能力审核——公益报道服务——线下资源对接——最具成长潜力企业评选。 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "    strong style=" margin: 0px padding: 0px " 三、“创新100”报名方式 /strong /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " span data-filtered=" filtered" style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai " /span /p p arial=" " white-space:=" " line-height:=" " text-align:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/5cf2f7a3-00ba-4337-9397-757ac92a4d3b.jpg" title=" “创新100”预报名表单_副本.jpg" alt=" “创新100”预报名表单_副本.jpg" style=" margin: 0px padding: 0px border: 0px max-width: 600px " / /p p arial=" " white-space:=" " text-align:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal text-align: center " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " 扫描二维码填写申请表,完成“创新100”预报名。 /span /p p arial=" " white-space:=" " line-height:=" " style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & #39 Arial Narrow& #39 line-height: 26px white-space: normal " strong style=" margin: 0px padding: 0px " span style=" margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "    /span 更多相关内容请点击进入专题 /strong span style=" margin: 0px padding: 0px color: rgb(255, 0, 0) text-decoration: underline " strong style=" margin: 0px padding: 0px " a href=" https://www.instrument.com.cn/zt/chuangxin100" target=" _blank" style=" margin: 0px padding: 0px color: rgb(255, 0, 0) text-decoration: none " 《“创新100”助力国产腾飞》 /a /strong /span /p
  • 印度学者谈印度冷冻电镜应用现状:全国已安装2套 呼吁配置更多
    冷冻电镜(Cryo-electron microscopes, CEMs)作为现在结构生物学的前沿技术,逐渐受到各个国家的关注与重视,从安装配置高端冷冻电镜数量来看,据悉,目前中国已经采购高端冷冻电镜约50套,已成为继美国、欧洲之后的第三大阵营。1月31日,一位国外学者在外媒发布了一篇关于印度冷冻电镜应用现状的报道,整理如下,以飨读者。着眼于未来,印度需要更多的冷冻电镜冷冻电镜(CEMs)是现在结构生物学的前沿技术。该技术手段在科学家发现各种重要生物分子的结构、在不同生命功能和疾病中的作用以及后期试图开发治疗方法等方面都发挥了重要作用。典型冷冻电镜图,图片:CDC/Pexels目前,印度安装了两套冷冻电镜。第一套于2017年9月在印度国家生物科学中心安装,第二套则是随后安装在印度科学研究所的先进CEM中心。这两个研究中心都在班加罗尔,两套冷冻电镜都是由印度生物技术部资助。冷冻电镜通过电子来观察被研究的样品,由于电子具有较短的波长,可以获得更高的分辨率。生物样品的水分在电镜真空环境中蒸发,可能破坏样品组织,而冷冻电镜将样品进行低温冷冻,这样就避免样品受损。每套冷冻电镜的价格大概在4-6亿卢比。(按当前汇率,约3500万元-5300万元人民币)印度科学与工程研究委员会的秘书Sandeep Verma最近表示,该委员会已批准在印度各地新建四个国家冷冻电镜设施。他相信,这些设施将有助于为印度的冷冻电镜研究建立一个深厚的知识和技能积累,从而在结构生物学、酶学、配体/药物发现以及抗击新出现的疾病方面建立全球竞争力。即使在COVID-19大流行期间,“关于这种病毒及其刺突蛋白有很多需要了解的地方。在印度,我们无法做到这一点,因为我们只有两套冷冻电镜。”印度理工学院坎普尔分校生物科学和生物工程系副教授Arun Shukla说,“即使有人真的感兴趣研究它们,由于封锁,他们也不可能进入这些研究中心。”“如果我们想为下一次大流行疾病做准备,我们全国应该至少配置10套冷冻电镜设施。”蛋白质数据库每年发布的x射线、核磁共振和冷冻电镜结构数量趋势,图片: Masahide Kikkawa/Twitter结构生物学的早期几十年被核磁共振、x射线晶体学和电子显微镜等技术所主导。利用它们,科学家们能够推断出核糖体、G蛋白偶联受体、离子通道蛋白和许多病毒等重要大分子的结构。电子显微镜技术的应用过程中,其短板也很快显现出来。为了解析分子的形状和结构,电镜需要使用聚焦的高能电子束,就如同光学显微镜使用透镜聚焦光子。如果科学家需要更高分辨率的图像,电子束需要更高的能量,但能量超过某一点,电子束可能变得太强,此时就无法在不破坏样品的同时成像。电镜可以分辨30-40个Å宽的特征,当前的冷冻电镜分辨率可以达到1-4个Å。20世纪80年代初,瑞士洛桑大学的Jacques Dubochet和他的研究团队将一个生物样品浸入温度约为-180℃液态乙烷中,然后将其装入电子显微镜。令他们惊讶的是,他们发现样本中的分子保持了原来的形状,使研究小组能够以比以前更高的分辨率成像。利用这一改进,英国剑桥MRC分子生物学实验室的Richard Henderson和他的团队在1990年首次利用冷冻电镜记录了蛋白质的原子分辨率图像。不久之后, Joachim Frank和他在美国的团队开发了优化这项技术所需的图像处理工具和软件,供实验室的生物学家使用。此三人因这项工作获得了2017年诺贝尔化学奖。“冷冻电镜让我们可以观察单个病毒、几种大分子和非常小的蛋白质,”Shukla说,“冷冻电镜结构也有助于我们预测可能与靶蛋白结合的潜在药物,早些时候,这只能通过x射线晶体学来实现。”自20世纪90年代以来,冷冻电镜技术发展迅速,除了更好的显微镜硬件外,还支持先进的样品制备方法、自动数据采集和确定结构的算法。例如,像K3相机这样的直接电子探测器已经用电荷耦合器件取代了相机。工程师们还开发了自动将目标最大化的内置机制,使科学家们能够实现超高的分辨率,并减轻实验室显微镜工作者的工作量。然而,这并不意味着冷冻电镜技术已经完善。首先,制药公司需要原子分辨率显微镜来破译蛋白质和其他生物分子的完整结构,从而加快药物发现的进程。另一方面,我们有机会开发更快的算法,从给定的冷冻电镜图像中揭示分子的结构。鉴于这些机会,尽快安装新的冷冻电镜将为印度的科学家和学生打开大门,他们不仅可以从事前沿研究,还可能在未来的生物医学技术上领先一步。
  • 单颗粒冷冻电镜技术助力我国学者率先破解光合作用超分子结构之谜
    p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201605/insimg/10b97d65-a440-46ce-8444-f08d5fcc0fd3.jpg" title=" QQ图片20160526093428.jpg" / /p p style=" line-height: 1.75em text-align: center " 章新政、李梅、柳振峰(由左至右)在中国科学院生物物理所的实验室内合影 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 近日,中国科学院生物物理研究所柳振峰研究组、章新政研究组与常文瑞/李梅研究组通力合作,联合攻关,通过单颗粒冷冻电镜技术,在3.2埃分辨率下解析了高等植物(菠菜)光系统II-捕光复合物II超级膜蛋白复合体(PSII-LHCII supercomplex)的三维结构。该项研究工作于5月18日在《自然》(Nature)期刊作为长篇主题论文(Article)在线发表。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201605/insimg/40e208d7-2d2e-41ef-b61d-30c43ddd32e7.jpg" title=" QQ图片20160526093928.jpg" / /p p style=" line-height: 1.75em text-align: center " 章新政在中国科学院生物物理所的实验室内展示冷冻电镜 /p p style=" line-height: 1.75em "   光合作用为地球上几乎所有生命体提供赖以生存的物质和能量,基于结构的光合作用机理研究不仅具有重要的理论意义,同时也将为解决能源、粮食、环境等问题提供具有启示性的方案。植物光合作用的原初反应是从光系统II开始的,光系统II是由25个以上蛋白质亚基以及众多色素和其它辅因子组成的超大膜蛋白-色素复合物。该复合物中包含了天线系统、反应中心系统以及一个能在常温常压下裂解水释放氧气的放氧中心。解析植物光系统II神秘而复杂的精细结构将有助于理解该超分子机器的工作原理,也是结构生物学研究领域中多年来一直追求的热点和难点课题,并且是光合作用研究领域中众所期盼的一个超大膜蛋白-色素复合体三维结构。 /p p style=" line-height: 1.75em "   在对高等植物光系统II超大膜蛋白复合物样品的分离制备和晶体学研究方法长期探索的基础上,该研究团队及时引进并应用单颗粒冷冻电镜技术,通过联合三个课题组的优势科研力量并发挥各自的特长,团结奋战,协作攻关,以最高的效率在较短的时期内取得了突破性进展,高质量完成了该项具有高度挑战性的国际前沿研究课题。 /p p style=" line-height: 1.75em "   此次所解析的菠菜PSII-LHCII超级复合物的总分子量约1.1兆道尔顿(megadalton)(1,100 kDa),形成了一个同质二聚体的超分子体系。每个单体中包含了25个蛋白亚基、105个叶绿素分子、28个类胡萝卜素分子和众多的其它辅因子。研究结果首次揭示了这一高度复杂的超分子体系的总体结构特征和各亚基的排布规律。 /p p style=" line-height: 1.75em "   在每个菠菜PSII核心复合物的外周,结合了主要捕光复合物LHCII三聚体,以及分子量分别为29 kD和26 kD的次要捕光复合物CP29和CP26。该项工作首次解析了CP29的全长结构和CP26的结构,并发现了这三个不同外周捕光复合物与核心复合物之间相互装配和识别的机制和位点。在准确指认了外周捕光复合物与核心复合物界面上的三个小亚基的基础上,合理解释了它们在介导二者之间装配以及稳定超级复合物方面的作用。 /p p style=" line-height: 1.75em "   外周捕光复合物为光系统II核心复合物提供激发能,而二者之间的能量传递途径多年来一直未能得到精确解析。在对菠菜PSII-LHCII超级复合物内部高度复杂的色素网络进行深入分析的基础上,首次揭示了LHCII、CP29以及CP26向核心天线复合物CP43或CP47传递能量的途径。同时,还对在光保护过程中发挥作用的潜在能量淬灭位点进行了定位。研究结果对于进一步在分子水平理解PSII-LHCII超级复合物中的能量传递时间动力学和光保护机理具有重要意义。 /p p style=" line-height: 1.75em "   该工作由生物物理所三个课题组共同完成,博士研究生魏雪鹏和助理研究员苏小东为该项工作的共同第一作者。该研究工作得到了中科院B类先导“生物超大分子复合体的结构、功能与调控”专项、科技部“973”重大科学问题导向项目“光合作用与‘人工叶片’ ”和自然科学基金的共同资助,研究员柳振峰和章新政得到了国家“青年千人计划”的资助和支持。该项工作得到生物物理所生物成像中心、 国家蛋白质科学中心(上海)、生物物理所蛋白质科学研究平台等有关工作人员的大力支持和帮助。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201605/insimg/f7e41d6a-ef3b-45c0-8e8a-a702c6a63549.jpg" title=" W020160523352780363591.jpg" / /p p style=" line-height: 1.75em text-align: center " 菠菜PSII-LHCII复合物整体结构(顶视图) /p p br/ /p
  • 聊聊选型冷热冲击试验箱有哪些原则
    冷热冲击试验箱选择依据是工程产品的试验规范和试验标准以及一些原则,其中需要遵循的5条原则,主要包括可:重复性、再现性、可测控性、排它性、安全可靠性。    可重复性是:一试验设备可能用于同一类型产品的多次试验,而一台被试的工程产品也可能在不同的环境试验设备中进行试验,被冷热冲击箱试验产品的应力水平(如热应力、振动应力、电应力等)对于同一试验规范的要求是一致的。    再现性是:指两个不同的实验室对同一物料进行测定两个分析结果接近的程度,检测同一被测物的重复检测结果之间的一致性,即检测条件的改变只限于操作者的改变。也就是说别人用你说的方法和仪器也能做出同样的结果来,这就是试验的再现性。当然,这样的试验就叫做再现性实验。  可测控性是 任何一台环境冷热冲击箱试验设备所提供的环境条件必须是可观测的和可控制的,各种试验规范中大体要求参数测试的精度不应低于试验条件允许的误差的三分之一。    排它性:每一次进行环境或可靠性试验,冷热冲击箱对环境因素的类别、量值及容差都有严格的规定,并排除非试验所需的环境因素渗透其中,以便在试验中或试验结束后判断和分析产品失效与故障模式时,提供确切的依据。   试验设备的安全可靠性:设备的各种保护、告警措施及安全连锁装置应该完善可靠,以保证试验人员、被试产品和冷热冲击箱试验设备本身的安全可靠性,环境试验设备必须具有运行安全、操作方便、使用可靠、工作寿命长等特点。 海银环试自成立以来,专注发展可靠性测试设备,秉承“一款产品,就是一个行业品牌"的发展理念,其研发生产的环境试验设备,一直以性能稳定,参数精密,而获得市场的广泛认可,海银品牌试验设备先后进驻中科院、清华大学、沈飞集团、中船重工、比亚迪、迈瑞医疗、比克电池等各大企事业单位,受到市场的广泛好评和尊敬。
  • “新能源汽车”重点专项2022年度项目申报指南:拟拨5.08亿支持14项任务
    4月27日,科学技术部发布“新能源汽车”等一系列重点专项2022年度项目申报指南。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则, 围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台 6 个技术方向,按照基础研究类和共性关键技术类,拟部署 14 项指南任务,拟安排国拨经费 5.08 亿元。其中,围绕新体系动力电 池技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费不超过 800 万元,每个项目不超过 400 万元。围绕自进化学习型自动驾驶系统关键技术、智能汽车预期功能安全实时防护及测试验证技术方向,拟部署 2 个青年科学家课题,每个课题不超过 300 万元。原则上基础研究项目和青年科学家项目不要求配套经费,共性关键技术项目要求配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊说明外,每个项目拟支持数为 1~2 项,实施周期不超过 3 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题数不超过 4 个,项目参与单位总数不超过 6 家,共性关键技术类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。青年科学家项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日以后出生。原则上团队其他参与人员年龄要求同上。 项目下设青年科学家课题的,青年科学家课题负责人及参与人员年龄要求,与青年科学家项目一致。 指南中“拟支持数为 1~2 项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这 2 个项目。2 个项目将采取分两个阶段支持 的方式。第一阶段完成后将对 2 个项目执行情况进行评估,根据评估结果确定后续支持方式。1. 能源动力 1.1 新体系动力电池技术(基础研究,含青年科学家项目)研究内容:研发下一代锂离子电池关键材料与关键技术,包括新型高容量储锂电极材料的设计与低成本化制备方法,电极反应的电荷补偿、耦合机制和动力学提升技术,材料、电极的结构演化与稳定化策略,不燃性电解液、耐高温耐高电压隔膜的设计与应用技术,高面容量电极设计与制备方法;开展新体系电池的前瞻性研究,包括电池反应新原理与新机制,电极新材料与电池新结构,电极反应动力学调控机制与改善策略,电池性能衰退机 制与稳定化策略。1.2 固液混合态高比能锂离子电池技术(共性关键技术) 研究内容:研究高性能混合态电解质体系及高容量电极材料,正负极效率调控新原理和新技术;开发基于模型的极片/电池设计技术、极片/电池制造新工艺及新装备,研究内置传感器集成技术和高精度状态估计新方法;发展原位/实时表征新技术,研究失效机制和性能改进策略、热失控机理和防范机制,建立安全风险评估体系;开展配套应用和考核验证。1.3 无钴动力电池及梯次应用技术(共性关键技术) 研究内容:无钴低成本材料设计与制备,高强度隔膜和功能电解液开发;多孔电极结构和表界面的离子传输模型构建;适应于梯次利用的全新结构动力电池及系统设计与制造;研究多场景复杂工况下动力电池动态、快速、无损检测技术以及电池电性能与安全性能的演变规律,建立电池全生命周期性能评价方法和退役电池残值评估指标体系;研究动力电池梯级利用的指标和表征参数的健康阈值和安全阈值,建立退役电池梯次应用技术规范。1.4 乘用车用高功率密度燃料电池电堆及发动机技术(共性关键技术) 研究内容:开展高功率密度燃料电池发动机先进构型设计和匹配及系统仿真技术研究;研发适用于高功率密度燃料电池发动机的空压机、氢气循环系统等核心部件,以及先进热管理技术和低温快速启动技术;研究多维传感智能故障诊断和容错控制技术, 基于乘用车路谱的燃料电池动力系统测试评价及整车集成技术。 研究燃料电池发动机功率密度以及启动特性、稳态特性、动态响应特性等重要性能参数测试方法,并研究制定相关国家标准或指导性技术文件;研究乘用车燃料电池发动机批量化制造的装备技 术,形成批量化生产能力。 开展动态工况下电堆特性研究,采用高功率和高功率密度电堆架构与零部件的正向设计方法,研发适应高温低湿条件运行的 高性能、高动态响应膜电极技术,研发适应高电流密度的流场结 构、超薄低成本双极板技术,开发提高电堆一致性、可靠性以及装配效率的集成设计和密封设计方法,集成研发的催化剂、质子 膜、炭纸或扩散层、极板基材,研制燃料电池电堆,提出材料改进需求,形成批量化生产能力。1.5 商用车用大功率长寿命燃料电池电堆及发动机技术(共性关键技术) 研究内容:研发适用于重载车辆的大功率燃料电池发动机的高效长寿命供氢、供气、水热管理、DC/DC 等核心部件;研究重载车辆用大功率燃料电池发动机多功率模块控制技术;研究重载车辆燃料电池动力系统匹配与集成及系统仿真技术;开展大功率燃料电池发动机低温冷启动、环境适应性(高低温、高海拔)、电 磁兼容(EMC)等测试与评价方法研究,建立重载车辆燃料电池 发动机的快速测评规范。研究涵盖初始加载方法、循环工况加载方法、性能复测方法以及气密性和绝缘电阻复测方法,以及燃料电池发动机经耐久试验后的电压衰减、功率衰减、效率衰减等评价指标,并研究制定相关国家标准或指导性技术文件; 研究长寿命电堆的膜电极、双极板及其匹配技术,研究大功率电堆的高可靠集成和控制技术,研发电堆的长寿命控制策略和电堆高效运行操作边界设计方法及加速测试验证技术; 研究重载车辆燃料电池电堆及发动机批量化制造的装备技术,形成批量化生产能力。2. 电驱系统 2.1 先进驱动电机研发(共性关键技术)研究内容:开发驱动电机关键材料、零部件和驱动电机,具体包括:轻稀土或少(无)重稀土永磁体,低损耗高强度定转子铁芯,宽温变高速轴承,电磁线,高槽满率低交流电阻定子绕组, 高可靠绝缘系统及其高温耐电晕、高导热、兼容油冷介质的绝缘材料;开展电机性能、质量、成本平衡的关键设计技术,提升功率密度与效率和抑制振动噪声的优化设计,开展高效冷却技术与生产制造工艺研究等,开发高性价比车用电机并实现整车应用。2.2 先进电机控制器研发(共性关键技术) 研究内容:开展元器件关键技术及工艺和先进电机控制器关键技术的研发,具体包括:开发车规级碳化硅(SiC)功率芯片、 加压烧结封装和耐高温封装材料、高容积比耐高温电容器设计与封装技术以及电容膜;突破基于碳化硅—金属氧化物半导体场效 应管(SiC MOSFET)的电机控制器多物理场集成、驱动电机系 统高性能转矩控制、电磁兼容、振动噪声抑制控制和功能安全等 技术,开发基于高密度高能效 SiC 电机控制器,实现整车应用。3. 智能驾驶 3.1 自进化学习型自动驾驶系统关键技术(共性关键技术, 含青年科学家课题)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;研究自动驾驶感知—决策 —控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能训练平台,包括基于边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型和支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术, 包括测试流程、功能优化、故障诊断、远程监控、人机交互等辅助模块。3.2 智能汽车预期功能安全实时防护及测试验证技术(共性关键技术,含青年科学家课题) 研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全实时防护技术,构建基于车路云协同的预期功能安全实时监测与防护系统;研究降低预 期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。3.3 智能线控底盘平台及冗余控制技术(共性关键技术) 研究内容:研究满足自动驾驶、功能安全和信息安全的线控底盘平台系统的电子电气架构、高带宽实时通讯协议与技术;研究线控底盘的智能协同控制技术,包括不同典型场景(常规、越 野、极限)多余度底盘的非线性动态响应特性、多自由度动力学建模与解算方法、底盘集中信息处理方法、底盘全局状态识别方法、多执行系统协同与多目标优化的底盘智能控制算法;研究底盘失效运行技术,包括底盘系统失效模式、主冗切换及降级处理机制,底盘系统中的制动系统、转向系统的冗余设计,电控单元软硬件冗余设计,线控多执行系统协同容错控制技术;研究满足自动驾驶车辆需求的多余度线控执行系统集成优化技术,包括线控制动(如电机伺服助力、电磁阀)、线控转向(如六相电机、集 成电控动力单元)的关键部件技术;研制以底盘域控制器为核心的模块化、轻量化、集成化多余度线控底盘平台,形成智能线控底盘平台设计、建模、仿真和测评工具链,建立线控底盘平台多场景复杂工况、车云端结合的测试方法和评价体系。4. 车网融合 4.1 智能汽车云控平台关键技术(共性关键技术) 研究内容:研究车路云一体化云控平台架构,包括分析智能交通系统对边缘、区域、中心三级平台的需求,明确平台体系的迭代演进路线,构建平台逻辑架构和物理架构;研究云控基础硬件系统关键技术,包括边缘云智能运算硬件,车路云一体化通信及控制单元,非理想条件下的车路云信息交互及计算可靠支持技术;研究云控基础软件关键技术,包括车路云协同决策的多任务并行技术,车群控制协同及交通动态协同云控仿真技术,云端融合感知技术;研究面向高级别自动驾驶的车路云协同决策与控制技术,包括多层级群智决策机制,受限信息环境下车路云协同决策和规划方法,基于混合计算模式的边缘云协同技术;研究云控与非云控车辆混合交通云端优化技术,包括混合交通系统建模方法,云控性能随云控车辆渗透率变化的演化规律,不同渗透率下的混合交通系统云端优化技术;研究云控平台测试技术,包括建立多维度测试评价体系,覆盖车、路、云端的测试用例,测试评价规范和标准。5. 支撑技术5.1 智能汽车开发验证技术及装备(共性关键技术) 研究内容:研究典型交通参与者(含车辆、行人、非机动车 等)物理反射特性,研究高精度、高动态实时驱动控制技术,研发标准软体目标物及运动控制平台;研究抗信号干扰、耐碰撞的室内外高精度融合定位测量与驾驶机器人横纵向动态控制技术, 研发室内外多场景高精度运动参数测量系统与自动驾驶测试机器 人;研究多源传感数据高带宽、低延时、高同步采集与回注技术, 研究基于海量原始数据的自动驾驶算法测评技术,研发自动驾驶高保真数据采集回注与分析评价仪器;研究支持视觉、听觉、触觉的人机交互测试技术,研究智能座舱主客观量化评价方法,研发智能座舱集成测评系统。5.2 智能汽车场景库应用与多维测试评价技术(共性关键技术)研究内容:研究面向智能汽车通用功能设计运行域的场景库测试用例生成应用技术,建立基于不同来源场景库的场景分布和场景显著性分析方法,构建符合统一格式的基准测试场景库,提出驾驶场景评级理论方法和场景评价限值;研究光照、降雨、大雾等典型气象和复杂动静态交通流数字—物理融合模拟试验技术,开展模拟仿真技术拟真度研究,支持智能汽车整车及系统的安全性能测试;研究智能汽车信道衰落、电磁干扰等中国道路无 线环境物理模拟技术,基于智能汽车功能激活条件与失效表征分析,开发复杂无线环境下智能驾驶可靠性测试技术;研究面向网联车辆典型智能驾驶功能的封闭场地测试评价技术,研究智能汽车开放道路测试周期与场景覆盖度关联模型,提出智能汽车开放道路测试方法,开发高效率测试数据分析及评价工具集;集成融合气象、交通流、无线环境等多维复杂环境条件和封闭场地、开放道路等组合测试手段的智能汽车多维测试评价技术体系,研究制定相关技术规范和标准。6. 整车平台6.1 电动载货车多材料底盘结构轻量化关键技术开发(共性 关键技术)研究内容:突破电动载货车底盘与动力电池系统一体化全新构架集成设计技术;攻克电动载货车全铝车架纵、横梁断面多工况联合拓扑优化设计、车架疲劳寿命高精度预测与评价关键技术; 开发 2.0 吉帕高应力变截面钢板弹簧、低成本纤维增强复合材料板簧、热固性碳纤维复合材料传动轴、多材料电池箱设计制造关键技术;攻克电动载货车底盘系统超厚板异种材料连接接头高精度数值仿真、性能评价及耐蚀性处理核心技术;研发电动载货车混合材料底盘高精度、数字化全自动仿真预测软件及验证平台。“新能源汽车”重点专项2022年度项目申报指南.pdf“新能源汽车”重点专项2022年度项目申报指南形式审查条件要求.pdf
  • 国产仪器遭冷眼 科研质谱仪洋货九成九
    质谱仪作为高端科研仪器在高校的使用越来越广泛,中国作为全球质谱仪重要的需求市场也越来越受到商家的关注,国内市场对质谱需求量的高速增长,却未把这一福音分蕙自家的企业,科研领域洋品牌垄断,国产仪器无奈不得不偏师经略,可仍无法摆脱尴尬境遇。   质谱仪又称质谱计,用于分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。随着科学技术的发展和研究领域的不断拓展和深入,质谱仪的应用越来越普遍,其产品的更新节奏也在不断加快。尤其是近两年,各大质谱仪生产厂商推出质谱新品的速度令人惊讶,仅2010年上半年,各大质谱公司推出新品达十几台。高通量、高灵敏度、高分辨率、低检出限、小型化、便携式是质谱仪主要的发展方向。   质谱仪的应用范围非常广,涉及食品、环境、人类健康、药物、国家安全、和其他与分析测试相关的领域。现已成为最具发展前景的分析仪器之一,近几年全球市场需求增长率超过10%,中国市场的需求增长远甚至还要大于这个比例。尤其目前人类健康、环境安全以及能源的合理利用等是当前世界各国面临的突出问题,质谱仪也因其在分析检测过程中准确的定性和定量能力而受到格外青睐。   然而这日渐繁荣的市场,却未给我们国产的仪器厂商带来太多的收益,据了解目前我国的中高端质谱完全依赖进口,也就是说我们所青睐的多是些国外品牌,我国的市场也成为别国商家吸金的对象。这真的不是“蝇头小利”啊,一台质谱仪国产的最便宜的也要几十万,进口每台差不多都要100万到500万甚至更多,一所211工程大学光质谱仪一项设备就需投入几千万,。但是这几千万又有多少是采购国内产品的支出呢?没有多少吧。北大、清华有国产质谱仪吗?估计可能性不大,其它作为科研基地的高等院校呢?恐怕加在一起也不会超过十几台吧。那么这个超过10%的需求量都是给谁创造的,安捷伦?赛默飞世尔?还是沃特世?总之很少会轮到中国的品牌。   其实我国有机质谱仪器的研制在60年代已经开始,无论北京分析仪器厂还是科学院仪器厂都曾推出自己设计生产的化学分析质谱仪和GC/MS。然而国产仪器在性能、价格等方面均不敌外国产品,因而逐渐失去市场。为了维持生计,这些国有仪器厂逐步由独立设计生产演变成为外国产品装配和委托维修,技术力量和设备随之流失。某些高校和科研单位虽已研制成功MALDI-TOFMS等仪器,却未能转变成商品。   如此一来质谱行业国产品牌里便出现蜀中无大将的局面,我们承认在高端分析仪器领域我们和国外的技术存在差距,但导致国产仪器无人问津局面的罪魁就是——中国设备上得出的数据在国际无法得到认可。笔者不太清楚这算不算是一种学术壁垒,也不太清楚这些国际仪器设备厂商玩过什么猫腻,总之国产仪器“不堪大用”成了事实,几代人呕心沥血的研究成果,可到头来却只能来分些“残羹冷炙”,这不仅仅是境遇的尴尬,说是悲哀亦不过分。虽然国产质谱设备也占据着一小部分教育市场,不过多不是去搞科研用,而是作为授课和演示使用了。发挥的作用比模型强不许多。   质谱仪目前已经深入地渗透到了各行各业,成为保障人类健康、促进环境安全,以及探索未知世界不可或缺的工具,其重要性已得到了广泛认同。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制